
 
 

A Framework for Estimating Complex Probability Density  
Structures in Data Streams 

 

Arnold P. Boedihardjo 
Department of Computer Science 

Virginia Tech, USA 
aboediha@vt.edu 

Chang-Tien Lu 
Department of Computer Science 

Virginia Tech, USA 
ctlu@vt.edu 

Feng Chen 
Department of Computer Science 

Virginia Tech, USA 
chenf@vt.edu 

 
 

ABSTRACT 
Probability density function estimation is a fundamental 
component in several stream mining tasks such as outlier 
detection and classification. The nonparametric adaptive kernel 
density estimate (AKDE) provides a robust and asymptotically 
consistent estimate for an arbitrary distribution. However, its 
extensive computational requirements make it difficult to apply 
this technique to the stream environment. This paper tackles the 
issue of developing efficient and asymptotically consistent AKDE 
over data streams while heeding the stringent constraints imposed 
by the stream environment. We propose the concept of local 
regions to effectively synopsize local density features, design a 
suite of algorithms to maintain the AKDE under a time-based 
sliding window, and analyze the estimates’ asymptotic 
consistency and computational costs. In addition, extensive 
experiments were conducted with real-world and synthetic data 
sets to demonstrate the effectiveness and efficiency of our 
approach. 
 

Categories and Subject Descriptors 
G.3 [Probability and Statistics]: Nonparametric statistics 
 

General Terms 
Algorithms, Performance 
 

Keywords 
Data Mining, Data Streams, Kernel Density Estimation  
 
 

1. INTRODUCTION 
Advances in hardware and software technologies have caused a 

surge in the growth and availability of voluminous information. 
Data streams are realizations of vast information that are fast, 
continuous, mutable, ordered, and unbounded [5]. Numerous data 
streams stem from the ubiquitous time series and span a wide 
range of applications such as finance, medicine, and sensor 
networks. Some well-known streams are traded stock prices, 
measures of brain electrical impulses (e.g., 
electroencephalograms), and roadway performance metrics (e.g., 
speed). Applying analysis and mining techniques can help deepen 
knowledge in these fields and enhance their applications. 
Therefore, the development of stream analysis tools can provide 
far-reaching impacts to the general discipline of stream mining. 

Underpinning many stream mining tasks is the use of the 
probability density function (PDF) for the most recent data [3, 5, 
11, 22]. However, in real-world situations, the PDFs are usually 
unknown and therefore must be estimated. Examples of stream 
mining tasks that employ estimated PDFs include: outlier 
detection by modeling a sensor’s sample distribution and selecting 
data points of low probability [21]; concept drift detection via 
comparison of current and past data streams’ probability density 
estimates [2]; and pattern discovery in Internet traffic by 
visualizing the estimated probability density function of arriving 
packets [22]. One could further the efficacy of probability density 
estimates by enabling queries for an explicit time range [3]. The 
extension would be able to respond to questions such as, “What is 
the distribution of telnet connections within the last hour?” “How 
have the roadway’s speed and volume distributional patterns 
changed in the past two hours since the snow began?” The 
extension of an explicit time range is naturally modeled by a time-
based window. Hence, it can be seen that providing probability 
density estimates over a time-based sliding window will serve as a 
valuable tool in the study of data streams. Emphasis on the most 
recent data implies the need for the stream mining techniques to 
furnish results in real-time. Additionally, practical constraints 
dictate that the techniques possess finite memory and perform at 
most a linear pass on the data elements [5, 16]. Meeting and 
balancing these requirements is a key goal in stream research.  

An effective technique to estimate an unknown probability 
density function is the nonparametric kernel density estimate 
(KDE). KDE possesses several advantages that include: rigorous 
mathematical foundation; generalization to other density 
estimators such as orthogonal series and histograms; asymptotic 
consistency; and inheritance of the kernel function’s continuity 
and differentiability properties [19, 20]. The standard formulation 
of the univariate KDE is given as follows: for 𝑛 independent and 
identically distributed sample points (i.e., kernel centers) 𝑥ଵ. . 𝑥௡ 
with corresponding weights 𝑤ଵ. . 𝑤௡ , bandwidth ℎ, and a kernel 
function 𝐾(∙), the kernel density estimate is  

 

                      𝑝௄஽ா(𝑥) = ଵ∑ ௪೔೙భ ∑ ௪೔௛ 𝐾 ቀ௫ି௫೔௛ ቁ௡௜ୀଵ   
 

The accuracy of the KDE does not significantly depend on the 
choice of kernel function 𝐾(∙), but rather on the selection of ℎ 
[19]. The bandwidth ℎ is regarded as a smoothing parameter: a 
high ℎ can generate a smooth shape density whereas a low ℎ tends 
to provide an undersmoothed but potentially more accurate 
estimate. The drawback of the KDE formulation is the 
requirement of assigning a global bandwidth. Due to the existence 
of local features, a single global bandwidth may not be sufficient 
to model complex density structures (e.g., multimodal 
distributions). When the global bandwidth KDE technique is used 
as the core step in mining tasks (e.g., outlier detection), the 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
CIKM’08, October 26–30, 2008, Napa Valley, California, USA. 
Copyright 2008 ACM 978-1-59593-991-3/08/10…$5.00. 
 

619



 
 

generated results can be misleading and potentially disastrous for 
mission critical applications (e.g., military sensor surveillance). 
To overcome this problem, this paper proposes the use of an 
adaptive KDE (AKDE) to improve the estimation accuracy of 
local features within data streams. The AKDE is a variable 
bandwidth technique, which has been shown to be effective in 
capturing local density features [18-20]. The general formulation 
of the AKDE is as follows: 
 𝑝஺௄஽ா(𝑥) = ଵ∑ ௪೔೙భ ∑ ௪೔ு(௫೔) 𝐾 ቀ ௫ି௫೔ு(௫೔)ቁ௡௜ୀଵ ,    𝐻(𝑥௜) ∝ 𝑓(𝑥௜)షభ  (eq. 1) 

where 𝐻(𝑥௜)  is the bandwidth function that is inversely 
proportional to the true density 𝑓(𝑥௜). 
 

In essence, the AKDE increases its learning capacity (via 
smaller bandwidth) in regions of high density where the local 
features are likely to originate from the true distribution. This 
AKDE characteristic is consistent with the real-world observation: 
inherent local features tend to occur in regions of high 
probabilities whereas noise-induced local features occur in areas 
of low probabilities. This adaptive scheme enables the AKDE to 
provide superior estimation accuracy over the classical KDE.  

Although the AKDE can produce superior estimation quality to 
the classical KDE, its computational cost (𝑂(𝑛ଶ)) far exceeds the 
traditional KDE (𝑂(𝑛)). In the AKDE, the bandwidth, 𝐻(∙), is 
computed from the true density, 𝑓(∙). Because the true density is 
unknown, a pilot function is defined to provide an estimate for 𝑓(∙) . Generally, the pilot function is modeled by the classical 
KDE. This choice implies that evaluating 𝐻(∙)  is an 𝑂(𝑛) 
process. Therefore, computing a query under the AKDE is an 𝑂(𝑛ଶ) operation because 𝐻(∙) is computed at least once for each 
sample point. This evaluation approach cannot be applied to data 
streams since it clearly infringes upon the linear pass restriction. 
Due to AKDE’s extensive computational cost, there are currently 
no works that provide adaptive kernel density estimates for the 
data stream environment.  

A crucial property provided by the KDE is asymptotic 
consistency, that is, as the sample size approaches infinity, the 
KDE converges to the true density. This KDE property is 
conducive to the data stream environment because the unbounded 
sample size provided by the data stream can improve the KDE’s 
accuracy. Therefore, to enable AKDE to be a viable tool in stream 
analysis, a new online technique must be developed that is both 
efficient and asymptotically consistent. 

This paper tackles the issue of developing efficient and 
asymptotically consistent AKDE over data streams. To the best of 
our knowledge, this paper is the first attempt that addresses the 
issue of applying AKDE to the data stream setting. To that end, 
we propose, the online Local Region KDE (LR-KDE), an 
adaptive kernel density estimation framework for processing 
univariate data streams. The major components of the proposed 
framework are (1) a new partition-based variable bandwidth 
strategy to capture local density features and to improve 
estimation quality, (2) a suite of linear pass algorithms to 
maintain and compute kernel density estimates, and (3) a fixed-
size memory time-based sliding window. We also analyze the 
asymptotic costs and consistency property of the proposed online 
LR-KDE. Extensive experiments were conducted to demonstrate 
the effectiveness and efficiency of the approach.  

 

The proceeding sections are organized as follows. Section 2 
surveys the related works. Section 3 provides the theoretical 
preliminary. Section 4 details our proposed framework. Section 5 
presents the computational complexity and asymptotic 
consistency analysis. Section 6 demonstrates empirical results and 
validation. Section 7 gives the conclusion.  
 
