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ABSTRACT 
Local based approach is a major category of methods for spatial 
outlier detection (SOD). Currently, there is a lack of systematic 
analysis on the statistical properties of this framework. For 
example, most methods assume identical and independent normal 
distributions (i.i.d. normal) for the calculated local differences, 
but no justifications for this critical assumption have been 
presented. The methods' detection performance on geostatistic 
data with linear or nonlinear trend is also not well studied. In 
addition, there is a lack of theoretical connections and empirical 
comparisons between local and global based SOD approaches. 
This paper discusses all these fundamental issues under the 
proposed Generalized Local Statistical (GLS) framework. 
Furthermore, robust estimation and outlier detection methods are 
designed for the new GLS model. Extensive simulations 
demonstrated that the SOD method based on the GLS model 
significantly outperformed all existing approaches when the 
spatial data exhibits a linear or nonlinear trend.  

Categories and Subject Descriptors 
D.2.8 [Database Management]: Database Applications – data 
mining. I.5.3 [Pattern Recognition]: Outlier Detection. 

General Terms 
Algorithms, Theory, and Experimentation 

Keywords 
Spatial Outlier Detection, Spatial Gaussian Random Field. 

1. INTRODUCTION 
    The ever-increasing volume of spatial data has greatly 
challenged our ability to extract useful but implicit knowledge from 
them. As an important branch of spatial data mining, spatial outlier 
detection aims to discover the objects whose non-spatial attribute 
values are significantly different from the values of their spatial 
neighbors [1]. In contrast to traditional outlier detection, spatial 
outlier detection must differentiate spatial and non-spatial attributes, 
and consider the spatial continuity and autocorrelation between 
nearby samples. By the first law of geography, "Everything is 
related to everything else, but nearby things are more related than 
distant things [3]." 
    There are two main classes of spatial outlier detection (SOD) 
methods: local and global based approaches. Local based 
approaches [4] first calculate the local difference (statistic) for 

each object which is the difference between the non-spatial 
attribute of the object and the aggregated value (e.g., average) of 
its spatial neighbors. By assuming i.i.d. normal distributions for 
these local differences, the local based approaches discover 
outlier objects by robust estimation of model parameters such as 
the aggregated values, mean, and standard deviation. Various 
methods have been presented by using different spatial 
neighborhood definitions and robust estimation techniques [5-9]. 
The second class, global based methods, is to identify outliers 
using the robust estimator of a global kriging model which is the 
best linear unbiased estimator for geostatistical data. Particularly, 
Christensen et al. [10] proposed diagnostics to detect spatial 
outliers on the estimation of covariance function. Cerioli and 
Riani [11] developed a forward search procedure to identify 
spatial outliers for an ordinary kriging model. Militino et al. [12] 
further generalized the forward search method in [11] to a 
universal kriging model. This paper focuses on local based 
methods, because local based methods can achieve higher 
computational efficiency with minimal loss of accuracy. This 
feature of the local based approaches is demonstrated through 
extensive simulations described in Section 5.  
    This work is primarily motivated by the current situation where 
there is no systematic study on the statistical properties of local 
based SOD methods. For example, existing works assume i.i.d. on 
local differences, but justifications for the assumption have never 
been proposed. Also their performance on spatial data with linear 
or nonlinear trends has not been well studied. There is also a lack 
of research on the theoretical connections and empirical 
comparisons between local and global based SOD methods. To 
that end, this paper provides a generalized framework for local 
based SOD methods and theoretically and empirically compares it 
against global based SOD methods. The proposed framework is 
cast within the statistical abstraction of a spatial Gaussian random 
field which is the most popular model for geostatistical data [1,2]. 
A major reason for its popularity is that the optimal solution based 
on the Gaussian random field is equivalent to a best linear 
unbiased estimator (BLUE) for non-Gaussian data. It has been 
shown to provide accurate results in a variety of practical 
situations [1,2]. Sections 5.8, 6.3.3, and 7.4 in [2] give an in-depth 
discussion on the applicability of Gaussian random field. 
    A spatial Gaussian random field refers to a collection of 
dependent random variables that are associated with a set of 
spatial indexes, ሼܼሺ࢙ሻ | ࢙ א ܦ ؿ Թଶሽ, where ܦ refers to a 
continuous fixed region. This family of random variables can be 
characterized by a joint Gaussian probability density or 
distribution. In real applications, only partial observations of one 
realization (or a partial sample of size one) are available. In order to 
make this model operational, the requirements for stationarity and 
isotropy, such as second-order or intrinsic stationarity, are further 
imposed. Imposing such assumptions helps reduce the number of 
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model parameters required to be estimated. When the data is 
second-order stationary and isotropic, the spatial correlation 
structure is described by a semivariogram or covariance function, in 
which the correlations between variables are dependent on their 
spatial distance. Statistical inferences are then performed by 
assuming explicit forms of the covariance and mean functions. Our 
major contributions are as follows: 
• Design of a generalized local statistical (GLS) framework: 

The general local statistical model is a generalized statistical 
framework for existing local based SOD methods. It can 
effectively handle complex situations where the spatial data 
exhibit a global trend or non-negligible dependences between 
local differences.  

• Robust estimation and outlier detection methods based on 
the proposed GLS framework: We analyze the 
contamination issues that lead to masking and swamping 
effects. Based on the analysis, two robust algorithms, GLS-
backward search and GLS-forward search, are proposed to 
estimate the parameters for the GLS model.  

• In-depth study on the connection between different SOD 
methods: We present theoretical foundations for existing local 
based SOD methods and discuss the crucial connections 
between local and global based SOD methods.  

• Comprehensive simulations to validate the effectiveness 
and efficiency of GLS. This is the first work that provides 
extensive comparisons between existing popular methods 
through a systematic simulation study. The results showed the 
proposed GLS-SOD approach significantly outperformed all 
existing methods when the spatial data exhibits a linear or 
nonlinear trend.  

    This paper is organized as follows. Section 2 reviews spatial local 
statistics and related works. Section 3 introduces the generalized 
local statistical model and presents a rigorous theoretical treatment 
of its fundamental statistical properties. In Section 4, we introduce 
several robust estimation and outlier detection methods for the GLS 
model, and analyze the connection between different SOD methods. 
Section 5 provides the simulations and discussions. Section 6 gives 
the conclusion. 

2. SPATIAL LOCAL STATISTICS AND 
RELATED WORKS 
    Given a set of observations ሼܼሺ࢙ሻ, ܼሺ࢙ሻ, … , ܼሺ࢙ሻሽ, a local 
spatial statistic [4] is defined as 

ܵሺ࢙ሻ ൌ ൣܼሺ࢙ሻ െ  ,ሻ൯൧࢙ሻ൫ܼሺ࢙ሺࡺא࢙ܧ

where ࡳ ൌ ሼ࢙ଵ, … , ሽ࢙ ؿ Թଶ is a set of spatial locations, ࢙ א  ,ࡳ
ܼሺ࢙ሻ א Թ represents the value of ܼ attribute at location ࡺ ,࢙ሺ࢙ሻ is 
the set of spatial neighbors of ࢙, and א࢙ܧேሺ࢙ሻ൫ܼሺ࢙ሻ൯ represents 
the average ܼ attribute value of the neighbors of ࢙. It is assumed 
that the set of local spatial statistics ሼܵሺ࢙ଵሻ, … , ܵሺ࢙ሻሽ are 
independently and identically normally distributed (i.i.d. normal). 
Then the popular ܼ-test [4] for detecting spatial outliers can be 
described as follows: Spatial statistic ܼௌሺ࢙ሻ ൌ ቚௌሺ࢙ሻିఓ࢙

ఙ࢙
ቚ  Φିଵ ቀఈ

ଶ
ቁ, 

where  Φ is the cumulative distribution function (CDF) of a 
standard normal distribution, ߙ refers to a significance level and 
is usually set to 0.05, and ࢙ߤ and ࢙ߪ refer to the sample mean and 
sample standard deviation, respectively.  
    Lu et al. [5] pointed out that the ܼ-test is susceptible to the 
well-known masking and swamping effects. When multiple 

outliers exist in the data, the quantities א࢙ܧேሺ࢙ሻ൫ܼሺ࢙ሻ൯, ࢙ߤ, and ࢙ߪ 
are biased estimators of the population means and standard 
deviation. As a result, some true outliers are "masked" as normal 
objects and some normal objects are "swamped" and misclassified 
as outliers. The authors proposed an iterative approach that 
detects outliers by multi-iterations. Each iteration identifies only 
one outlier and then modifies its attribute value so that it will not 
impact the results of subsequent iterations. Later, Chen et al. [6] 
proposed a median based approach that uses median estimator for 
the quantities א࢙ܧேሺ࢙ሻ൫ܼሺ࢙ሻ൯ and ࢙ߤ, and median absolute 
deviation (MAD) estimator for ࢙ߪ. Hu and Sung [7] proposed an 
approach similar to [6], but using trimmed mean to 
estimate א࢙ܧேሺ࢙ሻ൫ܼሺ࢙ሻ൯, instead of the median. Sun and Chawla 
[8] presented a spatial local outlier measure to capture the local 
behavior of data in their neighborhood. Shekhar et al. [9] 
employed a graph-based method to define spatial neighborhoods 
(ܰሺ࢙ሻ) and their method is applied to a special case of 
transportation network. 
    Most existing local based methods assume that the set of local 
statistics ሼܵሺ࢙ଵሻ, … , ܵሺ࢙ሻሽ are i.i.d. normal, but no justifications 
for this assumption have ever been proposed. As we will discuss 
in next sections, this i.i.d. assumption is only approximately true 
in certain scenarios, and the dependencies between different local 
differences (statistics) must be considered when the spatial data 
exhibit linear or nonlinear trend or the selected neighborhood size 
for each object is small. As shown in our simulations in Section 5, 
the violation of i.i.d. assumption can significantly impact the 
accuracies of the outlier detection methods. 

