
DIME: Disposable Index for Moving Objects
Jing Dai

IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorne, NY, USA 10532

jddai@us.ibm.com

Chang-Tien Lu

Virginia Polytechnic Institute and State University
 7054 Haycock Road, Falls Church, VA, USA 22043

ctlu@vt.edu

Abstract—Increasing usage of location-aware devices, such as GPS
and RFID, has made moving object management an important
task. Existing spatial-temporal indexing techniques support
efficient queries on large number of moving objects. In these
techniques, significant I/O is consumed by removing obsolete
locations, which impairs the performance of moving object
management. On the other hand, some techniques have been
designed to index moving objects in main memory to facilitate
frequent location updates. However, they are limited by the size of
available memory. In this paper, we propose a generic spatial-
temporal index framework, Disposable Index for Moving objEcts
(DIME), to efficiently handle location management over mobile
agents with hybrid storage support. The proposed disposable
index framework eliminates delete operations on the spatial
indexing structure and processes insert operations in memory only.
Most existing spatial indexing structures can be adopted in this
generic framework. Both snapshot and continuous query
processing has been designed for this framework. Experimental
results on benchmark data sets demonstrated the scalability and
efficiency of DIME.

Keywords-Spatial index; moving objects; continuous query

I. INTRODUCTION
Moving object management is now a popular research task

due to the mature applications of location-aware devices.
Equipped with GPS or RFID, flights, vehicles, pedestrians, and
mobile sensors are able to continuously record and report their
locations. These locations can be acquired, stored, and queried
in moving object management systems for monitoring and
analysis. These systems, including flight monitoring, vehicle
management, and parental tracking, require efficient indexing
structures to handle both snapshot and continuous queries.
Snapshot queries retrieve moving objects based on their
locations at a given timestamp, e.g., “find all the cell phone
users in this park,” and “report the nearest gas station.”
Continuous queries keep refreshing the objects within the
monitoring ranges of mobile queries [4-6]. Examples include
“tracking all the patrol vehicles within 2 miles of the
Inauguration Parade,” and “monitoring ships within 10 miles of
this Coast Guard helicopter.”

Frequent location updates raise challenges to indexing
methods and query processing approaches, because real-time
response is a critical measure for moving object management
systems. Existing spatial access methods for moving objects,
including R*-tree-based approaches [1-4] and linear spatial
access methods [12-15], handle location updates by inserting
new locations and deleting old ones. In other words, each
location update needs to update the index twice. Although
some buffering techniques [5-7] can be applied to group the
delete operations, these deletions are eventually executed on
the index and consume substantial I/O resources. Memory-
based indexing techniques [8, 9] have been proposed to support
high update frequency. However, their applicability is limited

due to the competition on available memory with OS and other
applications. We will discuss this in more details in Section II.

Fig. 1 shows an example of object location update, where
the moving objects are indexed using an index tree. In this
example, the movement of the object o8 causes its deletion
from the leaf node D and insertion into the leaf node E.
Deleting the old location of o8 from D results in merging nodes
C and D, because the number of objects in D is now lower than
the minimum capacity of 2. Consequently, this node merging
operation is propagated upwards to nodes J and I, and then to
nodes M and N, due to the lower level merging. In this case, 7
(shaded nodes in Fig. 1) out of the 15 tree nodes need to be
reconstructed. Significant effort is devoted to removing the
obsolete information, thus degrading the performance. By
caching the delete operations [5], the update I/O cost could be
dramatically reduced. However, these cached delete operations
still need to revise the index structure at a certain time. We
observed that further improvement can be achieved if the delete
operations do not modify the index at all. On the other hand,
existing moving object indexing approaches are lack of a good
balance between the efficiency of memory-based indices and
the scalability of disk-based indices.

Fig. 1 An Example of Location Update

We propose an indexing framework, DIME (Disposable
Index for Moving objEcts), to eliminate delete operations on
the index structure and process insert operations only in
memory. Since the locations of moving objects are frequently
updated, location information can become obsolete quickly.
For this scenario, we provide a solution to reduce the
unnecessary I/O for delete operations. Instead of deleting the
obsolete location for each location update, a whole chunk of
the index will be detached without changing the internal
structure. In addition, a hybrid storage model is applied in
DIME so that the insert operations are only processed in the in-
memory component of the index, and the majority of the index
is still located on disk for search.

The basic idea is illustrated in Fig. 2. DIME consists of
multiple components (e.g., indexing trees) allocated based on
different time periods. Each component can be treated as an
independent index for the objects updated in a respective time
period. Only the most recent component is necessary to be

o1 o2 o3 o4 o5 o6 o7 o10 o11 o12 o13 o14 o15 o16 o8 o9

O

M N

I J K L
A B C D E F G H

2011 12th International Conference on Mobile Data Management

978-0-7695-4436-6/11 $26.00 © 2011 IEEE

DOI 10.1109/MDM.2011.69

62

2011 12th International Conference on Mobile Data Management

978-0-7695-4436-6/11 $26.00 © 2011 IEEE

DOI 10.1109/MDM.2011.69

68

2011 12th IEEE International Conference on Mobile Data Management

978-0-7695-4436-6/11 $26.00 © 2011 IEEE

DOI 10.1109/MDM.2011.69

68

stored in memory. There are three operations supported on each
component: insert a location, search locations, and dispose a
whole component. An object movement triggers an insertion on
the index in memory, and flags its old location as obsolete. A
search query traverses each in-memory and on-disk component
to identify the result. Taking the object movement in Fig. 1 as
an example, the new location of o8 will be inserted into a
current in-memory component (T+3∆t) of the index.
Meanwhile, its old location will be kept in its original index
node until that component (T+∆t) is disposed. Thus, DIME
requires no modifications on the indexing trees for deletion and
only processes insertion in the in-memory component.