 

2. RELATED WORKS 
Early efforts in computationally tractable KDEs can be found in 

the domain of offline analysis. Zhang et al. proposed a method to 
maintain a space efficient KDE by using the CF-tree [23] to 
cluster a set of kernels into a single kernel known as the CF-
Kernel [24]. The CF-Kernel employs a global bandwidth which 
can lead to oversmoothing and loss of local density information. 
Gray et al. proposed a kernel space partitioning technique by 
utilizing a KD-Tree and bounded support kernels to offline data 
sets [9]. The KD-Tree reduces computations by effectively 
pruning kernels, which do not contribute to the density query. 

Several recent works have been proposed for the online 
management of KDE. These online techniques can be classified 
into the following three categories:  

 

1. Grid-based KDE – provides a uniform and discretized 
representation of the kernel points 

2. Sample-based KDE – employs a sampling methodology on 
the data stream to reduce the total kernel size 

3. Cluster-based KDE – utilizes kernel merging techniques to 
maintain a fixed storage and minimize the kernel merge error 

 

Grid-based and sample-based: Aggarwal proposed a 
framework to capture the structural evolution of data streams by 
using a grid-based KDE [2]. The kernels are summarized in a 
multidimensional grid where a common bandwidth is employed 
for each dimension. Concepts of forward and reverse density 
profiles are introduced to discover the occurrences of concept 
drifts. Subramaniam et al. proposed an approach for outlier 
detection in sensor networks by modeling the densities of node 
observations [21]. Their scheme employs a uniformly sampled 
sequence-based sliding window to summarize the current set of 
kernels. A global bandwidth is applied to the sampled set of 
kernels. Wegman et al. introduced an online KDE for the analysis 
of Internet traffic [22]. They suggested the use of a sequence-
based and exponentially aging sliding window to accommodate a 
fixed storage environment. To derive estimates, a single 
bandwidth KDE is employed on the sliding window.  

Cluster-based: Zhou et al. introduced the M-Kernel, a cluster-
based KDE maintenance strategy which performs numerically-
based kernel mergers under a fading window [25]. The merging 
algorithm combines two kernels which produces the minimum 
integrated absolute error between the original pair and the merged 
result. This scheme allows for a fixed memory representation of 
the kernels. However, under the M-Kernel, the consistency of the 
estimate is not guaranteed and the approach can exhibit high 
update costs due to its numerical-based merging strategy. In a 
similar vein, Heinz et al. proposed a constant time pair-wise 
merging technique that guarantees consistency [12]. Their kernel 
method employs a single bandwidth that has been shown to be 
effective in approximating the classical KDE.  

 
 
 

 

620



 
 

Table 1. Summary of stream-based KDE techniques. 𝑴 is the 
number of maintained kernels.   

Technique Query 
Cost 

Update 
Cost 

Bandwidth 
Strategy 

Asymp. 
Consis.

Time-based 
Window 

Grid-
based [2] 𝑂(𝑀) 𝑂(𝑀) Single 

Bandwidth Yes Yes 

Sample-
based [21], [22] 𝑂(𝑀) 𝑂(1) Single 

Bandwidth Yes Yes 

Cluster-
based 

Heinz 
[12] 𝑂(𝑀) 𝑂(𝑀) Single 

Bandwidth Yes No 

Cluster-
based 

M-Kernel 
[25] 𝑂(𝑀) 𝑂(𝑀) Variable 

Bandwidth No No 

Cluster-
based LR-KDE 𝑂(𝑀) 𝑂(𝑀) Variable 

Bandwidth Yes Yes 

 
 

Table 1 provides a summary of the key characteristics of 
current stream-based KDEs. Most KDE approaches employ single 
a bandwidth strategy hence they cannot accurately estimate the 
stream’s local features. The M-Kernel, although it applies a 
variable bandwidth approach, it is not assured to be 
asymptotically consistent. As a consequence, the M-Kernel is not 
guaranteed to converge as the sample size increases. The 
proposed LR-KDE differentiates itself from existing works in the 
following aspects:  

 

1. Local feature estimation – models local density features via 
partition-based bandwidth to improve estimation quality 

2. Consistency – assures asymptotic consistency under the 
proposed variable bandwidth strategy 

3. Linear pass processing – employs 𝑂(𝑀)  algorithms to 
process kernel updates and density queries 

4. Time-based window – provides a fixed-size time-based 
sliding window 

 

Online histograms have also been proposed in the field of 
database optimization to provide query selectivity estimates and 
approximate queries [13]. Some online histograms include 
dynamic quantiles [8], equidepth histograms [7], and V-optimal 
histograms [10]. Due to the histogram’s inherent discontinuities 
and slower convergence, the histogram may not be suited for the 
tasks of stream analysis [20]. 
 
 

3. THEORETICAL PRELIMINARY 
A formal description of the density estimation problem is given 

as follows: Given a data stream, 𝑆 = ൛𝑥(ଵ), 𝑥(௜), . . , 𝑥(௡)ൟ, where 𝑥(௜) is a real-valued scalar (i.e., sample point) and each 𝑥(௜) is 
associated with a timestamp, 𝜏(𝑥(௜))  ∈   [𝜏௠௜௡, 𝜏௠௔௫] , generate 
and maintain an adaptive kernel density estimator, 𝑓መ஺௄஽ா(∙), of 𝑆. 
The storage, update, and query costs of 𝑓መ஺௄஽ா(∙) should be at most 𝑂(𝑀), where 𝑀 is a constant and  𝑀 ≪ ‖𝑆‖ = 𝑛. 

With respect to stream applications, one of the fundamental 
issues of the AKDE is its high computational cost for determining 
the bandwidth, 𝐻(∙)  (eq. 1). To reduce this computational 
requirement, a bandwidth approximation technique is proposed 
for the AKDE. Let 𝑇 = {𝑥௜: 𝑥௜ ≤ 𝑥௜ାଵ, 1 ≤ 𝑖 ≤ 𝑛, 𝑥௜ ∈ 𝑆}  be an 
ordered representation of the kernels in 𝑆 . Define the relative 
density variance, 𝑅(𝑘, 𝑙) , as the sample variance of the set of 
estimated densities at 𝑥௞. . 𝑥௟ ∈ 𝑇 , where 1 ≤ 𝑘 ≤ 𝑙 ≤ 𝑛 . The 
bandwidth approximation procedure is given as follows: 

 

1. Partition 𝑇 into 𝑄 continuous and disjoint local regions (i.e., 
intervals) such that each local region’s 𝑅(∙,∙)  value is 
minimized 

2. For each local region, assign a bandwidth that is unique to its 
constituent kernels 

 

The above scheme serves to capture the local densities within the 
total span of the distribution. The obtained approximation is 
consistent with the structure of AKDE’s bandwidth i.e., similar 
bandwidth values are assigned to kernels of similar densities. 
Hence, the local regions can be seen as a piecewise constant 
representation of the structure of 𝐻(∙).  

Two design challenges exist in applying the above 
approximation approach: (1) the efficient derivation of the relative 
density variance; and (2) the development of a technique for local 
region identification. In the following, the Pair-wise Adjacent 
Distance Uniformity theorem is introduced to provide an efficient 
venue for estimating the density variance. The theorem is 
followed by the definition of an optimization problem for the task 
of identifying the local regions.  

 

3.1. Derivation of Relative Density Variance 
As previously defined, local regions provide a total and disjoint 

partitioning of the kernel domain which minimizes the intra-
variance of the density estimates. A unique bandwidth is assigned 
to each local region based on the regional kernel characteristics. If 
each kernel is given its own unique local region, then the local 
region based KDE (with the appropriate bandwidth function) is a 
reformulation of the traditional AKDE. However, if the number of 
the local regions is less than the number of kernels, then the local 
region KDE is an approximation of the AKDE. The problem now 
is to derive a method which can efficiently deduce the density 
estimate variance for a given range of kernels. One possible 
approach is to estimate the densities via the traditional KDE 
approach. However, this poses the same computational issue as 
the AKDE. An alternative and more viable solution is to employ 
the pair-wise and adjacent kernel distances to derive relevant 
properties of the density variance. To that endeavor, the Pair-wise 
Adjacent Distance Uniformity theorem is proposed.  