3. GENERALIZED LOCAL SPATIAL 
STATISTICS 
    This section first introduces some preliminary background on 
spatial Gaussian random field, then presents the generalized local 
statistical (GLS) model, and finally discusses the statistical 
properties of the GLS model. Table 1 summarizes the key 
notations used in this paper.  

Table 1: Description of Major Symbols 
Symbol Descriptions 
ሼܼሺ࢙ሻሽୀଵ

  A given set of observations, where ࢙ א Թଶ is the 
spatial location and ܼሺڄሻ is the Z attribute value.  

ሼ࢞ሺ࢙ሻሽୀଵ
 ሻ࢙ሺ࢞  is a vector of covariates of ࢙, such as the 

bases of spatial coordinates of ࢙. 
܈ ܈ ൌ ሾܼሺ࢙ଵሻ, … , ܼሺ࢙ሻሿ܂ 
܆ ܆ ൌ ሾ࢞ሺ࢙ଵሻ, … ,  ܂ሻሿ࢙ሺ࢞
F Neighborhood weight matrix; See Equation 4 

ሻ A general definition of spatial neighbors of࢙ሺࡺ        .ܛ
 This paper considers .ܛ ሻ K-nearest neighbors of࢙ሺࡺ

  .ሻܛሺࡺ ሻ as the specification of࢙ሺࡺ
 Neighborhood size. It is the major parameter to ܭ

define spatial neighbors ൫ࡺሺ࢙ሻ൯. 
SOD Spatial Outlier Detection 
GLS Generalized Local Statistics Model 

,ࢼ   The unknown parameters in the GLS modelߪ ,ߪ

3.1 Generalized Local Statistic Model (GLS) 
    Given a spatial Gaussian random field ሼܼሺ࢙ሻ, ࢙ א ܦ ؿ Թଶሽ, 
consider the following decomposition of the process [1]  

(1) 
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                       ܼሺ࢙ሻ ൌ ݂ሺ࢞ሺ࢙ሻ, ሻࢼ  ߱ሺ࢙ሻ  ߳ሺ࢙ሻ,                       ሺ2ሻ 
where ܦ is a fixed region, ݂ሺ࢞ሺ࢙ሻ,  ሻ is the large scale trendࢼ
(mean) of the process, ߱ሺ࢙ሻ is the smooth-scale variation that is a 
Gaussian stationary process, and ߳ሺ࢙ሻ is the white noise with the 
variance ߪ

ଶ.  
    The large scale trend ݂ሺ࢞ሺ࢙ሻ, ሻࢼ ൌ  is a vector ࢼ where ,ࢼሻ்࢙ሺ࢞
of trend parameters, and ࢞ሺ࢙ሻ is a vector of covariates that are the    
basis functions of spatial coordinates of s (See Section 5.1 for 
illustrations). The nonlinear degree of the trend is dependent on 
the polynomials of covariates in xሺsሻ. For the smooth-scale 
variation ω(s), we assume that it is an isotropic second-order 
stationary process, in which the covariance Cov ቀܼሺ࢙ሻ, ܼ൫࢙൯ቁ is 
a function of the spatial distance between ࢙ and ࢙: ܥ൫ฮ࢙ െ
;ԡ࢙  are function parameters. A variety of distance ࣂ ൯, where ࣂ
metrics may be selected, such as ܮଶ (Euclidean distance), ܮଵ 
(Manhattan distance), and graph distance [10]. There are two 
popular models for the covariance function ܥ, including spherical 
model and exponential model (see Equations 8 and 11).  

Given a sample set ሼܼሺ࢙ሻ, … , ܼሺ࢙ሻ ሽ  that are partial 
observations of a particular realization of the spatial Gaussian 
random field, let ࢆ ൌ ሾܼሺ࢙ሻ, … , ܼሺ࢙ሻሿ், ࢋ ൌ ሾ݁ሺ࢙ଵሻ, … , ݁ሺ࢙ሻሿ்,  
࣓ ൌ ሾ߱ሺ࢙ଵሻ, … , ߱ሺ࢙ሻሿ், and ࢄ ൌ ሾ࢞ଵ, … ,  ,ሿ். By Equation 2࢞
the random vector ࢆ has the decomposition form as 

ࢆ ൌ ࢼࢄ  ࣓  ,ࢼࢄሺܰ  ~  ࢋ   ߪ
ଶࡵሻ, 

where ࣓ ~ ࡺሺൈଵ, ,ሺൈଵࡺ ~ ࢋ ൈሻ andࢳ ߪ
ଶࡵൈሻ. 

    The vector of local spatial statistics calculated by Equation 1 
can be reformulated as the matrix form  

ሻࢆሺܑ܌ ൌ  ,ࢆࡲ
where ࡲ א Թൈ is a neighborhood weight matrix with ܨ ൌ 1 
if ݅ ൌ ܨ ;݆ ൌ െ1/ܭ if ࢙ א ܰሺ࢙ሻ; and ܨ ൌ 0, otherwise.  
    By Equations 3 and 4, we can readily derive the generalized 
local statistical (GLS) model as 

,ࢼࢄࡲሺۼ ~ ሻࢆሺܑ܌ ்ࡲࢳࡲ  ߪ
ଶ்ࡲࡲሻ. 

Recall that ࢳ ൌ ࢙൫ฮܥ െ ;ฮ࢙  ൯. The GLS model has the ࣂ
unknown components ࢼ, ,ߪ and ࣂ, including ሺ|ࢼ|  1   ሻ|ࣂ|
parameters. Because the covariance function ܥሺڄሻ (e.g., spherical 
or exponential model) is nonlinear and nonconvex, it requires 
iterative reweighted generalized least squares algorithm to 
estimate all these parameters which is computationally expensive 
and can only guarantee a local optimum [14]. 
    As shown in Section 3.2, an important property of the GLS 
model is that the component ்ࡲࢳࡲ can be approximated by ߪ

ଶࡵ. 
Hence the GLS form (5) becomes asymptotically equivalent to  

,ࢼࢄࡲሺۼ ~ ሻࢆሺܑ܌ ࡵଶߪ  ߪ
ଶ்ࡲࡲሻ. 

As discussed in Section 4.1, the model fitting for the GLS form 
(6) is a convex problem and can be efficiently solved.  
    By Section 3.2 Theorem 1, when the neighborhood size is 
relatively large with ܭ  10, the component ߪ

ଶ்ࡲࡲ can be 
further approximated by ߪ

ଶࡵ. This leads to a simpler form of GLS  
,ࢼࢄࡲሺۼ ~ ሻࢆሺܑ܌ ሺߪଶ  ߪ

ଶሻࡵሻ. 
Discussion: Local statistics is a popular technique used to reduce 
the dependence between sample points. However, by employing 
the decomposition form as indicated in Equations 2-4, we observe 
that local statistics help reduce the correlations between sample 
points caused by smooth-scale random variations, but at the same 

time it also induces "new" correlations due to the averaging of 
white noise variations. As discussed in [2], correlated data can be 
expressed as linear combination of uncorrelated data. The 
approximate GLS form (6) explicitly models the "new" 
correlations caused by the averaging of white noises variations. 
The approximate GLS form (7) essentially ignores these "new" 
correlations. The form (7) may be considered when users expect 
high efficiency and allow some loss of accuracy. This tradeoff is 
studied in Section 5 by simulations. 