Fig. 2 Location Update on Disposable Index

The proposed moving object access framework is
independent to the underlying indices applied on each
component. Either spatial tree indices (e.g., the R-trees) or
linear spatial indices (e.g., the B-trees with Space-filling
Curves) can be adopted for DIME. This design allows applying
appropriate indexing approaches for various application
scenarios, and being adaptive to potential spatial index
techniques in the future. In addition, this moving object index
structure is natively sliced based on the update timestamps for
hybrid storage management. The major contributions of this
paper are as follows:
� Proposal of a generic and efficient access framework

for managing moving objects: The disposable index is
designed to reduce the I/O cost for location updates, so
that frequent movements are efficiently supported;

� Enabling hybrid storage for moving objects: DIME
consists of multiple indexing components, and allocates
only the current component in memory, which handles
expensive updates. The disk-based components contribute
on search operations;

� Extension of disposable index for continuous queries:
The proposed framework has been extended to process not
only snapshot queries, but also continuous queries on
moving objects;

� Performance analyses and experiment evaluation:
Theoretical analyses and extensive experiments on
benchmark datasets have been conducted to demonstrate
the performance of the proposed index structure.

The rest of the paper is organized as follows. Section II
reviews the existing work on moving object management. The
preliminary of DIME is introduced in Section III. Section IV
proposes the operation algorithms. The performance analysis is
discussed in Section V, and the experiment results are
presented in Section VI. Finally, this work is concluded in
Section VII.

II. RELATED WORK
This section reviews existing moving object access

techniques, including indexing structure based on the R-trees
and the B-trees, and the corresponding continuous query
processing approaches.

As a popular multi-dimensional indexing structure, the R-
tree family [2], including the R*-tree [1] and the R+-tree [4],
provides a robust tradeoff between efficiency and
implementation complexity. The R-trees are usually considered
as costly for updating, which makes them unsuitable for
processing moving objects. Many approaches utilizing hashing
and lazy update techniques have been proposed to reduce the
update cost of the R-tree and its variants. The Frequent Update
R-tree (FUR-tree) [3] processes delete operations directly from
leaf nodes and simplifies insert operations if the location
change is small. Lazy update approaches utilize buffer memory
to reduce the I/O cost from another aspect. The R-tree with
update memos, RUM-tree [5], applies the main memory buffer
to cache delete operations, so that they can be processed later
when particular leaves are accessed. Lazy group update on the
R-tree, LGUR-tree [6], caches not only delete operations, but
also insert operations. Another approach, the RR-tree,
constructs a memory-based buffer tree in addition to the disk-
based R-tree to perform the lazy group update for both insert
and delete operations [7].

Benefitting from inexpensive update compared to the R-trees,
linear spatial indexing structures [10-13] based on B-trees and
Space-Filling Curves (SFC) have been proposed to manage
moving objects and process spatial-temporal queries. Among
these approaches, the Bx-tree [11] uses timestamps to partition
the B+-tree, and each partition indexes the locations of objects
within a certain period. Because each moving object is modeled
as a linear function of location and velocity, the Bx-tree can
handle the queries on current locations, as well as answer the
spatial queries for the near future. The BBx-tree [13] extends
the indexing ability of the Bx-tree by supporting spatial queries
for past locations. It applies a forest of trees; each tree
corresponds to a certain time period. The Bdual-tree [12]
improves the query performance of the Bx-tree by indexing
both locations and velocities. Dual space transformation is
applied in the Bdual-tree for efficient query access. The ST2B-
tree [14] provides the ability to partition space into SFC cells
with different granularity, and the partition granularity is
dynamically tuned based on the data distribution. The capacity
of each SFC cell is balanced for better query performance.

Recently in-memory indexing approaches for moving object
management [8, 9] have been proposed to efficiently handle
location data streams. The availability of main memory is the
main constraint to these approaches on large datasets, because a
real data server needs to supply fundamental software and
functions, including OS, management and maintenance
components in DBMS, and indices of other data tables. For
instance, the in-memory R-tree solution [8] requires a roughly
2GB R-tree for 100M objects (2% of mobile subscribers world
wide), which may use up the available memory in a loaded
4GB Linux system. This issue becomes more critical when
versioning techniques are applied for concurrency control.
Using hash tables for updates in memory [9] cannot support
spatial queries on the recently updated locations, which
introduces potential inconsistency.

 (x, y) (x’, y’)
o8

o8’

T+∆t T+2∆t T+3∆t T(Disposed)

Disposable Index

In Memory

On Disk

636969

A straightforward approach to answer continuous queries is
to process these queries as range queries periodically. However,
it is not feasible when the number of continuous queries is
large. Several approaches based on R-trees or hash tables have
been proposed to process the continuous moving queries over
moving objects by indexing both objects and queries. SINA [15]
manages objects and queries by using hashing techniques, and
incrementally processes positive and negative updates. Another
approach, MAI [16], constructs motion-sensitive indices for
objects and queries by modeling their movements, so that
prediction queries for the near future can be supported. A
generic framework for continuous queries on moving objects
[17] has been proposed to optimize the communication and
query reevaluation costs due to frequent location updates.
Recently, concurrent continuous query processing on the R-tree
[18] and linear spatial indices [19] have been proposed to
support concurrent operations for moving object management.

The disposable index framework for moving objects
proposed in this paper is applicable to both the R-tree family
and the linear spatial indices. It is capable of reducing the I/O
costs of location updates and providing a hybrid storage model
on these indices.

III. PRELIMINARY
Before presenting the construction of DIME and the

corresponding query processing algorithms, we introduce the
overall design of the proposed framework.

A. Terms and Assumptions
In this framework, as illustrated in Fig. 4, a new component

of spatial index is constructed after every period ∆t, (namely,
phase). ∆t is defined as ∆tmn/n, where ∆tmn is the maximum
time interval for any moving object to report its new location,
and n is the number of phases in each ∆tmn. Each component is
an independent spatial index to index the locations updated in a
corresponding period ∆t, with lifetime (n+1)*∆t. During its
lifetime, an indexing component can be traversed to answer
spatial queries, but does not respond to any delete operations. A
component only resides in memory and handles insert
operations during its first phase. After the first phase, it is
moved to the secondary storage. After being initiated for (n+1)
phases, based on the definition of ∆tmn, a component only
contains obsolete locations, and thus is entirely disposed. In
case that there is an object has not been updated before disposal,
it shall be inserted into the constructing component based on
the old location and velocity. Note that ∆t can be adjusted
according to application scenarios to ensure the max number of
updates in a phase can fit in memory. The above concepts are
summarized in TABLE I.