Let 𝐺  be a set of ordered and identically weighted kernels 
whose pair-wise and adjacent distance variance is zero, then under 
certain conditions, it can be shown that the densities at the kernel 
centers (under a global bandwidth KDE) in 𝐺 are uniform. The 
significance of this theorem is that it provides a venue of 
estimating the density variance through information of the 
kernels’ pair-wise and adjacent distances (PAD). As a result, 
computationally tractable bandwidth approximations can be 
developed from the kernels’ PAD information. The proof of the 
Pair-wise Adjacent Distance Uniformity theorem is as follows: 
 

THEOREM 3.1 (Pair-wise Adjacent Distance Uniformity): Let 𝑉 = {𝑥௜: 𝑥௜ ≤ 𝑥௜ାଵ 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑛}  be a set of sorted kernel 
centers associated to a bounded and radially-symmetric kernel 
function with uniform weight and bandwidth. Furthermore, let the 
sorted kernels be adjacently equidistant such that |𝑥௜ାଵ − 𝑥௜| =ห𝑥௝ାଵ − 𝑥௝ห ∀𝑖, 𝑗 . Suppose 𝐺 = {𝑥௞: 𝑥ଵ + 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ≤ 𝑥௞ ≤ 𝑥௡ −𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ} . Then for the kernel density estimate,  𝑓መ(𝑥) , the 
following property must hold: 𝑓መ(𝑥௞) = 𝑓መ(𝑥௟) ∀ 𝑥௞, 𝑥௟ ∈ 𝐺. 
 

PROOF. Let 𝑥௞, 𝑥௟ ∈ 𝑉 be any two kernel centers and define a set 𝐼௫ = {𝑥௜: |𝑥௜ − 𝑥| < 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ}.  𝐼௫ is the set of kernel centers 

621



 
 

for which their corresponding bandwidths intersect 𝑥 , thus 𝐼௫ 
possess all the kernels that contribute non-zero values to the 
kernel density estimate, 𝑓መ(𝑥) . Consider 𝐼௫ೖ  and 𝐼௫೗  and without 
loss of generality choose a kernel center, 𝛼 ≤ 𝑥௞ , from 𝐼௫ೖ . 
Because all the kernel centers within 𝐺 are adjacently equidistant, 
there must exist an element, 𝛽 ≤ 𝑥௟, from 𝐼௫೗ such that 𝑥௞ − 𝛼 =𝑥௟ − 𝛽 . Since the kernels are radially-symmetric, equal 
bandwidth, and identically weighted, the contribution of 𝛼  to 𝑓መ(𝑥௞) is equal to the contribution of 𝛽 to 𝑓መ(𝑥௟). For any chosen 𝛼 
in 𝐼௫ೖ , there exists a corresponding 𝛽  in 𝐼௫೗  for which their 
contributions are equal. This relationship also holds for any 𝛽 in 𝐼௫೗  corresponding to an 𝛼  in 𝐼௫ೖ . Hence, there is a one-to-one 
relationship between 𝛼 in 𝐼௫ೖ and 𝛽 in 𝐼௫೗, which implies that the 
sum of the kernel contributions of 𝐼௫ೖ  to 𝑓መ(𝑥௞) and 𝐼௫೗  to 𝑓መ(𝑥௟) 
are equal. Therefore, 𝑓መ(𝑥௞) = 𝑓መ(𝑥௟) ∀ 𝑥௞, 𝑥௟ ∈ 𝐺. 
 

3.2. Optimization Problem for Local Region 
Identification 

Leveraging upon Theorem 3.1, identification of the local 
regions can be achieved by minimizing the variance of the 
kernels’ pair-wise and adjacent distance values. In the following, 
an optimization problem is established to identify local regions 
based on the kernels’ PAD information. Assume that a local 
region, 𝐿 , possesses a set of kernels (centers), 𝑦௝. . 𝑦௠ , where 𝑦௝ ≤ 𝑦௝ାଵ ≤ 𝑦௠  for  1 ≤ 𝑗 ≤ 𝑚 ≤ 𝑛, and 𝑛 is the total number of 
kernels. Set 𝐿’s 𝑖௧௛ adjacent distance to be 𝐿ௗ(𝑖) = 𝑦௝ା௜ାଵ − 𝑦௝ା௜, 
and define the variance of L’s kernel pair-wise and adjacent 
distances as follows: 

 𝑣𝑎𝑟(𝐿ௗ) = ଵ‖௅‖ିଵ ∑ (𝐿ௗ(𝑖) − ∑ ௅೏(௜)‖ಽ‖షభభ ‖௅‖ିଵ )ଶ‖௅‖ିଵ௜ୀଵ          (eq. 2) 
where ‖𝐿‖ is the number of kernels in 𝐿. 

 

In practice, the density estimate makes use of arbitrarily 
weighted kernels. Hence, consideration of varying weights must 
be made in the local region formulation. Let 𝑧ଵ. . 𝑧௡  be a set of 
sorted kernel centers assigned to a bounded, radially-symmetric, 
and equal bandwidth kernel function, such that |𝑧௜ାଵ − 𝑧௜| = |𝑧௝ାଵ −𝑧௝| ∀𝑖, 𝑗. Let 𝑤(𝑧௜) be the non-negative weight of kernel center 𝑧௜, 
and 𝑓መ(𝑧௜) be the density estimate at 𝑧௜. From the KDE definition, 𝑓መ(𝑧௜) ∝  𝑤(𝑧௜) ⟹ 𝑣𝑎𝑟 ቀ𝑓መ(𝑍)ቁ ∝ 𝑣𝑎𝑟൫𝑤(𝑍)൯ . Therefore, minimizing 𝑣𝑎𝑟 ቀ𝑓መ(𝑍)ቁ is equivalent to minimizing 𝑣𝑎𝑟൫𝑤(𝑍)൯. Let 𝐿௞௪(𝑖) be 
the weight of kernel 𝑦௝ା௜  in 𝐿 , and define L’s kernel weight 
variance, 𝑣𝑎𝑟(𝐿௞௪), as follows: 

 𝑣𝑎𝑟(𝐿௞௪) = ଵ‖௅‖ ∑ (𝐿௞௪(𝑖) − ∑ ௅ೖೢ(௜)‖ಽ‖భ ‖௅‖ )ଶ‖௅‖௜ୀଵ            (eq. 3) 

 

Using the local region PAD (eq. 2) and the kernel weight 
variance (eq. 3) formulae, partition the entire sample points 𝑦ଵ. . 𝑦௡ into 𝑄 disjoint local regions by minimizing the aggregate 
variance of all 𝐿ௗ and 𝐿௞௪: 

 Min ∑ ‖𝐿‖ ൬𝑣𝑎𝑟ቀ𝐿ௗ(௜)ቁ + 𝜇 ∙ 𝑣𝑎𝑟ቀ𝐿௞௪(௜) ቁ൰ொ௜ୀଵ             (eq. 4) 

where 𝜇 is the weight assigned to L’s kernel weight variance. 
 

In summary, the solution to the above local region optimization 
problem generates local regions with minimum overall intra-
density variation. Moreover, the problem is solved by exclusively 

employing the kernels’ PAD and weight information which are 
amenable to efficient implementations. 
 
 

4. PROPOSED APPROACH: ONLINE 
LOCAL REGION KDE 

The local region identification problem can be solved via 
dynamic programming techniques in time 𝑂(𝑛ଶ𝑄) where 𝑄 is the 
number of local regions; however, this solution exceeds the 
constraints of the data stream problem. Therefore, an incremental 
local region identification technique is proposed. The technique 
employs a locally optimal decision strategy to reduce the 
identification task to 𝑂(𝑛𝑄). As a result, the online Local Region 
KDE (LR-KDE) is proposed for the efficient generation of density 
estimates in data streams.  
 

4.1. Online LR-KDE Overview 

The online LR-KDE is composed of the following two primary 
components:  

 

1. Local region management – identifies and manages local 
regions by employing a locally optimal dynamic binning 
method for the entire set of kernels. 

2. Kernel maintenance – updates the kernels with new data 
points in a fixed-size memory environment. Maintains and 
provides density evaluation of kernels whose time stamps are 
within [𝜏௠௜௡, 𝜏௠௔௫]. 
 

 

 
Figure 1. Online Local Region KDE 

 
 

Figure 1 illustrates the LR-KDE approach. An online binning 
method is applied on the set of all kernels where each bin 
represents a local region. The bins are maintained in the data 
structure, bin list, which can store at most 𝑄 number of bins. The 
kernel set manages and organizes all kernels in a sorted queue 
ordered by their centers. A maximum of 𝑀 ≥ 𝑄  kernels is 
maintained in the kernel set. The time list structure is a sorted 
queue of kernel arrival times. The objective of the time list is to 
model a time-based sliding window (using the FIFO policy) and 
to support efficient operations of kernel expirations and insertions. 
The following is a summary of the main operations for inserting a 
new data point 𝐾௡௘௪: 

 

1. Bin list update: Find the bin whose interval intersects 𝐾௡௘௪; 
add a reference to 𝐾௡௘௪  to the bin’s set of kernels; and 
forward 𝐾௡௘௪  to the kernel set list. If no intersecting bin 
exists, create a new bin for 𝐾௡௘௪ and (possibly) merge two 
adjacent bins to maintain a maximum of 𝑄 bins.  

