
CLAM: Concurrent Location Management for Moving Objects
Jing Dai

Department of Computer Science
Virginia Polytechnic Institute and State University
7054 Haycock Road, Falls Church, VA 22043

daij@vt.edu

Chang-Tien Lu
Department of Computer Science

Virginia Polytechnic Institute and State University
7054 Haycock Road, Falls Church, VA 22043

ctlu@vt.edu
ABSTRACT
Recently, with the broad usage of location-aware devices,
applications with moving object management became very
popular. In order to manage moving objects efficiently, many
spatial/spatial-temporal data access methods have been proposed.
However, most of these data access methods are designed for
single-user environments. In multiple-user systems, frequent
updates may cause a significant number of read-write conflicts
using these data access methods. In this paper, we propose an
efficient framework, Concurrent LocAtion Management (CLAM),
for managing moving objects in multiple-user environments. The
proposed concurrency control protocol integrates the efficiency of
the link-based approach and the flexibility of the lock-coupling
mechanism. Based on this protocol, concurrent location update and
search algorithms are provided. We formally analyze and prove the
correctness of the proposed concurrent operations. Experiment
results on real datasets validate the efficiency and scalability of the
proposed concurrent location management framework.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – concurrency, query
processing.

Keywords
Spatial database, Concurrency control, Space filling curve, B-tree.

1 INTRODUCTION
Recently, with the broad usage of location-aware devices,
applications with moving object management, such as vehicle
management systems and emergency response systems, became
very popular. In order to manage moving objects efficiently, many
spatial/spatial-temporal data access methods have been proposed.
One important category of these data access methods is based on
B+-tree and Space-Filling Curve (SFC)[4]. Utilizing SFC to
linearly map multidimensional data to one-dimensional space, thus
retaining the usage of one-dimensional B+-tree, is a cost-effective
solution compared to other spatial access methods, such as R-
trees[2, 5] and grid files[17], because many maturely developed
modules, e.g., query optimization, in the traditional database
management systems can be reused. In this scenario,
multidimensional access methods based on SFC have attracted
many research efforts. Comparisons among different space-filling
curves have been conducted based on their characteristics[15, 16],
and several query algorithms have been proposed to support the
operations on SFCs[11, 14, 18].

Concurrency control is one of the important DBMS techniques. As
stated in the Lowell Report [1],“We face major changes in the
traditional DBMS areas, such as ..., concurrency control, ...,
technology keeps changing the rules. These changing ratios
require us to reassess storage management and query processing
algorithms.” Most of the data access methods for moving objects
are designed for single-user environments, even though in
multiple-user systems, frequent updates may cause a significant
number of read-write conflicts using these access methods. For
example, a location update for a moving object usually consists of
one delete operation and one insert operation. If there happens to
be another operation trying to access the moving object after its
previous location was deleted, and before the new location is
inserted, the system will fail to retrieve this object. We name this
inconsistent situation as pseudo disappearance, which is a
scenario that violates both serializabile isolation and data
consistency rules[20]. An example of pseudo disappearance is
shown in Figure 1, where the search operation fails to retrieve the
moving object MO, even though MO actually exists within the
search region R. A similar scenario may also occur among two
update operations. To prevent this inconsistent status of pseudo
disappearance from happening, concurrency control protocols
have to be designed for managing these concurrent data accesses
in multi-user environments.

Figure 1. An example of pseudo disappearance.

For B+-trees, many link-based concurrency control protocols have
been proposed to utilize the global order of the entries in the leaf
nodes of the index tree, and they have been shown to be efficient
and easy to implement [9, 10, 12]. Since the SFC-based indexing
methods use B+-trees as the underlying indices, an intuitive
solution is to directly apply these link-based approaches to provide
concurrency control. However, spatial operations require special
considerations to assure the consistency of the operation results.
For example, a spatial range query may contain multiple
inconsecutive range queries on the B+-tree, therefore, it requires
all of these B+-tree queries return the valid results at the
committing point. Furthermore, some location updates may not
require modifications on the index nodes of the B+-tree. In this
case, requesting these unnecessary locks on the B+-tree can
degrade the system throughput, whereas not requesting adequate
locks may cause inconsistency. To prevent these concurrent spatial
operations from interfering with each other, link-based approaches
are not sufficient as they cannot protect multiple inconsecutive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACMGIS'07, November 7-9, 2007, Seattle, WA
Copyright 2007 ACM ISBN 978-1-59593-914-2/07/11...$5.00

Operations:
1. Update MO from A to D
2. Search in region R

Processing Sequence:
1. Update(MO): Delete from A
2. Search(R): Search A,B,C,D
3. Update(MO): Insert into D

Search Result: Empty

A B

C

D

MO

MO

R

Proceedings of the 15th International Symposium on Advances in Geographic Information Systems ACM GIS 2007

ranges among updates, nor handle concurrent spatial updates
efficiently. Therefore, a new protocol is demanded for spatial
concurrency protection.

This paper proposes Concurrent LocAtion Management (CLAM),
a framework of concurrent location update and query based on the
multidimensional indexing structure with general SFCs and Blink-
tree. This framework applies a concurrency control protocol which
integrates the link-based approach with the lock-coupling
mechanism. Spatial location update and range query algorithms
based on the proposed protocol are designed. The major
contributions of this paper are as follows:

 The proposed concurrent framework secures serializability and
consistency without incurring additional deadlocks for
concurrent spatial location updates and queries on
multidimensional indexing structures with general SFCs and
Blink-tree;

 The proposed concurrency control protocol preserves the
simplicity and efficiency of the link-based approach, and
adopts the flexibility of the lock-coupling method;

 A formal proof is provided to show the correctness of the
proposed CLAM framework; and experiment results on
benchmark datasets validate the efficiency and scalability of
the proposed concurrent operations and framework.