To specifically describe the problem, several assumptions
for the system environment are made as follows:

Point object: Each moving object is represented as a spatial
point; each object periodically reports its current location.

Window query: Each query window is represented as a
spatial box; each query submits its query window to the
database once.

Continuous query: Each continuous query is represented as
a moving window; each query periodically refreshes its new
query window.

In addition, we assume that the moving objects log their last
report timestamp and send it along with the new report. Thus
update operations can easily locate the obsolete locations in the
proposed index framework.

TABLE I. TERMS AND NOTATIONS
Concept Expression Description
Maximum
time interval

∆tmn Maximum time interval for moving objects to
update locations

Phase ∆t = ∆tmn/n Time interval to construct an indexing
component

Component Ct Indexing component constructed by timestamp t
Lifetime Lt = (n+1)*∆t Time period from constructing an indexing

component to disposing it

B. Framework

Fig. 4 Framework of DIME

A moving object access framework for DIME is designed as
follows. This framework consists of a set of indexing
components for snapshot query processing, and two auxiliary
indices for continuous query processing, as shown in Fig. 4.
The supported spatial operations are location update, window
search, object movement, and query movement. Location
update takes object ID, velocity, last update time, current time,
and new location as inputs, and updates the object index.
Window search takes query ID as input, and outputs the set of
objects covered by the query window. Object/query movement
(occurs in continuous query processing) updates location on

Update
Insert new location
& Log deletion

Search
Scan each
indexing
component

Continuous Query
Object movement
Query movement

T+∆t T+n∆tT (Obsolete)

Q-index

…

…

R-table

T+2∆t

 Memory Disk

Fig. 3 An Example of Moving Objects and the In-memory Components of DIME with B+-trees at t0, t1, and t2

B

A 0

6

6 8 15

Data
Pages

 …

5

15

12

t0

P1 P2 P3 P4 P5 P6

5

5 6

Data
Pages …

3

12

12

t1

P1 P2 P3 P5

9

9 14

Data
Pages

 …

3

15

15

t2

P5 P6 P1 P4

P1 P2

P3

P4

P5 P6

1

4

2

12 10 11

14 13 9 8

0

7

15

5 3

t0

t1

t2

6

647070

object/query index, searches on query/object index, and
refreshes continuous query results.
DIME is a generic framework, as most spatial indexing

structures can be applied to construct the indexing components.
To better demonstrate the design and the algorithms, we apply
the R*-tree and a linear spatial index (B+-tree integrated with
SFC) correspondingly in this section. The Hilbert Space-Filling
curve [20], which preserves the spatial proximity of objects, is
applied to divide the space into non-overlapped cells, and map
each object into a particular cell and each query window into a
set of corresponding cells. Thus the cell IDs of moving objects
can then be indexed by a B+-tree. Each entry in the leaf nodes
of the B+-tree points to the data page that stores the objects in
its corresponding cell.

To process the continuous queries over moving objects with
efficiency and scalability, an additional index (Q-index) is
applied to index current locations of queries, and another hash
table (R-table) stores the query results. To collaborate with
DIME based on the R*-tree, Q-index can be implemented as
another R-tree. In case the B+-tree and SFC are used in DIME,
the cell IDs of moving queries can be indexed in Q-index by a
hash table, where the cell IDs are hash keys and the pointers to
the corresponding queries are the contents in each bucket.

C. Illustrative Examples
Examples of moving object dataset indexed by DIME are

illustrated in Fig. 3 and Fig. 5, utilizing the B+-tree with SFC
and the R-tree respectively. In these examples, object locations
at three timestamps, t0, t1, and t2 are included. Note that t1 = t0
+ ∆t, and t2 = t1 + ∆t. For each timestamp, a B+-tree (in Fig. 3)
or an R-tree (in Fig. 5) is constructed in memory to index only
the objects that report new locations during ∆t.

In Fig. 3, the whole 2-dimensional space is divided into
equal-sized square cells associated with 1-dimensional IDs
using a Hilbert curve of order 3. The B+-tree for t0 is
constructed in memory as the initial indexing component. In
this initial component, all the existing moving objects at
timestamp t0 are indexed based on their SFC cell IDs. Any
object that updates its location between t0 and t1 has its new
location indexed in the t1 component, and marks the old
location as obsolete in the log for the component t0. Similarly,
the B+-tree for t2 is the indexing component for all the moving
objects that update locations between t1 and t2. In case the
maximum time interval contains 2 phases, the indexing
components for t1 and t2 are expected to cover all the moving
objects. When the indexing component for t2 is completely
constructed, the indexing component for t0 can be disposed.
Therefore, at any time, DIME contains n read-only constructed

indexing components and one in-memory constructing
indexing component.

In Fig. 5, initially an in-memory R-tree with 3 leaf nodes
covers all the 9 objects at t0. There are 6 location updates
between t0 and t1, and a two-layer R-tree is built for these new
locations. Similarly, another R-tree is constructed for the
locations updated between t1 and t2. The tree for t0 is copied to
secondary storage at t1. In this example, assuming n equals to 2,
the object P8 has not been updated for n*∆t at t2. Therefore, the
new location for P8 is estimated based on its old location and
velocity (assuming is 0) at t0, and is inserted into the R-tree for
t2. After this update, the indexing components for t1 and t2
cover all the moving objects, and the R-tree for t0 can be
entirely removed.

For location update in DIME, each indexing component does
not change after being completely constructed. A location
update calculates its new location based on the timestamp of
the in-memory constructing indexing component. Then it
inserts the new location into that component, and flags the
deletion of its old location in a constructed component. If an
object does not update after the maximum time interval
∆tmn(e.g., P8 in Fig. 5), the system will need to estimate its new
location and insert it into the current constructing component.
On the other hand, a window query needs to traverse all these
components to retrieve the qualified objects, since the whole
set of moving objects are covered by n indexing components.
In these traversals, the query windows are revised based on the
object velocities and component timestamps. Detailed
algorithms for update and query processing are presented in
Section IV.

