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Abstract—Increasing usage of location-aware devices, such as GPS 
and RFID, has made moving object management an important 
task. Existing spatial-temporal indexing techniques support 
efficient queries on large number of moving objects. In these 
techniques, significant I/O is consumed by removing obsolete 
locations, which impairs the performance of moving object 
management. On the other hand, some techniques have been 
designed to index moving objects in main memory to facilitate 
frequent location updates. However, they are limited by the size of 
available memory. In this paper, we propose a generic spatial-
temporal index framework, Disposable Index for Moving objEcts 
(DIME), to efficiently handle location management over mobile 
agents with hybrid storage support. The proposed disposable 
index framework eliminates delete operations on the spatial 
indexing structure and processes insert operations in memory only. 
Most existing spatial indexing structures can be adopted in this 
generic framework. Both snapshot and continuous query 
processing has been designed for this framework. Experimental 
results on benchmark data sets demonstrated the scalability and 
efficiency of DIME. 
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I. INTRODUCTION 
Moving object management is now a popular research task 

due to the mature applications of location-aware devices. 
Equipped with GPS or RFID, flights, vehicles, pedestrians, and 
mobile sensors are able to continuously record and report their 
locations. These locations can be acquired, stored, and queried 
in moving object management systems for monitoring and 
analysis. These systems, including flight monitoring, vehicle 
management, and parental tracking, require efficient indexing 
structures to handle both snapshot and continuous queries. 
Snapshot queries retrieve moving objects based on their 
locations at a given timestamp, e.g., “find all the cell phone 
users in this park,” and “report the nearest gas station.” 
Continuous queries keep refreshing the objects within the 
monitoring ranges of mobile queries [4-6]. Examples include 
“tracking all the patrol vehicles within 2 miles of the 
Inauguration Parade,” and “monitoring ships within 10 miles of 
this Coast Guard helicopter.”  

Frequent location updates raise challenges to indexing 
methods and query processing approaches, because real-time 
response is a critical measure for moving object management 
systems. Existing spatial access methods for moving objects, 
including R*-tree-based approaches [1-4] and linear spatial 
access methods [12-15], handle location updates by inserting 
new locations and deleting old ones. In other words, each 
location update needs to update the index twice. Although 
some buffering techniques [5-7] can be applied to group the 
delete operations, these deletions are eventually executed on 
the index and consume substantial I/O resources. Memory-
based indexing techniques [8, 9] have been proposed to support 
high update frequency. However, their applicability is limited 

due to the competition on available memory with OS and other 
applications. We will discuss this in more details in Section II. 

Fig. 1 shows an example of object location update, where 
the moving objects are indexed using an index tree. In this 
example, the movement of the object o8 causes its deletion 
from the leaf node D and insertion into the leaf node E. 
Deleting the old location of o8 from D results in merging nodes 
C and D, because the number of objects in D is now lower than 
the minimum capacity of 2. Consequently, this node merging 
operation is propagated upwards to nodes J and I, and then to 
nodes M and N, due to the lower level merging. In this case, 7 
(shaded nodes in Fig. 1) out of the 15 tree nodes need to be 
reconstructed. Significant effort is devoted to removing the 
obsolete information, thus degrading the performance. By 
caching the delete operations [5], the update I/O cost could be 
dramatically reduced. However, these cached delete operations 
still need to revise the index structure at a certain time. We 
observed that further improvement can be achieved if the delete 
operations do not modify the index at all. On the other hand, 
existing moving object indexing approaches are lack of a good 
balance between the efficiency of memory-based indices and 
the scalability of disk-based indices. 

 
Fig. 1 An Example of Location Update 

We propose an indexing framework, DIME (Disposable 
Index for Moving objEcts), to eliminate delete operations on 
the index structure and process insert operations only in 
memory. Since the locations of moving objects are frequently 
updated, location information can become obsolete quickly. 
For this scenario, we provide a solution to reduce the 
unnecessary I/O for delete operations. Instead of deleting the 
obsolete location for each location update, a whole chunk of 
the index will be detached without changing the internal 
structure. In addition, a hybrid storage model is applied in 
DIME so that the insert operations are only processed in the in-
memory component of the index, and the majority of the index 
is still located on disk for search.  

The basic idea is illustrated in Fig. 2. DIME consists of 
multiple components (e.g., indexing trees) allocated based on 
different time periods. Each component can be treated as an 
independent index for the objects updated in a respective time 
period. Only the most recent component is necessary to be 
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stored in memory. There are three operations supported on each 
component: insert a location, search locations, and dispose a 
whole component. An object movement triggers an insertion on 
the index in memory, and flags its old location as obsolete. A 
search query traverses each in-memory and on-disk component 
to identify the result. Taking the object movement in Fig. 1 as 
an example, the new location of o8 will be inserted into a 
current in-memory component (T+3∆t) of the index. 
Meanwhile, its old location will be kept in its original index 
node until that component (T+∆t) is disposed. Thus, DIME 
requires no modifications on the indexing trees for deletion and 
only processes insertion in the in-memory component. 

 
Fig. 2 Location Update on Disposable Index 

The proposed moving object access framework is 
independent to the underlying indices applied on each 
component. Either spatial tree indices (e.g., the R-trees) or 
linear spatial indices (e.g., the B-trees with Space-filling 
Curves) can be adopted for DIME. This design allows applying 
appropriate indexing approaches for various application 
scenarios, and being adaptive to potential spatial index 
techniques in the future. In addition, this moving object index 
structure is natively sliced based on the update timestamps for 
hybrid storage management. The major contributions of this 
paper are as follows: 
� Proposal of a generic and efficient access framework 

for managing moving objects: The disposable index is 
designed to reduce the I/O cost for location updates, so 
that frequent movements are efficiently supported; 

� Enabling hybrid storage for moving objects: DIME 
consists of multiple indexing components, and allocates 
only the current component in memory, which handles 
expensive updates. The disk-based components contribute 
on search operations; 

� Extension of disposable index for continuous queries: 
The proposed framework has been extended to process not 
only snapshot queries, but also continuous queries on 
moving objects; 

� Performance analyses and experiment evaluation: 
Theoretical analyses and extensive experiments on 
benchmark datasets have been conducted to demonstrate 
the performance of the proposed index structure.  