2. Kernel set insertion: Insert 𝐾௡௘௪ into position by searching 
the kernel set. If after the insert, the kernel set size is greater 
than 𝑀 , then merge two kernels of the kernel set which 
minimizes the overall accuracy loss.   

3. Time list synchronization: After Knew is added to the kernel 
set, its arrival time is appended to the tail of the time list. If a 
kernel merger occurs, then its corresponding timestamps will 

Bin List (Local region management)

Kernel Set (Kernel maintenance)

Knew – new data point 

Time List (Kernel maintenance)

622



 
 

also need to be updated in the time list. The head of the time 
list will also need to be verified against τmin in order to 
remove expired kernels. 

 

4.2. Local Region Management 
The following proposes an incremental bin management 

approach for the identification of local regions. A formal 
definition of the bin and its property are given as follows: 

 

Bin Vector –a bin vector, 𝔹, is defined as follows:  
 𝔹 = ൣ𝑏௞௦, 𝑏௦௦, 𝑏௪௦, 𝑏௪௦௦, 𝑏௪௖௦, 𝑏௪௖௦௦, 𝑏௦௣൧ 
 𝑏௞௦ is the set of kernels in 𝔹 sorted by their kernel centers. The 

following feature definitions refer to set 𝑏௞௦ . 𝑏௦௦  denotes the 
squared sum of the kernel centers. 𝑏௪௦ gives the sum of the kernel 
weights. 𝑏௪௦௦ yields the squared sum of the kernel weights. 𝑏௪௖௦ 
indicates the sum of the weighted kernel centers. 𝑏௪௖௦௦ provides 
the weighted squared sum of the kernel centers. Let 𝑥ଵ. . 𝑥௕೎ be the 
sorted kernel centers in 𝑏௞௦ , then the sum of adjacent kernel 
centers product is 𝑏௦௣ = ∑ 𝑥௜𝑥௜ାଵ௕೎ିଵ௜ୀଵ . 

The bin vector possesses the additivity property [23]. This 
property allows the combining of bins in constant time. Let 𝔹(ଵ) 
and 𝔹(ଶ)  be a pair of disjoint bins, max ቀ𝑏௞௦(ଵ)ቁ = the maximum 

kernel in 𝑏௞௦(ଵ) , and min ቀ𝑏௞௦(ଶ)ቁ  = minimum kernel in 𝑏௞௦(ଶ) . If max ቀ𝑏௞௦(ଵ)ቁ <  min ቀ𝑏௞௦(ଵ)ቁ , then the sum of bin vectors 𝔹(ଵ) +𝔹(ଶ) is: 
(eq. 5) 

 𝔹(ଵ) + 𝔹(ଶ) = ቂ𝑏௞௦(ଵ) ∪ 𝑏௞௦(ଶ), 𝑏௦௦(ଵ) + 𝑏௦௦(ଶ),  𝑏௪௦(ଵ) + 𝑏௪௦(ଶ),  𝑏௪௦௦(ଵ) + 𝑏௪௦௦(ଶ) ,𝑏௪௖௦(ଵ) + 𝑏௪௖௦(ଶ) ,  𝑏௪௖௦௦(ଵ) + 𝑏௪௖௦௦(ଶ) ,  𝑏௦௣(ଵ) + 𝑏௦௣(ଶ) + maxቀ𝑏௞௦(ଵ)ቁ ∙ minቀ𝑏௞௦(ଶ)ቁቃ 
 

Bin Creation and Merger: Bins are updated as new kernels enter 
the system. For the bin list, there are two cases to address when 𝐾௡௘௪ enters: (1) the number of bins in bin list is less than 𝑄; and 
(2) the number of existing bins is equal to 𝑄. For both cases, if 𝐾௡௘௪’s center intersects any one of the bins, then a reference to 𝐾௡௘௪ is added to the bin’s kernel set, 𝑏௞௦, and forwarded to the 
global kernel set. Suppose that the number of existing bins is less 
than 𝑄, and 𝐾௡௘௪ does not intersect any bin. Since the number of 
bins is less than 𝑄, a new bin is created with 𝐾௡௘௪ as its first and 
center point. The bin management algorithm continues in this 
manner until 𝑄 bins have formed.  Now assume that there are 𝑄 
bins in the bin list and 𝐾௡௘௪  does not intersect any bin. In this 
scenario, a new bin is created for 𝐾௡௘௪ and two bins (including 
one formed by 𝐾௡௘௪) are merged to maintain 𝑄 number of bins. 

The merger of two bins is defined by its additivity property (eq. 
5). Because the bins represent local regions, they must remain 
continuous and mutually disjoint. Therefore, the merger can only 
occur between adjacent bins. The merger candidates are selected 
based on the objective function of the local region optimization 
(eq. 4). The following is an expanded expression of the uniformly 
weighted local region PAD variance (eq. 2) in terms of kernel 
centers 𝑥ଵ, 𝑥௜, . . , 𝑥௡: 
 𝑣𝑎𝑟(𝐿ௗ) = ଶ‖௅‖ିଵ ቆ∑ 𝑥௜ଶ − ∑ 𝑥௜𝑥௜ାଵ‖௅‖ିଵ௜ୀଵ‖௅‖௜ୀଵ − ൬௫భమା௫‖ಽ‖మଶ ൰ቇ − ቀ௫‖ಽ‖ି௫భ‖௅‖ିଵ ቁଶ

  
 

By utilizing the above formula, the variance of the 𝑖௧௛ bin’s pair-
wise adjacent kernel distance is determined to be as follows (for 
uniformly weighted kernels):         

𝔹ௗ௩(௜) =ଶቛ௕ೖೞ(೔)ቛିଵ ቆ𝑏௦௦(௜) − 𝑏௦௣(௜) − ቆ୫୧୬ቀ௕ೖೞ(೔)ቁమା୫ୟ୶ቀ௕ೖೞ(೔)ቁమଶ ቇ − (୫ୟ୶(௕ೖೞ(೔))ି୫୧୬(௕ೖೞ(೔)))మଶቛ௕ೖೞ(೔)ቛିଶ ቇ    
 

 

Similarly, the 𝑖௧௛ bin’s kernel weight variance is given as follows 
which is a reformulation of (eq. 3) in terms of the bin vector 
components: 𝔹௪௩(௜) = ௕ೢೞೞ(೔)ቛ௕ೖೞ(೔)ቛ − ቆ ௕ೢೞ(೔)ቛ௕ೖೞ(೔)ቛቇଶ

  
 

Therefore, a merger will occur for the pair of adjacent bins which 
minimizes the following objective function: 

 Min 𝐽 = ∑ ቛ𝑏௞௦(௜)ቛ (𝔹ௗ௩(௜)ொ௜ୀଵ + 𝜇 ∙ 𝔹௪௩(௜) )  for 𝑖 = 1. . 𝑄 and 𝜇 = 1            
 

When 𝐾௡௘௪ is added, updating all of the bin’s features (with the 
exception of 𝑏௦௣) follows straight-forward algebraic calculations 
and incurs constant time execution. To efficiently update 𝑏௦௣, the 
following operations are employed: 

 

1. Find the position of 𝐾௡௘௪ within 𝑏௞௦ and set 𝑟 to this index 
position. This implies that the kernels, 𝑥௥ିଵ and 𝑥௥ାଵ , are 𝐾௡௘௪’s adjacent neighbors 

2. Update 𝑏௦௣ as follows:  
   𝑏௦௣(௡௘௪) = 𝑏௦௣(௢௟ௗ) − 𝑥௥ାଵ𝑥௥ିଵ + 𝑥௥ିଵ𝑥௥ + 𝑥௥𝑥௥ାଵ 

 

4.3. Kernel Maintenance 
In order to maintain the kernels in a fixed memory 

environment, a kernel clustering paradigm is employed. If the size 
of the kernel set is 𝑀, then the insertion of 𝐾௡௘௪  will cause an 
overflow and invoke the merger of two kernels at the 
corresponding bin. Let 𝐺(ଵ)(𝑥) and 𝐺(ଶ)(𝑥) be weighted kernels, 
then the merged kernel, 𝐺(௠௘௥௚௘)(𝑥), is determined by utilizing a 
kernel merging approach as follows [12]: 

 𝐺(ଵ)(𝑥) = 𝑤(ଵ)𝐾 ቀ𝑥ଵ − 𝑥ℎ ቁ 𝐺(ଶ)(𝑥) = 𝑤(ଶ)𝐾 ቀ𝑥ଶ − 𝑥ℎ ቁ 𝐺(௠௘௥௚௘)(𝑥) = (𝑤(ଵ) + 𝑤(ଶ))𝐾 ቀ𝑥௠௘௥௚௘ − 𝑥ℎ ቁ 

where 𝑥௠௘௥௚௘ is the merged kernel center of 𝑥ଵ and 𝑥ଶ 
 

 𝐺(ଵ)(𝑥) and 𝐺(ଶ)(𝑥) are selected such that the following 𝐿ଶ error 
distance is minimized: 
 𝐿ଶ = න ቀ𝐺(ଵ)(𝑥) + 𝐺(ଶ)(𝑥) − 𝐺(௠௘௥௚௘)(𝑥)ቁଶ 𝑑𝑥ஶ

ିஶ  
 

It can be shown that the 𝐿ଶ distance increases proportionally with 
the kernel distance, hence the mergers only occur between 
adjacent kernels. It can be shown that minimizing 𝐿ଶ error can be 
done in constant time [11].  