This paper is organized as follows: Section 2 reviews
multidimensional access methods using SFC and B-tree family, as
well as the concurrency control solutions for the B-tree family; the
concurrent spatial range query and location update operations are
defined in Section 3; Section 4 provides the algorithms for
concurrent spatial operations, followed by the correctness proof in
Section 5; experiments are illustrated and analyzed in Section 6;
and finally Section 7 gives the conclusion.

2 RELATED WORK AND MOTIVATION
Space-filling curves, as a linear mapping schema applied in spatial
data access methods, have been extensively studied, e.g., Peano-Z
curve[19] maps data from a unit interval to a unit square; Gray
code curve[3] improves Z-code by hashing; Hilbert curve[6]
generalizes the concept to a mapping of the whole space. A
historical survey of SFCs is conducted in [21]. Among the
different types of SFCs, Hilbert curve has been shown to preserve
the premier data locality under most circumstances [7]. Recently,
several major SFCs, including Hilbert, Peano-Z, Gray, Scan, and
Sweep, are systematically compared [15, 16]. Integrated with SFC,
the widely used B+-tree family can constitute efficient spatial data
access methods, especially for processing frequently updated point
data, e.g., moving objects, in practical applications.

Many concurrency control protocols [8-10, 12, 22] have been
proposed to support general concurrent search and update
operations on B+-trees. These protocols can be classified into two
categories, namely, link-based and lock-coupling. The link-based
approaches [9, 10, 12] employ only one type of locks in all
operations, and their read operations do not require any locks. In
these approaches, a lock-free read operation follows the links from
the root to leaf to identify the search path level by level, and
traverses rightward if the current node does not contain the queried
key. Other operations in these approaches request locks without
interfering with the read operations. A complete set of concurrent
operations on Blink-trees, including read, insert, delete, modify, and
reorganize, has been discussed in [9]. In this approach, the update

operations (insert, delete, and modify) only place locks on leaf
nodes, but not on internal nodes. The reorganize operation, which
restructures the tree periodically, accesses the metadata of the
index to merge or split internal nodes. This approach utilizes the
left-to-right links between the nodes on the same level to construct
a simple and efficient concurrency control protocol on semi-
dynamic Blink-trees. To build symmetric concurrent Blink-trees, a
two-phase merge algorithm has been proposed in [10] to prevent
periodical reorganization.

In multidimensional environments, however, the link-based
concurrency control is not sufficient to meet the requirement that
the multiple inconsecutive B-tree searches contained in one spatial
range query occur at one time. In other words, it cannot guarantee
the freshness of search results from interfering with overlapped
update operations. The other category, lock-coupling approaches[8,
22], applies at least two types of locks, read-lock and write-lock,
to provide flexible concurrency control. These distinct locks are
combined to assure that the B-tree is correctly and dynamically
modified, and help data recovery for aborted transactions. Since it
is difficult to define a global order for spatial objects, the R-tree
family generally adopts the lock-coupling approaches. Lock-
coupling approaches can provide more flexible protection than the
link-based protocols, albeit require complex lock maintenance on
different levels of the index tree.

In the proposed CLAM framework, we incorporate the flexibility
of the lock-coupling approach and the efficiency of the link-based
mechanism to construct a new concurrency control protocol,
designed specifically for spatial data access using Blink-trees and
SFCs.

3 PRELIMINARY
3.1 Problem Formulation
In order to propose appropriate solutions for the concurrent
location update problem, the application environment has to be
described. In this problem, the data access method is based on
SFCs and Blink-trees (a variant of the B+-tree, as shown in Figure
2)[12]. All the multidimensional data are mapped into equal-sized
cells via SFC, associated with their corresponding cell IDs. The
resolution of grid cells can be determined by the data distribution
and disk page size. Then a Blink-tree is used to index these SFC
values and to maintain the pointers to the data pages. The location
management operations based on this data access method are
defined as the following.

The execution of a range query returns a set of data objects that
overlaps with a given range at the time the query is finished.
Formally specified, the input of a range query is a d-
multidimensional region (query window) R, a d-dimensional
dataset S, and the corresponding spatial index I. The output of this
range query is a set of data points (o1, o2, ..., on) covered in R
within S. The output data should be valid at the committing time.

A location update operation inputs both the old position and new
location of a d-dimensional data point o, as well as a d-
dimensional dataset S and the corresponding spatial index I, and
outputs the updated I and S. This operation contains two sub-tasks:
delete the old position and insert the new location. An insert
operation will add a new d-dimensional data point. A delete
operation will remove an existing data point. Both need to update
the index if necessary. The execution of a location update should
not affect the results of a query before this update finishes, but

have to be reflected in the results of queries after this update
commits.

Several assumptions are made as follows to give detailed
descriptions to this problem.
1. The multidimensional dataset contains only points, which

means each data record is treated as a single point in a
multidimensional space.

2. The space-filling curves are applied to provide the global cell
order, and a standard Blink-tree is used as the one-dimensional
access method (See Figure 2). Each leaf node of the Blink-tree
contains the cell IDs and the pointers to the data pages that
store the corresponding objects.

3. The read/write operation of a node from/to disk is an atomic
action. And there exists a lock management module to
maintain the requested locks and check the operation
compatibility.