The rest of the paper is organized as follows. Section II 
reviews the existing work on moving object management. The 
preliminary of DIME is introduced in Section III. Section IV 
proposes the operation algorithms. The performance analysis is 
discussed in Section V, and the experiment results are 
presented in Section VI. Finally, this work is concluded in 
Section VII. 

II. RELATED WORK 
This section reviews existing moving object access 

techniques, including indexing structure based on the R-trees 
and the B-trees, and the corresponding continuous query 
processing approaches. 

As a popular multi-dimensional indexing structure, the R-
tree family [2], including the R*-tree [1] and the R+-tree [4], 
provides a robust tradeoff between efficiency and 
implementation complexity. The R-trees are usually considered 
as costly for updating, which makes them unsuitable for 
processing moving objects. Many approaches utilizing hashing 
and lazy update techniques have been proposed to reduce the 
update cost of the R-tree and its variants. The Frequent Update 
R-tree (FUR-tree) [3] processes delete operations directly from 
leaf nodes and simplifies insert operations if the location 
change is small. Lazy update approaches utilize buffer memory 
to reduce the I/O cost from another aspect. The R-tree with 
update memos, RUM-tree [5], applies the main memory buffer 
to cache delete operations, so that they can be processed later 
when particular leaves are accessed. Lazy group update on the 
R-tree, LGUR-tree [6], caches not only delete operations, but 
also insert operations. Another approach, the RR-tree, 
constructs a memory-based buffer tree in addition to the disk-
based R-tree to perform the lazy group update for both insert 
and delete operations [7].  

Benefitting from inexpensive update compared to the R-trees, 
linear spatial indexing structures [10-13] based on B-trees and 
Space-Filling Curves (SFC) have been proposed to manage 
moving objects and process spatial-temporal queries. Among 
these approaches, the Bx-tree [11] uses timestamps to partition 
the B+-tree, and each partition indexes the locations of objects 
within a certain period. Because each moving object is modeled 
as a linear function of location and velocity, the Bx-tree can 
handle the queries on current locations, as well as answer the 
spatial queries for the near future.  The BBx-tree [13] extends 
the indexing ability of the Bx-tree by supporting spatial queries 
for past locations. It applies a forest of trees; each tree 
corresponds to a certain time period. The Bdual-tree [12] 
improves the query performance of the Bx-tree by indexing 
both locations and velocities. Dual space transformation is 
applied in the Bdual-tree for efficient query access. The ST2B-
tree [14] provides the ability to partition space into SFC cells 
with different granularity, and the partition granularity is 
dynamically tuned based on the data distribution. The capacity 
of each SFC cell is balanced for better query performance. 

Recently in-memory indexing approaches for moving object 
management [8, 9] have been proposed to efficiently handle 
location data streams. The availability of main memory is the 
main constraint to these approaches on large datasets, because a 
real data server needs to supply fundamental software and 
functions, including OS, management and maintenance 
components in DBMS, and indices of other data tables. For 
instance, the in-memory R-tree solution [8] requires a roughly 
2GB R-tree for 100M objects (2% of mobile subscribers world 
wide), which may use up the available memory in a loaded 
4GB Linux system. This issue becomes more critical when 
versioning techniques are applied for concurrency control. 
Using hash tables for updates in memory [9] cannot support 
spatial queries on the recently updated locations, which 
introduces potential inconsistency. 
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A straightforward approach to answer continuous queries is 
to process these queries as range queries periodically. However, 
it is not feasible when the number of continuous queries is 
large. Several approaches based on R-trees or hash tables have 
been proposed to process the continuous moving queries over 
moving objects by indexing both objects and queries. SINA [15] 
manages objects and queries by using hashing techniques, and 
incrementally processes positive and negative updates. Another 
approach, MAI [16], constructs motion-sensitive indices for 
objects and queries by modeling their movements, so that 
prediction queries for the near future can be supported. A 
generic framework for continuous queries on moving objects 
[17] has been proposed to optimize the communication and 
query reevaluation costs due to frequent location updates. 
Recently, concurrent continuous query processing on the R-tree 
[18] and linear spatial indices [19] have been proposed to 
support concurrent operations for moving object management. 

The disposable index framework for moving objects 
proposed in this paper is applicable to both the R-tree family 
and the linear spatial indices. It is capable of reducing the I/O 
costs of location updates and providing a hybrid storage model 
on these indices.  

III. PRELIMINARY 
Before presenting the construction of DIME and the 

corresponding query processing algorithms, we introduce the 
overall design of the proposed framework. 

A. Terms and Assumptions 
In this framework, as illustrated in Fig. 4, a new component 

of spatial index is constructed after every period ∆t, (namely, 
phase). ∆t is defined as ∆tmn/n, where ∆tmn is the maximum 
time interval for any moving object to report its new location, 
and n is the number of phases in each ∆tmn. Each component is 
an independent spatial index to index the locations updated in a 
corresponding period ∆t, with lifetime (n+1)*∆t. During its 
lifetime, an indexing component can be traversed to answer 
spatial queries, but does not respond to any delete operations. A 
component only resides in memory and handles insert 
operations during its first phase. After the first phase, it is 
moved to the secondary storage. After being initiated for (n+1) 
phases, based on the definition of ∆tmn, a component only 
contains obsolete locations, and thus is entirely disposed. In 
case that there is an object has not been updated before disposal, 
it shall be inserted into the constructing component based on 
the old location and velocity. Note that ∆t can be adjusted 
according to application scenarios to ensure the max number of 
updates in a phase can fit in memory. The above concepts are 
summarized in TABLE I. 

To specifically describe the problem, several assumptions 
for the system environment are made as follows: 

Point object: Each moving object is represented as a spatial 
point; each object periodically reports its current location.  

Window query: Each query window is represented as a 
spatial box; each query submits its query window to the 
database once.  

Continuous query: Each continuous query is represented as 
a moving window; each query periodically refreshes its new 
query window. 

In addition, we assume that the moving objects log their last 
report timestamp and send it along with the new report. Thus 
update operations can easily locate the obsolete locations in the 
proposed index framework. 

