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Spatial outliers are the spatial objects whose nonspatial attribute values are quite differ-
ent from those of their spatial neighbors. Identification of spatial outliers is an important
task for data mining researchers and geographers. A number of algorithms have been
developed to detect spatial anomalies in meteorological images, transportation systems,
and contagious disease data. In this paper, we propose a set of graph-based algorithms to

identify spatial outliers. Our method first constructs a graph based on k-nearest neigh-
bor relationship in spatial domain, assigns the differences of nonspatial attribute as edge
weights, and continuously cuts high-weight edges to identify isolated points or regions
that are much dissimilar to their neighboring objects. The proposed algorithms have
three major advantages compared with other existing spatial outlier detection methods:
accurate in detecting both point and region outliers, capable of avoiding false outliers,
and capable of computing the local outlierness of an object within subgraphs. We present
time complexity of the algorithms, and show experiments conducted on US housing and
Census data to demonstrate the effectiveness of the proposed approaches.
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1. Introduction

A spatial outlier is a spatially-referenced object whose non-spatial attribute val-

ues are significantly different from those of other spatially-referenced objects in its

neighborhood.30 In contrast to traditional outliers, spatial outliers are local anoma-

lies that are extreme compared to their neighbors,31 but do not necessarily deviate

from the remainder of the whole data set. Informally, spatial outliers can be called

“local outliers,” because they focus on local differences, while traditional outliers

can be termed “global outliers,” since they are based on global comparison. In cer-

tain situations, an outlier may not appear as a single spatial object, but in the form

of a group of adjoining objects, i.e., a region. The nonspatial attribute values of

the spatial objects within this region are similar, but they are significantly differ-

ent from the nonspatial attribute values of the objects surrounding this region. We

name this type of outliers as “region outliers”.3

The identification of spatial outliers can reveal hidden but valuable informa-

tion in many applications. For example, it can help locate severe meteorological

events, identify aberrant genes or tumor cells, discover highway congestion seg-

ments, pinpoint military targets in satellite images, determine potential locations

of oil reservoirs, and detect water pollution incidents. For spatial outlier detection,

the attribute space can be separated into two components, namely spatial and

nonspatial attributes. Spatial attributes are used to determine the relationship of

spatial neighborhood; nonspatial attributes are compared among spatial neighbors

to identify local instabilities which break spatial autocorrelation and continuity.

The outlierness of a spatial object can be evaluated by comparing the nonspatial

attribute values of an object with those of its k-nearest neighbors (kNN). The entire

data set can be represented with a number of intra-connected subgraphs based on

the kNN relationship. k directed edges can be derived from each object to its k-

nearest spatial neighbors, and the weight of an edge denotes the absolute nonspatial

difference between two neighboring nodes.

In this paper, we propose a set of graph-based algorithms to identify spatial out-

liers. Our method first constructs a graph based on k-nearest neighbor relationship

in spatial domain, assigns the nonspatial attribute differences as edge weights, and

continuously cuts high-weight edges to identify isolated points or regions that are

much dissimilar to their neighboring objects. In addition, we demonstrate the detec-

tion of spatial outliers using multiple attributes of the same data set. The proposed

algorithms have two major advantages compared with the existing spatial outlier

detection methods: accurate in detecting point outliers and capable of identifying

region outliers. Time complexity is also discussed. Experiments conducted on US

Housing and Census data demonstrate the effectiveness of our proposed algorithms.

The rest of the paper is organized as follows. Section 2 discusses the related

work in spatial outlier identification. Section 3 defines the problem and provides

the motivation of our approaches. Section 4 presents two spatial outlier detection

algorithms based on kNN graph, and analyzes their time complexities. Section 5
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illustrates the experimental design and results. Finally, we summarize our work in

Section 6.

2. Related Work

Graph theory plays an important role in data mining, e.g., clustering and outlier de-

tection. Karypis et al. proposed a hierarchical clustering method, Chameleon, based

on graph partition and merge.4 One of the key features of Chameleon is that it con-

siders both the relative inter-connectivity and closeness to model cluster similarity.