3.2 Theoretical Properties of GLS 
    This sub-section studies the properties of two major covariance 
components ߪ

்ࡲࡲ and ்ࡲࢳࡲ, and discusses the situations where 
they can be approximated by ߪ

ଶࡵ and ߪଶࡵ, respectively. As shown 
in Equation 3, ߪ

்ࡲࡲ and ்ࡲࢳࡲ are the covariance matrices of 
the random vectors כࢋ ൌ כ࣓ and ࢋࡲ ൌ  respectively. We ,࣓ࡲ
focus on the study of their correlation structures. Because כࢋ and 
 are both multivariate normally distributed, the correlation כ࣓
structure gives important information about the related 
dependence structure (e.g., in-correlation implies independence). 
Three related theorems are stated as follows: 
Theorem 1: The random vector כࢋ has two major properties 

1) The variance ܸܽݎሺ݁
ሻכ ൌ ାଵ


ߪ

ଶ, ݅ ൌ 1 … ݊, 

2) The correlation หߩ൫݁
,כ ݁

൯หכ  ଶ
ାଵ

, ,݅ ݅ ݄ݐ݅ݓ ݆ ് ݆, 
where ݁

 .כࢋ refers to the i-th element in the vector כ
    (Readers are referred to [15] for the proof.) 
    Theorem 1 indicates that when the neighborhood size is relative 
large, the correlations between the components in כࢋ are very low 
(e.g., smaller than 0.2 when ൌ 10 ) and the variance  of each 
component is very close to ߪ

ଶ. In this case, ߪ
்ࡲࡲ ൎ ߪ

ࡵ. 
However, for a small neighborhood size, as shown in simulations 
(Section 5), the dependence between the components in כࢋ must 
be considered.  
    The next two theorems are related to the random vector ࣓כ. It 
is difficult to analytically evaluate ࣓כ, because it is generated by 
an isotropic second order stationary process, and even when the 
explicit form of the covariance function is known, the statistical 
properties of ࣓כ are still not straightforward. For this reason, 
several additional assumptions need to be considered. The 
following are three assumptions required for Theorem 2:  
A1. If ࡺሺ࢙ሻ ת ௗሻ࢙ሺࡺ ് , then, ݏ, ,ݏ ௧ݏ א ሻ࢙ሺࡺ 

                      ௗሻ, their between spatial distances are approximately࢙ሺࡺ
equivalent: ฮ࢙ െ ฮ࢙ ൎ ԡ࢙௧ െ ԡ࢙ ൎ ฮ࢙ െ  .௧ฮ࢙

A2. If ࢙ א ,ሻ࢙ሺࡺ ௧࢙ ב ,ሻ࢙ሺࡺ ௧ሻ࢙ሺࡺ ݀݊ܽ ת ሻ࢙ሺࡺ ൌ , 
then  ԡ࢙௧ െ ԡ࢙ ൎ ฮ࢙௧ െ  .ฮ࢙

A3. The distance between any points that are k-nearest neighbors 
is approximately constant everywhere.                                                              

    The intuition on assumptions A1 and A2 is that, because 
neighbors are close to each other, they share similar between-
distances and similar distances to points that are not their 
neighbors. The assumption A3 is valid when the spatial locations 
follow a uniform distribution or a grid structure. The assumption 
A3 holds in many practical situations [13]. The situations where 
assumptions A1 and A2 are potentially violated will be discussed 
in Theorem 3.  
Theorem 2: If the above assumptions A1 and A2 hold, then the 
random vector ࣓כ has two major properties  

(3) 

(4) 

(5) 

(7) 

(6) 
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1) The variance ܸܽݎሺ߱
ሻכ ൎ ଵା


൫ߪଶ െ ,൯࢞ܥ ݅ ൌ 1 … ݊ 

2) The correlation ߩ൫߱
,כ ߱

൯כ ൎ െ ଵ


, if ݏ א ܰሺݏሻ  or ݏ א

ܰ൫ݏ൯; otherwise, ߩ൫߱
,כ ߱

൯כ ൎ 0, 
where ࢙ܥ refers to the average covariance value between ࢙ and 
its K-nearest neighbors, and ߪଶ ൌ  ሺ0ሻ refers to the constantܥ
variance for each component of ࣓. Further, if the assumption A3 
also holds, then the variance ܸܽݎሺ߱

 ሻ becomes constantכ
everywhere. 
    (Readers are referred to [15] for the proof.) 

Theorem 2 indicates that the correlations between the 
components in ࣓כ are mostly zero, except for neighboring points. 
Particularly, the correlations between neighboring points are all 
negative, and their major impact factor is the neighborhood size 
 The greater the value of K, the less the neighbor points are .ܭ
correlated. However, ܭ cannot be arbitrary large; otherwise, the 
assumptions made above will be violated. For example, suppose 
݊ ൌ 200 and ܭ ൌ 10, then only about 5% of pairs are correlated. 
For these correlated components, the correlations are only close 
to െ0.1. As shown in Figure 1, 0.1 indicates a negligible 
correlation.  

 
 
 

 
Figure 1: An example of correlation: it reflects the noise and 

direction of a linear relationship [13]. 
    Theorem 2 states two approximate properties of ࣓כ. However, 
it is not directly known how these properties are impacted if 
assumptions A1 and A2 are violated. The next Theorem 3 will 
delve deeper into this issue and provide more specific analysis 
on ࣓

 For Theorem 3, the following less restrictive assumptions .כ
are employed: 

B1. The spatial locations ሼݏଵ, … ,  ሽ follow a grid structure andݏ
݊  2500;  

B2. The spatial distance is defined by ܮଶ (Euclidean) distance;  

B3. The covariance function ݒܥ ቀܼሺݏሻ, ܼ൫ݏ൯ቁ ൌ  ሺ݄ሻ, whereܥ
݄ ൌ ฮݏ െ ฮݏ

ଶ
, follows a popular spherical model; 

B4. Consider 4 or 12-nearest neighbors as spatial neighbors for 
each object.  

Assumptions B1 and B2 are generic properties that can be readily 
applied to spatial data in general [1, 2]. In many applications, the 
total number of spatial locations is smaller than 300 [1]. Here, we 
consider a much enlarged range with ݊  2500, for the purpose 
of generality. For assumption B3, a spherical model is defined as 

;ሺ݄ܥ ሻࣂ ൌ ൞

ܾ                                          ݂݅  ݄ ൌ 0

ܾ ൬1 െ ଷ
ଶ

 ଵ
ଶ

ቀ

ቁ

ଷ
൰        ݂݅ 0 ൏ ݄  ܿ

0                                          ݂݅ ݄  ܿ,

 

where ࣂ ൌ ሺܾ, ܿሻ், ܾ  0, ܿ  0. Note that ܾ ൌ ;ሺ0ܥ  ሻ refers toࣂ
the constant variance for each object ࢙, and ܥሺ݄;  ሻ is aࣂ
decreasing function on the distance h.  
    The reason for using a spherical model as opposed to 
exponential or Gaussian models is that the spherical model leads 
to closed-form analytical results. The closed-form results will 
provide important insights into its statistical properties. As for 
assumption B4, ܭ is set to 4 or 12 due to the use of the grid 

structure (assumption B1). In a grid data, each object has four 
nearest objects with the same distance ݎ, eight next-nearest 
objects with the same distance 2ݎ, and so on, where ݎ is the grid 
cell size. Hence, we can select ܭ ൌ 4, 12, 24, …. We select the 
first two values with ܭ ൌ 4 and 12, which are equivalent to 
defining neighborhoods with radiuses of ݎ and 2r, respectively.  