TABLE I. TERMS AND NOTATIONS 
Concept Expression Description 
Maximum 
time interval 

∆tmn Maximum time interval for moving objects to 
update locations 

Phase ∆t = ∆tmn/n Time interval to construct an indexing 
component 

Component Ct Indexing component constructed by timestamp t 
Lifetime Lt = (n+1)*∆t Time period from constructing an indexing 

component to disposing it 

B. Framework 

 
Fig. 4 Framework of DIME 

A moving object access framework for DIME is designed as 
follows. This framework consists of a set of indexing 
components for snapshot query processing, and two auxiliary 
indices for continuous query processing, as shown in Fig. 4. 
The supported spatial operations are location update, window 
search, object movement, and query movement. Location 
update takes object ID, velocity, last update time, current time, 
and new location as inputs, and updates the object index. 
Window search takes query ID as input, and outputs the set of 
objects covered by the query window. Object/query movement 
(occurs in continuous query processing) updates location on 
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Fig. 3 An Example of Moving Objects and the In-memory Components of DIME with B+-trees at t0, t1, and t2 
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object/query index, searches on query/object index, and 
refreshes continuous query results.  
DIME is a generic framework, as most spatial indexing 

structures can be applied to construct the indexing components. 
To better demonstrate the design and the algorithms, we apply 
the R*-tree and a linear spatial index (B+-tree integrated with 
SFC) correspondingly in this section. The Hilbert Space-Filling 
curve [20], which preserves the spatial proximity of objects, is 
applied to divide the space into non-overlapped cells, and map 
each object into a particular cell and each query window into a 
set of corresponding cells. Thus the cell IDs of moving objects 
can then be indexed by a B+-tree. Each entry in the leaf nodes 
of the B+-tree points to the data page that stores the objects in 
its corresponding cell. 

To process the continuous queries over moving objects with 
efficiency and scalability, an additional index (Q-index) is 
applied to index current locations of queries, and another hash 
table (R-table) stores the query results. To collaborate with 
DIME based on the R*-tree, Q-index can be implemented as 
another R-tree. In case the B+-tree and SFC are used in DIME, 
the cell IDs of moving queries can be indexed in Q-index by a 
hash table, where the cell IDs are hash keys and the pointers to 
the corresponding queries are the contents in each bucket. 

C. Illustrative Examples 
Examples of moving object dataset indexed by DIME are 

illustrated in Fig. 3 and Fig. 5, utilizing the B+-tree with SFC 
and the R-tree respectively. In these examples, object locations 
at three timestamps, t0, t1, and t2 are included. Note that t1 = t0  
+ ∆t, and t2 = t1 + ∆t. For each timestamp, a B+-tree (in Fig. 3) 
or an R-tree (in Fig. 5) is constructed in memory to index only 
the objects that report new locations during ∆t. 

In Fig. 3, the whole 2-dimensional space is divided into 
equal-sized square cells associated with 1-dimensional IDs 
using a Hilbert curve of order 3. The B+-tree for t0 is 
constructed in memory as the initial indexing component. In 
this initial component, all the existing moving objects at 
timestamp t0 are indexed based on their SFC cell IDs. Any 
object that updates its location between t0 and t1 has its new 
location indexed in the t1 component, and marks the old 
location as obsolete in the log for the component t0. Similarly, 
the B+-tree for t2 is the indexing component for all the moving 
objects that update locations between t1 and t2. In case the 
maximum time interval contains 2 phases, the indexing 
components for t1 and t2 are expected to cover all the moving 
objects. When the indexing component for t2 is completely 
constructed, the indexing component for t0 can be disposed. 
Therefore, at any time, DIME contains n read-only constructed 

indexing components and one in-memory constructing 
indexing component. 

In Fig. 5, initially an in-memory R-tree with 3 leaf nodes 
covers all the 9 objects at t0. There are 6 location updates 
between t0 and t1, and a two-layer R-tree is built for these new 
locations. Similarly, another R-tree is constructed for the 
locations updated between t1 and t2. The tree for t0 is copied to 
secondary storage at t1. In this example, assuming n equals to 2, 
the object P8 has not been updated for n*∆t at t2. Therefore, the 
new location for P8 is estimated based on its old location and 
velocity (assuming is 0) at t0, and is inserted into the R-tree for 
t2. After this update, the indexing components for t1 and t2 
cover all the moving objects, and the R-tree for t0 can be 
entirely removed. 

For location update in DIME, each indexing component does 
not change after being completely constructed. A location 
update calculates its new location based on the timestamp of 
the in-memory constructing indexing component. Then it 
inserts the new location into that component, and flags the 
deletion of its old location in a constructed component. If an 
object does not update after the maximum time interval 
∆tmn(e.g., P8 in Fig. 5), the system will need to estimate its new 
location and insert it into the current constructing component. 
On the other hand, a window query needs to traverse all these 
components to retrieve the qualified objects, since the whole 
set of moving objects are covered by n indexing components. 
In these traversals, the query windows are revised based on the 
object velocities and component timestamps. Detailed 
algorithms for update and query processing are presented in 
Section IV. 

Q-index  R-table 
Cell: 5 6 8 9 11  Query: A B 
Query: A A B A B  Object: P2, P3 P4 

Fig. 6 Q-index for queries and R-table for results in Fig. 3 at t0 

For scalable continuous query processing, an example of Q-
index for query index corresponding to queries in Fig. 3  is 
shown in Fig. 6. Because the objects in this example are 
indexed in linear spatial index, a hash table can be used to 
index the query location. In the Q-index, each cell covered by 
any query has an entry. These entries consist of the 
corresponding queries, and can be efficiently accessed by a 
given cell ID. In case the objects are indexed using the R-tree, 
as demonstrated in Fig. 5, the Q-index can be implemented as 
an R-tree. In addition to these indices, another hash table, R-
table, is used to store the query results in memory. In the R-
table, the query IDs are used as hash keys, and each entry 
stores a list of objects covered by a particular query. Fig. 6 
shows an example of the R-table for query results. Each entry 
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of the R-table is associated with a query, and tracks the objects 
covered by that corresponding query based on the current 
database status.  