Since outlier detection is derived from clustering, most of the clustering methods

can be used to detect outliers. Yu et al. proposed a graph-based method for numeri-

cal and categorical outlier detection.5 This method calculates the ratio between the

open k-walk distance from a point and the close k-walk distance for this point. A

large ratio indicates a large degree of outlierness. In their experiments, the authors

claim that this method is more accurate than the density-based method LOF,6 and

may outperform other methods that use the local notion of neighborhood to define

outliers, such as LOCI.39 One limitation of this method is that the similarity graph

is a complete graph and may introduce extensive computation. In addition, both

Karypis’ method and Yu’s approach do not separate the spatial attributes from

non-spatial attributes and use the entire attribute space to compute the similarity.

Therefore, they cannot be directly applied for spatial outlier detection.

Outliers have been extensively studied in the past decades and numerous

methods have been developed, including distance-based,8,33 cluster-based,9,10

depth-based11,12 and distribution-based methods.13 Gao et al.,1 for example, ex-

plore information networks and the links among data points to find outlying

members. Network information is modeled as a graph indicating relationships

among objects. While graph-based, this approach is more statistical in nature, and

does not make use of kNN neighbors. Rather, it utilizes Markov random fields in

both continuous and text data to find data points that deviate from the normal

data points. Kriegel et al. take a different path in the field of outlier detection

by examining the directions of distance vectors.2 The goal is to minimize distance

computation and make use of angles among data points. In this manner, this ap-

proach becomes more suitable for high-dimensional data where objects tend to be

equidistant. However, this method is non-spatial. Angiulli et al. describe a method

to measure abnormality in data points with respect to overall population where

those points reside.4 This approach is also non-spatial, looking at the data from an

attribute perspective to capture how much an element should be considered outly-

ing or not. Along with the fast development of geospatial information services and

the wide usage of digital images, identification of outliers in spatial data has re-

ceived more and more attention. Traditional outlier detection methods may not be

applicable to accurately process spatial data. First, spatial data generally possess

complex data formats, such as lines and polygons, which can be combined to form

more complex objects. Second, spatial data often exhibit spatial autocorrelation
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where “everything is related to everything else, but nearby things are more related

than distant things”.14

To discover anomalies from spatial data, many methods have been proposed.

Liu et al. utilize random walks in combination with bipartite graphs to detect

spatial outliers.7 Relevance scores are calculated to determine the likeness among

objects, after which the top k are retained as the most probable outliers. Similar

to our approach, Janeja et al. also consider neighborhoods as a spatial technique of

outlier detection.9 Unlike our approach, however, the authors use autocorrelation

and heterogeneity, not distance.

Visualization methods illustrate the neighborhood distribution in a figure and

identify particular points as spatial outliers. These methods include variogram

cloud, pocket plot, scatterplot, and Moran scatterplot.15–18 A scatterplot17 shows

attribute values on the X-axis and the average of the attribute values in the neigh-

borhood on the Y -axis. Nodes far away from the regression line are flagged as poten-

tial spatial outliers. A Moran scatterplot18 normalizes attribute values against the

neighborhood average of values. Other algorithms, such as z-value, perform statis-

tical tests to discover local inconsistencies.19,20 z-value is the normalized difference

between a spatial object and the average of its spatial neighbors.21 The absolute

z-value can determine the outlierness of an object where higher z-values indicate

higher likelihood that an object is a spatial outlier. Shekhar et al. provided a unified

definition of spatial outlier detection and proved that this definition generalizes the

existing algorithms, such as z-value, scatterplot, and Moran scatterplot.21

Lu et al. proposed algorithms to detect spatial outliers with multiple nonspatial

attributes using Mahalanobis distance.20 For detecting outlier with multiple at-

tributes, traditional outlier detection approaches could not be properly used due to

the sparsity of data objects in high dimensional space.22 It has been shown that the

distance between any pair of data points in a high dimensional space is so similar

that either each data point or none can be viewed as an outlier if the concepts of

proximity is used to define outliers.23 As a result, using the traditional Euclidean

distance function cannot effectively retrieve outliers in high dimensional data sets

due to the averaging behavior of noisy and irrelevant dimensions. To address this

problem, two categories of research work have been conducted. The first is to project

high dimensional data to low dimensional data that have abnormally low local

density.22,24,25,32 The second approach is to redesign distance functions to accu-

rately define the proximity relationship between data points.23 All these multi-

attribute outlier detection approaches deal with non-spatial attributes. For spatial

outlier detection, there are two categories of attributes: spatial and non-spatial

attributes. In detecting spatial outliers, spatial and non-spatial attributes should

be considered separately. The spatial attributes are used to define the neighbor-

hood relationship, while the non-spatial dimension is used to define the distance

function.

