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ABSTRACT 
Recently, with the broad usage of location-aware devices, 
applications with moving object management became very 
popular. In order to manage moving objects efficiently, many 
spatial/spatial-temporal data access methods have been proposed. 
However, most of these data access methods are designed for 
single-user environments. In multiple-user systems, frequent 
updates may cause a significant number of read-write conflicts 
using these data access methods. In this paper, we propose an 
efficient framework, Concurrent LocAtion Management (CLAM), 
for managing moving objects in multiple-user environments. The 
proposed concurrency control protocol integrates the efficiency of 
the link-based approach and the flexibility of the lock-coupling 
mechanism. Based on this protocol, concurrent location update and 
search algorithms are provided. We formally analyze and prove the 
correctness of the proposed concurrent operations. Experiment 
results on real datasets validate the efficiency and scalability of the 
proposed concurrent location management framework. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – concurrency, query 
processing. 

Keywords 
Spatial database, Concurrency control, Space filling curve, B-tree. 

1 INTRODUCTION 
Recently, with the broad usage of location-aware devices, 
applications with moving object management, such as vehicle 
management systems and emergency response systems, became 
very popular. In order to manage moving objects efficiently, many 
spatial/spatial-temporal data access methods have been proposed. 
One important category of these data access methods is based on 
B+-tree and Space-Filling Curve (SFC)[4]. Utilizing SFC to 
linearly map multidimensional data to one-dimensional space, thus 
retaining the usage of one-dimensional B+-tree, is a cost-effective 
solution compared to other spatial access methods, such as R-
trees[2, 5] and grid files[17], because many maturely developed 
modules, e.g., query optimization, in the traditional database 
management systems can be reused. In this scenario, 
multidimensional access methods based on SFC have attracted 
many research efforts. Comparisons among different space-filling 
curves have been conducted based on their characteristics[15, 16], 
and several query algorithms have been proposed to support the 
operations on SFCs[11, 14, 18]. 

Concurrency control is one of the important DBMS techniques. As 
stated in the Lowell Report [1],“We face major changes in the 
traditional DBMS areas, such as ..., concurrency control, ..., 
technology keeps changing the rules. These changing ratios 
require us to reassess storage management and query processing 
algorithms.” Most of the data access methods for moving objects 
are designed for single-user environments, even though in 
multiple-user systems, frequent updates may cause a significant 
number of read-write conflicts using these access methods. For 
example, a location update for a moving object usually consists of 
one delete operation and one insert operation. If there happens to 
be another operation trying to access the moving object after its 
previous location was deleted, and before the new location is 
inserted, the system will fail to retrieve this object. We name this 
inconsistent situation as pseudo disappearance, which is a 
scenario that violates both serializabile isolation and data 
consistency rules[20]. An example of pseudo disappearance is 
shown in Figure 1, where the search operation fails to retrieve the 
moving object MO, even though MO actually exists within the 
search region R. A similar scenario may also occur among two 
update operations. To prevent this inconsistent status of pseudo 
disappearance from happening, concurrency control protocols 
have to be designed for managing these concurrent data accesses 
in multi-user environments.  

 
Figure 1. An example of pseudo disappearance. 

For B+-trees, many link-based concurrency control protocols have 
been proposed to utilize the global order of the entries in the leaf 
nodes of the index tree, and they have been shown to be efficient 
and easy to implement [9, 10, 12]. Since the SFC-based indexing 
methods use B+-trees as the underlying indices, an intuitive 
solution is to directly apply these link-based approaches to provide 
concurrency control. However, spatial operations require special 
considerations to assure the consistency of the operation results. 
For example, a spatial range query may contain multiple 
inconsecutive range queries on the B+-tree, therefore, it requires 
all of these B+-tree queries return the valid results at the 
committing point. Furthermore, some location updates may not 
require modifications on the index nodes of the B+-tree. In this 
case, requesting these unnecessary locks on the B+-tree can 
degrade the system throughput, whereas not requesting adequate 
locks may cause inconsistency. To prevent these concurrent spatial 
operations from interfering with each other, link-based approaches 
are not sufficient as they cannot protect multiple inconsecutive 
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ranges among updates, nor handle concurrent spatial updates 
efficiently. Therefore, a new protocol is demanded for spatial 
concurrency protection. 

This paper proposes Concurrent LocAtion Management (CLAM), 
a framework of concurrent location update and query based on the 
multidimensional indexing structure with general SFCs and Blink-
tree. This framework applies a concurrency control protocol which 
integrates the link-based approach with the lock-coupling 
mechanism. Spatial location update and range query algorithms 
based on the proposed protocol are designed. The major 
contributions of this paper are as follows: 

 The proposed concurrent framework secures serializability and 
consistency without incurring additional deadlocks for 
concurrent spatial location updates and queries on 
multidimensional indexing structures with general SFCs and 
Blink-tree; 

 The proposed concurrency control protocol preserves the 
simplicity and efficiency of the link-based approach, and 
adopts the flexibility of the lock-coupling method; 

 A formal proof is provided to show the correctness of the 
proposed CLAM framework; and experiment results on 
benchmark datasets validate the efficiency and scalability of 
the proposed concurrent operations and framework. 