The remainder of this section presents the time-based sliding 
window algorithm which ensures that all elements in kernel set 
are within the time range, [𝜏௠௜௡, 𝜏௠௔௫]. The algorithm is followed 
by a description of the density evaluation which leverages upon 
the bin list structure for efficient computation. Lastly, the selected 
kernel function and bandwidth form are provided.   
 

Time-based Sliding Window: Let 𝜏௧௟ be the length of the time 
window. To produce a sliding window, set 𝜏௠௔௫ to the current 

623



 
 

time and set 𝜏௠௜௡ = 𝜏௠௔௫ − 𝜏௧௟. The time list is implemented as a 
First-In-First-Out queue with the head node being the oldest 
timestamp. When 𝐾௡௘௪  is inserted into the kernel set, the time 
handling algorithm inserts the kernel’s arrival time, 𝑔௧௔, and the 
kernel’s extended time span, 𝑔௘௧௦, (i.e., time to remain in window 
after expiration and initially set to 0)  to the tail of time list. 
Assume that two kernels, 𝐺(ଵ)  and 𝐺(ଶ) , are merged to become 𝐺(௠௘௥௚௘). The time list updating process proceeds as follows: 
 

1. Remove the corresponding time list nodes of 𝐾(ଵ)and 𝐾(ଶ) 
2. Define 𝐺(௠௘௥௚௘)’s arrival time and time span as follows: 

 𝐺௧௔(௠௘௥௚௘)=min ቄ𝑔௧௔(ଵ), 𝑔௧௔(ଶ)ቅ 𝐺௧௦(௠௘௥௚௘)=max ቄ𝑔௧௔(ଵ) + 𝑔௘௧௦(ଵ), 𝑔௧௔(ଶ) + 𝑔௘௧௦(ଶ)ቅ − 𝑔௧௔(௠௘௥௚௘) 
 

3. Insert 𝐾(௠௘௥௚௘)’s arrival time into the time list 
 

Kernel expiration is performed by comparing the time list’s 
head node, deleting all associated kernels with 𝑔௧௔ < 𝜏௠௜௡  and 𝑔௘௧௦ = 0 from the kernel set, and updating the bin list. As for 
expiring a kernel with 𝑔௘௧௦ > 0, assume that the weight of the 
kernel is uniformly distributed across its time span. Therefore, the 
kernel will remain in the kernel set but its weight will be adjusted 
to the following: 𝑔௪(௨௣ௗ௔௧௘ௗ) = ൭1 − 𝜏௠௜௡ − 𝑔௧௔(௢௟ௗ)𝑔௘௧௦(௢௟ௗ) ൱ 𝑔௪(௢௟ௗ) 
where 𝑔௪(௜) is the weight of kernel 𝑖. 
 

Density Evaluation: For a query point 𝑥 , the evaluation 
algorithm proceeds as follows: 
 

1. Bin search and kernel filtering: Find the relevant set of bins 
which can potentially contribute a non-zero value to 𝑥. Let ℎ(𝔹) be the bandwidth of kernels in bin 𝔹, then the bins can 
be found by scanning the bin list  and selecting those which 
fulfill the following condition: 𝑥 ∩ ൣmin(𝔹) − ℎ(𝔹), max(𝔹) + ℎ(𝔹)൧ ≠ ∅. 

2. Kernel search: Scan the kernels within each relevant bin and 
sum the density contribution of kernels whose supports 
intersect 𝑥 . Formally stated, let 𝐾  be a kernel in 𝔹 , then 
compute the sum of kernel density contributions where 𝑥 ∩ ൣ𝐾 − ℎ(𝔹), 𝐾 + ℎ(𝔹)൧ ≠ ∅. 

 

The evaluation technique presented above capitalizes upon the 
bin list structure by effectively pruning kernels which do not 
contribute to the final estimation result. Furthermore, the 
bandwidth is computed from the bin features in constant time. 
Discussion on the exact bandwidth form is given below. 
 

Kernel Function and Bandwidth Form Selection: The class 
of admissible kernel functions must satisfy the conditions of 
Theorem 3.1 which requires that the kernels be (1) radially-
symmetric and (2) compactly supported. The compact support 
property also eases the burden of computing the density estimates 
by eliminating kernels with ቚ ௫௛ቚ ≥ 1 . Some kernels of the 
admissible class are the Bi-weight, Rectangular, and 
Epanechnikov kernels [20]. It has been shown that the 
Epanechnikov kernel minimizes the asymptotic mean integrated 
squared error (AMISE) and therefore it is optimal amongst all 
other kernels [15]. The Epanechnikov kernel is given as follows: 
 

𝐾(𝑥) = ଷସ (1 − 𝑥ଶ)  for |𝑥| < 1, and 0 otherwise 
 

Due to Epanechnikov kernel’s compact support, radial-symmetry, 
and optimality w.r.t. the ASIME, this kernel is chosen for the 
proposed LR-KDE. 

Each bin of the LR-KDE describes a region of similar density, 
hence, the captured distribution within each bin can be expected 
to be unimodal. Also recall that the LR-KDE assigns a unique 
bandwidth to each bin. Therefore, for each bin, the chosen 
bandwidth form is the normal rule which has been shown to 
perform well under a wide range of unimodal distributions [20]: 

 ℎ(𝔹) = √5𝜎(𝔹)  ඥ𝑛(𝔹)షఱ  
where 𝜎(𝔹) is the kernel centers’ standard deviation of bin 𝔹 and 𝑛(𝔹) is the number of kernels in bin 𝔹. 
 

Note that 𝜎(𝔹) can be directly calculated from the bin features i.e., 𝜎(𝔹) = ට𝑏𝑤𝑐𝑠𝑠𝑏𝑤𝑠 − (𝑏𝑤𝑐𝑠𝑏𝑤𝑠 )2
, therefore, computing the bandwidth, ℎ(𝔹), 

is achieved in 𝑂(1) time.  
 
 

5. ANALYSIS 
This section provides the consistency results and cost 

complexities of the LR-KDE. An important criterion for any KDE 
is its consistency, that is, as the number of samples approaches 
infinity, the KDE converges to the true density. The time/space 
complexities of the online maintenance technique and density 
evaluation approach are analyzed to guarantee that the LR-KDE 
heeds the constraints of the data stream environment.  

 

Asymptotic Consistency 
Assume that all 𝑛  samples are uniquely accessible and 

continuously persistent. To prove the consistency of the local 
region KDE, it suffices to show that the density estimate within a 
local region fulfills Parzen’s condition for the asymptotic 
convergence of a KDE [17].  Parzen provides a sufficient 
condition described as follows:  

 

If kernel 𝐾(∙) is a bounded Borel function with 
 ∫|𝐾(𝑡)| 𝑑𝑡 < ∞ , ∫ 𝐾(𝑡) 𝑑𝑡 = 1 and |𝑡𝐾(𝑡)| → 0 as |𝑡| → ∞ 
 

and bandwidth ℎ௡ indexed on 𝑛 sample points satisfies 
 ℎ௡ → 0 and 𝑛ℎ௡ → ∞ as 𝑛 → ∞, 

 

then for the KDE, 𝑓መ(𝑥), and true density, 𝑓(𝑥), 
 𝑓መ(𝑥) → 𝑓(𝑥) in probability as 𝑛 → ∞ 
 

Since a local region employs the Epanechnikov kernel, the 
kernel conditions given by Parzen are completely satisfied. Recall 
that the bandwidth selected for a local region is the normal rule: ℎ௡ = √5𝜎  √𝑛షఱ . Hence, it can be seen that the following holds: ℎ௡ → 0 as 𝑛 → ∞. Therefore, Parzen’s first bandwidth condition 
is satisfied. As for the second condition, note that a local region is 
continuous and has compact support, which implies 

 sup (𝜎) = 𝑐, where 𝑐 is a constant 
 

which implies   
 ௛೙௡ = √ହఙ √௡షఱ௡ = √ହ௖௡ల/ఱ → 0 as 𝑛 → ∞ ⟹ 𝑛ℎ → ∞  

 
 