Spatial data have various formats and semantics. Kou et al. developed spatial

weighted outlier detection algorithms which use properties such as center distance
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and common border length as weights when comparing nonspatial attributes.26

Adam et al. proposed an algorithm which considers both spatial relationship and

semantic relationship among neighbors.23 Liu and Jezek proposed a method for

detecting outliers in an irregularly-distributed spatial data set.27 The outlierness

of an object o is measured by both the spatial interpolation residual and surface

gradient of its neighborhood. Shekhar et al. proposed that spatial outliers are the

spatial objects whose nonspatial attribute values are quite different from those of

their spatial neighbors.28 A number of algorithms have been developed to detect

spatial anomalies in meteorological images, transportation systems, and contagious

disease data. An outlier detection method to identify anomalies in transportation

network is given by Shekhar et al.28 Their methods are based on road network

connectivity and temporal neighborhoods based on time series.

3. Problem Formulation and Motivation

Graph-partition has been applied to identify data clusters. However, the existing

graph-based clustering methods focus on locating large clusters and view the single

points or small clusters as noises. These methods can be directly applied to find

outliers, but their input/output parameters and internal cluster evaluation are not

optimized for outlier detection. Thus, the efficiency and effectiveness cannot be

assured. For example, most of the clustering methods try to generate balanced

partition, which avoids small clusters. On the contrary, the objective of outlier

detection is to find single points or small clusters. Thus, complex comparisons

among clusters are not necessary. In addition, most of them are designed for non-

spatial outlier detection, which does not separate spatial attributes and non-spatial

attributes and treat them equally. In this section, we formally define the problem

and provide the motivation for our graph-based approach.

3.1. Problem definition of spatial outlier detection

We formalize the spatial outlier detection problem as follows.

Given:

• X is a set of spatial objects {x1, x2, . . . , xz} with single or multiple nonspatial

attributes, where xi ∈ ℜd.

• k is an integer denoting the number of adjacent data objects which form the

neighborhood relationship. Every object xi has k neighbor objects based on its

spatial location, denoted as NNk(xi).

• Y is a set of attribute values {y1, y2, . . . , yz}, where yi is the nonspatial attribute

value of xi.

• m is the number of outliers to be identified; generally m ≪ n.

Objective:

• Design a mapping function f : (X,Y, k) −→ G(X,E). G(X,E) is a graph, where
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each node is an object in X and E is the set of edges. The edge between two

nodes reflects the difference of their non-spatial attributes.

• Find a partition strategy which continuously segments graph G(X,E), to obtain

a set Z of m data objects, where Z ⊂ X and for ∀xi ∈ Z, xi is disconnected with

all other objects.

3.2. Motivation

Existing spatial outlier detection algorithms have several deficiencies. First, as de-

scribed in Ref. 19, if an object has exceptionally large or small nonspatial attribute

values, it will have a negative impact on its spatial neighbors, such that some of

them may be falsely marked as outliers and the “true” outliers may be overlooked.

Figure 1 shows an example spatial data set, where x and y coordinates denote a

2D space of and z coordinate represents the value of nonspatial attributes. In this

data set, four spatial outliers are expected, S1, S2, S3, and S4, because their non-

spatial attribute values are much larger or smaller than their spatial neighbors.

Table 1 shows the outlier detection results of several algorithms on this data set

in, including z-value algorithm, Moran scatterplot, and scatterplot. We can observe

that none can accurately identify all four “true” outliers. Moreover, they identify

a “false” outlier, E1, which is in fact a normal point. E1 is erroneously detected

because the nonspatial attribute value of its neighbor S1 is extremely high (200),
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Fig. 1. An example data set, where X and Y coordinates denote the spatial locations and Z
coordinate represents the value of nonspatial attribute.
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Table 1. Top three spatial outliers detected by scatterplot, Moran scatter-
plot, z-value, and graph-based method.

Methods

Rank Scatterplot Moran Scatterplot z Alg. Graph-based

1 S1 S1 S1 S1
2 E1 E1 E1 S2
3 S2 S3 S3 (S3, S4)

�

Fig. 2. The scatterplot of the data set shown in Figure 1.

and therefore dominates the neighborhood average of E1. Figure 2 and Figure 3

demonstrate scatterplot and Moran scatterplot of the example data set.

