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1 Introduction

Due to the ever-increasing volume of spatial data, spatial data mining has become
an important research area over the past decade [17,39]. From satellite observation
systems to urban planning, geography related spatial data are widely used. Other
types of spatial data, such as medical images and gene maps, have received a signif-
icant amount of attention from medical professionals and researchers. As defined
in [21], spatial data mining is the process of discovering hidden but valuable pat-
terns from large spatial data sets. Similar to traditional data mining, spatial data
mining techniques can be classified into four categories: classification, clustering,
trend analysis, and outlier detection. The challenges regarding spatial data mining
have arisen from the following issues. First, classical data mining is designed to
process numerical and categorical data, whereas spatial data have more complex
structures that contain extended objects such as points, lines, and polygons. Sec-
ond, classical data mining treats each input independently from other inputs, while
spatial patterns often exhibit continuity and high autocorrelation with nearby sam-
ples.

As the most widely-used spatial data, geographic data not only relates to three di-
mensional volumes, but also contains temporal information. Together, they form
spatial data sequences. In recent years, spatio-temporal data has attracted the at-
tention from various domains, such as computer scientists, geographers, environ-
mental researchers, resource managers, and biologists. This data contains complex
structures, arrives continuously, evolves over time, and needs to be processed in
real time. However, unlike the video stream, the frame sampling period is in min-
utes, and it has no strict restrictions on processing speed. Several recent studies
have been conducted to develop specific data mining techniques for detecting use-
ful patterns from continuous data streams [11,13,20]. Because these techniques are
not specifically designed for processing spatial data, they may not be effectively
utilized by geospatial applications. Intensive research is in great demand for ex-
tracting knowledge from spatio-temporal data to help predict the trends of spatial
patterns accurately [10,26].

Outlier detection is a process to identify the objects which differ from the rest of
the data sets [4,19]. In the research on the atmospheric sciences, huge amounts of
spatial data have been continuously collected from both observation and simulation
modelling. Discovering useful patterns from these data, especially spatial outliers
and their movements, will have great practical value and will help weather forecast-
ing, environmental monitoring, and climate analyzing. In the meteorological data,
spatial outliers are the observations that are inconsistent with their surrounding
neighbors. Spatial outliers or anomalies are often associated with severe weather
events, such as tornadoes and hurricanes. These events usually do not happen at
a single location but over an extended region. That is to say, they are usually two
dimensional region spatial outliers. Furthermore, the spatio-temporal changes in
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these regions are frequently associated with the variations of weather phenomena
and climate patterns.

To automatically extract the outlier regions is a crucial issue. Typically, the methods
used to address this problem rely on the image segmentation and pattern recogni-
tion [14, 22]. Image segmentation divides an image into constituent regions. This
technique has been widely used in several practical applications, such as military
satellite image analysis. Wavelet transformation is an important tool for digital sig-
nal processing, image processing, and data mining. Wavelet transformation can
represent data in a hierarchical structure with multiple resolutions from gross to de-
tail. In addition, it can provide the time and frequency information simultaneously,
thus rendering a time-frequency representation of the signal. Another advantageous
property of wavelet transformation is that it can distinctly capture the differences
between a data item and its neighboring items [25].

In this paper, we propose and implement a systematic approach to detect and track
region outliers in a sequence of meteorological data frames. First, a wavelet trans-
formation such as Mexican Hat or Morlet is used to sharpen and enhance the data
variation. Second, an image segmentation method,λ-connected segmentation, is
applied to identify the outlier regions. Finally, a regression technique is used to
track the center movement of the outlier regions for consecutive frames. In addi-
tion, we conducted experimental evaluations using real-world meteorological data,
such as the data collected from hurricane Isabel, to validate the effectiveness of the
proposed algorithms. This paper is organized as follows. Section 2 provides a litera-
ture survey; In Section 3, we discuss the problems and propose various approaches;
The tools and algorithms are introduced in Section 4; Section 5 describes the real
meteorological data and analyzes the experimental results; Finally, we summarize
our work and discuss future research directions in section 6.

2 Background and Related Work

This section provides related research work in spatial outlier detection, image seg-
mentation, spatio-temporal data sequence mining, and meteorological pattern iden-
tification.

Numerous studies have been conducted to identify outliers from large spatial data
sets. The existing spatial outlier detection methods can generally be grouped into
two categories, namely graphic approaches and quantitative tests. Graphic approaches
are based on visualization of spatial data which highlights spatial outliers. Exam-
ples include variogram clouds and pocket plots [18,34]. Quantitative methods, e.g.,
Scatterplot [17] and Moran scatterplot [28], provide tests to distinguish spatial out-
liers from the remainder of the data set. Shekharet al. introduced a method for
detecting spatial outliers in graph data [40]. An outlier may have negative impact
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on its neighbors when its attribute value is much higher/lower than the average of
its neighbors. Two iterative methods and one median-based approach were pro-
posed in [27] to address this problem. Most of the existing spatial outlier detection
methods are designed for point data. However, outliers may exist in other spatial
forms such as lines and regions.