This paper is organized as follows: Section 2 reviews 
multidimensional access methods using SFC and B-tree family, as 
well as the concurrency control solutions for the B-tree family; the 
concurrent spatial range query and location update operations are 
defined in Section 3; Section 4 provides the algorithms for 
concurrent spatial operations, followed by the correctness proof in 
Section 5; experiments are illustrated and analyzed in Section 6; 
and finally Section 7 gives the conclusion. 

2 RELATED WORK AND MOTIVATION 
Space-filling curves, as a linear mapping schema applied in spatial 
data access methods, have been extensively studied, e.g., Peano-Z 
curve[19] maps data from a unit interval to a unit square; Gray 
code curve[3] improves Z-code by hashing; Hilbert curve[6] 
generalizes the concept to a mapping of the whole space. A 
historical survey of SFCs is conducted in [21]. Among the 
different types of SFCs, Hilbert curve has been shown to preserve 
the premier data locality under most circumstances [7]. Recently, 
several major SFCs, including Hilbert, Peano-Z, Gray, Scan, and 
Sweep, are systematically compared [15, 16]. Integrated with SFC, 
the widely used B+-tree family can constitute efficient spatial data 
access methods, especially for processing frequently updated point 
data, e.g., moving objects, in practical applications. 

Many concurrency control protocols [8-10, 12, 22] have been 
proposed to support general concurrent search and update 
operations on B+-trees. These protocols can be classified into two 
categories, namely, link-based and lock-coupling. The link-based 
approaches [9, 10, 12] employ only one type of locks in all 
operations, and their read operations do not require any locks. In 
these approaches, a lock-free read operation follows the links from 
the root to leaf to identify the search path level by level, and 
traverses rightward if the current node does not contain the queried 
key. Other operations in these approaches request locks without 
interfering with the read operations. A complete set of concurrent 
operations on Blink-trees, including read, insert, delete, modify, and 
reorganize, has been discussed in [9]. In this approach, the update 

operations (insert, delete, and modify) only place locks on leaf 
nodes, but not on internal nodes. The reorganize operation, which 
restructures the tree periodically, accesses the metadata of the 
index to merge or split internal nodes. This approach utilizes the 
left-to-right links between the nodes on the same level to construct 
a simple and efficient concurrency control protocol on semi-
dynamic Blink-trees. To build symmetric concurrent Blink-trees, a 
two-phase merge algorithm has been proposed in [10] to prevent 
periodical reorganization.  

In multidimensional environments, however, the link-based 
concurrency control is not sufficient to meet the requirement that 
the multiple inconsecutive B-tree searches contained in one spatial 
range query occur at one time. In other words, it cannot guarantee 
the freshness of search results from interfering with overlapped 
update operations. The other category, lock-coupling approaches[8, 
22], applies at least two types of locks, read-lock and write-lock, 
to provide flexible concurrency control. These distinct locks are 
combined to assure that the B-tree is correctly and dynamically 
modified, and help data recovery for aborted transactions. Since it 
is difficult to define a global order for spatial objects, the R-tree 
family generally adopts the lock-coupling approaches. Lock-
coupling approaches can provide more flexible protection than the 
link-based protocols, albeit require complex lock maintenance on 
different levels of the index tree. 

In the proposed CLAM framework, we incorporate the flexibility 
of the lock-coupling approach and the efficiency of the link-based 
mechanism to construct a new concurrency control protocol, 
designed specifically for spatial data access using Blink-trees and 
SFCs. 

3 PRELIMINARY 
3.1 Problem Formulation 
In order to propose appropriate solutions for the concurrent 
location update problem, the application environment has to be 
described. In this problem, the data access method is based on 
SFCs and Blink-trees (a variant of the B+-tree, as shown in Figure 
2)[12]. All the multidimensional data are mapped into equal-sized 
cells via SFC, associated with their corresponding cell IDs. The 
resolution of grid cells can be determined by the data distribution 
and disk page size. Then a Blink-tree is used to index these SFC 
values and to maintain the pointers to the data pages. The location 
management operations based on this data access method are 
defined as the following. 

The execution of a range query returns a set of data objects that 
overlaps with a given range at the time the query is finished. 
Formally specified, the input of a range query is a d-
multidimensional region (query window) R, a d-dimensional 
dataset S, and the corresponding spatial index I. The output of this 
range query is a set of data points (o1, o2, ..., on) covered in R 
within S. The output data should be valid at the committing time. 