For continuous query processing in DIME, an object 
movement will update its location in the disposable indexing 
structure, then search the Q-index for affected queries, and 
finally refresh the corresponding query results in the R-table. A 
query movement needs to search all the indexing components 
for the objects covered by its new query range, update the 
range in the Q-index, and refresh its query results in the R-table. 
A query report operation simply visits the entry in the R-table 
and outputs its object list. 

IV. DISPOSABLE INDEX OPERATIONS 
Operations on disposable index cover both snapshot and 

continuous queries. Snapshot query processing introduces 
location update and window search; continuous query 
processing requires object movement, query movement, and 
query report. Generic algorithms are presented in this section, 
and a specific design for the B+-tree-based DIME is discussed 
to illustrate how this framework works. 

A. Snapshot Query Processing 
Fundamental operations for snapshot query processing 

include location update and window search. The algorithms of 
these two operations are presented as follows.  

1)  Location Update: The operation of location update takes 
the object ID, last update time, current update time, new 
velocity, new location of the moving object, and the disposable 
index as input parameters. Involved structures include the 
disposable index, and a log buffer associated with each 
indexing component. This operation inserts the new location 
into the current indexing component, and reports the deletion of 
the old location to the indexing component corresponding to 
the last update time. Algorithm 1 presents the two phases of 
location update on disposable index. 

 
Algorithm 1. Location_Update 

Phase 1 -- Insertion. In this phase, the algorithm first 
calculates the current location of an object based on its velocity 
and reported location. The location to be inserted is computed 
as (Current Component’s Timestamp – reported Timestamp) * 
reported Velocity + reported Location. Thus, all the moving 
objects indexed in one component have normalized locations 
based on the timestamp of the tree. In case that B+-trees are 
adopted, this algorithm calculates the SFC cell that the 

normalized location falls in, and uses the cell ID as the key to 
insert it into the current B+-tree. 

Phase 2 -- Deletion. The algorithm identifies the component 
that has indexed the previous location of the object to be 
deleted based on its last report timestamp. After that, a log is 
added to that component indicating the deletion of this object. 
In case the previous report timestamp corresponds to the 
current component, a log will be added to record the object’s 
valid location on the current component. This only happens on 
objects that update more than once within a phase. With these 
logs, there is no need for an actual deletion. When using the 
B+-trees in this framework, the deletion information is added 
to the associated log, and no tree modification is needed. 

In the example in Fig. 3, the object in cell 0 at t0 reports its 
current location l and velocity v at ts, where t0<ts<t1. The 
system calculates its new location at t1 as lt1 = l + v * (t1 – ts), 
which is mapped by the Hilbert Curve to cell 3. Then lt1 is 
inserted into the leaf node for cell 3 in the current B+-tree for t1. 
In phase 2, a log is created to indicate that this object for t0 is 
obsolete. 

2) Window Search: The window search operation takes the 
current search time, a rectangular range, and the disposable 
index as inputs, and outputs the objects that fall in the range at 
the search time. This operation traverses each existing 
component in the disposable index to retrieve objects, validates 
these objects, and returns them as results. The detailed process 
is described in Algorithm 2. 

 
Algorithm 2. Window_Search 

Phase 1 -- Parallel Search. In this phase, the algorithm 
handles the window search on each component in the 
disposable index. For each component, the search window 
needs to be adjusted using the maximum velocity to multiply 
the difference between the search time and index timestamp. 
This window adjustment is similar to the corresponding 
approach in the Bx-tree [11]. After retrieving the objects using 
revised windows, for each component, the algorithm refines the 
object set by adjusting their locations using each individual 
velocity. Then the object set for each component is validated 
against the obsolete logs to remove invalid objects, and is 
returned. This phase can be executed on a parallel computing 
structure to achieve optimal performance. When adopting the 
B+-trees in DIME, this search operation needs to convert 
adjusted query windows into intersected SFC cells. Then all the 
existing B+-trees are traversed following the B+-tree search 

Algorithm Window_Search 
Input: TS_Q: Query Timestamp, Win: Query Window, DI: Disposable 

Index of Objects 
Output: Res: Set of Objects 
 

//Phase1: Parallel Search 
For (int i = 0;  i < DI.count; i++) 

Win[i] = DI[i].adjust (Win); //adjust Win according to the maximum 
velocity of indexed objects in DI[i] 

Res[i] = DI[i].search(Win[i]); //retrieve the objects covered by Win[i] 
Res[i] = Res[i] – DI[i].obsolete_set; // remove the objects marked as 

obsolete in DI[i] 
 

//Phase2: Union 
Res = �

i

is ][Re ; 

Return Res; 

Algorithm Location_Update 
Input: Oid: Object ID, TS_old: Last Update Timestamp, TS_new: New 

Update Timestamp, loc_new: New Location of Object, vel_new: 
New Velocity of the Object, DI: Disposable Index of Objects 

Output: Nil 
 

//Phase1: Insertion 
loc_cur = (DI[now].TS – TS_new) * vel_new + loc_new; 
DI[now].insert(loc_cur); //update current component to insert loc_cur  
 

//Phase2: Deletion 
DI[TO] = DI.find(TS_old); //find the component for object’s last update 
If (DI[TO]!=DI[now]) 

DI[TO].flag_obsolete(Oid); //flag the deletion of Oid 
Else 

DI[now].flag_obsolete(Oid, loc_cur); //flag the valid location 
 

Return; 
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operation, and their associated logs are checked to return the 
query results. 

Phase 2 -- Union. In this phase, the search operation 
generates the final result set as the union of the result sets from 
each component. 

For instance, assuming ∆tmn contains two phases, in the 
example in Fig. 3, a window query issued at t2 needs to traverse 
both the B+-trees for t1 and t2. Its original query window is 
applied on the B+-tree for t2. A revised window, enlarged with 
the maximum object velocity at t1, is applied on the B+-tree of 
t1. The results from the B+-tree for t1 are then validated against 
the obsolete logs of the tree to remove deleted locations, and 
combine with the results from the B+-tree for t2 as the final 
result set. 

B. Continuous Query Processing 
Utilizing the snapshot query processing as the fundamental, 

continuous query processing can be designed by utilizing the 
Q-index and R-table.  