In the scatterplot of Figure 2, the points far from the regression line are marked

as outliers. In the Moran scatterplot, the points located in the upper left and lower

right quadrants are identified as outliers. Both scatterplot and Moran scatterplot

mistakenly detect E1 as an outlier.

Second, most of the existing algorithms focus on evaluating the outlierness of

single object and are not suitable for detecting region outliers. If a group of outlying

objects cluster together and have similar nonspatial attribute values, they might

be erroneously marked as normal points. As shown in Table 1, none of scatterplot,

Moran scatterplot, or z-value approach can identify the region outlier (S3, S4). In

many applications, spatial outliers appear in the form of connected components,

or regions. For example, a hurricane zone consists of a group of points whose wind
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�

Fig. 3. The Moran scatterplot of the data set shown in Figure 1.

speed, air pressure, and water vapor density are much different from its surrounding

areas.

Third, some existing methods such as z-value approaches and Moran scatter-

plot identify spatial outliers by calculating the normalized non-spatial attribute

difference between each object and the average of its spatial neighbors. This nor-

malization is across the entire data set, which may not be appropriate for certain

conditions. For example, if the data set consists of a number of spatial clusters, the

objects in the same cluster are spatially correlated to each other and the objects in

different clusters have no correlation. Therefore, a normalization process based on

the entire data set may not be appropriate. One potential solution for this issue is

to first identify the clusters of objects in the data set, and then consider statistical

characteristics of each cluster individually to detect outliers.

To address the above deficiencies, we propose a set of graph-based algorithms

to identify both point and region outliers. Based on the example in Figure 1, we

first construct a kNN graph, as shown in Figure 4. Note that at this stage, the k

number of neighbors can be limited by a user-defined threshold. This application

parameter prevents objects that are considered “too distant” to be part of the same

subgraph, leaving it free to become part of a more suitable cluster. The threshold

is helpful for sparse data sets, and may possibly be disregarded when each object

is densely surrounded by many nearby neighbors. Each circle represents an object

whose nonspatial attribute value is marked within the circle. An arrow pointing

from a node x1 to another node x2 represents that x2 is one of x1’s k nearest
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Fig. 4. The kNN-based graph representation of a small data set, k = 3.

neighbors. If x1 and x2 are connected by a double-directed edge, they are k-nearest

neighbors of each other. The edge weight is the absolute difference between the non-

spatial attribute values of two neighboring nodes. For example, the weight of the

edge connecting S1 and S2 is 100 (i.e., 200− 100). Note that there are 3 subgraphs

in the kNN graph. To make the edges comparable among different subgraphs, a

standardization process can be performed for each subgraph separately. The pro-

posed graph-based algorithms then continuously cut the longest edge, i.e., the edge

with the largest weight until certain number of points (or connected regions) are

isolated. The isolated points will be marked as point outliers since their nonspatial

attribute values are much different from those of their neighbors. The regions will

be marked as region outliers after the verification procedure validates that their

degrees of outlierness are beyond thresholds.

Figure 5 shows the edge-cut result of Figure 4, where three outliers are identified,

S1, S2, and (S3, S4). One of them consists of two spatial objects, forming a region

outlier. (S3, S4) is labelled as a region outlier because they have been isolated

from other points and their nonspatial attribute values are similar to each other

but dissimilar to those of their neighbors. A region is marked as “isolated” when

there are no edges going out from each point in that region. Note that under other

examples, it is possible that a situation may arise where a disconnected subgraph

is not found. This situation implies that all neighbors are extremely alike, i.e., their

non-spatial attributes are very similar. In this case, no edge cutting will occur. To

address this problem, the user should reconsider at what point edge values between

nodes can be cut. Increasing or decreasing this parameter as a threshold should
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Fig. 5. The result of graph-based outlier detection: 2 point outliers and 1 region outlier are
identified.

effectively permit outliers to be found, if any do exist. However, this is a judgment

call left to the domain expert, not the algorithm. Table 1 shows that the graph-

based method can accurately detect all expected spatial outliers and is capable

of identifying the outlier region, (S3, S4). In summary, the graph-based algorithms

have the following advantages compared with other existing spatial outlier detection

methods. (1) Detect both point and region outliers. Based on graph connectivity,

neighboring points with similar nonspatial attribute values can be grouped conve-

niently; (2) Avoid identifying “false” outliers and correctly locate “true” outliers;

(3) Consider and compute the outlierness of an object within a subgraph where this

object belongs to, instead of normalizing data across the entire data set.