These assumptions are reasonable in real spatial applications, and
they add constraints to the problem formulation.

The goal of the concurrency control protocol is to achieve
serializable isolation and data consistency. Serializable isolation
means that concurrent operations can acquire the same results as
they are sequentially and separately executed. Data consistency
refers to the requirement that the query can securely retrieve the
data consistent to the valid database state.

3.2 Observations
The data access model based on SFC and B-tree family leaves
spaces for efficiency improvement of concurrent spatial operations.
Observations regarding the protocol design and potential
performance improvements are discussed as follows.

Concurrency Control on SFC - In the SFC-based spatial index,
the reorganization of Blink-trees occurs when inserting a new object
to an empty cell, or when one cell becomes empty. Concurrency
control is essential for multiple-user environments because
updating either index tree nodes or data pages needs exclusive
access to keep the data and query results consistent. The link-based
concurrency control for Blink-trees inserts and deletes entries in a
way that the reader can always fetch the valid data by following
the left-to-right links to the node with the corresponding key range
without placing any locks [9]. This approach is efficient, but
cannot be directly applied for spatial queries. Because one such
spatial query may require multiple inconsecutive searches on the
Blink-tree, a secure protection mechanism has to be devised to keep
the searched area unaltered until all the searched objects are

returned. For example, the range query R in Figure 2(a) covers cell
32, 33, 34, 35, 52, and 53. It requires two Blink-tree range searches,
cell cluster 32 to 35 and cell cluster 52 to 53. Therefore, not only
the indexed cell 53, but also all the other five empty cells (32, 33,
34, 35, and 52) require to be protected from other update
operations. Apparently, the link-based approach is not adequate to
assure this kind of protection, as it can only protect the indexed
cells among updates. Therefore, lock-coupling techniques have to
be incorporated. Once the update operation needs to insert/delete a
cell or modify a data object, it has to assure that the cell/object is
not located within the ongoing search region. Note that not only
the non-empty cells, but also the empty cells in the search area
have to be locked, because in case a new object is inserted into an
empty cell within the search range, it will tarnish and invalidate
the final search results.

Lock Efficiency - In the spatial access method based on Blink-trees
and SFCs, location update operations can be handled in different
manners based on the SFC cells that contain the old location or
new location. The index tree modification only occurs when
inserting a new object to an empty cell, or when a cell becomes
empty (taking Figure 1 as an example, cell D is empty, or cell A
has only one object before the update). Otherwise, only the
corresponding data pages need to be protected and modified.
Obviously, if these distinct scenarios are not handled separately,
the concurrency control protocol will need to lock all the Blink-tree
leaf nodes and data cells that will be accessed during the update,
and release them in the very end, which could significantly
degrade the system throughput. Therefore, for performance
consideration, these scenarios need to be respectively treated, so
that unnecessary locks can be quickly released to increase the
concurrency level.

4 CONCURRENT SPATIAL OPERATIONS
To explain the algorithms for concurrent operations in CLAM, the
fundamental locking mechanism will be illustrated in the
following subsection, followed by the detailed location update
operation and range query algorithms.

4.1 Lock Map
In the proposed concurrent spatial operations in CLAM, two levels
of locks are used (shown in Table 1). One is node-level lock,
which is placed on index tree nodes. The node-level locks,
requested only by update operations, are all write-locks. The other
is cell-level lock, which includes both read-lock and write-lock
and will be requested on SFC cells by all the spatial operations. As
discussed in Section 3, for spatial queries, not only non-empty
cells, but also empty cells will need to be read-locked, since they

1

4

2

21 22 37 26 25 38

20 23 36 27 24 39

19 18 35 28 29 34

16 17 32 31 30 33

15 12 53 10 11 52

14 13 54 9 8 55

41 42

40 43

45 44

46 47

51 48

50 49

57 6 56

0 3 58 5 59

61 62

60 63

7

R

Disk Data
Pages …

5 8

18

24 39 53

5 0 8 6 18 15 24 20 39 28 53 48 61 56

61 18

61

(a) A dataset mapped on Hilbert curve. (b) Corresponding Blink-tree.
Figure 2. A point dataset with Hilbert curve mapping and the corresponding Blink-tree.

are not allowed to be modified during the query process. Therefore,
an auxiliary lock map structure, in addition to the index tree, is
applied in the proposed framework to dynamically maintain cell-
level locks. The concurrent spatial operations have to check the
corresponding records in the lock map before placing cell-level
locks. Each cell maintains a counter for its current read-locks, and
use -1 to indicate the write-lock. A queue is also used by each cell
to store the pending cell-level locks, so that these waiting
processes can be awaked once the cell is available. After an
operation checks the compatibility of the cell-level locks, if the cell
is currently unavailable (i.e., has incompatible locks), this
operation will be recorded in the pending queue. A lock map
example is illustrated in Figure 3, where the pending queues of two
cells are shown. As the lock map will be frequently accessed in
this concurrency control framework, it can be implemented using a
hash table that is evenly sliced based on the spatial distribution to
avoid causing a performance bottleneck. In addition, sophisticated
compression techniques can be applied to reduce the space
requirement. Note that only cell-level locks need to access the lock
map, because a cell-level lock will not conflict with a node-level
lock in CLAM.

Table 1. Types of locks and their compatibility in CLAM.
Cell-level Node-level

Write-lock Read-lock Write-lock
Write-lock Exclusive Exclusive N/A Cell-level
Read-lock Exclusive Compatible N/A

Node-level Write-lock N/A N/A Exclusive

Figure 3. A lock map example.