A location update operation inputs both the old position and new 
location of a d-dimensional data point o, as well as a d-
dimensional dataset S and the corresponding spatial index I, and 
outputs the updated I and S. This operation contains two sub-tasks: 
delete the old position and insert the new location. An insert 
operation will add a new d-dimensional data point. A delete 
operation will remove an existing data point. Both need to update 
the index if necessary. The execution of a location update should 
not affect the results of a query before this update finishes, but 



have to be reflected in the results of queries after this update 
commits. 

Several assumptions are made as follows to give detailed 
descriptions to this problem.  
1. The multidimensional dataset contains only points, which 

means each data record is treated as a single point in a 
multidimensional space.  

2. The space-filling curves are applied to provide the global cell 
order, and a standard Blink-tree is used as the one-dimensional 
access method (See Figure 2). Each leaf node of the Blink-tree 
contains the cell IDs and the pointers to the data pages that 
store the corresponding objects.  

3. The read/write operation of a node from/to disk is an atomic 
action. And there exists a lock management module to 
maintain the requested locks and check the operation 
compatibility.  

These assumptions are reasonable in real spatial applications, and 
they add constraints to the problem formulation. 

The goal of the concurrency control protocol is to achieve 
serializable isolation and data consistency. Serializable isolation 
means that concurrent operations can acquire the same results as 
they are sequentially and separately executed. Data consistency 
refers to the requirement that the query can securely retrieve the 
data consistent to the valid database state. 

3.2 Observations 
The data access model based on SFC and B-tree family leaves 
spaces for efficiency improvement of concurrent spatial operations. 
Observations regarding the protocol design and potential 
performance improvements are discussed as follows.  

Concurrency Control on SFC - In the SFC-based spatial index, 
the reorganization of Blink-trees occurs when inserting a new object 
to an empty cell, or when one cell becomes empty. Concurrency 
control is essential for multiple-user environments because 
updating either index tree nodes or data pages needs exclusive 
access to keep the data and query results consistent. The link-based 
concurrency control for Blink-trees inserts and deletes entries in a 
way that the reader can always fetch the valid data by following 
the left-to-right links to the node with the corresponding key range 
without placing any locks [9]. This approach is efficient, but 
cannot be directly applied for spatial queries. Because one such 
spatial query may require multiple inconsecutive searches on the 
Blink-tree, a secure protection mechanism has to be devised to keep 
the searched area unaltered until all the searched objects are 

returned. For example, the range query R in Figure 2(a) covers cell 
32, 33, 34, 35, 52, and 53. It requires two Blink-tree range searches, 
cell cluster 32 to 35 and cell cluster 52 to 53. Therefore, not only 
the indexed cell 53, but also all the other five empty cells (32, 33, 
34, 35, and 52) require to be protected from other update 
operations. Apparently, the link-based approach is not adequate to 
assure this kind of protection, as it can only protect the indexed 
cells among updates. Therefore, lock-coupling techniques have to 
be incorporated. Once the update operation needs to insert/delete a 
cell or modify a data object, it has to assure that the cell/object is 
not located within the ongoing search region. Note that not only 
the non-empty cells, but also the empty cells in the search area 
have to be locked, because in case a new object is inserted into an 
empty cell within the search range, it will tarnish and invalidate 
the final search results. 

Lock Efficiency - In the spatial access method based on Blink-trees 
and SFCs, location update operations can be handled in different 
manners based on the SFC cells that contain the old location or 
new location. The index tree modification only occurs when 
inserting a new object to an empty cell, or when a cell becomes 
empty (taking Figure 1 as an example, cell D is empty, or cell A 
has only one object before the update). Otherwise, only the 
corresponding data pages need to be protected and modified. 
Obviously, if these distinct scenarios are not handled separately, 
the concurrency control protocol will need to lock all the Blink-tree 
leaf nodes and data cells that will be accessed during the update, 
and release them in the very end, which could significantly 
degrade the system throughput. Therefore, for performance 
consideration, these scenarios need to be respectively treated, so 
that unnecessary locks can be quickly released to increase the 
concurrency level. 

4 CONCURRENT SPATIAL OPERATIONS 
To explain the algorithms for concurrent operations in CLAM, the 
fundamental locking mechanism will be illustrated in the 
following subsection, followed by the detailed location update 
operation and range query algorithms. 