Theorem 3: Under the above four assumptions, the random 
vector ࣓כ has following properties on the correlation structure 
1) If ܭ ൌ 4, then 

a) ߩ൫߱
,כ ߱

൯כ ൌ 0,           ݂݅ ݀൫࢙, ൯࢙  ܿ   ,ݎ2

b) หߩ൫߱
,כ ߱

൯หכ  0.4,     ݂݅ܿ  ,࢙൫݀ ݀݊ܽ ݎ2 ൯࢙   ,ݎ2

c) หߩ൫߱
,כ ߱

൯หכ  0.22, ݂݅ ܿ  ,࢙൫݀ ݀݊ܽ ݎ2 ൯࢙   ,ݎ2

d) หߩ൫߱
,כ ߱

൯หכ  0.05, ݂݅ ݀൫࢙, ൯࢙   .ݎ2

2) If ܭ ൌ 12, ݀൫࢙, ൯࢙  ܿ  ൫߱ߩ then ,ݎ4
,כ ߱

൯כ ൌ 0 

3) If ܭ ൌ 12, ܿ ൏   then ,ݎ4

a) หߩ൫߱
,כ ߱

൯หכ  0.220, ݂݅ ݀൫࢙, ൯࢙   ݎ2

b) หߩ൫߱
,כ ߱

൯หכ  0.110, ݎ2 ݂݅ ൏ ݀൫࢙, ൯࢙   ݎ3

c) หߩ൫߱
,כ ߱

൯หכ  0.050, ݂݅ ݀൫࢙, ൯࢙   ݎ3

4) If ܭ ൌ 12, ܿ  ൯࢙൫ݓݎ ݀݊ܽ ݎ4 ൌ ሻ࢙ሺݓݎ ቀ݈ܿ ݎ൫࢙൯ ൌ

 ሻቁ, then࢙ሺ݈ܿ

a) หߩ൫߱
,כ ߱

൯หכ  0.4741 െ .ଵଵଽ ڄ మ/మ

ଵାమ/ሺଶ.ڄమሻ
 ,  if ݀൫࢙, ൯࢙ ൌ  ݎ

b) หߩ൫߱
,כ ߱

൯หכ  0.1203 ,  if ݀൫࢙, ൯࢙ ൌ  ݎ2

c) หߩ൫߱
,כ ߱

൯หכ  0.1719 െ
.ଵହ଼ ڄ ೕ

మ /మ

ଵାమ/ሺଵ.ହଵସڄమሻ
, otherwise. 

5) If  ܭ ൌ 12, ܿ  ,ݎ4 ൯࢙൫ݓݎ ് ,ሻ࢙ሺݓݎ ൯࢙൫݈ܿ ്  ,ሻ࢙ሺ݈ܿ
 ݄݊݁ݐ

      หߩ൫߱
,כ ߱

൯หכ  0.1085 െ
.ଶ଼ ڄ ೕ

మ /మ

ଵାೕ
మ /ሺଷ.ଶଷڄమሻ

, 

where ݎ refers to the grid cell size; ݓݎሺ࢙ሻ and  ݈ܿሺ࢙ሻ refer to 
the row and column locations of the object ࢙ in the grid 
structure; ݄ ൌ ݀൫࢙,  ࢙ ൯ is the Euclidean distance between࢙
and ࢙. 
(Readers are referred to [15] for the proof.) 
    Theorem 3 implies similar patterns as drawn by Theorem 2 
although Theorem 2 provides only approximate properties. 
Theorem 3 is a further justification of these patterns. In the 
following discussions, we consider the situation with ܿ  5. The 
situation with ܿ ൏ 5 will be discussed separately. By Theorem 3, 
if ܿ  5 , then หߩ൫߱

,כ ߱
൯หכ  0.22 when ܭ ൌ 4; and 

หߩ൫߱
,כ ߱

൯หכ  0.18 when ܭ ൌ 12. It indicates small absolute 
correlation values for different ܭ values. The correlation values 
slightly decreases when K increases. It can also be shown that 
most correlations are negative and are close or equal to zero. 
Readers are referred to [15] for detailed information 
about ߩ൫߱

,כ ߱
 ൯. All these observations are consistent with theכ

Theorem 2. 
    We have a comparison between ߪ

்ࡲࡲ and ்ࡲࢳࡲ. Consider 
two typical situations: ܭ ൌ 4 to represent a small neighborhood; 
and ܭ ൌ 12 to represent a relatively large neighborhood. If ܭ ൌ

(8) 
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4, then หߩ൫݁
,כ ݁

൯หכ  0.4 and หߩ൫߱
,כ ߱

൯หכ  0.22. If ܭ ൌ 12, then 
หߩ൫݁

,כ ݁
൯หכ  0.2 and หߩ൫߱

,כ ߱
൯หכ  0.18. The impacts of these 

correlation values (degrees) are shown in Figure 1. Although both 
หߩ൫݁

,כ ݁
൫߱ߩ൯ห and หכ

,כ ߱
 ൯ห increase when the neighborhood sizeכ

K decreases, the absolute correlation หߩ൫݁
,כ ݁

 ൯ห increasesכ
drastically. Based on these results, we will approximate ்ࡲࢳࡲ by 
ߪ but will only approximate ,ܭ for different settings of ࡵଶߪ

்ࡲࡲ 
by ߪ

ࡵ, when ܭ is relatively large, e.g., ܭ  10.   
    Theorem 3 also indicates that when ܿ is small ሺe. g. , ܿ ൏  ,ሻݎ5
some correlations are relatively high (e.g., หߩ൫߱

,כ ߱
൯หכ ൌ 0.4 

if ܭ ൌ 4, ܿ ൌ ,࢙and ݀൫ ,ݎ1 ൯࢙ ൌ  In this case, an important .(ݎ
observation is that the correlation matrix of ࣓כ exhibits similar 
structure as that of כࢋ. Particularly, if ܿ ൏  these two correlation ,ݎ
matrices become identical. In this situation, it is still reasonable to 
approximate the correlation matrix of ࣓כ as identity or unit 
matrix. The lost structure information by this approximation will 
be recovered while estimating the parameter ߪ for the vector כࢋ, 
because of the similar structure between the covariance matrices 
Varሺ࣓כሻ and Varሺכࢋሻ. For example, suppose ܿ ൏  and the ݎ
constant variance for each component of ࢋ is ߪ

ଶ, then we have 
Varሺࢋሻ ൌ ࢳ ൌ ߪ

ଶࡵ, and Varሺכࢋሻ ൌ Varሺࢋࡲሻ ൌ ்ࡲࢳࡲ ൌ ߪ
ଶ்ࡲࡲ. 

By Equation 5, the true distribution model is: 
,ࢼࢄࡲሺۼ ~ ሻࢆሺܑ܌ ்ࡲࢳࡲ  ߪ

ଶ்ࡲࡲሻ ൌ ,ࢼࢄࡲሺۼ ሺߪ
ଶ  ߪ

ଶሻ்ࡲࡲሻ. 
If we approximate ்ࡲࢳࡲ as ߪଶࡵ instead, then by Equation 6 the 
approximate model becomes ܑ܌ሺࢆሻ ~ ۼሺࢼࢄࡲ, ࡵଶߪ  ߪ

ଶ்ࡲࡲሻ. 
Using robust parameter estimation, the approximate model can 
completely recover the true distribution, e.g., by setting the 
estimated parameters ߪො ൌ 0 and ߪො ൌ ඥߪ

ଶ  ߪ
ଶ. 

4. ESTIMATION AND INFERENCES 
    Spatial outlier detection (SOD) is usually coupled with a robust 
estimation process for the related statistical model. This section 
presents robust estimation and outlier detection methods to reduce 
the masking and swamping effects, and then discusses the 
connection between the proposed GLS-SOD methods and existing 
representative methods, such as kriging-based and Z-test SOD 
methods. We are focused on the estimation techniques for the 
GLS form (6) that is regarded as the default model. The GLS form 
(7) will be explicitly stated when discussing its techniques.  

4.1 Generalized Least Squares Regression 
    Given a set of observations ሼܼሺ࢙ሻ, … , ܼሺ࢙ሻ ሽ, the objective is 
to estimate the parameters ࢼ, ,ߪ and ߪ for the proposed GLS 
model. We consider mean squared error (MSE) as the score 
function which is the most popular error function in spatial 
statistics [11]. This leads to a generalized least square problem for 
the GLS form (6) and can be formulated as: 

arg min
ஒ,బ,

ቂሺࢆࡲ െ ࡵଶߪሻ்൫ࢼࢄࡲ  ߪ
்ࡲࡲ൯ିଵሺࢆࡲ െ    ,ሻቃࢼࢄࡲ

subject to ߪ
ଶ  ߪଶ ൌ 1 and ߪ, ߪ  0.                                         ሺ9ሻ 

    Note that we scale σ  and  ߪ by a factor ܿ with ߪ
כ ൌ  /ܿ andߪ

כߪ ൌ ߪ such that ,ܿ/ߪ
ଶכ  כߪଶ ൌ 1. Without this constraint, the 

objective function in (9) will always be minimized by 
setting ߪ ൌ ߪ ൌ ∞, and ࢼ to any value. For simplicity, we 
directly use the original symbols ߪ and ߪ, rather than ߪ

 .כߪ and כ
As shown in Theorem 4, the problem ሺ9ሻ is a convex optimization 
problem which can be efficiently solved by numerical 
optimization methods such as interior point method [14]. Note 

that when the neighborhood size ܭ is large, the following 
approximation holds: ߪ

ଶ்ࡲࡲ ൎ ߪ
ଶࡵ (see Section 3.2 Equation 7). 