Q-index R-table
Cell: 5 6 8 9 11 Query: A B
Query: A A B A B Object: P2, P3 P4

Fig. 6 Q-index for queries and R-table for results in Fig. 3 at t0

For scalable continuous query processing, an example of Q-
index for query index corresponding to queries in Fig. 3 is
shown in Fig. 6. Because the objects in this example are
indexed in linear spatial index, a hash table can be used to
index the query location. In the Q-index, each cell covered by
any query has an entry. These entries consist of the
corresponding queries, and can be efficiently accessed by a
given cell ID. In case the objects are indexed using the R-tree,
as demonstrated in Fig. 5, the Q-index can be implemented as
an R-tree. In addition to these indices, another hash table, R-
table, is used to store the query results in memory. In the R-
table, the query IDs are used as hash keys, and each entry
stores a list of objects covered by a particular query. Fig. 6
shows an example of the R-table for query results. Each entry

t0

t1

t2

t0 t2 t1

P8

P1

P2

P3

P4

P5

P6

P7

P9

P1

P2

P3

P4

P5

P6

P7

P8

P9

P1

P2 P3

P4

P6

P9

P3

P4

P5

P6 P7

P8
P9

Fig. 5 An Example of Moving Objects and the In-memory Components of DIME with R-trees at t0, t1, and t2

657171

of the R-table is associated with a query, and tracks the objects
covered by that corresponding query based on the current
database status.

For continuous query processing in DIME, an object
movement will update its location in the disposable indexing
structure, then search the Q-index for affected queries, and
finally refresh the corresponding query results in the R-table. A
query movement needs to search all the indexing components
for the objects covered by its new query range, update the
range in the Q-index, and refresh its query results in the R-table.
A query report operation simply visits the entry in the R-table
and outputs its object list.

IV. DISPOSABLE INDEX OPERATIONS
Operations on disposable index cover both snapshot and

continuous queries. Snapshot query processing introduces
location update and window search; continuous query
processing requires object movement, query movement, and
query report. Generic algorithms are presented in this section,
and a specific design for the B+-tree-based DIME is discussed
to illustrate how this framework works.

A. Snapshot Query Processing
Fundamental operations for snapshot query processing

include location update and window search. The algorithms of
these two operations are presented as follows.

1) Location Update: The operation of location update takes
the object ID, last update time, current update time, new
velocity, new location of the moving object, and the disposable
index as input parameters. Involved structures include the
disposable index, and a log buffer associated with each
indexing component. This operation inserts the new location
into the current indexing component, and reports the deletion of
the old location to the indexing component corresponding to
the last update time. Algorithm 1 presents the two phases of
location update on disposable index.

Algorithm 1. Location_Update

Phase 1 -- Insertion. In this phase, the algorithm first
calculates the current location of an object based on its velocity
and reported location. The location to be inserted is computed
as (Current Component’s Timestamp – reported Timestamp) *
reported Velocity + reported Location. Thus, all the moving
objects indexed in one component have normalized locations
based on the timestamp of the tree. In case that B+-trees are
adopted, this algorithm calculates the SFC cell that the

normalized location falls in, and uses the cell ID as the key to
insert it into the current B+-tree.

Phase 2 -- Deletion. The algorithm identifies the component
that has indexed the previous location of the object to be
deleted based on its last report timestamp. After that, a log is
added to that component indicating the deletion of this object.
In case the previous report timestamp corresponds to the
current component, a log will be added to record the object’s
valid location on the current component. This only happens on
objects that update more than once within a phase. With these
logs, there is no need for an actual deletion. When using the
B+-trees in this framework, the deletion information is added
to the associated log, and no tree modification is needed.

In the example in Fig. 3, the object in cell 0 at t0 reports its
current location l and velocity v at ts, where t0<ts<t1. The
system calculates its new location at t1 as lt1 = l + v * (t1 – ts),
which is mapped by the Hilbert Curve to cell 3. Then lt1 is
inserted into the leaf node for cell 3 in the current B+-tree for t1.
In phase 2, a log is created to indicate that this object for t0 is
obsolete.

2) Window Search: The window search operation takes the
current search time, a rectangular range, and the disposable
index as inputs, and outputs the objects that fall in the range at
the search time. This operation traverses each existing
component in the disposable index to retrieve objects, validates
these objects, and returns them as results. The detailed process
is described in Algorithm 2.

Algorithm 2. Window_Search

Phase 1 -- Parallel Search. In this phase, the algorithm
handles the window search on each component in the
disposable index. For each component, the search window
needs to be adjusted using the maximum velocity to multiply
the difference between the search time and index timestamp.
This window adjustment is similar to the corresponding
approach in the Bx-tree [11]. After retrieving the objects using
revised windows, for each component, the algorithm refines the
object set by adjusting their locations using each individual
velocity. Then the object set for each component is validated
against the obsolete logs to remove invalid objects, and is
returned. This phase can be executed on a parallel computing
structure to achieve optimal performance. When adopting the
B+-trees in DIME, this search operation needs to convert
adjusted query windows into intersected SFC cells. Then all the
existing B+-trees are traversed following the B+-tree search

Algorithm Window_Search
Input: TS_Q: Query Timestamp, Win: Query Window, DI: Disposable

Index of Objects
Output: Res: Set of Objects

//Phase1: Parallel Search
For (int i = 0; i < DI.count; i++)

Win[i] = DI[i].adjust (Win); //adjust Win according to the maximum
velocity of indexed objects in DI[i]

Res[i] = DI[i].search(Win[i]); //retrieve the objects covered by Win[i]
Res[i] = Res[i] – DI[i].obsolete_set; // remove the objects marked as

obsolete in DI[i]

//Phase2: Union
Res = �

i

is][Re ;

Return Res;

Algorithm Location_Update
Input: Oid: Object ID, TS_old: Last Update Timestamp, TS_new: New

Update Timestamp, loc_new: New Location of Object, vel_new:
New Velocity of the Object, DI: Disposable Index of Objects

Output: Nil

//Phase1: Insertion
loc_cur = (DI[now].TS – TS_new) * vel_new + loc_new;
DI[now].insert(loc_cur); //update current component to insert loc_cur

//Phase2: Deletion
DI[TO] = DI.find(TS_old); //find the component for object’s last update
If (DI[TO]!=DI[now])

DI[TO].flag_obsolete(Oid); //flag the deletion of Oid
Else

DI[now].flag_obsolete(Oid, loc_cur); //flag the valid location

Return;

667272

operation, and their associated logs are checked to return the
query results.