4.1 Lock Map 
In the proposed concurrent spatial operations in CLAM, two levels 
of locks are used (shown in Table 1). One is node-level lock, 
which is placed on index tree nodes. The node-level locks, 
requested only by update operations, are all write-locks. The other 
is cell-level lock, which includes both read-lock and write-lock 
and will be requested on SFC cells by all the spatial operations. As 
discussed in Section 3, for spatial queries, not only non-empty 
cells, but also empty cells will need to be read-locked, since they 
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(a) A dataset mapped on Hilbert curve. (b) Corresponding Blink-tree. 
Figure 2. A point dataset with Hilbert curve mapping and the corresponding Blink-tree. 



are not allowed to be modified during the query process. Therefore, 
an auxiliary lock map structure, in addition to the index tree, is 
applied in the proposed framework to dynamically maintain cell-
level locks. The concurrent spatial operations have to check the 
corresponding records in the lock map before placing cell-level 
locks. Each cell maintains a counter for its current read-locks, and 
use -1 to indicate the write-lock. A queue is also used by each cell 
to store the pending cell-level locks, so that these waiting 
processes can be awaked once the cell is available. After an 
operation checks the compatibility of the cell-level locks, if the cell 
is currently unavailable (i.e., has incompatible locks), this 
operation will be recorded in the pending queue. A lock map 
example is illustrated in Figure 3, where the pending queues of two 
cells are shown. As the lock map will be frequently accessed in 
this concurrency control framework, it can be implemented using a 
hash table that is evenly sliced based on the spatial distribution to 
avoid causing a performance bottleneck. In addition, sophisticated 
compression techniques can be applied to reduce the space 
requirement. Note that only cell-level locks need to access the lock 
map, because a cell-level lock will not conflict with a node-level 
lock in CLAM.  

Table 1. Types of locks and their compatibility in CLAM. 
Cell-level Node-level  

Write-lock Read-lock Write-lock 
Write-lock Exclusive Exclusive N/A Cell-level 
Read-lock Exclusive Compatible N/A 

Node-level Write-lock N/A N/A Exclusive 
 

 
Figure 3. A lock map example. 

4.2 Location Update 
In order to protect the search operations from the interference of 
update operations, the location update operations need to check 
both the node-level locks on the Blink-tree leaf nodes, and the cell-
level locks on the data cells. On the other hand, the query 
operations have to check the write-locks on the cells. For cell-level 
locks, the write-lock from update operations and the read-lock 
from read operations are exclusive to each other. In case the cells 
for updating have been locked by another operation, the update 
operations on these cells have to wait until they can successfully 
write-lock them. Specifically, the concurrent location update is 
performed as follows. 

A location update operation first deletes an existing object, and 
then inserts a new object with the same object identifier (ID) to the 
data page. In this operation, there will be two exclusive scenarios: 
(1) the old location is not the last item in its cell, and the new 
location is located in a cell corresponding to an entry in the Blink-
tree, thus the index tree will not need to be modified; (2) the new 
location is located in a cell that is not indexed in the Blink-tree (i.e., 
an empty cell), or, the old location is the last item in its cell, thus 
the corresponding nodes in the Blink-tree have to be locked and 
modified.  

To perform an update operation, the first phase, identification, is 
to locate the corresponding leaf node that contains or will contain 
the cell of the new location, as well as the leaf node that contains 
the cell of the old location. To pinpoint the leaf nodes, the SFC 
values of the locations are calculated based on the specific curve. 
Then the Blink-tree is traversed to find the entry corresponding to 
the cell, in a similar way as the fundamental read operation on 
Blink-trees (as introduced in Section 2), except that this process 
needs to cache the traversed path. The cached path can help locate 
the parent nodes in case of node split or merge. By the end of this 
identification phase, node-level locks are requested on the leaf 
nodes that have been located.  

 
Algorithm 1. Concurrent location update. 

The second phase, modification, is to access the actual data page 
and update its content. This phase contains two conditional 
branches, corresponding to the two scenarios determined by the 
number of objects in the data cells. The first branch will request 
write-locks on the cells to be modified at one time. The request of 
the write-locks needs to access the lock map to determine whether 
this process should continue or be suspended. If the cell in the lock 
map has the value 0 (i.e., not locked), this operation will mark it as 
-1 (write-locked) and continue; otherwise, it will enqueue its 
process ID and pend. After locking the corresponding SFC cells, 
the node-level locks requested in the identification phase will be 
released, since no nodes will be modified. The algorithm will then 
update the data pages by inserting the new location and deleting 
the old position. The second branch, which occurs when the object 
moves from a single-item cell or relocates to an empty cell, 
requires keeping node-level locks on the Blink-tree. In this branch, 
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(Update) pid:21 

(Query) pid:18; (Query) pid:20; 
(Update) pid:31 

Algorithm Location Update (old_loc, new_loc, T, LM) 
Input: old_loc: location to be removed, new_loc: location to be inserted, 
T: Blink-tree, LM: Lock map, 
Output: T: Updated Blink-tree. 
 