Image segmentation is to partition an image into different components or objects.
It is a key procedure for image preprocessing, object detection, and movement
tracking. The existing image segmentation approaches can be categorized into five
groups. Thefirst and the most popular one, called threshold segmentation, is to
give a threshold or clip-level to transform a grey-scale image into a binary image.
Cherietet al. proposed an approach to explore an optimal threshold for minimiz-
ing the ratio of between-segments variance and the total variance [8]. Another ap-
proach, called the maximum entropy approach, is to define a threshold based on
comparing the entropies of the segmented image [32]. Thesecondmethod, pro-
posed by Rosenfeld, treats an image as a 2D fuzzy set and usesα-cut to develop a
fuzzy connectivity [37]. A variation of this fuzzy connectedness is to measure two
pixels to evaluate if they are “fuzzy connected.” A pixel set is calledλ-connected if
for any two points there is a path that isλ-connected, whereλ is a fuzzy value be-
tween 0 and 1 [6]. Both threshold segmentation andλ-connected segmentation can
be executed in linear time. Thethird category is called split-and-merge segmenta-
tion [14] or quad-tree segmentation. This method splits an image into four blocks
or parts and checks if each part is homogenous. If not, the splitting process will be
repeated; otherwise it starts to merge. This method is accurate for complex image
segmentation. However, it is complicated to implement and costs more time in com-
putation (O(nlogn)). Thefourth category is related toK-mean or fuzzyc-mean. It
is a standard classification method that is often applied in image segmentation [7].
This method classifies the pixels into different clusters to reach minimum total “er-
ror” where the “error” means the distance from a pixel to the center of its own
cluster. This method may produce very convincing result. Nevertheless, it employs
an iterative process to reach convergence. Thefifth method is called the Mumford-
Shah method that uses the variational principal [31]. This method considers three
factors in segmentation: the length of edges of total segments, the unevenness of
the image without edges, and the error between the original image and the proposed
segmented images. When the three weighted factors reach the minimal, this itera-
tive segmentation process stops. Chan and Vese employed level-sets to confine the
search of segment edges based on contour boundaries [5]. Their approach is more
efficient than Mumford-Shah method. However, level-sets may limit its reflexibility
of the original method.

For meteorological data, the feature changes are usually not sharp to form clear
edges. Therefore, direct application of image segmentation can not be utilized ef-
fectively to determine the coverage of the outlier regions. To distinguish the vari-
ation of feature gradient, wavelet techniques can be applied to the original spatial
data before performing image segmentation [43]. Wavelet has many favorable prop-
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erties, such as supporting multi-resolution and frequency localization, which make
it a widely used tool for digital signal processing and image processing [12,29]. In
recent years, wavelet transformation techniques have extended their application to
data mining areas, including clustering [38], classification [24], and data visualiza-
tion [30].

A copious amount of attention has been devoted to identifying and tracking useful
patterns from continuous data sequences. These patterns include cluster, evolution,
deviation, and anomaly.(1) Cluster: Guhaet al.proposed a divide-and-conquer ap-
proach for continuous data clustering [16]. Liet al.explored a clustering technique
on moving objects to catch moving patterns of a set of similar data points [26].
(2) Evolution: By extending a spatio-temporal data model, Tripod [15], Djafriet
al. developed a general approach to characterize the evolution queries in a spatio-
temporal database [10]. Charu presented a framework to detect changes and iden-
tify useful trends in evolving data sequences [2]. Giannellaet al.designed an algo-
rithm to maintain frequent patterns under a tilted-time window framework in order
to answer time-sensitive queries [13].(3) Deviation: Palpanaset al.utilized kernel
density estimators for online deviation detection in continuous data sequences [33].
(4) Anomaly: A neighborhood-based anomaly detection approach was proposed by
Adamet al. for high dimensional spatio-temporal sensor data streams [1].

With the explosion in the amount of meteorological data, extensive research has
been conducted to assist meteorologists in accurately identifying patterns of se-
vere weather events. Several approaches, including fuzzy clustering [3], neural net-
works [9], genetic algorithms [23], and support vector machine [36,41], have been
proposed to classify storm cells. Peterset al. presented a rough-set-based method
capable of classifying four types of storm events: hail, heavy rain, tornado and
wind [35].