1) Object Movement: The operation of object movement 
takes the object ID, last update time, current update time, new 
velocity, new location of the moving object, as well as the 
disposable index, Q-index and R-table, as input parameters. 
This operation updates the object location on the indexing 
components, identifies the queries that cover either the old 
location or new location from the Q-index, and refreshes the 
results of these queries in the R-table. Corresponding to the 
above subtasks, the object movement algorithm contains 3 
phases, namely, object location update, query search, and result 
refresh.  

Phase 1 -- Object Location Update. This operation 
performs a location update (Algorithm 1) for the object. It 
inserts the adjusted new location into the current component. 
Then a log for deletion is added to the indexing component that 
corresponds to the last update timestamp. 

Phase 2 -- Query Search. It retrieves the queries that cover 
the new location or old location of the object by looking up the 
Q-index. The affected queries are retrieved by computing their 
topological relation with the adjusted locations. In the B+-tree-
based DIME, the Q-index can be implemented as a hash table 
as shown in Fig. 6. While the algorithm searches for the 
intersected queries, the corresponding SFC cell IDs are used as 
the keys to retrieve the queries. These queries are then further 
verified by comparing to the new location or old location of the 
moving object. 

Phase 3 -- Result Refresh. The algorithm modifies the 
entries in the R-table to refresh the query results. In this phase, 
the object ID is removed from the entries corresponding to the 
queries that the object is moving out of, and is added into the 
entries for the queries that the object is moving into.  

2) Query Movement: The proposed operation of query 
movement updates the location of the given query in the Q-
index, as well as the results of this query in the R-table, so that 
the database and query results are kept consistent. The query 
movement takes the query ID, old query window, new query 
window, and disposable index as input parameters. This 
operation consists of three phases, object window search, query 
location update, and result refresh. 

Phase 1 -- Object Window Query. The algorithm traverses 
all the existing indexing components to locate the objects 
covered by the new query window, utilizing the 
window_search algorithm (Algorithm 2). A set of objects are 
retrieved at the end of this phase  

Phase 2 -- Query Location Update. The algorithm updates 
the corresponding entries of the Q-index by deleting the old 
query window and inserting the new window. In case that B+-
trees are adopted for indexing objects, this algorithm converts 
the query locations into intersected SFC cells, and uses these 
cells as keys to update the corresponding entries in the hash-
based Q-index. 

Phase 3 -- Result Refresh. The results of the given query in 
the R-table are replaced with the objects retrieved in Phase 1. 
Thus the R-table can correctly reflect the current query 
locations and object locations. 

V. PERFORMANCE 
DIME reduces the location update cost by eliminating the 

index modification for delete operations. As a popular 
benchmark for spatio-temporal indices, the Bx-tree, which 
constructs a new sub-tree for each phase, has demonstrated 
outstanding performance for moving object management. 
Therefore, we analyze the performance of B+-tree-based DIME 
by comparing against the Bx-tree, in terms of I/O cost and 
space cost. 

A. I/O Cost 
Assuming the cost of reading a disk page is DR, writing a 

disk page is DW, traversing a disk-based B+-tree is DT, and 
modifying this tree for insert/delete is DM, a typical 
insert/delete operation costs DR+DW+DT+DM on a Bx-tree. 
Given the size of moving object set N, both DT and DM are 
proportional to logN. Since DIME does not require modifying 
the B+-tree for delete operation, it only needs to log the deleted 
object ID in memory, whose cost is a minor constant. To move 
an in-memory component to secondary storage, DIME needs 
constant I/O cost which is proportional to logN. In order to 
dispose an obsolete indexing component, DIME requires one 
I/O to mark the deletion of that B+-tree file and another disk 
I/O to delete the corresponding data file. Therefore, the I/O cost 
for disposing a component on DIME is constant. The overall 
location update cost on a Bx-tree, including an insertion and a 
deletion, can be calculated using the following expression: 
2*(DR+DW+DT+DM). On the other hand, without the hybrid 
storage design, the location update cost on DIME is only DR+ 
DW+DT+DM, which is half to that on a Bx-tree. With the 
hybrid storage design, the disk I/O for update becomes memory 
operation except for copying a component to and disposing a 
component from disk. 

The costs for a search operation on both the Bx-tree and 
DIME are similar, because they use similar indexing structures 
and both create new parts for every ∆t. The Bx-tree and DIME 
both need to issue one adjusted query for each ∆t to accomplish 
a search operation. Although DIME requires validating the 
search results by checking the deletion log in memory, its cost 
can be neglected comparing to disk I/O operations. Applying 
the above notations, the search cost on the Bx-tree can be 
represented as DT*(n+1) + DR*l, assuming l data pages are 
retrieved on average. A search on DIME is DT*n + DR*l, 
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because DIME has one component in memory and its traversal 
cost is negligible. Practically, the Bx-tree may contain less 
number of objects than DIME because it physically deletes 
obsolete objects. However, the components in DIME are often 
one level shorter than the Bx-tree, which compensates the 
overhead from the slightly larger total size. 

B. Space Cost 
Similarly to the Bx-tree, DIME contains multiple 

components that correspond to different time periods. Because 
DIME does not delete the obsolete locations from the index 
trees, it requires more space than the Bx-tree. Assume there are 
n phases in both DIME and the Bx-tree, and k objects update 
their locations in each phase, where k*n N. Because the size 
of a B+-tree is proportional to the number of keys, it can be 
denoted as p*k, where p indicates the size factor. Utilizing the 
above notations, the size of DIME can be calculated. Based on 
the design of the disposable index, there are n+1 B+-trees at 
the same time. In those trees, n are fully constructed on disk 
and one is being constructed in memory. In DIME, main 
memory buffer is used to log the obsolete objects. Since only 
the object IDs are stored in this buffer, the memory cost for 
logging the obsolete objects is size_of(object ID) * (# of objects 
in DIME - # of objects in dataset). Thus, the upper bound of the 
buffer size is size_of(object ID) * ((n+1)*k - N). Therefore, the 
total size of this index structure is n*p*k on disk and at most 
p*k + size_of(object ID)* ((n+1)*k - N) in memory.  