4.2 Location Update
In order to protect the search operations from the interference of
update operations, the location update operations need to check
both the node-level locks on the Blink-tree leaf nodes, and the cell-
level locks on the data cells. On the other hand, the query
operations have to check the write-locks on the cells. For cell-level
locks, the write-lock from update operations and the read-lock
from read operations are exclusive to each other. In case the cells
for updating have been locked by another operation, the update
operations on these cells have to wait until they can successfully
write-lock them. Specifically, the concurrent location update is
performed as follows.

A location update operation first deletes an existing object, and
then inserts a new object with the same object identifier (ID) to the
data page. In this operation, there will be two exclusive scenarios:
(1) the old location is not the last item in its cell, and the new
location is located in a cell corresponding to an entry in the Blink-
tree, thus the index tree will not need to be modified; (2) the new
location is located in a cell that is not indexed in the Blink-tree (i.e.,
an empty cell), or, the old location is the last item in its cell, thus
the corresponding nodes in the Blink-tree have to be locked and
modified.

To perform an update operation, the first phase, identification, is
to locate the corresponding leaf node that contains or will contain
the cell of the new location, as well as the leaf node that contains
the cell of the old location. To pinpoint the leaf nodes, the SFC
values of the locations are calculated based on the specific curve.
Then the Blink-tree is traversed to find the entry corresponding to
the cell, in a similar way as the fundamental read operation on
Blink-trees (as introduced in Section 2), except that this process
needs to cache the traversed path. The cached path can help locate
the parent nodes in case of node split or merge. By the end of this
identification phase, node-level locks are requested on the leaf
nodes that have been located.

Algorithm 1. Concurrent location update.

The second phase, modification, is to access the actual data page
and update its content. This phase contains two conditional
branches, corresponding to the two scenarios determined by the
number of objects in the data cells. The first branch will request
write-locks on the cells to be modified at one time. The request of
the write-locks needs to access the lock map to determine whether
this process should continue or be suspended. If the cell in the lock
map has the value 0 (i.e., not locked), this operation will mark it as
-1 (write-locked) and continue; otherwise, it will enqueue its
process ID and pend. After locking the corresponding SFC cells,
the node-level locks requested in the identification phase will be
released, since no nodes will be modified. The algorithm will then
update the data pages by inserting the new location and deleting
the old position. The second branch, which occurs when the object
moves from a single-item cell or relocates to an empty cell,
requires keeping node-level locks on the Blink-tree. In this branch,

0 0 2 0 -1 2 0 0
0 2 41 2 2 3 0
2 1 2 0 1 0 0 2
1 2 -1 2 -1 3 2 0
0 1 6 0 0 4 2 1
0 2 2 2 5 3 2 -1

0 0 0 -1 1 1 0 0
0 0 0 0 0 2 3 1

(Update) pid:21

(Query) pid:18; (Query) pid:20;
(Update) pid:31

Algorithm Location Update (old_loc, new_loc, T, LM)
Input: old_loc: location to be removed, new_loc: location to be inserted,
T: Blink-tree, LM: Lock map,
Output: T: Updated Blink-tree.

//Identification
1. c_old = SFC_map(old_loc); //determine the cell contains old_loc
2. c_new = SFC_map(new_loc); //determine the cell contains new_loc
3. n_old = T.traverse(c_old); // locate the leaf which contains c_old
4. n_new = T.traverse(c_new); // locate the leaf which contains c_new
5. T.writeLock(n_new & n_old); // request node-level locks at one time

//Modification
6. LM.writeLock(c_old and c_new); // request write-lock on cell c_old

and c_new
7. If (c_new.size > 0) // c_new is not empty
8. T.unWriteLock(n_new); // release lock on node n_new
9. If (c_old.size > 1 or c_old == c_new) // no need to delete c_old
10. T.unWriteLock(n_old);// release lock on node n_old
11. If (c_old.size == 1 and c_old != c_new) // need to delete c_old
12. n_old.removeEntry(c_old); //delete entry for c_old from n_old
13. If (n_old.underflow == true)
14. n_old.merge();
15. T.unWriteLock(n_old); // release node-level write-lock on n_old
16. If (c_new.size = 0) // c_new is empty
17. n_new.addEntry(c_new); //add entry for c_new into node n_new
18. If (n_new.overflow == true)
19. n_new.split();
20. T.unWriteLock(n_new);// release node-level write-lock on n_new
21. PageDeletet(n_old.entry(c_old), old_loc); //remove old_loc from the

data page that contains cell c_old
22. PageInsert(n_new.entry(c_new), new_loc); //insert new_loc to the

data page that contains cell c_new

//Commitment
23. LM.unWriteLock(c_old and c_new); // remove cell-level write-locks
24. Return T;

the cells that contain the new or old location will be write-locked,
and then the leaf node that does not need to be changed, if any, will
be unlocked. In this way, only the items that need to be updated
will be securely locked. After releasing the unnecessary node-level
locks on the nodes that do not need to be changed, if the cell
contains the old location will not have any data object after the
update, the corresponding entry in the leaf node will be deleted. If
this leaf node has the capacity more than or equal to the minimum
node capacity, the delete process is accomplished. Otherwise, a
node merge operation similar to the concurrent merge in Blink-trees
has to be performed to restructure the tree. In this way, the delete
operation assures that other concurrent operations can obtain valid
results. On the other hand, if the new location is in an empty cell, a
new entry will be added to the corresponding leaf node. If this leaf
node for insertion has sufficient space for a new entry, the cell will
be added to this node directly, and then the write-lock will be
released. Otherwise, the leaf node will be split into two nodes by
adding a new leaf node as the right neighbor of the original node,
following the concurrent split operation in Blink-trees. A
propagation split will be performed if necessary, following the
cached path. After modifying the Blink-tree and releasing all the
node-level locks, the operation then updates the actual data pages.