624



 
 

Therefore,   
 𝑓መ(𝑥) → 𝑓(𝑥) in probability as 𝑛 → ∞ 
 

Online Maintenance Complexities 
Let 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௧௢௧௔௟(𝐾௡௘௪) be the total cost of inserting 𝐾௡௘௪, 

then the total cost of the insertion procedure is: 
 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௧௢௧௔௟(𝐾௡௘௪) = 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௕௜௡௟௜௦௧(𝐾௡௘௪) +𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௞௘௥௡௘௟௟௜௦௧(𝐾௡௘௪) + 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௧௜௠௘௟௜௦௧(𝐾௡௘௪) 
 

Bin list cost: 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௕௜௡௟௜௦௧(𝐾௡௘௪)  is composed of a 
sequential search over the bin list and merging a pair of bins. 
Hence the cost of inserting 𝐾௡௘௪ into the bin list is: 

 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௕௜௡௟௜௦௧(𝐾௡௘௪) = 𝑂(𝑄) 
 

Kernel set cost: Similar to the bin insertion cost, the insertion to 
the kernel list is dominated by the kernel search and the 𝐿ଶ error 
updates for each pair of adjacent kernels within the affected bin. 
Let 𝑅 be the number of kernels in the updated bin, then the total 
cost of the kernel list insertion is: 

 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௞௘௥௡௘௟௟௜௦௧(𝐾௡௘௪) = 𝑂(𝑅) 
 

Time list cost: The dominant cost for inserting into the time list is 
the removal of all expired kernels. This operation involves 
updates on the 𝐿ଶ errors and bin statistics. Let 𝑆 be the number of 
expired kernels and 𝑇 be the total number of kernels within a bin 
of an expired kernel, then the cost of inserting 𝐾௡௘௪ into the time 
list is: 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௧௜௠௘௟௜௦௧(𝐾௡௘௪) = 𝑅𝑒𝑚𝑜𝑣𝑒௞௘௥௡௘௟௟௜௦௧(𝐾௡௘௪) + 𝑈𝑝𝑑𝑎𝑡𝑒௕௜௡ ++𝑈𝑝𝑑𝑎𝑡𝑒𝐿ଶ௞௘௥௡௘௟௟௜௦௧  = 𝑂(𝑆) + 𝑂(𝑄) + 𝑂(𝑇) = 𝑂(𝑆) 
 

Since 𝑄, 𝑅, 𝑆 ≤ 𝑀, where 𝑀 is the maximum size of the kernel 
list, the total cost of inserting 𝐾௡௘௪ is: 

 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑠𝑡௧௢௧௔௟(𝐾௡௘௪) = 𝑂(𝑀) 
 

Total space cost: The total space cost of the online maintenance 
algorithm is derived from storing the three primary structures, bin 
list, kernel list, and time list in memory: 

 𝑆𝑝𝑎𝑐𝑒𝐶𝑜𝑠𝑡௧௢௧௔௟ = 𝑂(𝑄) + 𝑂(𝑀) + 𝑂(𝑀) = 𝑂(𝑀) 
 

The above analysis shows that the time and space complexities of 
the proposed online kernel maintenance algorithm are 𝑂(𝑀) . 
Since 𝑀  is fixed, the proposed maintenance strategy provides 
constant runtime and space complexities which meet the linear-
pass constraint.    
 

Density Evaluation Complexities 
A single density evaluation composes of a sequential search of 

the bin list and a scan of all kernels which provides a non-zero 
contribution to the query point. Let 𝐸𝑣𝑎𝑙𝐶𝑜𝑠𝑡௧௢௧௔௟(𝑥) be the total 
cost of determining the density at 𝑥 , 𝐵  be the number of bins 
which intersects 𝑥, and 𝐽 be the number of contributing kernels, 
then the total evaluation cost is: 

 𝐸𝑣𝑎𝑙𝐶𝑜𝑠𝑡௧௢௧௔௟(𝑥) = 𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑜𝑠𝑡௕௜௡௟௜௦௧(𝑥) + 𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑜𝑠𝑡௞௘௥௡௘௟௟௜௦௧(𝑥) = 𝑂(𝐵) + 𝑂(𝐽) 
 

Since 𝐵 ≤ 𝐽 ≤ 𝑀, the total evaluation runtime cost is:  
 𝐸𝑣𝑎𝑙𝐶𝑜𝑠𝑡௧௢௧௔௟(𝑥) = 𝑂(𝐵) + 𝑂(𝐽) =  𝑂(𝑀) 
 

In practical applications, only a fraction of the kernels contributes 
to 𝑥 , which implies that 𝐵 + 𝐽 ≪ 𝑀 . Therefore, the total 
evaluation cost can be much less than the asymptotic cost 

described above. The space cost of the density evaluation is 𝑂(1) 
since the evaluation algorithm makes use of a single counter to 
store the current density sum. Similar to the time and space 
complexities of the maintenance algorithm, the evaluation runtime 
and space costs are also constant.   
 
 

6. EXPERIMENTS 
A set of comprehensive experiments have been conducted to 

validate the effectiveness and efficiency of the proposed online 
LR-KDE. The experiments focused on three core metrics: 
estimation quality, maintenance time, and density evaluation time. 
Other existing online KDE techniques were included for 
performance comparisons. The experiments applied a battery of 
synthetic and real-world data sets to study the effects of various 
streaming conditions on the LR-KDE. The experiments were 
conducted on a Windows Server 2003 Enterprise Edition (32-bit) 
operating system. The hardware platform was a 2.0 GHz Intel 
Pentium Dual with 3 GB of RAM. 
 

6.1. Experiment Design 
The data sets were comprised of 2 synthetic and 4 real-world 

time series data. The first 25K (if available) data samples were 
used for the experiments. A description of the data sets is shown 
in the table below:   

 
 

Table 2. Experimental data sets 
Name Type Description Size 

MIX2 Synthetic 
Time series randomly generated from the 
following mixture of Normal distributions: 𝐹ଶ = భమ൫𝑁(20,1) + 𝑁(51, 1.35ଶ)൯ 

25K 

MIX8 Synthetic 

Time series randomly generated from the 
following mixture of Normal distributions: 𝐹ଵ = భఴ(𝑁(20, 1.25ଶ) + 𝑁(24,1) + 
            𝑁(25, 2.75ଶ) + 𝑁(31, 1.4ଶ) +𝑁(37, . 95ଶ) + 𝑁(40, 3.5ଶ) +𝑁(41, . 75ଶ) + 𝑁(44, 1.5ଶ)) 

25K 

EEG Real EEG of a rat in wake/sleep cycle [14] 25K 

POWER Real Power demand from a Dutch research 
facility [14] 25K 

ROBOT Real Accelerometer measurements of a Sony 
Aibo Robot playing soccer [14] 24.5K 

TRAFFIC Real Car volume readings from a loop detector 
near a California baseball stadium [1, 4] 25K 

 
 

KDE Techniques and Parameters 
Table 3 provides all of the evaluated techniques and 

parameters: 
 
 

Table 3. Evaluated Online KDE Techniques 
Name Technique Parameter 

Sequence 
sample KDE

Sequence sample-based KDE 
[21, 22] Max. # of kernels = 1000 

Time sample 
KDE 

Time sample-based KDE using 
the priority-sample algorithm [6] Max. # of kernels = 1000 

M-Kernel 
KDE 

Variable bandwidth cluster KDE 
[25] 

Max. # of kernels = 1000 
Simplex max. iter. = 5000 

Heinz KDE List-based cluster KDE [12] Max. # of kernels = 1000 

LR-KDE Proposed online Local Region 
KDE 

Max. # of kernels = 1000 𝜇 = 1, 4 ≤ 𝑄 ≤ 8 
 

 
For all of the evaluated techniques in Table 3 (except for time 
sample KDE), the time windows were set to be the total length of 
the data stream.  

625



 
 

Test Methodology 
The first component of the experiments was to measure the 

estimation quality of the online KDE techniques. This was 
accomplished by establishing the ground truths for all data sets. In 
the synthetic case, the exact density structures are given in Table 
2. For the real-world data sets, the true densities are defined to be 
the density estimates produced by the offline AKDE. For the 
AKDE, the nearest neighbor KDE was used as the pilot estimate 
[20]. The error measure used was the Root Mean Square Error 
(RMSE) which is defined as follows:    

  𝑅𝑀𝑆𝐸(𝜌) = ට ଵଵ଴଴଴ ∑ ൫𝑓(𝑥௜) − 𝑓መ(ఘ)(𝑥௜)൯ଶଵ଴଴଴௜ୀଵ     

where 𝑓መ(ఘ)(∙) is the 𝜌 density estimation technique and 𝑥ଵ.. 𝑥ଵ଴଴଴ 
are query points which uniformly divide the entire span of the 
distribution. 
 