Then the problem (9) reduces to a regular least squares regression 
problem and an explicit solution is available with ࢼ ൌ
ሺࢄࡲ்ࡲ்ࢄሻିଵࢆࡲ்ࡲ்ࢄ, and ሺߪଶ  ߪ

ଶሻ ൌ ԡࢼࢄࡲ െ ԡଶࢆࡲ
ଶ/ሺ݊ െ

 െ 1ሻ, where  is the size of the vector ࢼ. For the purpose of 
outlier detection, it is unnecessary to further derive the explicit 
forms of  ߪ and σ. 
Theorem 4: The problem (9) is a convex optimization problem. 
Proof Sketch: Suppose ߣ and  are the eigenvalues and 
corresponding (orthonormal) eigenvectors of the matrix ்ࡲࡲ. It 
can be readily shown that the problem (9) is equivalent to  

arg minࢼ,ఙబ,ఙ ∑ ൛ሺࢼࢄࡲିࢆࡲሻൟమ

ఙమାఙబ
మఒ


ୀଵ ൨ , s. t.   ߪ, ߪ  0        

Let ݂ ൌ ൛ሺࢼࢄࡲିࢆࡲሻൟమ

ఙమାఙబ
మఒ

 , It suffices to prove that ݂ is a convex 

function, or equivalently డ
మ

డࣂమ غ ࣂ ,0 ൌ ሾ்ࢼ, ,ଶߪ ߪ
ଶሿ். 

డమ

డࣂమ ൌ ൦

ଶߪሺࡲ்ࢄ  ߪ
ଶߣሻ

൫
்ܼ െ 

൯்ࢼࢄࡲ்

൫ߣ
்ܼ െ 

൯்ࢼࢄࡲ்
൪ ൦

ଶߪሺࡲ்ࢄ  ߪ
ଶߣሻ

൫
ࢆ் െ 

൯்ࢼࢄࡲ்

൫ߣ
ࢆ் െ 

൯்ࢼࢄࡲ்
൪

்

غ 0.         � 

    When the parameters ࢼ, ,ߪ and ߪ are estimated by generalized 
least squares, we can calculate standard residuals and use standard 
statistic test procedure to identify outliers. This method works 
well for sample data with small data contamination, but is 
susceptible to the well-known masking and swamping effects 
when multiple outliers exist. For the GLS model, the masking and 
swamping effects originate from two phases of the estimation 
process:  
1) Phase I contamination occurs in the process of calculating 
local differences ࢆࡲ. For example, suppose we define neighbors 
by the K-nearest-neighbor rule. Consider an outlier 
object ܼכሺ࢙ଵሻ ൌ ܼሺ࢙ଵሻ   ଵሻ is the normal value but࢙ଵ, where ܼሺߞ
it is contaminated by a large error ߞଵ, and suppose only one of its 
neighbors is an outlier with ܼכሺ࢙ሻ ൌ ܼሺ࢙ሻ   is the ߞ  where ,ߞ
contamination error. The local difference diff൫ܼכሺ࢙ଵሻ൯ ൌ 
ቂܼሺ࢙ଵሻ െ ଵ


ሻ൯ቃ࢙ሻ൫ܼሺ࢙ሺࡺא࢙∑  ଵߞ െ 


. If ߞ ൌ ܭ ڄ  ଵ, then theߞ

error is marginalized and we obtain a normal local difference for a 
outlier object ܼכሺ࢙ଵሻ which will be identified as a normal object. 
If ܼכሺ࢙ଵሻ is a normal object with ζ ൌ 0, then the related local 
difference is contaminated by the error െ 

K
. This leads to the 

swamping effect where the normal object ܼכሺ࢙ଵሻ may be 
misclassified as an outlier. For a relatively large ܭ (e.g., 8), it can 
be readily shown that Phase I contamination is more significant 
for a spatial sample with clusters of outliers than a spatial sample 
with isolated outliers. Another important observation is that the 
masking and swamping effects will not completely distort the 
ordering of true outliers. The top ranking outliers are still usually 
a subset of the true outliers. This observation motivates the 
backward algorithm presented in Section 4.3. 2) Phase II 
contamination occurs in the generalized regression process, 
where we regard כࢆ ൌ  as the pseudo "observed" values. The ࢆࡲ
masking and swamping effects in this phase are the same effects 
occurred in a general least squares regression process. This is 
consequence of the biased estimates of the regression parameters 
(e.g., ߪ ,ࢼ, and ߪ) due to abnormal observations in כࢆ.  

(10) 
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Drawbacks of existing robust estimation techniques: Most 
existing robust regression techniques are designed to reduce the 
effect of Phase II contamination. There are two major categories 
of estimators [13]. The first category (also called M-estimators) is 
to replace the MSE function by more robust score function such 
as L1 norm and Huber penalty function. The second category is to 
estimate parameters based on a robustly selected subset of data, 
such as least median of square (LMS), least trimmed square (LTS), 
and forward search (FS) method. Unfortunately, all these robust 
techniques cannot be directly applied to address both Phase I and 
Phase II contaminations concurrently. As with the M-estimators, 
the application of robust penalty function (e.g., L1) will lead to a 
non-convex optimization problem where local optimal solution 
may be found. With the second type of estimators based on subset 
selection, the estimation results are highly sensitive to the selected 
objects which can detrimentally impact neighborhood quality. 
The next sub-section will adapt existing robust methods to resolve 
the problem of concurrently handling Phase I and Phase II 
contaminations. 

4.2 GLS-Backward Search Algorithm 
    As discussed above, existing methods only address Phase II 
contamination. The motivation for our proposed backward search 
algorithm is to address both Phase I and Phase II contaminations 
concurrently. The algorithm is described as follows: 
Algorithm 1 (Backward search algorithm) Given a spatial data 
set ሼܼሺ࢙ଵሻ, … , ܼሺ࢙ሻ ሽ, the covariate vectors ሼ࢞ሺݏଵሻ, … ,  ,ሻሽ࢙ሺ࢞
the value of K for defining K-nearest neighbors, and the 
confidence interval ߙ א ሺ0,1ሻ, 
1. Set ࡿ ൌ ሼܼሺ࢙ሻ, … , ܼሺ࢙ሻ ሽ, ࢞ࡿ ൌ ሼ࢞ሺݏଵሻ, … ,  ሻሽ,  and࢙ሺ࢞

ܵ௨௧௨௧ be an empty set. 
2. Estimate the parameters ࢼ, ,ߪ   of the GLS model by solvingߪ

the generalized least squares regression problem ሺ9ሻ.  
3. Calculate the absolute values of standard estimated residuals 

ࢋ ൌ ൣ݁ଵ, … , ݁|ௌೋ|൧
் ൌ ฬ൫ߪଶࡵ  ߪ

்ࡲࡲ൯ିభ
మሺࢆࡲ െ  ሻฬࢼࢄࡲ

4. Set ݁ ൌ maxሼ݁ሽୀଵ
  .|ೋࡿ|

If ݁  Φିଵሺ2/ߙሻ, where Φ is the CDF of the standard 
normal distribution, then update ࡿ ൌ ࡿ െ ሼܼሺ࢙ሻሽ, 
࢞ࡿ ൌ ࢞ࡿ െ ሼ࢞ሺ࢙ሻሽ, and ࡿ௨௧௨௧ ൌ ௨௧௨௧ࡿ  ሼܼሺ࢙ሻሽ, and 
go to Step 2.  
Otherwise, stop the algorithm and return  ࡿ௨௧௨௧ as the 
ordered set of candidate outliers.  

In the above algorithm, the confidence interval ߙ can be set to 
0.001, 0.01, and 0.05. In step 2, we apply interior point [14] 
method to solve the optimization problem (9). When the 
neighborhood size is large, we may approximate ߪ

ଶ்ࡲࡲ as ߪ
ଶࡵ. 