In the Bx-tree, the number of indexed objects is constant if 
the object set is fixed. Therefore, the total size of this Bx-tree is 
p*N on disk. 

VI. EXPERIMENTS 
To evaluate the performance of the proposed framework, a 

set of extensive experiments on benchmark data sets have been 
conducted by measuring the I/O cost (average number of disk 
page accessed) of operations on moving objects. The 
benchmark data sets were generated by a network-based 
moving objects generator [21] using the road network of City 
of Oldenburg. Three classes of moving objects and moving 
queries were set to represent vehicles, bicycles, and pedestrians. 
Half of the initial moving objects generated were used as 
moving objects, and the rest of the initial objects were 
expanded to range queries by specifying a certain size. 
Meanwhile, the object movements simulated by the generator 
were translated into object location updates (and query updates 
for continuous query). Both B+-tree-based and R*-tree-based 
DIMEs were conducted. The B+-trees were constructed as 
indexing components based on the moving object set and the 
Hilbert curve with different orders. The R*-trees were adopted 
as components of R*-tree-based DIME. 

For comparison, the query processing based on the Bx-tree 
[11] was implemented. The Bx-tree creates a new sub-tree in 
each phase, processes location updates by inserting new 
locations and deleting old locations on different sub-trees. The 
search operation on the Bx-tree traverses each sub-tree to find 
the objects. We use Bx to represent the Bx-tree approach, and 
DI for the B+-tree-based DIME, with a followed number to 
indicate the order of the Hilbert Curve. Meanwhile, 
comparisons between the R*-tree-based DIME and the 
memory-based R*-tree were conducted based on throughputs. 

DIME based on the R*-trees is indicated as DI_R. The 
memory-based R*-tree only indexes spatial information, and it 
was used to keep the current locations. 

In the experiments, five parameters were varied to simulate 
different application scenarios and demonstrate their respective 
impacts on the system performance. These parameters are 
listed in TABLE II. 

The proposed framework was implemented using JDK 1.5. 
The experiment system was built on a desktop with a Pentium-
D 2.8 GHz CPU and 1 GB memory assigned to JVM. When 
comparing DI to Bx, average page accesses of ten rounds of 
executions were counted without distinguishing disk and 
memory operations, in order to demonstrate the performance of 
DIME before taking advantage of in-memory processing. Note 
that a higher order of Hilbert curve results in a larger tree but 
less location comparisons during retrieval. To illustrate the 
efficiency of hybrid storage and disposable components, 
average throughputs of ten rounds were collected when 
comparing DI_R to the memory-based R*-tree. Each round of 
execution contains (Mobility + Q_ratio * Mobility) operations. 
Each page was assigned 4 KB, and 10 pages were used as 
buffer. The Q-index and R-table for continuous query 
processing were stored in memory. A set of 300K initial 
moving objects and moving queries were used in the 
experiments. 

TABLE II. EXPERIMENT PARAMETERS 

Parameter Description Range Default 
Order The order of the Hilbert curve applied. It 

determines the number of cells for the whole 
space. 

8~10 8 

Mobility The number of location updates for objects 
issued in a phase. 

25K~150
K 

100K 

Q_size The side length of query window for each 
query (600 is about 2%). It simulates query 
ranges in different applications. 

100~600 100 

Phase Number of indexing components 
constructed in ∆t. 

2~7 2 

Q_ratio The number of queries (query location 
updates for continuous query) compared to 
Mobility. 

5%~30% 25% 

A. Snapshot Query Processing 
1) Update I/O vs. Mobility: In this set of experiments, the 

impact of mobility was studied by capturing the average 
number of page accesses of location updates with different 
component sizes. The experiment results on the B+-tree-based 
solutions are illustrated in Fig. 7, where the X-axis indicates the 
mobility value and the Y-axis represents the number of page 
acesses per location update. Basically, a higher mobility means 
more objects reporting their movements within one phase. 
Consequently, when more movements need to be processed, 
the size of each indexing component becomes larger. When the 
SFC order was 8, the update cost became lower because the 
heights of the trees were not changed, and a larger tree has less 
channce for re-organization. As shown in Fig. 7, when the 
mobility increased from 25K to 150K, the number of page 
accesses of DI on all the data sets decreased from 2.5 to 2.1. 
Interestingly, when the SFC order was 10, the I/O costs of 
DIME and the Bx-tree increased along with the mobility. 
Especially when the mobility changed from 25K to 100K, the 
average numbe of page accesses of Bx increased from 6 to 6.8, 
and the DI changed from 3 to 3.4. This was because the B+-
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trees increased the heights when the mobility changed from 
25K to 50K. When the mobility was 50K or 75K, the indexing 
trees were relatively sparse, therefore structure changes easily 
occurred. 

Comparing the average number of page accesses between 
DIME and the Bx-tree, it is clear that the Bx-tree consumed 
twice of DIME, for both order 8 and order 10 SFCs. This result 
is consistent with the theoretical analysis in Section V. It’s 
because that one update in DIME only needs to perform 
insertion, while an update requires insertion and deletion in the 
Bx-tree. 

 
Fig. 7  Update I/O vs. Mobility on B+-tree-based DIME 

On the other hand, Fig. 8 illustrates the throughputs of 
update operations on the memory-based R*-tree and R*-tree-
based DIME. The update cost on the R*-tree was 2.6-2.8 times 
of the corresponding DIME. The major reason was that delete 
operations caused a significant amount of tree adjustments on 
the R*-tree. Both DIME and the R*-tree slightly decreased 
their throughputs when the mobility increased, because the 
index size was increased.  

 
Fig. 8  Update I/O vs. Mobility on R*-tree-based DIME 

2) Search I/O vs. Mobility: The mobility determines the size 
of each indexing component. This set of experiments 
demonstrated the impact of mobility on search cost. The results 
on the B+-tree-based solutions are visualized in Fig. 9, where 
the X-axis indicates the number of location updates in each 
phase and the Y-axis represents the average number of page 
acesses in each search operation. The mobility was increased 
from 25K to 150K in the experiments. When the order was 8, 
there was no significant performance change observed for DI 
and Bx as the mobility increased. Both DI_8 and Bx_8 spent 
about 4 page accesses regardless the change of the mobility. 
When the order of SFC was 10, a significant jump occurred 
between 25K and 50K. The average number of page accesses 
increased from 17 to 24 for both DI_10 and Bx_10, because the 
height of each indexing component was increased when the 

mobility reached 50K. After this jump, both DI_10 and Bx_10 
had their number of page accesses stably between 24 and 25. In 
this set of experiments, the search performance of DI and Bx 
was very close. This observation matches the performance 
analysis in Section V. 