3 Problem and Approach

In the Earth’s atmosphere, anomalies emerge at different spatial scales and may
appear in different shapes, which makes a challenging task to detect outliers from
continuous meteorological data sequences. Figure 1 shows an image of the water
vapor distribution over the east coast of the U.S., the Atlantic Ocean, and the Gulf of
Mexico. The color intensity of each region reflects its water vapor content. As can
be seen, there is a “hot spot” located in the left portion of the image (28oN , 90oW ),
indicating a hurricane in the Gulf of Mexico. This outlier spot is not a single point
but a group of the points, a region. This region has a much higher water vapor con-
tent than its surrounding neighbors. Thus,a region outlier is a group of adjacent
points whose features are inconsistent with those of their surrounding neighbors.
The red-colored hot spot, a hurricane, in Figure 1 is a region outlier. Region out-
liers are determined by domain experts based on the pre-defined threshold. Our
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challenge is to design an efficient and practical approach to automatically detect
region outliers, which could be in irregular shapes, from spatial data sequences.
In real applications, such approaches can help identify spatial anomalies such as
hurricanes, tornadoes, thunder storms, and other severe weather events from the
observation data.

Fig. 1. A region outlier (hurricane) in meteorological data.

In order to accurately extract region outliers, it is preferable to decompose the origi-
nal observations into different spatial scales to reduce the complexity and centralize
the target object. Wavelet transformation provides such a capability with its multi-
resolution characteristics. First, wavelet tranformation can be used to decompose
the original spatial variation of the data into different scales, allowing users to fo-
cus on the scale of interest and identify the potential outliers at that scale. Second,
the localization of variation in the frequency domain is useful in determining the
spatial location of outliers.

In this application, we will apply wavelet transformation in the real spatial domain,
then analyze the transformed data for a particular set of scales. As spatial outliers
are usually small in size compared with the environment, relatively small scales
will be selected for hurricanes and tornadoes. The wavelet transformation power
indicates the strength of the variation and the localization of any high values reveals
the places where anomalies exist. In the next section, we will discuss the wavelet
transformation functions used in our application.

Image segmentation can be employed to extract spatial regions within which the
meteorological characteristics is similar. The segmentation algorithm needs to per-
form fast in order to process sequential frames and even high-speed image streams.
For example, the selected algorithms should not scan the whole frame multiple
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times. Ideally, we shall scan the original frame only once or even only scan a part
of it. With O(nlogn) time complexity, split-and-merge method will not be practi-
cal for this purpose.K-mean and fuzzyc-mean, as well as Mumford-Shah method
need more time because they require numerous iterations. Thus, for achieving sat-
isfactory speed, threshold method andλ-connected method are the only two op-
tions since they both have linear time complexity. Threshold segmentation seems
to be the simplest solution. However, when an image needs multiple thresholds,
the determination of threshold values will be difficult and time-consuming. The
advantage ofλ-connectedness approach is that it can determine segments in dif-
ferent intensity levels without calculating different thresholds or clip-level values.
Based on the above reasons, we chooseλ-connectedness approach to segment the
meteorological data.

Our goal is to identify the largest outlier region in which the value of each pixel
is above a reasonably predefined threshold. If we select the threshold method, the
image is translated into a binary image based on a threshold, then the breadth-first
search algorithm is used to label each connected component and select the largest
one. The major advantage of this approach is that the process is easy to perform. Its
disadvantage, however, is that it does not tolerate any noise. Using aλ-connected
search algorithm [6], we can start with any pixel above a threshold, and find all
neighbors that have similar values by comparing them with the starting pixel. This
method is a generalized version of the former one. The details of theλ-connected
search are described as follows.

An image is a mapping from a two dimensional space to the real spaceR. Without
loss of generality, letΣ2 be the two-dimensional grid space, the 2D digital space. A
digital image can be represented by a function:f : Σ2 → [0, 1]. Let p = (x, y), q =
(u, v) ∈ Σ2, p, q are said to be adjacent ifmax{‖x − u‖, ‖y − v‖} ≤ 1. (A pixel,
i.e. picture element, is a couple of(p, f(p)).) So, ifp, q are adjacent andf(p), f(q)
have only a “little” difference, then pixels(p, f(p)) and (q, f(q)) are said to be
λ-adjacent. If there is a pointr that is adjacent toq and (q, f(q)), (r, f(r)) are
λ-adjacent, then(p, f(p)), (r, f(r)) are said to beλ-connected. Similarly, we can
define theλ-connectness along a path of pixels.

Mathematically, let(Σ2, f) be a digital image. Ifp andq are adjacent, we can define
a measure called “neighbor-connectivity” as given below:

αf (p, q) =





1− ‖f(p)− f(q)‖/H if p, q adjacent

0 otherwise
(1)

whereH = max{f(x)|x ∈ Σ2}.

Let x1, x2, ..., xn−1, xn be a simple path. The path-connectivityβ of a pathπ =
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π(x1, xn) = {x1, x2, ..., xn} is defined as

βf (π(x1, xn)) = min{αf (xi, xi+1)|i = 1, ..., n− 1} (2)

or

βf (π(x1, xn)) =
∏{αf (xi, xi+1)|i = 1, ..., n− 1} (3)

Finally, the degree of connectedness (connectivity) of two verticesx, y with respect
to ρ is defined as:

Cf (x, y) = max{βf (π(x, y))|π is a (simple) path.} (4)

For a givenλ ∈ [0, 1], pointp = (x, f(x)) andq = (y, f(y)) are determined to be
λ-connected ifCf (x, y) ≥ λ.