The final phase, commitment, releases the write-locks on the
cells and returns the updated Blink-tree. The detailed concurrent
location update algorithm is described in Algorithm 1.

4.3 Range Query

Algorithm 2. Concurrent range query.
Given a search range R, a range query returns all the objects that
are covered by R. This operation requires only read-locks. To
execute a range query, the spatial query range R will be mapped to
a set of one-dimensional ranges using an SFC. After that, these
one-dimensional ranges will be queried on the Blink-tree. Each one-
dimensional query is executed as the fundamental concurrent
search operation on the Blink-tree, whereas the major difference is
that all the cells that overlap with R will be read-locked before
being scanned, regardless whether they are empty or not. For
example, in the range query R shown in Figure 2, the read-locks
will be placed on cell 32, 33, 34, 35, 52, and 53, before retrieving
any of them. Therefore, the corresponding records in the lock map
will be checked, and if the cell is available, its read-lock counter
will be incremented; otherwise, the corresponding process ID will

be inserted into the pending queue. All these read-locks will not be
released until the entire range query is complete. This locking
strategy assures that these cells will not be altered during the entire
process of the spatial range query. The detailed concurrent range
query algorithm is presented in Algorithm 2. In the initiation step
(line 1-3), the cells overlapped with the query range will be
identified. In the tree traversal stage (line 4-10), for each
consecutive cell cluster (e.g., cell 32-35 in query R), the tree will
be traversed from the root to leaf, and the corresponding data cells
will be read-locked before retrieving the data pages. Once all the
indexed cells that overlap with the query range have been accessed,
in the commitment step, exact results are returned and all the
requested cell locks are released.

5 CORRECTNESS OF CONCURRENCY
In the proposed concurrent spatial operations, the three
requirements of concurrency control protocols, namely,
serializable isolation, data consistency, and deadlock free, can be
achieved. Serializable Isolation - The node-level locks isolate the
concurrent location update operations, because these operations
place node-level write-locks in a bottom-up manner on the Blink-
tree when reconstruction is required. On the other hand, the cell-
level locks serialize the concurrent update and search operations
on data pages. Even though the isolated order of operations may
not be exactly in the same sequence as they started, it is regarded
as valid in concurrency control protocols because it is inevitable to
suspend or restart some operations. Data Consistency - The
spatial concurrent operations can be assured to securely retrieve
valid results consistent to the current status. For instance, suppose
a range query R and an update operation U occur simultaneously
with cell C as the common resource, the results of R will reflect U
only when the read-lock is placed after the write-lock on C, which
means the new data in C is inserted into the dataset before R is
accomplished. Furthermore, in case the reconstruction caused by
U is performed while the traversal of R is in process, as described
in the Blink-tree search algorithm, R can always follow the down-
and-right links to reach the leaf node that currently contains C.
The only situation that U will not impact the results of R, is that
the write-lock on C is successfully placed after all the read-locks
from R are released, which means the data in cells C is inserted
after the commitment of R. Two concurrent update operations can
guarantee the final results are consistent to the current dataset,
because they can only be processed with the cell-level write-locks
and bottom-up node-level locks successfully granted, which
prevents any confliction. Deadlock Free - The proposed
operations will not cause additional deadlocks, because range
queries need to access multiple cells, and they only read-lock these
cells. Meanwhile, each location update operations place cell-level
write-locks at one time, which will not cause deadlocks with
search operations. In an update operation, all node-level locks will
be placed at one time, and these locks will either release, or
expand upward or rightward during this process. Furthermore,
each update operation will request cell-level locks after write-
locking the corresponding leaf nodes. Therefore, there will not be
any two update operations that hold the resources required by each
other and pending indefinitely. A detailed proof by examining all
possible combinations of these concurrent operations is given as
follows.

Proof:
We only need to prove that a location update will not interfere
with any concurrent operations, because a range query can never

Algorithm RangeQuery (R, T, LM)
Input: R: Query range, T: Blink-tree, LM: Lock map,
Output: S: Set of objects covered by R.

//Initiation
1. S = {}; // initiate the result set
2. L={}; //initiate locked set
3. SC = SFC_map(R); //determine the cells overlap with R using SFC

//Blink-tree traversal
4. For each cell cluster C in SC
5. n = T.traverse(C); // locate the left-most leaf node which

overlaps with cell cluster C
6. While (n.minKey <= C.maxKey)
7. P = n.entries ∩ C;
8. LM.readLock(P); //request read-lock on cell set P
9. L = L + P; // record the locks
10. S = S + PageRetrieve(n.entry(P)); // retrieve objects inside P

//Commitment
11. S = S ∩ R; // filter the objects outside of R
12. LM.unReadLock(L); // release the cell-level locks
13. Return S;

affect any other range queries. There are two conditional branches
in the proposed location update operation. Following each branch,
a location update may occur simultaneously with a range query and
two types of another location update on common cells.