The maintenance time of an online KDE is defined as the total 
amount of time required to insert and process a given set of data 
points. This measures the efficiency of the online KDE in 
updating its kernel structures to match the current stream. The 
density evaluation time is defined as the average time to evaluate 
and compute a single density query. The density evaluation time 
was measured after all of the data points were processed. In these 
experiments, 10 trials were conducted for each evaluation 
component and the averaged results were reported. 
 

6.2. Experiment Results and Discussion 
For each metric and data set, the LR-KDE was evaluated 

against the existing stream-based KDE techniques. The following 
provides the experiment results. 

Estimation Quality: Figure 2 gives the estimation quality 
results of all data sets and KDE techniques. Each graph represents 
the estimation errors for a particular data set where the x-axis is 
the number of processed sample points and the y-axis is the 
RMSE of the density estimates. The experiment showed that the 
LR-KDE provided lower RMSE than all competing techniques in 

the MIX2, MIX8, ROBOT, TRAFFIC, POWER, and EEG data 
sets. The LR-KDE produced significant RMSE reductions in 
MIX2 and MIX8 with errors that were at most half of the next 
best performing technique. Note that the time sample and 
sequence sample KDEs provided almost identical performance in 
MIX2 and MIX8. 

The LR-KDE converged as more samples were processed in the 
MIX2, MIX8, POWER, and EEG data sets. However, for 
TRAFFIC and ROBOT, the RMSE of LR-KDE increased at 20K 
and 24.5K points, respectively. This behavior was similarly 
exhibited in other techniques such as M-Kernel KDE. In the 
TRAFFIC data set, the sequence sample KDE produced a drastic 
change in its RMSE at the 20K mark. All of these observations 
suggest the presence of concept drifts in the POWER and EEG 
data sets.  

Figures 3 and 4 show the plotted estimates of MIX2 and MIX8 
by two of the lowest error attaining techniques, LR-KDE and 
Heinz KDE. The x-axis represents the query points and the y-axis 
shows the density. MIX2 and MIX8 possess multiple isolated 
modes which can be difficult to estimate with a single bandwidth 
KDE. For example, the Heinz KDE tended to oversmooth the 
distributions as indicated by the underestimated peaks and 
overestimated valleys. The oversmoothing can be attributed to 
Heinz KDE’s use of the normal rule bandwidth which is known to 
oversmooth multimodal distributions [20]. In an attempt to 
improve the accuracy of Heinz KDE, the only available 
parameter, kernel size, was increased from 1K to 100K. The 
increased kernel size produced ≤ 1% improvement in the RMSE 
and showed no observable difference in the plotted estimates. 
When the kernel size for LR-KDE was increased to 100K, it 
resulted in 5.5% (MIX2) and 7.8% (MIX8) improvements in the 
RMSE. Although the LR-KDE employs the normal rule 
bandwidth, it restricts uniform bandwidth assignment to regions 
of similar densities. As a result, the LR-KDE identified all of the 
modes and accurately captured the peaks and valleys. 

 
 

 

 

 

LR-KDE Heinz KDE M-Kernel KDE Time Sample KDE Sequence Sample KDE

0

0.01

0.02

0.03

0.04

0.05

10K 15K 20K 25K

RM
SE

Processed Sample Size

Estimation Quality (MIX2)

0

0.0075

0.015

0.0225

0.03

10K 15K 20K 25K

RM
SE

Processed Sample Size

Estimation Quality (MIX8)

0.00215

0.00335

0.00455

0.00575

0.00695

10K 15K 20K 24.5K

RM
SE

Processed Sample Size

Estimation Quality (ROBOT)

0.0019

0.00365

0.0054

0.00715

0.0089

10K 15K 20K 25K

RM
SE

Processed Sample Size

Estimation Quality (TRAFFIC)

0.00016

0.000335

0.00051

0.000685

0.00086

10K 15K 20K 25K

RM
SE

Processed Sample Size

Estimation Quality (POWER)

0.000126

0.000141

0.000156

0.000171

0.000186

10K 15K 20K 25K

RM
SE

Processed Sample Size

Estimation Quality (EEG)

Figure 2. Estimation quality of LR-KDE with increasing sample points 

626



 
 

 

   
 
 

     

 
 

 
 
 
Maintenance Time: Figure 5 illustrates the impact of the 

various data streams on LR-KDE’s kernel maintenance times. The 
x-axis indicates the data sets and the y-axis measures the 
maintenance times for processing the entire data. The real-world 
POWER, TRAFFIC, and ROBOT data sets showed the most 
improvements for the LR-KDE. This observation is attributable to 
the data sets’ largely ordered samples which reduced the amount 
of scans the LR-KDE needed to perform. In the MIX8 and EEG 
data sets, the LR-KDE provided lower times than all of the non-
sample-based approaches. Note that the sample-based techniques 
produced nearly identical results within the various data sets.  

Figure 6 shows the relationship between maintenance time and 
sample size. The x-axis is the number of samples processed and 
the y-axis is the maintenance time. Due to space constraint, only 
the POWER data set is shown but similar trends can be observed 
in the other data sets. All of the KDE techniques exhibited times 
that were linear to the sample size; however, LR-KDE and Heinz 
KDE provided the lowest cost rates in POWER, TRAFFIC, and 
ROBOT. The linear trend of LR-KDE is also consistent with the 
analyses of Section 5. Standard deviation for all trials was ≤ 5%. 

Density Evaluation Time: Figure 7 shows the density query 
times of all data sets. The x-axis represents a specific data set and 
the y-axis gives the average evaluation time for a single density 
query. For MIX2, MIX8, EEG, and POWER data sets, the LR-
KDE consistently produced lower evaluation times than all of the 
competing techniques. For TRAFFIC and ROBOT, the LR-KDE 
performed equally to Heinz KDE but better than the other 

techniques. For the sample-based KDE, regardless of the kernel 
function employed, the entire kernel set must be scanned to 
generate a density estimate. This approach resulted in a consistent, 
but higher evaluation times than the LR-KDE and Heinz KDE. In 
summary, the results demonstrated that the LR-KDE evaluation 
performance was better than or at least equal to all of the 
competing techniques. Standard deviation for all trials was ≤ 10%. 
 

Discussion 
Application of the local region concept to kernel density 

estimates has shown to be effective in modeling the local density 
features in data stream. As a result, the LR-KDE provided 
superior estimation quality over the competing techniques in both 
real-world and synthetic data sets. The LR-KDE was also able to 
improve the estimation accuracy in data sets which did not exhibit 
strong localities (e.g., predominantly unimodal data sets such as 
ROBOT). Since real-world data streams can exhibit strong local 
features (e.g., multiple random processes), it can be expected that 
stream mining applications would benefit from the use of the LR-
KDE. 

A concrete mining task that would benefit from LR-KDE’s 
improved estimation quality is the density-based clustering. In 
particular, those density-based approaches that employ bump 
hunting algorithms for determining the cluster centers [20]. For 
example, Figures 3 and 4 show that the LR-KDE captures and 
differentiates all of the modes almost exactly which would allow 
the bump hunting method to optimally isolate the cluster centers. 

True Density LR-KDE Heinz KDE

0.00E+00

8.00E-02

1.60E-01

2.40E-01
14

.8
17

.4
20

.0
22

.7
25

.3
27

.9
30

.5
33

.1
35

.7
38

.3
40

.9
43

.5
46

.1
48

.7

D
en

si
ty

Query Point

LR-KDE Kernel Size = 1K

0.00E+00

8.00E-02

1.60E-01

2.40E-01

14
.8

17
.4

20
.0

22
.7

25
.3

27
.9

30
.5

33
.1

35
.7

38
.3

40
.9

43
.5

46
.1

48
.7

D
en

si
ty

Query Point

Heinz KDE Kernel Size = 1K

0.00E+00

8.00E-02

1.60E-01

2.40E-01

14
.8

17
.6

20
.4

23
.2

26
.0

28
.8

31
.6

34
.4

37
.1

39
.9

42
.7

45
.5

48
.3

D
en

si
ty

Query Point

Heinz KDE Kernel Size = 100K

0.00E+00

3.00E-02

6.00E-02

9.00E-02

14
.8

17
.4

20
.0

22
.7

25
.3

27
.9

30
.5

33
.1

35
.7

38
.3

40
.9

43
.5

46
.1

48
.7

D
en

si
ty

Query Point

LR-KDE Kernel Size = 1K

0.00E+00

3.00E-02

6.00E-02

9.00E-02

14
.8

17
.4

20
.0

22
.7

25
.3

27
.9

30
.5

33
.1

35
.7

38
.3

40
.9

43
.5

46
.1

48
.7

D
en

si
ty

Query Point

Heinz KDE Kernel Size = 1K

0.00E+00

3.00E-02

6.00E-02

9.00E-02

14
.8

17
.6

20
.4

23
.2

26
.0

28
.8

31
.6

34
.4

37
.1

39
.9

42
.7

45
.5

48
.3

D
en

si
ty

Query Point

Heinz KDE kernel Size = 100K

LR-KDE Heinz KDE M-Kernel KDE Time Sample KDE Sequence Sample KDE

0.04

0.6

9

135

2025

MIX2 MIX8 EEG POWER TRAFFIC ROBOT

M
ai

nt
en

an
ce

 T
im

e 
(s

)