Phase 2 -- Union. In this phase, the search operation
generates the final result set as the union of the result sets from
each component.

For instance, assuming ∆tmn contains two phases, in the
example in Fig. 3, a window query issued at t2 needs to traverse
both the B+-trees for t1 and t2. Its original query window is
applied on the B+-tree for t2. A revised window, enlarged with
the maximum object velocity at t1, is applied on the B+-tree of
t1. The results from the B+-tree for t1 are then validated against
the obsolete logs of the tree to remove deleted locations, and
combine with the results from the B+-tree for t2 as the final
result set.

B. Continuous Query Processing
Utilizing the snapshot query processing as the fundamental,

continuous query processing can be designed by utilizing the
Q-index and R-table.

1) Object Movement: The operation of object movement
takes the object ID, last update time, current update time, new
velocity, new location of the moving object, as well as the
disposable index, Q-index and R-table, as input parameters.
This operation updates the object location on the indexing
components, identifies the queries that cover either the old
location or new location from the Q-index, and refreshes the
results of these queries in the R-table. Corresponding to the
above subtasks, the object movement algorithm contains 3
phases, namely, object location update, query search, and result
refresh.

Phase 1 -- Object Location Update. This operation
performs a location update (Algorithm 1) for the object. It
inserts the adjusted new location into the current component.
Then a log for deletion is added to the indexing component that
corresponds to the last update timestamp.

Phase 2 -- Query Search. It retrieves the queries that cover
the new location or old location of the object by looking up the
Q-index. The affected queries are retrieved by computing their
topological relation with the adjusted locations. In the B+-tree-
based DIME, the Q-index can be implemented as a hash table
as shown in Fig. 6. While the algorithm searches for the
intersected queries, the corresponding SFC cell IDs are used as
the keys to retrieve the queries. These queries are then further
verified by comparing to the new location or old location of the
moving object.

Phase 3 -- Result Refresh. The algorithm modifies the
entries in the R-table to refresh the query results. In this phase,
the object ID is removed from the entries corresponding to the
queries that the object is moving out of, and is added into the
entries for the queries that the object is moving into.

2) Query Movement: The proposed operation of query
movement updates the location of the given query in the Q-
index, as well as the results of this query in the R-table, so that
the database and query results are kept consistent. The query
movement takes the query ID, old query window, new query
window, and disposable index as input parameters. This
operation consists of three phases, object window search, query
location update, and result refresh.

Phase 1 -- Object Window Query. The algorithm traverses
all the existing indexing components to locate the objects
covered by the new query window, utilizing the
window_search algorithm (Algorithm 2). A set of objects are
retrieved at the end of this phase

Phase 2 -- Query Location Update. The algorithm updates
the corresponding entries of the Q-index by deleting the old
query window and inserting the new window. In case that B+-
trees are adopted for indexing objects, this algorithm converts
the query locations into intersected SFC cells, and uses these
cells as keys to update the corresponding entries in the hash-
based Q-index.

Phase 3 -- Result Refresh. The results of the given query in
the R-table are replaced with the objects retrieved in Phase 1.
Thus the R-table can correctly reflect the current query
locations and object locations.

V. PERFORMANCE
DIME reduces the location update cost by eliminating the

index modification for delete operations. As a popular
benchmark for spatio-temporal indices, the Bx-tree, which
constructs a new sub-tree for each phase, has demonstrated
outstanding performance for moving object management.
Therefore, we analyze the performance of B+-tree-based DIME
by comparing against the Bx-tree, in terms of I/O cost and
space cost.

A. I/O Cost
Assuming the cost of reading a disk page is DR, writing a

disk page is DW, traversing a disk-based B+-tree is DT, and
modifying this tree for insert/delete is DM, a typical
insert/delete operation costs DR+DW+DT+DM on a Bx-tree.
Given the size of moving object set N, both DT and DM are
proportional to logN. Since DIME does not require modifying
the B+-tree for delete operation, it only needs to log the deleted
object ID in memory, whose cost is a minor constant. To move
an in-memory component to secondary storage, DIME needs
constant I/O cost which is proportional to logN. In order to
dispose an obsolete indexing component, DIME requires one
I/O to mark the deletion of that B+-tree file and another disk
I/O to delete the corresponding data file. Therefore, the I/O cost
for disposing a component on DIME is constant. The overall
location update cost on a Bx-tree, including an insertion and a
deletion, can be calculated using the following expression:
2*(DR+DW+DT+DM). On the other hand, without the hybrid
storage design, the location update cost on DIME is only DR+
DW+DT+DM, which is half to that on a Bx-tree. With the
hybrid storage design, the disk I/O for update becomes memory
operation except for copying a component to and disposing a
component from disk.

The costs for a search operation on both the Bx-tree and
DIME are similar, because they use similar indexing structures
and both create new parts for every ∆t. The Bx-tree and DIME
both need to issue one adjusted query for each ∆t to accomplish
a search operation. Although DIME requires validating the
search results by checking the deletion log in memory, its cost
can be neglected comparing to disk I/O operations. Applying
the above notations, the search cost on the Bx-tree can be
represented as DT*(n+1) + DR*l, assuming l data pages are
retrieved on average. A search on DIME is DT*n + DR*l,

677373

because DIME has one component in memory and its traversal
cost is negligible. Practically, the Bx-tree may contain less
number of objects than DIME because it physically deletes
obsolete objects. However, the components in DIME are often
one level shorter than the Bx-tree, which compensates the
overhead from the slightly larger total size.