The parameters ࢼ, ,ߪ   can be efficiently estimated by leastߪ
squares regression: ࢼ ൌ ሺࢄࡲ்ࡲ்ࢄሻିଵࢆࡲ்ࡲ்ࢄ, and ሺߪଶ  ߪ

ଶሻ ൌ
ԡࢼࢄࡲ െ ԡଶࢆࡲ

ଶ/ሺ݊ െ  െ 1ሻ, where  is the size of the vector ࢼ.  
    This backward search algorithm’s design is based on the 
observation that top ranked outliers identified by the least squares 
techniques are still true outliers (in most cases) under both Phase I 
and II contaminations. Suppose a true outlier ࢙ is removed after 
the first iteration, then both Phase I and Phase II contaminations 
in the next iteration will be reduced. To illustrate this process, we 
use the same example in Section 4. Recall that an outlier object 
ሻ࢙ሺכܼ ሻ is decomposed into two additive components࢙ሺכܼ ൌ

ܼሺ࢙ሻ   ߞ ሻ represents the normal value and࢙where ܼሺ ,ߞ
represents the contamination error. Suppose ࢙ is the only outlier 
neighbor of an object ࢙ଵ that happens to be an outlier as well. 
Then the local difference diff൫ܼכሺ࢙ଵሻ൯ ൌ 
ቂܼሺ࢙ଵሻ െ ଵ


ሻ൯ቃ࢙ሻ൫ܼሺ࢙ሺࡺא࢙∑  ଵߞ െ 


  will be marked as normal 

if ߞ ൌ ܭ ڄ  ሻ is removed࢙ଵ. Suppose now that the true outlier ܼሺߞ
and the newly replaced neighbor for ࢙ଵ is normal, then 
diff൫ܼכሺ࢙ଵሻ൯ ൌ ቂܼሺ࢙ଵሻ െ ଵ


ሻ൯ቃ࢙ሻ൫ܼሺ࢙ሺࡺא࢙∑   ଵ. This localߞ

difference becomes an abnormal value and the masking effect is 
removed. Similarly, suppose ܼכሺ࢙ଵሻ is a normal object, then its 
local difference is contaminated (swamped) by the error െ 


, 

because of its outlier neighbor ܼሺ࢙ሻ. The removal of ࢙ will make 
െ 


ൌ 0, thus reducing the swamping effect. For Phase II 

contamination, the removal of ܼሺ࢙ሻ leads to the removal of an 
abnormal difference diff൫ܼכሺ࢙ሻ൯. The set of remaining local 
differences will therefore have less contamination. The center of 
the distribution is less attracted by outliers, and the distributional 
shape becomes less distorted. As a result, outliers tend to be more 
separated and normal objects tend to be closer together. The 
masking and swamping effects are therefore reduced. 

4.3 GLS-Forward Search Algorithm 
    This section adapts the popular Forward Search (FR) algorithm 
[13] to the GLS parameters estimation problem. There are several 
restrictions to apply FR here. As discussed in Section 4.1, FR 
starts from a robustly selected subset of sample, but GLS is a 
statistical model based on neighborhood aggregations. 
Considering only a subset of the observations ሼܼሺݏଵሻ, … , ܼሺݏሻሽ 
will significantly impact the quality of the calculated local 
differences. To apply FR algorithm, we make the assumption that 
Phase I contamination is negligible compared to Phase II 
contamination. As discussed in Section 4.1, this is reasonable for 
the case of isolated outliers. Based on this assumption, we 
consider the local differences ൛diff൫ܼሺݏଵሻ൯, … , diff൫ܼሺݏሻ൯ൟ as 
pseudo "observations", and then apply FR algorithm to estimate 
the model parameters. By simulations, we also noticed that in this 
case there is no significant difference on accuracy between the 
GLS forms (6) and (7). For the sake of efficiency, we only 
consider the GLS form (7) and apply regular least squares 
regression to estimate the parameters ߚ,  . The forwardߪ and ,ߪ
search algorithm is described as follows: 
Algorithm 2 (Forward Search algorithm) Given a spatial data 
set ሼܼሺ࢙ଵሻ, … , ܼሺ࢙ሻ ሽ, the covariate vectors ሼ࢞ሺݏଵሻ, … ,  ,ሻሽ࢙ሺ࢞
and the value of K for defining K-nearest neighbors, 
1. Calculate the local differences: ܑ܌ሺࢆሻ ൌ  and set ,ࢆࡲ

  .௨௧௨௧ be an empty setࡿ
2. Set ࡿ ൌ ሼ࢙ଵ, . . , ,ሽ࢙ ሻࡿሺכࢆ ൌ ሾܼכሺ࢙ଵሻ, … , ሻሿ࢙ሺכܼ ൌ  ,ሻࢆሺܑ܌

and כࢄሺࡿሻ ൌ ሾכ࢞ሺ࢙ሻ, … ,  as the vector of ࢄࡲ = ሻሿ࢙ሺכ࢞
pseudo “observations” and pseudo “covariates”.  

3. Apply least trimmed squares (LTS) [13] to identify a robust 
subset of ࡿ, defined as כࡿ, and set ࡿ௧௦௧

כ ൌ ࡿ െ  The size of .כࡿ
the subset  כࡿ is ہሺ݊    1ሻ/2ۂ by default.  

4. Estimate the parameter ࢼ based on כࢆሺכࡿሻ and כࢄሺכࡿሻ. Then 
calculate the absolute standard residuals of ࡿ௧௦௧

כ  as ࢋ ൌ
ඥሺ݊ െ  െ 1ሻ|כࢆሺࡿ௧௦௧

כ ሻ െ ௧௦௧ࡿሺכࢄ
כ ሻࢼ|/ԡכࢆሺࡿሻ െ   .ԡଶࢼሻࡿሺכࢄ

5. Find the minimal residual of the test set ࡿ௧௦௧
כ : 
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݁ ൌ minሼ݁ሽאௌೞ
כ .  

6. Update ࡿ௨௧௨௧ ൌ ௨௧௨௧ࡿ  ሼ࢙ሽ, כࡿ ൌ כࡿ  ሼ࢙ሽ, ௧௦௧ࡿ
כ ൌ

௧௦௧ࡿ
כ െ ሼ࢙ሽ. If ࡿ௧௦௧

כ  is not empty, go to step 4; otherwise, 
output the ordered set ࡿ௨௧௨௧ and terminate the algorithm. 

    The proposed FR algorithm provides an ordering of objects 
based on their agreements with the GLS model. To identify 
outliers, it plots and monitors the change of the minimal residual 
with the increasing size of the normal set כࡿ. A drastic drop 
implies that an outlier was added to כࡿ. This plot could also help 
identify masked or swamped objects. Readers are referred to [13] 
for details. A direct method for calculating the local differences 
can be achieved via robust mean functions such as median and 
trimmed mean. However, as indicated by our simulation study, 
this direct approach will deteriorate the performance of GLS. 
Recall that the statistical model of GLS has the form 
,ࢼࢄࡲሺۼ ~ ሻࢆሺܑ ்ࡲࢳࡲ  ߪ

ଶ்ࡲࡲሻ . If we replace the left hand 
side ܑ܌ሺࢆሻ ൌ  by medians or trimmed means, the right side ࢆࡲ
will remain unchanged and thus still employs the average 
matrix ࡲ. The increased bias caused by this inconsistency is much 
larger than the reduction of contamination effects achieved 
through robust means.  

4.4 Connections with Existing Methods 
    This section studies the connection between global (kriging) 
based [11, 12, 13], local statistics (LS) based [4-10], and the 
proposed GLS-SOD methods. First, we review the first two 
approaches: Kriging-SOD and LS-SOD. Kriging-SOD basically 
applies robust methods to estimate the parameters of a global 
kriging model. The method then uses the estimated statistical 
model to predict the ܼ attribute value of each sample location ࢙, 
denoted as መܼሺ࢙ሻ, based on the ܼ values of other locations. The 
standardized residual ൫ห መܼሺ࢙ሻ െ ܼሺ࢙ሻห/࢙ߪ൯ follows a standard 
normal distribution, where ࢙ߪ is the estimated standard deviation. 
If a residual is outside the range ሾെΦିଵሺ2/ߙሻ, Φିଵሺ2/ߙሻሿ, the 
corresponding object is reported as an outlier, where Φ is the 
CDF and ߙ is usually set as 0.05. The LS-SOD method assumes 
that ܑ܌ሺࢆሻ ~ ࡺሺߤ ڄ ,  ሻ can beࢆሺܑ܌ ሻ. The components inࡵଶߪ
regarded as i.i.d. sample points of a normal distribution ܰሺߤ,  .ଶሻߪ
Robust techniques are then designed to estimate ߤ and ߪ. The 
remaining steps are similar to Kriging-SOD. 
Theorem 5: Suppose that ்ࡲࢳࡲ ൌ  and the parameters of ࡵଶߪ
Kriging-SOD and GLS-SOD are correctly calculated by robust 
estimations, then Kriging-SOD and GLS-SOD are equivalent. 
Proof: For Kriging-SOD, we consider a universal kriging model 
[1], since other kriging models (e.g., ordinary kriging) are simply 
special cases. It suffices to prove that the standardized residuals 
calculated by Kriging-SOD and GLS-SOD are identical. Without 
loss of generality, we test the standardized residual of one 
particular sample point ܼሺ࢙ሻ. Let כࢆ ൌ ሾܼሺ࢙ଵሻ, … , ܼሺ࢙ିଵሻሿ் 
and ࢆ ൌ ,ࢀכࢆൣ ܼሺ࢙ሻ൧

T
. By Section 3.1 Equation 3, we have that 

,ࢼࢄሺࡺ~ࢆ ࡰ ሻ, whereࡰ ൌ   ߪ
ଶࡵ ൌ כ ࣌

்࣌ ߪ
ଶ൨ , Varሺכࢆሻ ൌ כ, 

Covሺܼሺ࢙ଵሻ, ሻכࢆ ൌ ો, and Var൫ܼሺ࢙ሻ൯ ൌ ߪ
ଶ.  