If equation (2) applies,λ-connectedness is reflexive, symmetric, and transitive.
Thus, it is an equivalence relation. If equation (3) is used,λ-connectedness is re-
flexive and symmetric. Therefore, it is a similarity relation.

4 Algorithms Design

In this section, we first describe a wavelet transformation on image data. Second,
we design a segmentation algorithm to obtain the largest connected region whose
wavelet power is above background. Third, after the center point and boundary of
the region are stored, linear regression will be employed to construct the approxi-
mate trajectory of the moving region in consecutive frames. The existence of some
disturbances may introduce incorrect outlier regions. Regression can help remove
these “noise” center points and obtain accurate trajectory.

4.1 Wavelet Transformation

Wavelet transformation is a practical technique in signal analysis and image pro-
cessing. Wavelet transformation possesses several attractive features: (1)Multi-
resolution: wavelet transformation examines the signal at different frequencies
with different resolutions. That is to say, it uses a wider window for low frequency
and a narrower window for high frequency. This feature especially works well for
signals whose high frequency components have short durations and low frequency
components have long durations. Thus, wavelet transformation is an effective tool
with which to filter the signal and focus on certain scales. (2)Localization of the
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frequency: In Fourier transformation, the frequency domain has no localization
information. Thus, if the frequency changes with time in the signal, it is hard to
distinguish which frequency occurs within which time range, although all the fre-
quencies may be detected. In the real world, signals are usually complicated and are
non-stationary. If we want to know exact information for a variation, such as the
frequency and the location of a certain variation or the strength of the variation at a
certain location, wavelet transformation offers advantages over Fourier transforms.

In this paper, we use continuous wavelet transformation. For a wavelet function
Ψ(t), the continuous wavelet transformation of a discrete signalXi(i = 0, . . . , N−
1) is defined as the convolution of X with scaled and translatedΨ:

W (n, s) =
∑N−1

i=0 x(i)Ψ∗[ (i−n)δt
s ]

where (*) indicates the complex conjugate,n is the localization of the wavelet
transformation ands is the scale. The wavelet transformation can also be inversely
transformed to (or used to reconstruct) the original data set :

xi = δjδt1/2

CδΨ0(0)
∑J

j=0
RealW (n,sj)

s
1/2
j

WhereCδ is a constant for each wavelet function;Ψ0is the normalized wavelet
function; andJ is the maximum scale index, which will be explained later. For
more details of the wavelet transformation method, please refer to [42].

Here, we may not include all scales of the wavelet transformation into the recon-
struction in order to filter out the variations of no interest, and the reconstructed data
will be composed based on the scales that are of interest. For example, if the low
frequency range of the variations in the data set is concerned, a low pass data set
may be reconstructed to filter out the high frequency variations and make low fre-
quency variations more visible. Many functions can be used as the base or mother
function for wavelet transformation. We use two of the most widely used bases: the
Mexican hat base and the Morlet base. The base function for a Morlet wavelet is:

Ψ0(η) = π−1/4eω0ηe−η2/2

The Mexican hat function is:

Ψ0(η) = (−1)√
Γ(5/2)

d2

dη2 (e
−η2/2)

When performing the wavelet transformation, the scales are selected byS0∗2j/2(j =
0, 1, . . . , J), whereJ is the maximum scale index which satisfies:J ≤ 2 log2(

N
2
),

whereN is the length of the signal, in this caseS0 = 2δx, N = 360. We usej as
the scale index; Scale 2 means the real scale isS02

0.5∗2 = 4. Tables 1 and 2 provide
the relationship between scale index, real scale, and the corresponding period of
the Fourier transform (here, since we are performing wavelet transformation on the
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index 0 1 2 3 4

scale 2 2.83 4 5.65 8

period 7.95 11.23 15.9 22.47 31.79
Table 1
Scale Table for Mexican Hat Wavelet

index 1 2 3 ... 6 7 8

scale 2.83 4 5.65 ... 16 22.6 32

period 2.92 4.13 5.84 ... 16.52 23.4 33.05
Table 2
Scale Table for Morlet Wavelet

spatial domain, it is in fact the wavelength of the spatial variation) for the Mexican
hat and Morlet wavelets. From the tables, it can be seen that as the scale grows, the
period (or wavelength) of the real object the wavelet focuses on also grows. How-
ever, the growth rates are different for the two wavelets. For the Morlet wavelet,
the period grows slower than it does for the Mexican hat wavelet. Thus, the Morlet
wavelet has a better frequency resolution than the Mexican hat wavelet. This also
implies that Morlet has a poorer localization resolution.