B. Space Cost
Similarly to the Bx-tree, DIME contains multiple

components that correspond to different time periods. Because
DIME does not delete the obsolete locations from the index
trees, it requires more space than the Bx-tree. Assume there are
n phases in both DIME and the Bx-tree, and k objects update
their locations in each phase, where k*n N. Because the size
of a B+-tree is proportional to the number of keys, it can be
denoted as p*k, where p indicates the size factor. Utilizing the
above notations, the size of DIME can be calculated. Based on
the design of the disposable index, there are n+1 B+-trees at
the same time. In those trees, n are fully constructed on disk
and one is being constructed in memory. In DIME, main
memory buffer is used to log the obsolete objects. Since only
the object IDs are stored in this buffer, the memory cost for
logging the obsolete objects is size_of(object ID) * (# of objects
in DIME - # of objects in dataset). Thus, the upper bound of the
buffer size is size_of(object ID) * ((n+1)*k - N). Therefore, the
total size of this index structure is n*p*k on disk and at most
p*k + size_of(object ID)* ((n+1)*k - N) in memory.

In the Bx-tree, the number of indexed objects is constant if
the object set is fixed. Therefore, the total size of this Bx-tree is
p*N on disk.

VI. EXPERIMENTS
To evaluate the performance of the proposed framework, a

set of extensive experiments on benchmark data sets have been
conducted by measuring the I/O cost (average number of disk
page accessed) of operations on moving objects. The
benchmark data sets were generated by a network-based
moving objects generator [21] using the road network of City
of Oldenburg. Three classes of moving objects and moving
queries were set to represent vehicles, bicycles, and pedestrians.
Half of the initial moving objects generated were used as
moving objects, and the rest of the initial objects were
expanded to range queries by specifying a certain size.
Meanwhile, the object movements simulated by the generator
were translated into object location updates (and query updates
for continuous query). Both B+-tree-based and R*-tree-based
DIMEs were conducted. The B+-trees were constructed as
indexing components based on the moving object set and the
Hilbert curve with different orders. The R*-trees were adopted
as components of R*-tree-based DIME.

For comparison, the query processing based on the Bx-tree
[11] was implemented. The Bx-tree creates a new sub-tree in
each phase, processes location updates by inserting new
locations and deleting old locations on different sub-trees. The
search operation on the Bx-tree traverses each sub-tree to find
the objects. We use Bx to represent the Bx-tree approach, and
DI for the B+-tree-based DIME, with a followed number to
indicate the order of the Hilbert Curve. Meanwhile,
comparisons between the R*-tree-based DIME and the
memory-based R*-tree were conducted based on throughputs.

DIME based on the R*-trees is indicated as DI_R. The
memory-based R*-tree only indexes spatial information, and it
was used to keep the current locations.

In the experiments, five parameters were varied to simulate
different application scenarios and demonstrate their respective
impacts on the system performance. These parameters are
listed in TABLE II.

The proposed framework was implemented using JDK 1.5.
The experiment system was built on a desktop with a Pentium-
D 2.8 GHz CPU and 1 GB memory assigned to JVM. When
comparing DI to Bx, average page accesses of ten rounds of
executions were counted without distinguishing disk and
memory operations, in order to demonstrate the performance of
DIME before taking advantage of in-memory processing. Note
that a higher order of Hilbert curve results in a larger tree but
less location comparisons during retrieval. To illustrate the
efficiency of hybrid storage and disposable components,
average throughputs of ten rounds were collected when
comparing DI_R to the memory-based R*-tree. Each round of
execution contains (Mobility + Q_ratio * Mobility) operations.
Each page was assigned 4 KB, and 10 pages were used as
buffer. The Q-index and R-table for continuous query
processing were stored in memory. A set of 300K initial
moving objects and moving queries were used in the
experiments.

TABLE II. EXPERIMENT PARAMETERS

Parameter Description Range Default
Order The order of the Hilbert curve applied. It

determines the number of cells for the whole
space.

8~10 8

Mobility The number of location updates for objects
issued in a phase.

25K~150
K

100K

Q_size The side length of query window for each
query (600 is about 2%). It simulates query
ranges in different applications.

100~600 100

Phase Number of indexing components
constructed in ∆t.

2~7 2

Q_ratio The number of queries (query location
updates for continuous query) compared to
Mobility.

5%~30% 25%

A. Snapshot Query Processing
1) Update I/O vs. Mobility: In this set of experiments, the

impact of mobility was studied by capturing the average
number of page accesses of location updates with different
component sizes. The experiment results on the B+-tree-based
solutions are illustrated in Fig. 7, where the X-axis indicates the
mobility value and the Y-axis represents the number of page
acesses per location update. Basically, a higher mobility means
more objects reporting their movements within one phase.
Consequently, when more movements need to be processed,
the size of each indexing component becomes larger. When the
SFC order was 8, the update cost became lower because the
heights of the trees were not changed, and a larger tree has less
channce for re-organization. As shown in Fig. 7, when the
mobility increased from 25K to 150K, the number of page
accesses of DI on all the data sets decreased from 2.5 to 2.1.
Interestingly, when the SFC order was 10, the I/O costs of
DIME and the Bx-tree increased along with the mobility.
Especially when the mobility changed from 25K to 100K, the
average numbe of page accesses of Bx increased from 6 to 6.8,
and the DI changed from 3 to 3.4. This was because the B+-

687474

trees increased the heights when the mobility changed from
25K to 50K. When the mobility was 50K or 75K, the indexing
trees were relatively sparse, therefore structure changes easily
occurred.

Comparing the average number of page accesses between
DIME and the Bx-tree, it is clear that the Bx-tree consumed
twice of DIME, for both order 8 and order 10 SFCs. This result
is consistent with the theoretical analysis in Section V. It’s
because that one update in DIME only needs to perform
insertion, while an update requires insertion and deletion in the
Bx-tree.

Fig. 7 Update I/O vs. Mobility on B+-tree-based DIME

On the other hand, Fig. 8 illustrates the throughputs of
update operations on the memory-based R*-tree and R*-tree-
based DIME. The update cost on the R*-tree was 2.6-2.8 times
of the corresponding DIME. The major reason was that delete
operations caused a significant amount of tree adjustments on
the R*-tree. Both DIME and the R*-tree slightly decreased
their throughputs when the mobility increased, because the
index size was increased.