Then, the standard residual by Kriging-SOD is  

StdRsdିௌை൫ܼሺ࢙ሻ൯ ൌ
࢞ൣ

ࢼ்  ો܂ିכሺכࢆ െ ሻ൧ࢼכࢄ
ߪ െ ો܂ିכ࣌

 

The standard residual by LS-SOD is  

StdRsdீௌିௌை ቀdiff൫ܼሺ࢙ሻ൯ቁ ൌ ሺࡵߪ  ߪ
்ࡲࡲሻିଵ

ଶሺࢆࡲ െ ሻ൨ࢼࢄࡲ

 

The following will prove that  
StdRsdିௌை൫ܼሺ࢙ሻ൯ ൌ StdRsdீௌିௌை ቀdiff൫ܼሺ࢙ሻ൯ቁ 

The condition ்ࡲࢳࡲ ൌ ࡵଶߪimplies ࡵଶߪ  ߪ
்ࡲࡲ ൌ ்ࡲࢳࡲ 

ߪ
்ࡲࡲ ൌ ,்ࡲࡰࡲ and ሺࡵߪ  ሻିభ்ࡲࡲߪ

మ ൌ ሺ்ࡲࡰࡲሻିభ
మ ൌ ቀࡰࡲ

భ
మቁ

ିଵ
ൌ

భିࡰ
మିࡲଵ. It follows that ሺࡵߪ  ሻିభ்ࡲࡲߪ

మሺࢆࡲ െ ሻࢼࢄࡲ ൌ
భିࡰ

మିࡲଵሺࢆࡲ െ ሻࢼࢄࡲ ൌ భିࡰ
మሺࢆ െ  .ሻࢼࢄ

Further, given that ࡰ ൌ כ ࣌
்࣌ ߪ

൨, it can be readily derived that   

ଵିࡰ
ଶ ൌ

ۏ
ێ
ێ
ێ
ۍ
ቈଵ

ିଵ  ଶ
ିଵ

ଶିכଵ்࣌࣌ିכଵ

ଵ
ଶ



െ்࣌ିכଵ
ିଵ

ଶ 
ିଵ

ଶے
ۑ
ۑ
ۑ
ې
, 

where  ൌ ିכଵ െ  and ࢀ࣌࣌ߪ ൌ ߪ െ   .࣌ିכࢀ࣌

Then, ቂሺࡵߪ  ሻିభ்ࡲࡲߪ
మሺࢆࡲ െ ሻቃࢼࢄࡲ


ൌ ቂିࡰభ

మሺࢆ െ ሻቃࢼࢄ


ൌ

ቈିࡰభ
మ ࢼכࢄ

൨ࢼ࢞


ൌ െ
ିభ

మ்࣌ିכଵࢼכࢄ  
ିభ

మ࢞ࢼ ൌ ൛࢞
ࢼ் 

ો܂ିכሺכࢆ െ ߪሻൟ/ሺࢼכࢄ െ ો܂ିכ࣌ሻ. 
The above indicates that 

StdRsdିௌை൫ܼሺ࢙ሻ൯ ൌ StdRsdீௌିௌை ቀdiff൫ܼሺ࢙ሻ൯ቁ, 
We conclude that Kriging-SOD and GLS-SOD are equivalent.    � 

Theorem 6. If ்ࡲࢳࡲ ൌ ߪ ,ࡵଶߪ
ଶ்ࡲࡲ ൌ ߪ

ଶࡵ, the parameters of 
GLS-SOD and LS-SOD are correctly calculated by robust 
estimations, and one of the following conditions is true, then GLS-
SOD becomes equivalent  to LS-SOD. 
ࢼࢄ :ሻ has a constant trend (mean)࢙ሺࢆ (1) ൌ c۷, where c is a 

constant value.  
 ሻ is a linear trend of spatial coordinates, and each point࢙ሺࢆ (2)

s is the geometric center (or centroid) of its neighbors. 
Proof: For either condition (1) or (2), it can be readily derived 
that ࢼࢄࡲ ൌ . By conditions ்ࡲࢳࡲ ൌ ߪ and ࡵଶߪ

ଶ்ࡲࡲ ൌ ߪ
ଶࡵ, we 

have ࢆࡲ~ܰሺ0, ሺߪଶ  ߪ
ଶሻࡵሻ which is consistent with the i.i.d. 

assumption in LS-SOD. If we use the same robust methods to 
estimate the parameters, such as using median and median 
absolute deviation (MAD) to estimate the mean and standard 
deviation, then GLS-SOD becomes equivalent to LS-SOD.          � 
Discussion: By Theorem 6, LS-SOD is a special form of GLS-
SOD. LS-SOD assumes Var൫ܑ܌ሺࢆሻ൯ ൌ  ,ߪ for some constant ࡵߪ
but no justifications are presented. From this perspective, GLS-
SOD actually provides a theoretical foundation for LS-SOD. 
Section 3.1 discusses the situations where Var൫ܑ܌ሺࢆሻ൯ can be 
approximated by ሺߪଶ  ߪ

ଶሻࡵ. Furthermore, under the conditions 
of Theorem 6, LS-SOD is equivalent to GLS-SOD and since the 
conditions also include "்ࡲࢳࡲ ൌ  then by Theorem 4 we ,"ࡵଶߪ
have that GLS-SOD is equivalent to Kriging-SOD. Therefore, LS-
SOD becomes equivalent to Kriging-SOD in this situation. Hence, 
it can be seen that the proposed GLS framework can be 
parameterized to become instances of LS-SOD or Kriging-SOD. 
Further study on various outlier detection methods can be greatly 
enhanced under the lens of this unifying GLS framework. 
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    As discussed in Section 3.1, ்ࡲࢳࡲ can be reasonably 
approximated by ߪଶࡵ. From Theorem 5, the major difference 
between Kriging-SOD and GLS-SOD is for which approach the 
related model parameters can be estimated more accurately and 
efficiently. From this perspective, GLS-SOD is superior to 
Kriging-SOD based on three major reasons: First, GLS-SOD has 
less uncertainty than Kriging-SOD, since Kriging-SOD needs to 
further assume a semivariogram model. If the semivariogram 
model is not selected properly, the performance may be 
significantly impacted. Second, GLS-SOD is a convex 
optimization problem and therefore a global optimal solution 
exists. However, Kriging-SOD is a non-convex optimization 
problem and relies on an iteratively reweighted generalized least 
square (IRWGLS) approach [12] to determine a local solution. 
Finally, as shown in Section 5 simulations, GLS-SOD runtime 
performance is superior to Kriging-SOD.  

5. SIMULATIONS 
This section conducts extensive simulations to compare the 
performance between the proposed GLS based SOD methods and 
other related SOD methods. The experimental study follows the 
standard statistical approach for evaluating the performance of 
spatial outlier detection methods presented in [11, 12, 1, 2].  

5.1 Simulation Settings 
Data set: The simulation data are generated based on the 
following statistical model:  

ܼሺ࢙ሻ ൌ ࢼሻ࢙ሺࢀ࢞  ߱ሺ࢙ሻ  ߳ሺ࢙ሻ,                           (See Section 3.1) 

where ߱ሺ࢙ሻ is a Gaussian random field with covariogram model 
;ሺ݄ܥ   .ሻࣂ
    We consider two popular covariogram models: spherical model 
and exponential model. See Equation 8 in Section 3.2 for the 
definition of spherical model. The exponential model is defined as  

;ሺ݄ܥ ሻࣂ ൌ ൞
ܾ                                        ݂݅  ݄ ൌ 0
ܾ ቀ1 െ exp ቀെ 


ቁቁ        ݂݅ 0 ൏ ݄  ܿ

0                                       ݂݅ ݄  ܿ,
 

These two models have the same parameters ܾ and ܿ. Recall that 
ܾ is also the constant variance for each ܼሺ࢙ሻ.  
For the trend component ࢀ࢞ሺ࢙ሻࢼ, we define ࢞ሺ࢙ሻ ൌ  
ሾ1, ,ሻ࢙ሺݔ ,ሻ࢙ሺݕ ሻ࢙ሺݔ ڄ ,ሻ࢙ሺݕ ,ሻଶ࢙ሺݔ  ሻ be࢙ሺݕ ሻ and࢙ሺݔ ሻଶ ሿ, where࢙ሺݕ
the X and Y coordinates of the location ࢙.  This implies that the 
trend ࢞ሺ࢙ሻࢼ is a polynomial of order two. The nonlinearity of the 
trend is decided by the regression parameters ࢼ. For example, if 
ࢼ ൌ ሾ1,0,0,0,0,0ሿࢀ,then the trend is constant; if 
ࢼ ൌ ሾ1,1,1,0,0,0ሿࢀ, then the trend is linear. 
    For the white noise component, we employ the standard model: 