Fig. 10 compares the search performance between the 
memory-based R*-tree and DIME. The memory-based R*-tree 
achieved 25% higher throughput than DIME on average, and 
decreased its throughput by 2/3 when the mobility increased 
from 25K to 150K. This was because DIME needed to access 
one in-memory component and one on-disk component to 
retrieve the results, although each component was about 1/2 of 
the corresponding R*-tree. Moreover, the increased mobility 
resulted in larger indexing components, which caused higher 
search costs.  

 
Fig. 9  Search I/O vs. Mobility on B+-tree-based DIME 

 
Fig. 10  Search I/O vs. Mobility on R*-tree-based DIME 

3) Search I/O vs. Q_size: Performance of search operations 
against query size of DIME was studied in this set of 
experiments, as shown in Fig. 11 and Fig. 12. In these figures, 
the X-axis indicates the Q_size (side length of the query 
window) and the Y-axis represents the average number of page 
acesses in each search operation. When the Q_size increases, 
the query window covers more nodes in the indexing tree, 
therefore more pages need to be accessed. As shown in  Fig. 11, 
when the Q_size increased from 100 to 600, the number of 
page accesses of both DI_8 and Bx_8 increased from 4 to 25. 
When the SFC order was set to 10, the average I/O costs of 
both DI_10 and Bx_10 increased quickly from 25 to about 130. 
The curves of order 10 rise faster than the curves of order 8 in 
the figure, because the B+-trees with order 10 contain more 
nodes, and the same area can cover more node in those trees 
than the B+-trees with order 8. 

When the Q_size exceeded 300, the performance of DIME 
was slightly lower than that of Bx-tree. That was because the 
Bx-tree kept deleting the obsolete location from the subtrees, 
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which decreased the size of the index. Thus a query window 
covered less nodes in the Bx-tree than in the disposable index. 
This affected the performance especially for large queries. 
When the query window was small, the impact of reduced size 
of  the Bx-tree was compensated by the design of seperated B+-
trees in disposable index. Concluded from this set of 
experiments, the Bx-tree and the disposable index performed 
similerly on search cost, and the Bx-tree slightly outperformed 
the disposable index on large query windows.   

 
Fig. 11 Search I/O vs. Q_size on B+-tree-based DIME 

 
Fig. 12 Search I/O vs. Q_size on R*-tree-based DIME 

Search performance of the R*-tree-based DIME and the 
memory-based R*-tree with regards to the Q_size is presented 
in Fig. 12. Both methods linearly decreased their search 
throughputs by about 25% when the Q-size increased from100 
to 600. It can be observed that the search performance on both 
methods were sensitive to the Q_size.  

4) Search I/O vs. Phases: The number of phases determines 
the number of components exist in DIME, and the number of 
subtrees in the Bx-tree. Since the R*-tree only captures a 
snapshot of moving objects, its performance is not affected by 
the number of phases, and was not discussed in this set of 
experiments. This set of experiments varied the number of 
phases from 2 to 7, and calculated the average number of page 
accesses in one search operation. The results are illustrated in 
Fig. 13, where the X-axis indicates the number of phases and 
the Y-axis represents the average number of page accesses in 
each search operation. Based on the search algorithm, all the 
indexing components need to be searched to acquire a complete 
result set. In this figure, both DI and Bx increased their I/O 
costs linearly when the number of phases increased. For the 
Hilbert Curve with order 8, the number of page accesses of 
both DI and Bx increased from 4 to 14. When applying the 
Hilbert Curve with order 10, the number of page accesses of 
both approaches increased from 25 to above 80. 

It can be noticed that with order 10, the disposable index 
cost slightly less page accesses than the Bx-tree when it 
contained more than 6 phases. This is because each indexing 
component is designed as an independent B+-tree in the 
disposable index, rather than as a subtree of a large integrated 
tree in the Bx-tree. When the number of phases increased, this 
benefit became more significant. 

 
Fig. 13 Search I/O vs. Phases on B+-tree-based DIME 

B. Continuous Query Processing 
1) Movement I/O vs. Mobility: Fig. 14 and Fig. 15 

demonstrate how the average number of page accesses in a 
movement changed with regards to the mobility. In these 
figures, the X-axis represents the mobility (from 25K to 150K), 
and the Y-axis indicates the average number of page accesses in 
a movement (object or query). Because a movement either 
contains a location update (in object movement) or a window 
search (in query movement), the shapes of the curves in Fig. 14 
are actually the integrations of the curves in Fig. 7 and Fig. 9. 
As shown in the figure, the Bx_8 spent over 70% more page 
accesses than the DI_8, and the DI_10 cost 2.5 less page 
accesses than the Bx_10. 

 
Fig. 14 Movement I/O Cost vs. Mobility on B+-tree-based DIME 

 
Fig. 15 Movement I/O Cost vs. Mobility on R*-tree-based DIME 

707676



Similarly, the average throughputs of the memory-based R*-
tree and R*-tree-based DIME shown in Fig. 15 was the 
integration of update throughput and search throughput 
presented in Fig. 8 and Fig. 10 respectively. Since the update 
cost of the R*-tree was higher than its search cost, the 
movement cost of the R*-tree was dominated by its update cost. 
Similarly, the combined throughput of DIME was dominated 
by its search performance. As can be observed from the figure, 
the throughputs of DIME were 2.2-1.8 times of the 
corresponding memory-based R*-tree. 