//Identification 
1. c_old = SFC_map(old_loc); //determine the cell contains old_loc  
2. c_new = SFC_map(new_loc); //determine the cell contains new_loc  
3. n_old = T.traverse(c_old); // locate the leaf which contains c_old 
4. n_new = T.traverse(c_new); // locate the leaf which contains c_new 
5. T.writeLock(n_new & n_old); // request node-level locks at one time 
 

//Modification 
6. LM.writeLock(c_old and c_new); // request write-lock on cell c_old 

and c_new 
7. If (c_new.size > 0) // c_new is not empty 
8. T.unWriteLock(n_new); // release lock on node n_new 
9. If (c_old.size > 1 or c_old == c_new) // no need to delete c_old 
10. T.unWriteLock(n_old);// release lock on node n_old 
11. If (c_old.size == 1 and c_old != c_new) // need to delete c_old 
12. n_old.removeEntry(c_old); //delete entry for c_old from n_old 
13. If (n_old.underflow == true) 
14. n_old.merge(); 
15. T.unWriteLock(n_old); // release node-level write-lock on n_old 
16. If (c_new.size = 0) // c_new is empty 
17. n_new.addEntry(c_new); //add entry for c_new into node n_new 
18. If (n_new.overflow == true) 
19. n_new.split(); 
20. T.unWriteLock(n_new);// release node-level write-lock on n_new 
21. PageDeletet(n_old.entry(c_old), old_loc); //remove old_loc from the 

data page that contains cell c_old 
22. PageInsert(n_new.entry(c_new), new_loc); //insert new_loc to the 

data page that contains cell c_new 
 

//Commitment 
23. LM.unWriteLock(c_old and c_new); // remove cell-level write-locks  
24. Return T; 



the cells that contain the new or old location will be write-locked, 
and then the leaf node that does not need to be changed, if any, will 
be unlocked. In this way, only the items that need to be updated 
will be securely locked. After releasing the unnecessary node-level 
locks on the nodes that do not need to be changed, if the cell 
contains the old location will not have any data object after the 
update, the corresponding entry in the leaf node will be deleted. If 
this leaf node has the capacity more than or equal to the minimum 
node capacity, the delete process is accomplished. Otherwise, a 
node merge operation similar to the concurrent merge in Blink-trees 
has to be performed to restructure the tree. In this way, the delete 
operation assures that other concurrent operations can obtain valid 
results. On the other hand, if the new location is in an empty cell, a 
new entry will be added to the corresponding leaf node. If this leaf 
node for insertion has sufficient space for a new entry, the cell will 
be added to this node directly, and then the write-lock will be 
released. Otherwise, the leaf node will be split into two nodes by 
adding a new leaf node as the right neighbor of the original node, 
following the concurrent split operation in Blink-trees. A 
propagation split will be performed if necessary, following the 
cached path. After modifying the Blink-tree and releasing all the 
node-level locks, the operation then updates the actual data pages.  

The final phase, commitment, releases the write-locks on the 
cells and returns the updated Blink-tree. The detailed concurrent 
location update algorithm is described in Algorithm 1. 

4.3 Range Query 

Algorithm 2. Concurrent range query. 
Given a search range R, a range query returns all the objects that 
are covered by R. This operation requires only read-locks. To 
execute a range query, the spatial query range R will be mapped to 
a set of one-dimensional ranges using an SFC. After that, these 
one-dimensional ranges will be queried on the Blink-tree. Each one-
dimensional query is executed as the fundamental concurrent 
search operation on the Blink-tree, whereas the major difference is 
that all the cells that overlap with R will be read-locked before 
being scanned, regardless whether they are empty or not. For 
example, in the range query R shown in Figure 2, the read-locks 
will be placed on cell 32, 33, 34, 35, 52, and 53, before retrieving 
any of them. Therefore, the corresponding records in the lock map 
will be checked, and if the cell is available, its read-lock counter 
will be incremented; otherwise, the corresponding process ID will 

be inserted into the pending queue. All these read-locks will not be 
released until the entire range query is complete. This locking 
strategy assures that these cells will not be altered during the entire 
process of the spatial range query. The detailed concurrent range 
query algorithm is presented in Algorithm 2. In the initiation step 
(line 1-3), the cells overlapped with the query range will be 
identified. In the tree traversal stage (line 4-10), for each 
consecutive cell cluster (e.g., cell 32-35 in query R), the tree will 
be traversed from the root to leaf, and the corresponding data cells 
will be read-locked before retrieving the data pages. Once all the 
indexed cells that overlap with the query range have been accessed, 
in the commitment step, exact results are returned and all the 
requested cell locks are released. 