Data Sets

0

75

150

225

300

10K 15K 20K 25K

M
ai

nt
en

an
ce

 T
im

e 
(s

)

Processed Sample Size

0

2.8E-05

5.6E-05

8.4E-05

0.000112

0.00014

MIX2 MIX8 EEG POWER TRAFFIC ROBOT
Ev

al
ua

tio
n 

Ti
m

e 
(s

)

Data Sets

Figure 4. Plots of estimated densities by LR-KDE and Heinz KDE for MIX8 

Figure 5. Log scaled maintenance 
time of all data sets 

Figure 7.  Avg. density evaluation time 
for a single query 

Figure 6.  Maintenance times of 
POWER 

Figure 3. Plots of estimated densities by LR-KDE and Heinz KDE for MIX2 

627



 
 

In contrast, the next best performing technique (Heinz KDE) 
could not capture some of these modes which would increase the 
likelihood for the bump hunting algorithm to dismiss some 
potentially vital clusters. In the context of a real-time surveillance 
application, such false dismissals could indicate missed emergent 
events.          

Density estimation can also be applied to the problem of outlier 
detection. An outlier can be defined as a sample point whose 
probability of occurrence falls below a predefined threshold [21].  
Suppose that density estimates are employed to perform the above 
outlier detection scheme, then the rates of false dismissals are 
dependent on the accuracy of the estimated model. For instance, if 
the estimate is oversmoothed, then the rate of false dismissals may 
be increased in regions of low probability. In these regions, the 
true density of the sample points may be much smaller than their 
estimated values. Hence, a more accurate density estimation 
model, such as LR-KDE, can help reduce the false dismissals and 
improve the outlier detection performance.  

LR-KDE also improved the computational efficiency over the 
competing techniques. Local regions allow non-relevant kernels 
to be pruned from further processing which results in the 
simultaneous reduction of maintenance and query times. 
Furthermore, the LR-KDE retained the same order of space cost 
as the other online KDE techniques. These cost reductions are 
essential to stream mining tasks where results need to be 
furnished in real-time and processed in a fixed-size memory 
environment. 
 

7. CONCLUSION 
This paper addresses the issue of developing an efficient and 

asymptotically consistent online adaptive density estimation 
technique to meet the stringent constraints of the data stream 
environment. In that endeavor, we propose an online and local 
region based AKDE framework (LR-KDE) for univariate streams. 
The contributions of this work include (1) the first approach of its 
kind to provide AKDE over data streams, (2) the introduction of 
the local regions to effectively approximate the AKDE with 
guaranteed asymptotic consistency, and (3) the design of linear-
pass algorithms to maintain and compute kernel density estimates 
over a time-based sliding window. Theoretical analyses are 
provided to validate the asymptotic consistency and 
computational complexities of the LR-KDE. Experiments 
demonstrated that the LR-KDE enhanced estimation quality, 
improved maintenance performance, and reduced density 
evaluation time over the existing techniques. Future work in 
developing a multivariate local region based KDE will be 
investigated.  
 

REFERENCES 
 

[1] "Freeway Performance Measurement System (PeMS) 
[http://pems.eecs.berkeley.edu]." 

[2] C. Aggarwal, "A framework for diagnosing changes in evolving 
data streams," in Proceedings of the 2003 ACM SIGMOD 
International Conference on Management of Data, San Diego, 
California, USA, pp. 575-586, 2003. 

[3] C. Aggarwal and P. S. Yu, "A survey of synopsis construction in 
data streams," in Data Streams: Models and Algorithms, C. 
Aggarwal, Ed. New York: Springer Science and Business 
Media, pp. 169-202, 2007. 

[4] A. Asuncion and D. J. Newman, "UCI Machine Learning 
Repository 
[http://www.ics.uci.edu/~mlearn/MLRepository.html],"  Irvine, 

CA: University of California, School of Information and 
Computer Science, 2007. 

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, 
"Models and issues in data stream systems," in Proceedings of 
the 21st ACM SIGMOD-SIGACT-SIGART Symposium on 
Principles of Database Systems, Madison, Wisconsin, USA, pp. 
1-16, 2002. 

[6] B. Babcock, M. Datar, and R. Motwani, "Sampling from a 
moving window over streaming data," in Proceedings of the 
13th Annual ACM-SIAM Symposium on Discrete Algorithms, 
San Francisco, California, USA, pp. 633-634, 2002. 

[7] P. Gibbons, Y. Matias, and V. Poosala, "Fast incremental 
maintenance of approximate histograms," ACM Transactions on 
Database Systems vol. 27, pp. 261-298, 2002. 

[8] A. Gilbert, Y. Kotidis, S. Muthukrishan, and M. J. Strauss, 
"How to summarize the universe: dynamic maintenance of 
quantiles," in Proceedings of the 28th International Conference 
of Very Large Data Bases, Hong Kong, China, pp. 454-465, 
2002. 

[9] A. Gray and A. Moore, "Rapid evaluation of multiple density 
models," in Proceedings of the 9th International Workshop on 
Artificial Intelligence and Statistics, Key West, Florida, USA, 
2003. 

[10] S. Guha, N. Koudas, and K. Shim, "Approximation and 
streaming algorithms for histogram construction problems," 
ACM Transactions on Database Systems, vol. 31, pp. 396-438, 
2006. 

[11] C. Heinz, "Density estimation over data streams," in 
Mathematics. Phd: Phillipps-University Marburg, 2007. 

[12] C. Heinz and B. Seeger, "Towards kernel density estimation 
over streaming data," in Proceedings of the 13th International 
Conference on Management of Data, Delhi, India, pp. 91-102, 
2006. 

[13] Y. Ioannidis, "The history of histograms (abridged)," in 
Proceedings of the 29th International Conference on Very Large 
Databases, Berlin, Germany, pp. 19-30, 2003. 

[14] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana, "The UCR 
Time Series Classification/Clustering 
[http://www.cs.ucr.edu/~eamonn/time_series_data]," 2008. 

[15] T. Ledl, "Kernel density estimation: theory and application in 
discriminant analysis," Austrian Journal of Statistics, vol. 33, 
pp. 267-279, 2004. 

[16] L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. 
Motwani, "Streaming-data algorithms for high-quality 
clustering," in Proceedings of the 18th IEEE International 
Conference on Data Engineering, San Jose, CA, USA, pp. 685-
694, 2002. 

[17] E. Parzen, "On estimation of a probability density function and 
mode," Annals of Mathematical Statistics, vol. 33, pp. 1065-
1076, 1962. 

[18] S. R. Sain and D. W. Scott, "On locally adaptive density 
estimation," Journal of the American Statistical Association, vol. 
91, pp. 1525-1534, 1996. 

[19] D. W. Scott, Multivariate Density Estimation. New York: Wiley 
& Sons, 1992. 

[20] B. W. Silverman, Density estimation for statistics and data 
analysis. London: Chapman and Hall, 1986. 

[21] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, 
and D. Gunopulos, "Online outlier detection in sensor data using 
non-parametric models," in Proceedings of the 32nd 
International Conference on Very Large Databases, Seoul, 
Korea, pp. 187-198, 2006. 

[22] E. J. Wegman and D. J. Marchette, "On some techniques for 
streaming data: a case study of internet packet headers," Journal 
of Computational and Graphical Statistics, vol. 12, pp. 1-22, 
2003. 

[23] T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: an 
efficient data clustering method for very large databases," in 
Proceedings of the 1996 ACM SIGMOD International 
Conference on Management of Data, Montreal, Canada, pp. 
103-114, 1996. 

[24] T. Zhang, R. Ramakrishnan, and M. Livny, "Fast density 
estimation using CF-kernel for very large databases," in 
Proceedings of the 5th ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, San Diego, CA, 
USA, pp. 312-316, 1999. 

[25] A. Zhou, Z. Cai, L. Wei, and W. Qian, "M-Kernel merging: 
towards density estimation over data streams," in Proceedings of 
the 8th International Conference on Database Systems for 
Advanced Applications, Kyoto, Japan, pp. 285-292, 2003. 

628