The Morlet wavelet is a complex wavelet and the Mexican hat wavelet is a real
wavelet. The Mexican hat model captures both the positive and negative varia-
tion as separate peaks in wavelet power. The Morlet wavelet power combines both
positive and negative peaks into a single broad peak [42]. Figures 2 and 3 are
examples of the two wavelet transformations. Figure 2(a) is the original data water
vapor distribution along a particular latitude. Figures 2(b) and (c) show the wavelet
transformation power at two different scales. Figure 3 uses the Morlet wavelet and
higher scale indices. From Figures 2 and 3, we can see that the power of wavelet
transformation can depict the distribution or localization of the variation at certain
scales. The Mexican hat wavelet provides a better localization (spatial resolution),
therefore we will mostly use the Mexican hat wavelet to perform the analysis.

4.2 Detection Algorithms

The proposed algorithm has two major functionalities: detecting a sequence of re-
gion outliers in consecutive frames and tracking their movements. First, a wavelet
transformation is performed on the image data to identify regions with prominent
spatial variations at certain scales. Then segmentation is employed to extract the
largest outlier region and trace its trajectory. The algorithm is designed based on
the following assumptions. First, CPU speed is capable of processing at least a
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Fig. 2. A sample output of the Mexican hat wavelet (a: top, b: center, c: bottom).

Fig. 3. A sample output of Morlet wavelet (a:top, b: center, c:bottom).

numberk of data windows (k ≥ 1). This means that the algorithm can process
the continuous data window by window. The size of the window can be adjusted
according to the arrival speed of the data sequence. Second, the data arrive in a
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specific sequence, for example, in the order of latitude or longitude. The arriving
data element is thus spatially adjacent to the previous data element.

The primary algorithm isMain, which invokes other sub-algorithms, including
WaveletAnalysis, Segmentation, andTrajectory. The input of algorithmMain in-
cludes a sequence of continuously arriving dataDS, a set of selected scalesS for
wavelet transformation, a thresholdθ, a similarity levelλ for segmentation, and
the trajectoryT of the outlier region in previous frames. The output is the largest
outlier regionOr for each image frame and its updated trajectoryT .

In algorithmMain, firstly, a set of scales of interest is determined by domain ex-
perts. The continuous and unbounded data sequenceDS will be processed in the
unit of window. The window size will be determined by the size of each data item
and the memory capacity. We designate each window representing an integral view
of global meteorological data (180 degree by 360 degree) as one time frame. From
the I/O buffer, a sequence of data elements are fetched and stored in windowW .
Then algorithmWaveletAnalysisis performed onW . wDomain is the domain of
wavelet power values transformed from data windowW . Next, algorithmSegmen-
tation is employed to extract outlier regions, which are connected components with
wavelet power values above a predefined thresholdθ. In particular, we focus on the
largest connected region whose wavelet power values exceed the threshold, that is
to say, only one region outlier will be detected. Finally, the boundary and center
point of the outlier region can be calculated in order to trace the region movement.
TrajectoryT will be recalculated and updated once a new region is added.

In fact, identifying the moving outlier region does not need to process the whole
frame. Apparently, the locations of the outlier region in adjacent frames are not
likely to change dramatically. Thus, based on the region location in the previous
frame, functiongetPredictedArea() can define the predicted areaΣp, an approx-
imate rectangle which contains all the possible positions of the moving region but
much smaller than the whole imagewDomain. Instead of processingwDomain,
we can obtain the outlier region by applying image segmentation toΣp. In this way,
the cost of region detection can be significantly reduced. The center ofΣp can be
obtained by considering both the region center in the previous frame and its mov-
ing speed. As for the first several frames,Σp is set to bewDomain, that is to say,
the whole image will be processed for segmentation. The utilization of predicted
area can make the segmentation process four times faster if its size is a quarter of
the original frame. However, the area can not be too small in order to protect the
quality of search.

The detail of the three sub-algorithms are discussed below.

Algorithm WaveletAnalysisis designed to transform the source image data into the
wavelet domain. The input of the algorithm is a sequence of data pointsW and a
set of selected scalesS. The output is wavelet power value for every point inW .
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Algorithm : Main

Input :
DS is a data sequence
S is a set of selected scales;
θ is the threshold used for segmentation;
λ is the similarity level for segmentation;
T is the trajectory of the outlier region in previous frames;

Output :
Or is the set of points in the outlier region
T is the trajectory after appending the outlier region in current frame

T = φ;
/* continuously process the sequence window by window */
while (true){

/* get a window of data from the sequence */
W = getWinFromBuf(DS);
/*Call algorithmWaveletAnalysisto process current window*/
wDomain = WaveletAnalysis(W,S);
/* Define the predicted area to speed the image segmentation */
Σp = getPredictedArea(wDomain, T );
/* Call algorithmSegmentationto obtain largest region*/
Or = Segmentation(Σp, θ, λ);
/* Call algorithmTrajectoryto track movement*/
T = Trajectory(T , Or);
/* output the detected region and its moving trajectory*/
Output(Or, T ); }

Performing the wavelet transformation in different scales can help identify patterns
with different sizes and filter noises. The algorithm first extracts the boundary of
W . α1 denotes the beginning latitude(or longitude) andαn denotes the ending lat-
itude(or longtitude) of the current window. Note that for meteorological data, the
wavelet transformation will be performed along lines of latitude. We will discuss
the justification for this in the experimental section of this paper.