Fig. 8 Update I/O vs. Mobility on R*-tree-based DIME

2) Search I/O vs. Mobility: The mobility determines the size
of each indexing component. This set of experiments
demonstrated the impact of mobility on search cost. The results
on the B+-tree-based solutions are visualized in Fig. 9, where
the X-axis indicates the number of location updates in each
phase and the Y-axis represents the average number of page
acesses in each search operation. The mobility was increased
from 25K to 150K in the experiments. When the order was 8,
there was no significant performance change observed for DI
and Bx as the mobility increased. Both DI_8 and Bx_8 spent
about 4 page accesses regardless the change of the mobility.
When the order of SFC was 10, a significant jump occurred
between 25K and 50K. The average number of page accesses
increased from 17 to 24 for both DI_10 and Bx_10, because the
height of each indexing component was increased when the

mobility reached 50K. After this jump, both DI_10 and Bx_10
had their number of page accesses stably between 24 and 25. In
this set of experiments, the search performance of DI and Bx
was very close. This observation matches the performance
analysis in Section V.

Fig. 10 compares the search performance between the
memory-based R*-tree and DIME. The memory-based R*-tree
achieved 25% higher throughput than DIME on average, and
decreased its throughput by 2/3 when the mobility increased
from 25K to 150K. This was because DIME needed to access
one in-memory component and one on-disk component to
retrieve the results, although each component was about 1/2 of
the corresponding R*-tree. Moreover, the increased mobility
resulted in larger indexing components, which caused higher
search costs.

Fig. 9 Search I/O vs. Mobility on B+-tree-based DIME

Fig. 10 Search I/O vs. Mobility on R*-tree-based DIME

3) Search I/O vs. Q_size: Performance of search operations
against query size of DIME was studied in this set of
experiments, as shown in Fig. 11 and Fig. 12. In these figures,
the X-axis indicates the Q_size (side length of the query
window) and the Y-axis represents the average number of page
acesses in each search operation. When the Q_size increases,
the query window covers more nodes in the indexing tree,
therefore more pages need to be accessed. As shown in Fig. 11,
when the Q_size increased from 100 to 600, the number of
page accesses of both DI_8 and Bx_8 increased from 4 to 25.
When the SFC order was set to 10, the average I/O costs of
both DI_10 and Bx_10 increased quickly from 25 to about 130.
The curves of order 10 rise faster than the curves of order 8 in
the figure, because the B+-trees with order 10 contain more
nodes, and the same area can cover more node in those trees
than the B+-trees with order 8.

When the Q_size exceeded 300, the performance of DIME
was slightly lower than that of Bx-tree. That was because the
Bx-tree kept deleting the obsolete location from the subtrees,

697575

which decreased the size of the index. Thus a query window
covered less nodes in the Bx-tree than in the disposable index.
This affected the performance especially for large queries.
When the query window was small, the impact of reduced size
of the Bx-tree was compensated by the design of seperated B+-
trees in disposable index. Concluded from this set of
experiments, the Bx-tree and the disposable index performed
similerly on search cost, and the Bx-tree slightly outperformed
the disposable index on large query windows.

Fig. 11 Search I/O vs. Q_size on B+-tree-based DIME

Fig. 12 Search I/O vs. Q_size on R*-tree-based DIME

Search performance of the R*-tree-based DIME and the
memory-based R*-tree with regards to the Q_size is presented
in Fig. 12. Both methods linearly decreased their search
throughputs by about 25% when the Q-size increased from100
to 600. It can be observed that the search performance on both
methods were sensitive to the Q_size.

4) Search I/O vs. Phases: The number of phases determines
the number of components exist in DIME, and the number of
subtrees in the Bx-tree. Since the R*-tree only captures a
snapshot of moving objects, its performance is not affected by
the number of phases, and was not discussed in this set of
experiments. This set of experiments varied the number of
phases from 2 to 7, and calculated the average number of page
accesses in one search operation. The results are illustrated in
Fig. 13, where the X-axis indicates the number of phases and
the Y-axis represents the average number of page accesses in
each search operation. Based on the search algorithm, all the
indexing components need to be searched to acquire a complete
result set. In this figure, both DI and Bx increased their I/O
costs linearly when the number of phases increased. For the
Hilbert Curve with order 8, the number of page accesses of
both DI and Bx increased from 4 to 14. When applying the
Hilbert Curve with order 10, the number of page accesses of
both approaches increased from 25 to above 80.

It can be noticed that with order 10, the disposable index
cost slightly less page accesses than the Bx-tree when it
contained more than 6 phases. This is because each indexing
component is designed as an independent B+-tree in the
disposable index, rather than as a subtree of a large integrated
tree in the Bx-tree. When the number of phases increased, this
benefit became more significant.

Fig. 13 Search I/O vs. Phases on B+-tree-based DIME

B. Continuous Query Processing
1) Movement I/O vs. Mobility: Fig. 14 and Fig. 15

demonstrate how the average number of page accesses in a
movement changed with regards to the mobility. In these
figures, the X-axis represents the mobility (from 25K to 150K),
and the Y-axis indicates the average number of page accesses in
a movement (object or query). Because a movement either
contains a location update (in object movement) or a window
search (in query movement), the shapes of the curves in Fig. 14
are actually the integrations of the curves in Fig. 7 and Fig. 9.
As shown in the figure, the Bx_8 spent over 70% more page
accesses than the DI_8, and the DI_10 cost 2.5 less page
accesses than the Bx_10.

Fig. 14 Movement I/O Cost vs. Mobility on B+-tree-based DIME

Fig. 15 Movement I/O Cost vs. Mobility on R*-tree-based DIME

707676

Similarly, the average throughputs of the memory-based R*-
tree and R*-tree-based DIME shown in Fig. 15 was the
integration of update throughput and search throughput
presented in Fig. 8 and Fig. 10 respectively. Since the update
cost of the R*-tree was higher than its search cost, the
movement cost of the R*-tree was dominated by its update cost.
Similarly, the combined throughput of DIME was dominated
by its search performance. As can be observed from the figure,
the throughputs of DIME were 2.2-1.8 times of the
corresponding memory-based R*-tree.