5 CORRECTNESS OF CONCURRENCY  
In the proposed concurrent spatial operations, the three 
requirements of concurrency control protocols, namely, 
serializable isolation, data consistency, and deadlock free, can be 
achieved. Serializable Isolation - The node-level locks isolate the 
concurrent location update operations, because these operations 
place node-level write-locks in a bottom-up manner on the Blink-
tree when reconstruction is required. On the other hand, the cell-
level locks serialize the concurrent update and search operations 
on data pages. Even though the isolated order of operations may 
not be exactly in the same sequence as they started, it is regarded 
as valid in concurrency control protocols because it is inevitable to 
suspend or restart some operations. Data Consistency - The 
spatial concurrent operations can be assured to securely retrieve 
valid results consistent to the current status. For instance, suppose 
a range query R and an update operation U occur simultaneously 
with cell C as the common resource, the results of R will reflect U 
only when the read-lock is placed after the write-lock on C, which 
means the new data in C is inserted into the dataset before R is 
accomplished. Furthermore, in case the reconstruction caused by 
U is performed while the traversal of R is in process, as described 
in the Blink-tree search algorithm, R can always follow the down-
and-right links to reach the leaf node that currently contains C. 
The only situation that U will not impact the results of R, is that 
the write-lock on C is successfully placed after all the read-locks 
from R are released, which means the data in cells C is inserted 
after the commitment of R. Two concurrent update operations can 
guarantee the final results are consistent to the current dataset, 
because they can only be processed with the cell-level write-locks 
and bottom-up node-level locks successfully granted, which 
prevents any confliction. Deadlock Free - The proposed 
operations will not cause additional deadlocks, because range 
queries need to access multiple cells, and they only read-lock these 
cells. Meanwhile, each location update operations place cell-level 
write-locks at one time, which will not cause deadlocks with 
search operations. In an update operation, all node-level locks will 
be placed at one time, and these locks will either release, or 
expand upward or rightward during this process. Furthermore, 
each update operation will request cell-level locks after write-
locking the corresponding leaf nodes. Therefore, there will not be 
any two update operations that hold the resources required by each 
other and pending indefinitely. A detailed proof by examining all 
possible combinations of these concurrent operations is given as 
follows. 

Proof: 
We only need to prove that a location update will not interfere 
with any concurrent operations, because a range query can never 

Algorithm RangeQuery (R, T, LM) 
Input: R: Query range, T: Blink-tree, LM: Lock map, 
Output: S: Set of objects covered by R. 
 

//Initiation 
1. S = {}; // initiate the result set 
2. L={}; //initiate locked set 
3. SC = SFC_map(R); //determine the cells overlap with R using SFC 
 

//Blink-tree traversal 
4. For each cell cluster C in SC 
5.     n = T.traverse(C); // locate the left-most leaf node which 

overlaps with cell cluster C 
6.     While (n.minKey <= C.maxKey) 
7.         P = n.entries ∩ C; 
8.         LM.readLock(P); //request read-lock on cell set P 
9.         L = L + P; // record the locks 
10.         S = S + PageRetrieve(n.entry(P)); // retrieve objects inside P 
 

//Commitment 
11. S = S ∩ R; // filter the objects outside of R 
12. LM.unReadLock(L); // release the cell-level locks 
13. Return S; 



affect any other range queries. There are two conditional branches 
in the proposed location update operation. Following each branch, 
a location update may occur simultaneously with a range query and 
two types of another location update on common cells.  

Branch 1: Without index modification 
In this branch, the cell that contains the old location will not be 
empty after the update, and the cell that will encompass the new 
location exists before the update. At first, node-level locks will be 
placed together at one time on leaf nodes n_new and n_old. Cell-
level write-locks will then be requested together at one time on cell 
c_old and c_new using lock map before unlocking the leaf nodes 
and before updating the data pages. If a range query starts during 
this update and covers cell c_old or c_new, it needs to obtain read-
lock on cell c_old or c_new before actually reading the data pages. 
Since this read-lock is exclusive to the write-locks requested by the 
location update, the range query will have to wait if the write-locks 
have been placed, or will keep the location update waiting if the 
write-locks have not been placed. Therefore, the intermediate 
status of the location update will not be retrieved. Furthermore, 
because the write-locks on cell c_old and c_new are requested 
together as an atomic action, the location update will either wait 
without holding any locks or proceed after obtaining all the 
requested locks. There will be no deadlock occurring during this 
process.  

If another location update (say, U*) in branch 1 or branch 2 
starts during this update and affects cell c_old or c_new, it needs to 
request cell-level write-locks on cell c_old or c_new before 
actually modifying the data pages. Since these write-locks are 
exclusive to the write-locks requested by the original location 
update, U* will have to wait if the write-locks have been placed by 
the original update, or will keep the original update waiting if the 
write-locks have not been placed. Therefore, inconsistent status of 
the index and data will not be retrieved. In this branch, all the cell-
level locks/node-level locks in each operation are requested as an 
atomic action, so there will be no deadlock occurs. All other 
operations are not related to this location update from the aspect of 
concurrency control. 