Algorithm Segmentationaims to extract the largest connected region above thresh-
old θ. It contains three input parameters:Σ, θ, andλ. Σ denotes a set of data points
to be segmented;θ is a threshold to filter-out unwanted points (points whose values
are less thanθ will not be processed);λ is the similarity level. The value ofθ is
determined by domain experts. Ordinarily, we will designate it as the 75 percent of
the difference between the maximum value and the minimum value of the data set.
The output is the largest connected component in the data set, consisting of points
with values greater thanθ and similarity levels greater thanλ. First, the algorithm
picks a pointp0 from Σ whose value is greater thanθ and is not labelled as ‘*’,
which means “not processed.” Thenp0 is added intoQUEUE. For each point in
this QUEUE, its “unprocessed” neighboring points will be examined to check if
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Algorithm : WaveletAnalysis

Input :
W is a data window from the sequence;
S is a set of selected scales;

Output :
wDomain is the wavelet power of the data window

/* get the minimum latitude(or longitude) of current window */
α1 = getMinBound(W);
/* get the maximum latitude(or longitude) of current window */
αn = getMaxBound(W);
/*wavelet transformation along all latitudes(or longitudes)*/
for(i=α1;i ≤ αn ;i++) {

wDomain = WaveletTransform(W,S,i); }
/* output the wavelet power of this data window*/
Output(wDomain);

they have a similarity level greater thanλ. If the condition holds, the corresponding
neighboring point will be stored intoQUEUE and marked as “processed.” Repeat-
ing the “marking” process for all the points in theQUEUE, we can obtain a result
setS ′, containing the connected part ofΣ. Next, the number of points inS andS ′

will be compared. IfS ′ is larger thanS, S will be replaced withS ′, ensuring thatS
maintains the largest component discovered heretofore. The while loop repeats un-
til there is no “unprocessed” point with a value greater thanθ. Finally,S is returned
as the largest component discovered by the algorithm.

The objective of algorithmTrajectory is to track the moving direction and speed
of a certain region, and to validate the correctness of the current detected region.
The input parameters are the previously recorded trajectoryT , the newly detected
regionR, and the numberK of recent center points inT . The data structure ofT
includes the time, center, moving speed, and boundary of previousK regions. The
detected regionR is from the output ofSegmentationalgorithm. It is possible for a
region to be erroneously detected by algorithmSegmentationdue to errors in raw
data or an inappropriate segmentation threshold. Therefore, a verification function
is needed in order to determine the correctness ofR based on the trajectory of the
previousK regions. In the algorithm, first the boundary pointB is extracted and the
centerC of the regionR is computed. Then, a verification procedure is performed
to compareC with the statistics of the pastK center points along the trajectory. The
meanµ and standard deviationσ of the pastK center points are calculated. IfC is
located within 2σ from µ, R is considered as a valid region andC is appended to
the trajectoryT . Otherwise,R is flagged as a “noise” point that will be discarded.
Moreover, the moving speed and direction of the region center can be obtained from
two valid consecutive center points. Finally, the new trajectoryT will be updated
and can be stored in permanent storage for a specified period of time.
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Algorithm: Segmentation

Input :
Σ : Set of data points
θ : Threshold for the clip level
λ: Similarity level

Output :
S: the largest connected component with value aboveθ

Σ = ∅; {
while (Σ contains unlabelled points)

p0 = pickOneUnLabeledPoint(Σ, θ);
L(p0) = ’*’; /*labeling p0 as processed*/
/*insertp0 into a Queue*/
QUEUE = InsertQueue(QUEUE, p0);
while (not Empty(QUEUE)){

/*get an element from the head ofQUEUE*/
p0 = RemoveQueue(QUEUE);
For eachp that is adjacent top0 {

if (L(p) 6= ’*’ and C(p, p0) ≥ λ)
QUEUE = InsertQueue(QUEUE,p);
L(p) = ’*’; }}}

S′ = {p : L(p) = 0}; /*S′ is aλ-connected component*/
if (S′ has more points thanS)

S = S′; /* save the largest component toS*/
}
return(S);

4.3 Time Complexity and Memory Usage

The water vapor attribute value of each point is represented by a 4-byte double. If
one window contains all the global water vapor data for a specific time (360*180
locations), it will take 260K byte of memory. The computation of the wavelet trans-
formation is efficient. A fast wavelet transformation needsO(N) operations, where
N is the number of objects(locations). Its memory usage is also linear [25], . For
each data window, the time complexity ofWaveletAnalysisalgorithm isO(m),
where m refers to the window size (or number of pixels in the image). The time
complexity of identifying the largestλ-connected part isO(m), because in the
search algorithm, each pixel will be visited twice. It also validates that the breadth-
first based search technique is an efficient searching algorithm. For trajectory track-
ing, the time complexity isO(p+K), whereO(p) is used for extracting the bound-
ary and center point of the outlier region (with an average of p points), andO(K)
is the cost of “noise” point elimination and speed calculation. Sincep andK are
very small compared withm, the running time will be dominated by the wavelet
transformation and image segmentation operations. The total time complexity will
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Algorithm : Trajectory