2) Movement I/O vs. Q_ratio: A larger Q_ratio indicates 
more query movements in one phase. Fig. 16 and Fig. 17 
illustrate the impact of Q_ratio to the I/O cost per movement. 
In these figures, the X-axis represents the Q_ratio, and the Y-
axis indicates the average number of page accesses in a 
movement (object or query). As shown in Fig. 16, when the 
Q_ratio increased from 5% to 30%, the DI and Bx with order 
10 increased their I/O costs significantly by 4 page accesses. 
With order 8, both DI and Bx performed stably when the 
Q_ratio changed. Similar to Fig. 7, the DI_8 and DI_10 
outperformed the Bx_8 and Bx_10 correspondingly. These 
results clearly demonstrated the optimized performance of the 
disposable index. 

 
Fig. 16 Movement I/O Cost vs. Q_ratio on B+-tree-based DIME 

 
Fig. 17 Movement I/O Cost vs. Q_ratio on R*-tree-based DIME 

As shown in Fig. 17, the memory-based R*-tree showed 
stable I/O cost when the Q_ratio increased from 5 to 30, 
because its update cost and search cost were comparable as can 
be observed from Fig. 8 and Fig. 10. The I/O cost of R*-tree-
based DIME decreased from 41K to 32K when the Q-ratio 
increased. That was because the search operations on DIME 
cost much more than the updates. 

In the above experiments, the performance of DIME 
confirms the theoretical analyses in Section V. The B+-tree-
based DIME significantly outperformed the Bx-tree on location 
updates and continuous query processing, with similar search 

performance. On the other hand, the R*-tree-based DIME 
improved over 160% of the update performance compared to 
the memory-based R*-tree. 

VII. CONCLUSIONS 
This paper proposes a framework for moving object 

management with optimized update cost and independent 
indexing components. The proposed disposable index 
framework eliminates the deletion of obsolete locations on 
indexing trees and adopts hybrid storage to process the 
insertion of new locations in main memory. Most of the 
existing spatial indices can be adopted in the generic 
framework of DIME. Snapshot and continuous query 
operations are supported in DIME. Both the theoretical analysis 
and experimental evaluation have been conducted to validate 
that the proposed disposable index handles moving objects with 
outstanding efficiency and scalability. This work provides 
generic expandability of utilizing a variety of spatial indices, 
and offers hybrid storage and the ability of parallel searching.  

REFERENCES 
[1] N. Beckmann, H. P. Kriegel, et al., "The R*-tree: An Efficient and 

Robust Access Method for Points and Rectangles," In Proc. ACM 
SIGMOD, 1990,  p. 322-331. 

[2] A. Guttman, "R-trees: A Dynamic Index Structure for Spatial Searching," 
In Proc. ACM SIGMOD, 1984,  p. 47-57. 

[3] M. L. Lee, W. Hsu, et al., "Supporting Frequent Updates in R-Trees: A 
Bottom-Up Approach," In Proc. VLDB, 2003,  p. 608-619. 

[4] T. Sellis, N. Roussopoulos, et al., "The R+-tree: A Dynamic Index for 
Multi-dimensional Objects," In Proc. VLDB, 1987,  p. 507-518. 

[5] X. Xiong and W. G. Aref, "R-trees with Update Memos," In Proc. IEEE 
ICDE, 2006,  p. 22-31. 

[6] B. Lin and J. Su, "Handling Frequent Updates of Moving Objects," In 
Proc. ACM CIKM 2005,  p. 493-500. 

[7] L. Biveinis, S. Saltenis, et al., "Main-memory Operation Buffering for 
Efficient R-tree Update," In Proc. VLDB, 2006,  p. 591-602. 

[8] D. Sidlauskas, S. Saltenis, et al., "Trees or Grids? Indexing Moving 
Objects in Main Memory," In Proc. ACM SIGSPATIAL GIS, 2009,  p. 
236-245. 

[9] J. Dittrich, L. Blunschi, et al., "Indexing Moving Objects Using Short-
Lived Throwaway Indexes," In Proc. the 11th International Symposium 
on Advances in Spatial and Temporal Databases, 2009,  p. 189-207. 

[10] C. S. Jensen, D. Tielsytye, et al., "Robust B+-Tree-Based Indexing of 
Moving Objects," In Proc. MDM, 2006,  p. 12-20. 

[11] C. S. Jensen, D. Lin, et al., "Query and Update Efficient B+-Tree Based 
Indexing of Moving Objects," In Proc. VLDB, 2004,  p. 768-779. 

[12] M. L. Yiu, Y. Tao, et al., "The Bdual-Tree: Indexing Moving Objects by 
Space Filling Curves in the Dual Space," VLDB J, vol. 17, pp. 379-400, 
May 2008. 

[13] D. Lin, C. S. Jensen, et al., "Efficient Indexing of the Historical, Present, 
and Future Positions of Moving Objects," In Proc. MDM, 2005,  p. 59-66. 

[14] S. Chen, B. C. Ooi, et al., "ST2B-tree: A Self-Tunable Spatio-Temporal 
B+-tree for Moving Objects," In Proc. ACM SIGMOD, 2008,  p. 29-42. 

[15] M. F. Mokbel, X. Xiong, et al., "SINA: Scalable Incremental Processing 
of Continuous Queries in Spatio-Temporal Databases," In Proc. ACM 
SIGMOD, 2004,  p. 321-330. 

[16] B. Gedik, K.-L. Wu, et al., "Processing Moving Queries over Moving 
Objects Using Motion-Adaptive Indexes," IEEE T Knowl Data En, vol. 
18, pp. 651-668, May 2006. 

[17] H. Hu, J. Xu, et al., "A Generic Framework for Monitoring Continuous 
Spatial Queries over Moving Objects," In Proc. ACM SIGMOD, 2005,  p. 
479-490. 

[18] J. Dai and C.-T. Lu, "C3: Concurrency Control on Continuous Queries 
over Moving Objects," In Proc. ICDE, 2010,  p. 121-132. 

[19] J. Dai, C.-T. Lu, et al., "A Concurrency Control Protocol for 
Continuously Monitoring Moving Objects," In Proc. MDM, 2009,  p. 
132-141. 

[20] H. Sagan, Space Filling Curves. Berlin, Germany. Springer, 1994. 
[21] T. Brinkhoff, "A Framework for Generating Network- Based Moving 

Objects," Geoinformatica, vol. 6, pp. 153-180, Jun. 2002. 
 

717777