Branch 2: With index modification 
The cell that contains the old location will be empty after the 
update, or the cell that contains the new location does not exist 
before the update. In this branch, the cell-level write-locks will be 
requested on cell c_old and c_new, and the node-level locks will be 
placed on the Blink-tree leaf nodes n_old and n_new at the 
beginning, and be kept on the nodes needed to be modified till the 
end of the operation. In case a range query starts during this 
update process and covers cell c_old or c_new, it needs to obtain 
read-lock on cell c_old or c_new before actually reading the data 
pages. Since this read-lock is exclusive to the write-locks requested 
by the location update, the range query will have to wait if the 
write-locks have been placed, or will keep the location update 
pending if the write-locks have not been placed. Therefore, the 
intermediate status of the location update will not be accessed. 
Furthermore, because the write-locks on cell c_old and c_new are 
requested together as an atomic action, the location update will 
either wait without holding any locks or proceed after obtaining all 
the requested locks. There will be no deadlock occurred during this 
process.  

If another location update U* in branch 1 starts during this 
update and affects cell c_old or c_new, it needs to request cell-

level write-locks on cell c_old or c_new before actually modifying 
the data pages. Since these write-locks are exclusive to the write-
locks requested by the original location update, U* will have to 
wait if the write-locks have been placed by the original update, or 
will keep the original update waiting if the write-locks have not 
been placed. Therefore, inconsistent status of the index and data 
will not be retrieved. Similarly, since all the write-locks in each 
operation are requested as an atomic action, no deadlock will 
occur in this case. If U* is a location update in branch 2 that 
starts during this update and affects tree node n_old or n_new, it 
needs to request node-level locks on n_old or n_new before 
requesting cell-level locks and before actually modifying the tree 
nodes and data pages. Since these locks are exclusive to the node-
level locks requested by the original location update, U* will have 
to wait if the node-level locks have been placed by the original 
update, or will keep the original update waiting if these locks have 
not been placed. Therefore, inconsistent status of the index and 
data will not be retrieved. Similarly, since all the node-level locks 
or cell-level locks in each operation are requested together as an 
atomic action, no deadlock will occur in this branch. Furthermore, 
as the cell-level locks are placed after the node-level locks have 
been obtained, if any location update needs to modify the 
corresponding leaf node, it can always retrieve the valid nodes. All 
other operations are not related to this location update from the 
aspect of concurrency control. 

To summarize the proof, all the possible combinations of 
concurrent spatial operations and their conditional braches have 
been thoroughly examined. All of them are shown to meet the 
requirements of serializable isolation, data consistency, and 
deadlock free. This proof is complete. 

6 EXPERIMENTS 
To evaluate the performance of the proposed concurrent spatial 
operations, sets of experiments on real datasets have been 
conducted by comparing the throughputs (number of operations 
processed in a time unit) among different concurrency control 
protocols, as shown in Figure 4. The two real datasets used in the 
experiments are 6,000 road network nodes in the city of Oldenburg 
and 62,000 points of interest in California, both from [13], as 
shown in Figure 5. The road nodes for road network in the city of 
Oldenburg, mapped using a Hilbert curve with order 5, are 
relatively uniformly distributed with about 40% of empty cells. On 
the other hand, the dataset for points of interest in California, 
mapped using a Hilbert curve with order 8, has a rather skew 
distribution with about 80% of empty cells. Based on the SFCs, a 
Blink-tree with height of 3 was built on the city of Oldenburg 
dataset, and a tree with height of 4 on the California dataset, 
respectively. The fanout of the Blink-trees built in experiments is 32.  

In the experiments, the range queries were created by randomly 
selecting the center points and setting the window size as 5% of 
the whole data spaces, and each location update was generated by 
randomly assigning an existing object as a start point and half 
length of the cell width as the moving pace. The concurrency 
level (the number of operations simultaneously processed in one 
batch) of the operations, and the mobility rate (the percentage of 
location updates in the entire operation set) of the moving objects 
varied in the experiments as the parameters to simulate different 
application environments. The processing time of operations was 
used to evaluate the performance of the proposed concurrent 
operation framework. A fusion concurrency control approach, 
which applies the link-based locking on the Blink-tree and the lock-



coupling locking on the lock map, was designed and implemented 
in the experiments for comparing with the proposed concurrent 
protocol. Different from CLAM, this fusion protocol requests the 
locks at the beginning of a location update and releases them in the 
end. This fusion approach applies the link-based locking on the 
index tree, which has been shown to have fewer number of 
read/write conflictions with less maintenance overhead than lock-
coupling protocols, therefore it can achieve higher throughput than 
the pure lock-coupling approach. Note that the proposed approach 
was compared to a non-trivial method to demonstrate the 
advantage against an advanced method. 