2) Movement I/O vs. Q_ratio: A larger Q_ratio indicates
more query movements in one phase. Fig. 16 and Fig. 17
illustrate the impact of Q_ratio to the I/O cost per movement.
In these figures, the X-axis represents the Q_ratio, and the Y-
axis indicates the average number of page accesses in a
movement (object or query). As shown in Fig. 16, when the
Q_ratio increased from 5% to 30%, the DI and Bx with order
10 increased their I/O costs significantly by 4 page accesses.
With order 8, both DI and Bx performed stably when the
Q_ratio changed. Similar to Fig. 7, the DI_8 and DI_10
outperformed the Bx_8 and Bx_10 correspondingly. These
results clearly demonstrated the optimized performance of the
disposable index.

Fig. 16 Movement I/O Cost vs. Q_ratio on B+-tree-based DIME

Fig. 17 Movement I/O Cost vs. Q_ratio on R*-tree-based DIME

As shown in Fig. 17, the memory-based R*-tree showed
stable I/O cost when the Q_ratio increased from 5 to 30,
because its update cost and search cost were comparable as can
be observed from Fig. 8 and Fig. 10. The I/O cost of R*-tree-
based DIME decreased from 41K to 32K when the Q-ratio
increased. That was because the search operations on DIME
cost much more than the updates.

In the above experiments, the performance of DIME
confirms the theoretical analyses in Section V. The B+-tree-
based DIME significantly outperformed the Bx-tree on location
updates and continuous query processing, with similar search

performance. On the other hand, the R*-tree-based DIME
improved over 160% of the update performance compared to
the memory-based R*-tree.

VII. CONCLUSIONS
This paper proposes a framework for moving object

management with optimized update cost and independent
indexing components. The proposed disposable index
framework eliminates the deletion of obsolete locations on
indexing trees and adopts hybrid storage to process the
insertion of new locations in main memory. Most of the
existing spatial indices can be adopted in the generic
framework of DIME. Snapshot and continuous query
operations are supported in DIME. Both the theoretical analysis
and experimental evaluation have been conducted to validate
that the proposed disposable index handles moving objects with
outstanding efficiency and scalability. This work provides
generic expandability of utilizing a variety of spatial indices,
and offers hybrid storage and the ability of parallel searching.

REFERENCES
[1] N. Beckmann, H. P. Kriegel, et al., "The R*-tree: An Efficient and

Robust Access Method for Points and Rectangles," In Proc. ACM
SIGMOD, 1990, p. 322-331.

[2] A. Guttman, "R-trees: A Dynamic Index Structure for Spatial Searching,"
In Proc. ACM SIGMOD, 1984, p. 47-57.

[3] M. L. Lee, W. Hsu, et al., "Supporting Frequent Updates in R-Trees: A
Bottom-Up Approach," In Proc. VLDB, 2003, p. 608-619.

[4] T. Sellis, N. Roussopoulos, et al., "The R+-tree: A Dynamic Index for
Multi-dimensional Objects," In Proc. VLDB, 1987, p. 507-518.

[5] X. Xiong and W. G. Aref, "R-trees with Update Memos," In Proc. IEEE
ICDE, 2006, p. 22-31.

[6] B. Lin and J. Su, "Handling Frequent Updates of Moving Objects," In
Proc. ACM CIKM 2005, p. 493-500.

[7] L. Biveinis, S. Saltenis, et al., "Main-memory Operation Buffering for
Efficient R-tree Update," In Proc. VLDB, 2006, p. 591-602.

[8] D. Sidlauskas, S. Saltenis, et al., "Trees or Grids? Indexing Moving
Objects in Main Memory," In Proc. ACM SIGSPATIAL GIS, 2009, p.
236-245.

[9] J. Dittrich, L. Blunschi, et al., "Indexing Moving Objects Using Short-
Lived Throwaway Indexes," In Proc. the 11th International Symposium
on Advances in Spatial and Temporal Databases, 2009, p. 189-207.

[10] C. S. Jensen, D. Tielsytye, et al., "Robust B+-Tree-Based Indexing of
Moving Objects," In Proc. MDM, 2006, p. 12-20.

[11] C. S. Jensen, D. Lin, et al., "Query and Update Efficient B+-Tree Based
Indexing of Moving Objects," In Proc. VLDB, 2004, p. 768-779.

[12] M. L. Yiu, Y. Tao, et al., "The Bdual-Tree: Indexing Moving Objects by
Space Filling Curves in the Dual Space," VLDB J, vol. 17, pp. 379-400,
May 2008.

[13] D. Lin, C. S. Jensen, et al., "Efficient Indexing of the Historical, Present,
and Future Positions of Moving Objects," In Proc. MDM, 2005, p. 59-66.

[14] S. Chen, B. C. Ooi, et al., "ST2B-tree: A Self-Tunable Spatio-Temporal
B+-tree for Moving Objects," In Proc. ACM SIGMOD, 2008, p. 29-42.

[15] M. F. Mokbel, X. Xiong, et al., "SINA: Scalable Incremental Processing
of Continuous Queries in Spatio-Temporal Databases," In Proc. ACM
SIGMOD, 2004, p. 321-330.

[16] B. Gedik, K.-L. Wu, et al., "Processing Moving Queries over Moving
Objects Using Motion-Adaptive Indexes," IEEE T Knowl Data En, vol.
18, pp. 651-668, May 2006.

[17] H. Hu, J. Xu, et al., "A Generic Framework for Monitoring Continuous
Spatial Queries over Moving Objects," In Proc. ACM SIGMOD, 2005, p.
479-490.

[18] J. Dai and C.-T. Lu, "C3: Concurrency Control on Continuous Queries
over Moving Objects," In Proc. ICDE, 2010, p. 121-132.

[19] J. Dai, C.-T. Lu, et al., "A Concurrency Control Protocol for
Continuously Monitoring Moving Objects," In Proc. MDM, 2009, p.
132-141.

[20] H. Sagan, Space Filling Curves. Berlin, Germany. Springer, 1994.
[21] T. Brinkhoff, "A Framework for Generating Network- Based Moving

Objects," Geoinformatica, vol. 6, pp. 153-180, Jun. 2002.

717777