߳ሺ࢙ሻ~
ܰሺ0, ߪ

ଶሻ   with probability 1 െ        ߙ
 ܰሺ0, ߪ

ଶሻ   with probability ߙ               
 

    There are three related parameters ߪ, ߪ  and ߪ .ߙ
ଶ is the 

variance of a normal white noise, ߪ
ଶ is the variance of 

contaminated error that generates outliers, and ߙ is used to control 
the number of outliers. Note that it is possible the distribution 
ܰሺ0, ߪ

ଶሻ will also generate some normal white noises. All true 
outliers must be only identified based on standard statistical test 
by calculating the conditional mean and standard deviation for 
each observation [2]. We also consider the case of clustered 
outliers. This can be simulated by constraining that the noises of a 
random cluster of ݊ ڄ ,points follow ܰሺ0 ߙ ߪ

ଶሻ. In the simulations, 

we tested several representative settings for each parameter, 
which are summarized in Table 2.  

Table 2: Combination of Parameter settings 
Variable Settings 

݊ ݊ א 100, 200. Randomly generate ݊ spatial 
locations ሼ࢙ሽୀଵ

  in the range ሾ0,25ሿ ൈ ሾ0,25ሿ.  
ܾ, ܿ ܾ ൌ 5; ܿ ൌ 5,15,25 
ଵ~ܷሺ0,1ሻ andߚ ,For constant trend ࢼ ߚ ൌ 0, ݅ ൌ

2, … ,5; For linear trend, ሼߚଵ, ,ଶߚ ଷሽߚ א ܷሺ0,1ሻ, 
ߚ ൌ 0, ݅ ൌ 4,5,6; For nonlinear trend, ሼߚሽୀଵ

 א
ܷሺ0,1ሻ.  

,ߪ ߪ ߪ 
ଶ ൌ 2, 10; ߪ

ଶ ൌ 20 
ߙ ߙ ൌ 0.05, 0.10, 0.15. 
ܭ ܭ ൌ 4, 8 

Covariance 
model Exponential, spherical 

Outlier type Isolated, Clustered 

Outlier detection methods: We compared our methods with the 
state of the art local and global based SOD methods, including Z-
test [4], Median Z-test [6], Iterative Z-test [5], trimmed Z-test [7], 
SLOM-test [8], and universal kriging (UK) based forward search 
[11,12] (noted as UK-forward). Our proposed methods are 
identified as GLS-backward-G, GLS-backward-R, and GLS-
forward-R. GLS-backward-G refers to the GLS backward 
algorithm using generalized least squares regression. GLS-
backward-R refers to the GLS backward algorithm using regular 
least square regression (See Sections 4.2 and 4.3). The 
implementations of all existing methods are based on their 
published algorithm descriptions. 
Performance metric: We tested the performance of all methods 
for every combination of parameter setting in Table 2. For each 
specific combination, we ran the experiments six times and then 
calculated the mean and standard deviation of accuracy for each 
method. To compare the accuracies of each method, we used the 
standard ROC curves. We further collected accuracies of top 10, 
15, and 20 ranked outlier candidates for each method, and then 
the counts of winners are shown in Table 3. To calculate these 
winning counts, we used as an example the GLS-backward-R 
result in the top left cell of table 4: "47, 47, 45". This column 
refers to the constant trend cases. If within this particular case, we 
only consider the true accuracy of the top 10 candidate outliers, 
then the GLS-backward-R has “won” 47 times over all 
combination of parameters against all other methods. A win is 
given to the method that exhibits the highest accuracy. 
Consequently, if we consider the true accuracy of the top 20 
candidate outliers, then the GLS-backward-R has won 45 times.  
    All the simulations were conducted on a PC with Intel (R) Core 
(TM) Duo CPU, CPU 2.80 GHz, and 2.00 GB memory. The 
development tool is MATLAB 2008. 

5.2 Detection Accuracy 
We compared the outlier detection accuracies of different 
methods based on different combinations of parameter settings as 
shown in Table 2. Six representative results are displayed in 
Figure 3. First we considered the detection performance between 

(11) 
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local based methods. For a constant trend, our methods were 
competitive with existing techniques. For data sets exhibiting 
linear trends, our GLS algorithms achieved an average 10% 
improvement over existing local based methods. However, for 
data sets with nonlinear trends, our GLS algorithms exhibited 
more significant improvement (approximately 50% increase) over 
existing local methods. For the other combination of parameter 
settings in Table 2, the winning statistics for each method are 
displayed in Table 3. These results further justify the preceding 
performance results.  
    We also compared our GLS algorithms against the global based 
method UK-forward. Overall, our methods were comparable to 
UK-forward. Particularly, GLS-backward-G attained better 
accuracy than UK-forward on about half of the data sets. For the 
remaining data sets, the GLS-backward-G was still competitive to 
the UK-forward. Additionally, as shown in Section 5.3, the UK-
forward incurred a significantly much higher computational cost 
than the GLS algorithms. As discussed in section 4.1, when K is 
small, the effects of ߪ

ଶ்ࡲࡲ must be considered and a generalized 
least regression is necessary. The theorems indicate that GLS-
backward-G should perform better then GLS-backward-R, this 
was justified in Figure 3 c).  
 
Table 3: Competition statistics for different combinations of 
parameter settings. Each cell contains 3 values, representing 
the win times for the related method on the accuracies of top 
10, 15, and 20 ranked outlier candidates for all methods. 

Algorithm Constant 
Trend 

Linear Trend Nonlinear 
Trend 

GLS-backward-R 47, 47, 45 79, 72, 82 76, 81, 77 

GLS-backward-G 88, 86, 89 114,102,120 141,144, 138 

GLS-forward-R 13, 11, 14 22, 25, 27 40, 36, 47 

Z-test 47, 35, 40 29, 30, 13 0, 0, 0 

Iterative Z-test 35, 46, 63 16, 20, 21 0, 0, 0 

Median Z-test 20, 23, 29 1, 7, 8 0, 0, 0 

Trimmed Z-test 15, 23, 32 5, 13, 13 0, 0, 0 

SLOM-test 0,0, 0 0, 0, 0 0, 0, 0 

5.3 Computational Cost 
The comparison on computational cost is shown in Figure 2. The 
results indicate that the time cost of UK-forward is much higher 
than other methods. Even the second slowest method GLS-
backward-G, is still three times faster than UK-forward. The other 
local methods are approximately equal and hence much faster 
than UK-forward.  
    From the comparisons of both the accuracy and computational 
cost, it can be seen that our proposed GLS SOD algorithms 
(especially GLS-backward-G) is significantly more accurate than 
existing local based algorithms when the spatial data exhibits 
either a linear or nonlinear spatial trend. Our GLS algorithms are 
comparable to the global based method UK-forward on accuracy, 
but significantly faster than UK-forward.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 

6. CONCLUSTION AND FUTURE WORK 
This paper presents a generalized local statistical (GLS) 
framework for existing local based methods. This generalized 
statistical framework not only provides theoretical foundations for 
local based methods, but can also significantly enhance spatial 
outlier detection methods. This is the first paper to present the 
theoretical connection between local and global based SOD 
methods under the GLS framework. As future work we will 
design other algorithms to further improve the efficiency of the 
GLS backward and forward methods. 
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a) Constant trend, isolated outliers, ࢻ ൌ . , ࣌
 ൌ , ࢉ ൌ , ࡷ ൌ   b) Linear trend, isolated outliers, ࢻ ൌ . , ࣌

 ൌ , ࢉ ൌ , ࡷ ൌ ૡ  

c) Nonlinear trend, isolated outliers, ࢻ ൌ . , ࣌
 ൌ , ࢉ ൌ , ࡷ ൌ   d) Constant trend, cluster outliers, ࢻ ൌ . , ࣌

 ൌ , ࢉ ൌ , ࡷ ൌ   

e) Linear trend, cluster outliers, ࢻ ൌ . , ࣌
 ൌ , ࢉ ൌ , ࡷ ൌ ૡ  f) Nonlinear trend, cluster outliers, ࢻ ൌ . , ࣌

 ൌ , ࢉ ൌ , ࡷ ൌ ૡ  

Figure 3: Outlier ROC Curve Comparison (the same setting:  ൌ , ࢈ ൌ , ࣌
 ൌ )  
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