Branch 1: Without index modification
In this branch, the cell that contains the old location will not be
empty after the update, and the cell that will encompass the new
location exists before the update. At first, node-level locks will be
placed together at one time on leaf nodes n_new and n_old. Cell-
level write-locks will then be requested together at one time on cell
c_old and c_new using lock map before unlocking the leaf nodes
and before updating the data pages. If a range query starts during
this update and covers cell c_old or c_new, it needs to obtain read-
lock on cell c_old or c_new before actually reading the data pages.
Since this read-lock is exclusive to the write-locks requested by the
location update, the range query will have to wait if the write-locks
have been placed, or will keep the location update waiting if the
write-locks have not been placed. Therefore, the intermediate
status of the location update will not be retrieved. Furthermore,
because the write-locks on cell c_old and c_new are requested
together as an atomic action, the location update will either wait
without holding any locks or proceed after obtaining all the
requested locks. There will be no deadlock occurring during this
process.

If another location update (say, U*) in branch 1 or branch 2
starts during this update and affects cell c_old or c_new, it needs to
request cell-level write-locks on cell c_old or c_new before
actually modifying the data pages. Since these write-locks are
exclusive to the write-locks requested by the original location
update, U* will have to wait if the write-locks have been placed by
the original update, or will keep the original update waiting if the
write-locks have not been placed. Therefore, inconsistent status of
the index and data will not be retrieved. In this branch, all the cell-
level locks/node-level locks in each operation are requested as an
atomic action, so there will be no deadlock occurs. All other
operations are not related to this location update from the aspect of
concurrency control.

Branch 2: With index modification
The cell that contains the old location will be empty after the
update, or the cell that contains the new location does not exist
before the update. In this branch, the cell-level write-locks will be
requested on cell c_old and c_new, and the node-level locks will be
placed on the Blink-tree leaf nodes n_old and n_new at the
beginning, and be kept on the nodes needed to be modified till the
end of the operation. In case a range query starts during this
update process and covers cell c_old or c_new, it needs to obtain
read-lock on cell c_old or c_new before actually reading the data
pages. Since this read-lock is exclusive to the write-locks requested
by the location update, the range query will have to wait if the
write-locks have been placed, or will keep the location update
pending if the write-locks have not been placed. Therefore, the
intermediate status of the location update will not be accessed.
Furthermore, because the write-locks on cell c_old and c_new are
requested together as an atomic action, the location update will
either wait without holding any locks or proceed after obtaining all
the requested locks. There will be no deadlock occurred during this
process.

If another location update U* in branch 1 starts during this
update and affects cell c_old or c_new, it needs to request cell-

level write-locks on cell c_old or c_new before actually modifying
the data pages. Since these write-locks are exclusive to the write-
locks requested by the original location update, U* will have to
wait if the write-locks have been placed by the original update, or
will keep the original update waiting if the write-locks have not
been placed. Therefore, inconsistent status of the index and data
will not be retrieved. Similarly, since all the write-locks in each
operation are requested as an atomic action, no deadlock will
occur in this case. If U* is a location update in branch 2 that
starts during this update and affects tree node n_old or n_new, it
needs to request node-level locks on n_old or n_new before
requesting cell-level locks and before actually modifying the tree
nodes and data pages. Since these locks are exclusive to the node-
level locks requested by the original location update, U* will have
to wait if the node-level locks have been placed by the original
update, or will keep the original update waiting if these locks have
not been placed. Therefore, inconsistent status of the index and
data will not be retrieved. Similarly, since all the node-level locks
or cell-level locks in each operation are requested together as an
atomic action, no deadlock will occur in this branch. Furthermore,
as the cell-level locks are placed after the node-level locks have
been obtained, if any location update needs to modify the
corresponding leaf node, it can always retrieve the valid nodes. All
other operations are not related to this location update from the
aspect of concurrency control.

To summarize the proof, all the possible combinations of
concurrent spatial operations and their conditional braches have
been thoroughly examined. All of them are shown to meet the
requirements of serializable isolation, data consistency, and
deadlock free. This proof is complete.

6 EXPERIMENTS
To evaluate the performance of the proposed concurrent spatial
operations, sets of experiments on real datasets have been
conducted by comparing the throughputs (number of operations
processed in a time unit) among different concurrency control
protocols, as shown in Figure 4. The two real datasets used in the
experiments are 6,000 road network nodes in the city of Oldenburg
and 62,000 points of interest in California, both from [13], as
shown in Figure 5. The road nodes for road network in the city of
Oldenburg, mapped using a Hilbert curve with order 5, are
relatively uniformly distributed with about 40% of empty cells. On
the other hand, the dataset for points of interest in California,
mapped using a Hilbert curve with order 8, has a rather skew
distribution with about 80% of empty cells. Based on the SFCs, a
Blink-tree with height of 3 was built on the city of Oldenburg
dataset, and a tree with height of 4 on the California dataset,
respectively. The fanout of the Blink-trees built in experiments is 32.

In the experiments, the range queries were created by randomly
selecting the center points and setting the window size as 5% of
the whole data spaces, and each location update was generated by
randomly assigning an existing object as a start point and half
length of the cell width as the moving pace. The concurrency
level (the number of operations simultaneously processed in one
batch) of the operations, and the mobility rate (the percentage of
location updates in the entire operation set) of the moving objects
varied in the experiments as the parameters to simulate different
application environments. The processing time of operations was
used to evaluate the performance of the proposed concurrent
operation framework. A fusion concurrency control approach,
which applies the link-based locking on the Blink-tree and the lock-

coupling locking on the lock map, was designed and implemented
in the experiments for comparing with the proposed concurrent
protocol. Different from CLAM, this fusion protocol requests the
locks at the beginning of a location update and releases them in the
end. This fusion approach applies the link-based locking on the
index tree, which has been shown to have fewer number of
read/write conflictions with less maintenance overhead than lock-
coupling protocols, therefore it can achieve higher throughput than
the pure lock-coupling approach. Note that the proposed approach
was compared to a non-trivial method to demonstrate the
advantage against an advanced method.