 
Figure 5. Experiment datasets. 

Two sets of experiments are described in the following subsections. 
The first set of experiments shows the efficiency and scalability of 
the proposed location management on Hilbert curves by examining 
the throughputs under different concurrency levels. The second set 
of experiments demonstrates the impact of mobility rate on 
throughputs. The comparisons between the fusion concurrency 
control approach and the proposed CLAM framework were made 
in both sets of experiments. 

6.1 Throughput vs. Concurrency 
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a) Oldenburg data (with mobility rate = 30 (left) and 70 (right)). 
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b) California data (with mobility rate = 30 (left) and 70 (right)). 
Figure 6. Processing time under different concurrency levels. 

This set of experiments compares the processing time between 
concurrent location management of CLAM and the fusion 

approach under different concurrency levels, in order to determine 
how the concurrency workload affects the system throughput. The 
processing time of the concurrent operations was collected with 
the mobility rate sets as 30 percent and 70 percent of the whole 
operation set. Similar trends of the processing time have also been 
observed under different mobility rates. 

Figure 6 shows the processing time of the concurrent operations 
with various concurrency levels, in which the X-axis represents 
the concurrency levels and the Y-axis indicates the processing 
time in milliseconds. As illustrated in Figure 6, in both datasets, 
the processing time of both concurrency control approaches 
generally increases proportionally with the concurrency level. In 
this set of experiments, CLAM performs 10-20% better than the 
fusion approach. Furthermore, the higher the concurrency level, 
the larger the gap between these two approaches. This is 
reasonable because more concurrent operations in a batch could 
cause more read-write conflicts. Consequently, the processing time 
saved by efficiently releasing unnecessary locks, as employed in 
CLAM, will become more significant. 

6.2 Throughput vs. Mobility 
This set of experiments compares the processing time between 
CLAM and the fusion concurrency control approach with different 
mobility rates. The processing time of the concurrent operations 
was collected with the concurrency level set at 100 and 250 
correspondingly. Similar trends of the processing time have been 
observed under different concurrency levels. 

100

150

200

250

300

350

10 30 50 70 90

Mobility Rate

P
ro

ce
ss

in
g 

Ti
m

e 
(m

s)

CLAM

Fusion Approach

 

200

300

400

500

600

700

800

10 30 50 70 90

Mobility Rate

Pr
oc

es
si

ng
 T

im
e 

(m
s)

CLAM

Fusion Approach

 
a) Oldenburg Data (with concurrency = 100 (left) and 250 (right)). 
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b) California data (with concurrency = 100 (left) and 250 (right)). 

Figure 7. Processing time under different mobility rates. 

Figure 7 shows the processing time of the concurrent operations as 
the mobility rate increases, where the X-axis indicates the mobility 
rates and the Y-axis represents the processing time in milliseconds. 
As observed from Figure 7, in both datasets, the processing time 
of both approaches linearly decreases when the mobility rate 

  
       (a) City of Oldenburg.       (b) California places.  
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increases. This is because a range query usually needs to access as 
many data pages as the number of SFC cells it covers, while a 
location update only needs to access at most two data pages. In this 
set of experiments, CLAM performs significantly better than the 
fusion approach. Furthermore, the advantage of CLAM against the 
fusion approach becomes more significant when the mobility rate 
increases. For example, in the Oldenburg dataset with the 
concurrency level of 100 (left figure in Figure 7(a)), the fusion 
approach takes 10% longer than CLAM to process the operations 
when the mobility rate is 10, while it takes 30% longer time than 
CLAM when the mobility rate is 90. This is because that CLAM 
optimizes the locking strategy in the location update operation 
(Algorithm 1). When there are more location update operations, 
CLAM is expected to benefit more from its optimizations. 

These experiment results show the proposed concurrent location 
management approach exhibits scalable performance when the 
concurrency level increases or when the mobility rate decreases. It 
outperforms the fusion concurrency control approach under 
different scenarios, especially in the high mobility situation. This 
indicates that the proposed concurrency framework can achieve 
prominent performance in general, and is suitable to manage 
frequent concurrent location updates and queries. 

7 CONCLUSION & FUTURE WORKS 
This paper proposes a concurrent location management framework, 
CLAM, for efficiently handling moving objects. CLAM provides 
adequate protection for concurrent location update and search 
operations to achieve serializability, consistency, and deadlock free. 
The correctness of CLAM is formally proved by completely 
examining all the possible scenarios during the concurrent 
operation processing. Experiment results on real datasets have 
validated that the performance optimizations in CLAM are 
effective. Further efforts could focus on extending CLAM to 
support other spatial operations, such as the range aggregation and 
the nearest neighbor search. Meanwhile, adopting the design of 
CLAM to other moving object access methods based on B+-trees 
offers further attractive possibilities. 
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