Input :
T : Previous trajectory;
R: Current detected region;
K: Number of latest center points alongT ;

Output :
T : Updated trajectory withR appended

/* extract boundary of inR */
B = getBoundary(R);
/* Calculate the central point ofR */
C = getCenter(R);
/*Eliminate “noise” points*/
T = verification(T ,C,K);
/*Compute the moving speed of center point*/
T = calculateSpeed(T );
/*Output the new trajectory*/
Output(T );

correspond to the total number of objectsN (the aggregation ofm for all windows),
that is,O(N).

5 Experiment Results

We used NOAA/NCEP (National Oceanic and Atmospheric Administration/National
Centers of Environmental Prediction) global reanalysis data set, which provides
multiple parameters with a resolution of 1 degree by 1 degree. This data set covers
the entire globe and is updated 4 times a day, at 0AM, 6AM, 6PM, and 18PM. Our
main objective is to trace hurricane or tropical storm from satellite data. Water va-
por data are selected in our study. Even though a hurricane is not defined by high
concentration of water vapor, it is always accompanied by high concentration of
water vapor. Usually, the stronger the circulation wind, the lower the surface pres-
sure, the stronger convection and the higher concentration of water vapor. Gener-
ally, surface wind and surface air pressure are better indicators to define a hurricane.
However, these parameters are very difficult to be retrieved from satellite observa-
tion under cloud cover, especially for hurricanes which have deep convection and
thick clouds. In contrast, total water vapor (integrated from surface to top of the
atmosphere) is a well-validated satellite product which provides a good estimation
of the real world even under heavy cloud. Figure 4 shows an image of global water
vapor distribution on October 3, 2002. In most cases, the tropical region is cov-
ered by the high values of water vapor. Our objectives are to identify and track the
movement of outlier regions. In this section, we will demonstrate the experimental
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Fig. 4. Global distribution of water vapor.

results of wavelet transformation, image segmentation, and trajectory tracking.

5.1 Wavelet Transformation

We first performed a Mexican hat wavelet transformation on the data over all lati-
tudes. Figure 5 is the water vapor data for latitude26o North and its wavelet power.
In Figure 5(a), the solid line is the original data and the dashed line is the filtered
(reconstructed with scales 2 and 3) data. Figure 5(b) is the plot of the wavelet power
of the original data. Figure 5(c) is the plot of the wavelet power of the filtered data.
Figure 5 shows that the variation exists on all scales and the power of variation
changes at different locations. This figure also shows that the Mexican hat wavelet
has a satisfactory localization resolution. We mainly focused on the anomalies with
sub-weather scales, that is with variations of 1000km or 10 degrees in longitude at
the mid-latitude region. Figure 6 is the global map of wavelet transformation power
with scale index 3. Clearly, there are some areas where the power is especially high.
In these areas the spatial variation with scale index 3 is prominent and these areas
are suspected region outliers.

Comparing Figure 6 with Figure 4, the area with the high value in Figure 4 over the
Gulf of Mexico also has a high wavelet power. However, the high vapor value areas
near160oW in the tropic region do not show strong wavelet power in Figure 6,
and the low value areas in South America show high wavelet power in Figure 6.
Therefore, a high value does not necessarily guarantee a high wavelet power. We
focus on the spatial variation, not the value of the variable. Wavelet power mainly
represents the variation of the signal in the spatial domain. Another advantage of
using a wavelet transformation is its multi-scale capability, as mentioned earlier:
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Fig. 5. Mexican hat wavelet power with locations and scales (a:top, b:center, c:bottom).

we can focus on only the scales in which we are interested. This makes easier to
study the complicated variations in multi-scale meteorological data.

Fig. 6. Wavelet power distribution at scale index 3.

We performed wavelet transformation on theX dimension along latitude because
for weather systems the scale is usually represented based on the latitude. For the
basic atmospheric parameter distribution, there is a strong variation with different
latitudes, such as the difference between the tropics and high latitude areas. This
variation is the normal pattern of the general atmosphere and is not an anomalous
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feature. Thus, when detecting spatial variations, it useful to focus on the variation
along the latitude (X-axis). Technically, however, we can also perform a wavelet
transformation along longitude (Y -axis). Figure 7 shows the reconstructed water
vapor distribution using an inverse wavelet transformation along both latitude and
longitude (X andY ). Figure 7 reveals many more patterns than Figure 6. However,
these patterns are caused by the normal variation along the longitudeY and are
merely noises in most cases.

Fig. 7. Reconstruction on both X Y dimension.