Figure 5. Experiment datasets.

Two sets of experiments are described in the following subsections.
The first set of experiments shows the efficiency and scalability of
the proposed location management on Hilbert curves by examining
the throughputs under different concurrency levels. The second set
of experiments demonstrates the impact of mobility rate on
throughputs. The comparisons between the fusion concurrency
control approach and the proposed CLAM framework were made
in both sets of experiments.

6.1 Throughput vs. Concurrency

100

200

300

400

500

600

700

800

900

50 100 150 200 250 300

Concurrency Level

P
ro

ce
ss

in
g

Ti
m

e
(m

s)

CLAM

Fusion Approach

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300

Concurrency Level

Pr
oc

es
si

ng
 T

im
e

(m
s)

CLAM

Fusion Approach

a) Oldenburg data (with mobility rate = 30 (left) and 70 (right)).

4000

9000

14000

19000

24000

50 100 150 200 250 300

Concurrency Level

Pr
oc

es
si

ng
 T

im
e

(m
s)

CLAM

Fusion Approach

1500

3500

5500

7500

9500

11500

13500

50 100 150 200 250 300

Concurrency Level

Pr
oc

es
si

ng
 T

im
e

(m
s)

CLAM

Fusion Approach

b) California data (with mobility rate = 30 (left) and 70 (right)).
Figure 6. Processing time under different concurrency levels.

This set of experiments compares the processing time between
concurrent location management of CLAM and the fusion

approach under different concurrency levels, in order to determine
how the concurrency workload affects the system throughput. The
processing time of the concurrent operations was collected with
the mobility rate sets as 30 percent and 70 percent of the whole
operation set. Similar trends of the processing time have also been
observed under different mobility rates.

Figure 6 shows the processing time of the concurrent operations
with various concurrency levels, in which the X-axis represents
the concurrency levels and the Y-axis indicates the processing
time in milliseconds. As illustrated in Figure 6, in both datasets,
the processing time of both concurrency control approaches
generally increases proportionally with the concurrency level. In
this set of experiments, CLAM performs 10-20% better than the
fusion approach. Furthermore, the higher the concurrency level,
the larger the gap between these two approaches. This is
reasonable because more concurrent operations in a batch could
cause more read-write conflicts. Consequently, the processing time
saved by efficiently releasing unnecessary locks, as employed in
CLAM, will become more significant.

6.2 Throughput vs. Mobility
This set of experiments compares the processing time between
CLAM and the fusion concurrency control approach with different
mobility rates. The processing time of the concurrent operations
was collected with the concurrency level set at 100 and 250
correspondingly. Similar trends of the processing time have been
observed under different concurrency levels.

100

150

200

250

300

350

10 30 50 70 90

Mobility Rate

P
ro

ce
ss

in
g

Ti
m

e
(m

s)

CLAM

Fusion Approach

200

300

400

500

600

700

800

10 30 50 70 90

Mobility Rate

Pr
oc

es
si

ng
 T

im
e

(m
s)

CLAM

Fusion Approach

a) Oldenburg Data (with concurrency = 100 (left) and 250 (right)).

1000

3000

5000

7000

9000

11000

10 30 50 70 90

Mobility Rate

Pr
oc

es
si

ng
 T

im
e

(m
s)

CLAM
Fusion Approach

2000

7000

12000

17000

22000

27000

10 30 50 70 90

Mobility Rate

Pr
oc

es
si

ng
 T

im
e

(m
s)

CLAM

Fusion Approach

b) California data (with concurrency = 100 (left) and 250 (right)).

Figure 7. Processing time under different mobility rates.

Figure 7 shows the processing time of the concurrent operations as
the mobility rate increases, where the X-axis indicates the mobility
rates and the Y-axis represents the processing time in milliseconds.
As observed from Figure 7, in both datasets, the processing time
of both approaches linearly decreases when the mobility rate

 (a) City of Oldenburg. (b) California places.

Order

Benchmark Data Sets Performance Measure SFC Mapping BLink-trees Construction Concurrency Control

Fusion Approach
CLAM

Figure 4. Experiment flow.

Spatial
Data sets

Hilbert Curve Values
BLink-Trees

Lock Map

Concurrency Level

Throughput

Mobility Rate Fanout

increases. This is because a range query usually needs to access as
many data pages as the number of SFC cells it covers, while a
location update only needs to access at most two data pages. In this
set of experiments, CLAM performs significantly better than the
fusion approach. Furthermore, the advantage of CLAM against the
fusion approach becomes more significant when the mobility rate
increases. For example, in the Oldenburg dataset with the
concurrency level of 100 (left figure in Figure 7(a)), the fusion
approach takes 10% longer than CLAM to process the operations
when the mobility rate is 10, while it takes 30% longer time than
CLAM when the mobility rate is 90. This is because that CLAM
optimizes the locking strategy in the location update operation
(Algorithm 1). When there are more location update operations,
CLAM is expected to benefit more from its optimizations.

These experiment results show the proposed concurrent location
management approach exhibits scalable performance when the
concurrency level increases or when the mobility rate decreases. It
outperforms the fusion concurrency control approach under
different scenarios, especially in the high mobility situation. This
indicates that the proposed concurrency framework can achieve
prominent performance in general, and is suitable to manage
frequent concurrent location updates and queries.

7 CONCLUSION & FUTURE WORKS
This paper proposes a concurrent location management framework,
CLAM, for efficiently handling moving objects. CLAM provides
adequate protection for concurrent location update and search
operations to achieve serializability, consistency, and deadlock free.
The correctness of CLAM is formally proved by completely
examining all the possible scenarios during the concurrent
operation processing. Experiment results on real datasets have
validated that the performance optimizations in CLAM are
effective. Further efforts could focus on extending CLAM to
support other spatial operations, such as the range aggregation and
the nearest neighbor search. Meanwhile, adopting the design of
CLAM to other moving object access methods based on B+-trees
offers further attractive possibilities.

8 REFERENCES
[1] Abiteboul, S., Agrawal, R., Bernstein, P., et al. 2005. The

Lowell Database Research Self-Assessment. Commun. ACM
48, 5 (May. 2005), 111-118.

[2] Beckmann, N., Kriegel, H. P., Schneider, R., et al. 1990. The
R*-tree: An Efficient and Robust Access Method for Points
and Rectangles. In Proceedings of ACM SIGMOD
International Conference on Management of Data, (Atlantic
City, NJ, USA, May 23-25, 1990). 322-331.

[3] Faloutsos, C. 1986. Multiattribute Hashing Using Gray
Codes. In Proceedings of ACM SIGMOD International
Conference on Management of Data, (Washington, D.C.,
USA, May 28-30, 1986). 227-238.

[4] Gaede, V. and Gunther, O. 1998. Multidimensional Access
Methods. ACM Comput. Surv. 30, 2 (Jun. 1998), 170-231.

[5] Guttman, A. 1984. R-trees: A Dynamic Index Structure for
Spatial Searching. In Proceedings of ACM SIGMOD
International Conference on Management of Data, (Boston,
MA, USA, June 18-21, 1984). 47-57.

[6] Hilbert, D. 1981. Ueber Stetige Abbildung Einer Linie Auf
Ein Flashenstuck. Mathematishe Annalen, (1981), 459-460.

[7] Jagadish, H. V. 1990. Linear Clustering of Objects with
Multiple Attributes. In Proceedings of ACM SIGMOD
International Conference on Management of Data (Atlantic
City, NJ, USA, May 23-25, 1990). 332 - 342.

[8] Jaluta, I., Sippu, S. and Soisalon-Soininen, E. 2005.
Concurrency Control and Recovery for Balanced B-link
Trees. VLDB J. 14, 2 (Apr. 2005), 257-277.

[9] Jonge, W. d. and Schiff, A. 1990. Concurrent Access to B-
trees. In Proceedings of PARBASE International Conference
on Databases, Parallel Architectures and Their Applications,
(Miami Beach, FL, USA, March 7-9, 1990). 312-320.

[10] Lanin, V. and Shasha, D. 1986. A Symmetric Concurrent B-
tree Algorithm. In Proceedings of ACM Fall Joint Computer
Conference, (Dallas, TX, USA, November 2-6, 1986). 380-
389.

[11] Lawder, J. K. and King, P. J. H. 2001. Querying Multi-
dimensional Data Indexed Using the Hilbert Space-Filling
Curve. SIGMOD Record 30, 1 (Mar. 2001), 19-24.

[12] Lehman, P. and Yao, S. 1981. Efficient Locking for
Concurrent Operations on B-trees. ACM T. Database Syst. 6,
4 (Dec. 1981), 650-670.

[13] Li, F. and Kollios, G. Real Datasets for Spatial Databases:
Road Networks and Points of Interest. from http://cs-
people.bu.edu/lifeifei/SpatialDataset.htm, Last Accessed on
May 2, 2007.

[14] Liao, S., Lopez, M. A. and Leutenegger, S. T. 2001. High
Dimensional Similarity Search with Space Filling Curves. In
Proceedings of the 17th IEEE International Conference on
Data Engineering, (Heidelberg, Germany, April 2-6, 2001).
615-622.

[15] Mokbel, M. F., Aref, W. G. and Kamel, I. 2003. Analysis of
Multi-dimensional Space-Filling Curves. Geoinformatica 7, 3
(Sep. 2003), 179-209.

[16] Moon, B., Jagadish, H. V., Faloutsos, C., et al. 2001.
Analysis of the Clustering Properties of the Hilbert Space-
Filling Curve. IEEE T. Knowl. Data En. 13, 1 (Jan./Feb.
2001), 124-141.

[17] Nievergelt, J., Hinterberger, H. and Sevcik, K. C. 1984. The
Grid File: An Adaptable, Symmetric Multikey File Structure.
ACM T. Database Syst. 9, 1 (Mar. 1984), 38-71.

[18] Orenstein, J. A. 1986. Spatial Query Processing in an Object-
Oriented Database System. In Proceedings of ACM
SIGMOD International Conference on Management of Data
(Washington, D.C., USA, May 28-30, 1986). 326-336.

[19] Peano, G. 1890. Sur Une Courbe Qui Remplit Toute Une Air
Plaine. Math. Ann. 36, (1890), 157-160.

[20] Ramakrishnan, R. and Gehrke, J. 2001. Database
Management Systems. McGraw-Hill, New York, NY, USA.

[21] Sagan, H. 1994. Space Filling Curves. Springer, Berlin,
Germany.

[22] Setzer, V. W. and Zisman, A. 1994. New Concurrency
Control Algorithms for Accessing and Compacting B-trees.
In Proceedings of the 20th International Conference on Very
Large Data Bases, (Santiago de Chile, Chile, September 12-
15, 1994). 238-248.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 2
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