5.2 Image Segmentation and Tracking

In this experiment, we examined the the water vapor data over the period of 9/17/2003-
9/19/2003, during which Hurricane Isabel landed on the east coast of the United
States. Hurricane Isabel formed in the central Atlantic Ocean on September 6th,
2003. It moved in a general west-northwestward direction and strengthened to a
category five hurricane by September 11th. Weakening began on September 16th as
the hurricane turned north-northwestward. On September 18th, Isabel made land-
fall on the outer banks of North Carolina as a category two hurricane. Portions
of eastern North Carolina and Southeastern Virginia experienced hurricane-force
winds. Experimental results for Hurricane Isabel demonstrate the effectiveness of
our algorithms in detecting abnormal meteorological patterns. Figure 8 shows the
wavelet image at 0AM on September 18th, 2003. When the boundary of Hurri-
cane Isabel is extracted byAlgorithm Segmentation, it shows the center is located
at (32.54◦N, 71.80◦W). Figure 9 shows another experimental result on Septem-
ber 18th, 2003, at 6:00AM. The boundary of Hurricane Isabel is clearly identified,
showing the center is located at (33.05◦N, 72.28◦W). During these six hours, the
trend of Hurricane Isabel can be observed as it moves northwestward overland.
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Fig. 8. Wavelet power distribution at 0AM Sept. 18th, 2003 with Hurricane Isabel identi-
fied.
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Fig. 9. Wavelet power distribution at 6AM Sept. 18th, 2003 with Hurricane Isabel identi-
fied.

Figure 11 shows the 3D trajectory of Hurricane Isabel from September 17th, 2003
to September 19th, 2003. Since the location of hurricane was measured every six
hour each day, 12 regions are illustrated in this figure. The boundary of each outlier
region is depicted by a dotted line and the center points are connected, so that
its moving trajectory can be observed. As can be seen from the figure, region 4
is not consistent with the locations of other regions. It is a “noise” outlier caused
by other weather patterns or inappropriate segmentation parameters. Region 4 is
flagged by the verification procedure inAlgorithm Trajectoryand removed. Figure
10 shows the new trajectory after eliminating “noise” regions. The northwestward
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Fig. 10. Trajectory of moving region with “noise” data.
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Fig. 11. Trajectory of moving region without “noise” data.

movement of Hurricane Isabel can be clearly observed. The latitude and longitude
of the hurricane center are listed in Table 3. “Flag=1” denotes that the region is
correctly detected and “Flag=0” denotes that the region is “noise” data and will not
be recorded.

Table 4 shows the processing time of the proposedλ-connectedness based image
segmentation algorithm. The size denotes the number of data frames, where each
frame is made up of 180×360 data points, and the time is measured in seconds.
In the experiment, we used a Pentium4 (2.8GHz) PC with 512MB memory. The
experimental results show that our image segmentation algorithm is efficient to
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SN Latitude Longitude Time Flag

1 35.27 -70.07 09/17/2003/0Z 1

2 34.41 -70.42 09/17/2003/6Z 1

3 33.31 -71.28 09/17/2003/12Z 1

4 -29.20 -167.82 09/17/2003/18Z 0

5 32.54 -71.80 09/18/2003/0Z 1

6 33.05 -72.28 09/18/2003/6Z 1

7 33.91 -72.34 09/18/2003/12Z 1

8 34.53 -72.70 09/18/2003/18Z 1

9 38.05 -74.86 09/19/2003/0Z 1

10 41.41 -76.52 09/19/2003/6Z 1

11 43.61 -78.68 09/19/2003/12Z 1

12 45.46 -78.97 09/19/2003/18Z 1

Table 3
The tracking data of hurricane center.

Data Size (180× 360) 1 4 9 16 64

Time (Sec) 0.003 0.017 0.030 0.048 0.218

Table 4
The execution time of image segmentation.

process a high speed meteorological data sequence, taking only 0.218 seconds to
process 64 image windows, with each window containing180× 360 points.

6 Conclusion

In this paper, we propose a comprehensive approach for detecting and tracking
spatial region outliers in meteorological data. Our approach is based on wavelet
transformation and image segmentation. First, wavelet transformation filters out
noises and highlights spatial variation of specific scales. Then, an efficient image
segmentation technique,λ-connectedness method, is applied to extract the largest
connected region whose intensity is much higher than its neighbors. Finally, the
trajectory of the outlier region is calculated for a sequence of meteorological data
frames. The proposed algorithms can be executed with linear time and suitable for
identifying anomalies in continuous meteorological data sequences. The experi-
ment on the Hurricane Isabel data set validates the efficiency and effectiveness of
our approach.

Our research will be extended in the following directions. First, we plan to study
region outliers in three-dimensional spatial space with multiple attributes, such as
pressure, rainfall, cloud cover, and temperature. Second, we will design algorithms
to identify and track multiple moving outlier regions simultaneously. Furthermore,
we will apply our algorithms on the real NOAA online database to discover anoma-
lous meteorological patterns.
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