4. Algorithm

In this section, we propose two graph-based algorithms. The first algorithm POD

is designed for point outlier detection, and the second algorithm ROD is to iden-

tify region outliers. The computational complexities of both algorithms are also

examined.

The major step of spatial outlier detection is to compare the nonspatial values

between each object and its spatial neighbors. Thus, a graph G(X,E) can be cre-

ated based on the k-nearest neighbor (kNN) relationship. Each node represents an

object xi, and k edges direct from xi to each of its k-nearest neighbors. The weight

of an edge represents the dissimilarity between two neighboring points. For single

(nonspatial) attribute data set, we can use the absolute difference of the attribute
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Fig. 6. The data structure for graph representation.

as the weight. For a data set with multiple (nonspatial) attributes, we can use the

Mahalanobis distance between two nodes as the weight. The outgoing degree of

each node is k, the number of neighbors. Note that a graph may consist of a set

of subgraphs which are not connected to each other. We call each subgraph as a

cluster and consider their respective statistical characteristics in identifying spatial

outliers.

The data structure for the graph is shown in Figure 6. Each node (object) xi is

represented by a tuple with 3k+3 elements, where xi = 〈id, val, nbr1, diff1,flag1, . . . ,

nbrk, diffk,flagk, cID〉. id denotes the unique identification of a node; val is the

nonspatial attribute value of xi; nbrj(1 ≤ j ≤ k) represents the jth neighbor of xi;

diffj stands for the weight of the edge
−−−→xi, xj ; flagj indicates the status of edge

−−−→xi, xj

(flagj = 1 denotes that the edge is cut and flagj = 0 represents that xi and xj are

connected); cID refers to the subgraph which xi belongs to. The neighbor list is

sorted by their edge weights in descending order, i.e., diff1 ≥ diff2 ≥ · · · ≥ diffk.

The reverse k nearest neighbors (rKNN) of each object also need to be stored. The

rKNN of an object xi is a set of objects whose k nearest neighbors contains xi.

We can use a data structure similar to Figure 6 to store the rKNN of each node.

The only difference is that the number of objects in rKNN may not be fixed as k,

so the tuple for each node is a variant-length array. The reverse nearest neighbor

table can be constructed from the nearest neighbor table and used for extracting

connected regions.

In addition, a priority queue EdgeQueue is created to maintain all edges, which

are sorted based on their weights in descending order. An array clusterArr contains

a set of subgraphs. Each subgraph is represented as a four element tuple clusteri,

where clusteri =< cID,mean, std, size >. cID is the unique identification of a sub-

graph; mean is the average nonspatial attribute value of all objects in the subgraph;

std is the standard deviation of nonspatial attribute values in this subgraph; and

size is the number of objects in the subgraph. These statistics can be used for

normalizing edge weights in each subgraph.
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4.1. Algorithm 1: Point outlier detection

The proposed algorithm has four input parameters.X is a set of n objects containing

spatial attributes such as location, boundary, and area. The non-spatial attributes

are contained in another set Y . In many applications, these nonspatial attribute

values can be the results of preprocessing procedures like dimension reduction or

data standardization. k is the number of neighbors. m is the number of expected

outliers. Generally, m should not be greater than 5% of n, assuming the nonspatial

attribute follows a normal distribution with a confidence interval of 95%. This

section introduces an algorithm to detect single point outliers based on a kNN

graph. We assume that all k(xi) are equal to a fixed number k. (The algorithm can

be conveniently generalized by replacing the fixed k with a dynamic k(xi).)

For each data object, the first step is to identify its k nearest neighbors (line 3).

Calculating the Euclidean distance between the centers of two objects is the most

commonly used approach. Next, based on the k-nearest neighbor set NNk, a graph

G is constructed (line 5). G may contain multiple subgraphs which are disconnected

with each other. Since different subgraphs may have distinct characteristics, the

nonspatial attribute values need to be standardized for each subgraph (line 7).

In this way, the edge weights are comparable among different subgraphs. Next, a

priority queue edgeQueue is created to arrange all edges in descending order based

on their weights (line 9). To partition the graph, a “longest-edge-cut” strategy is

employed and the partition will be conducted with multiple iterations (line 11). In

each iteration, the longest edge −−−→xi, xj (the edge with the highest weight) is dequeued

from edgeQueue and cut (lines 12-14). Here, cutting an edge is equivalent to set the

flagj of the node xi as “1.” The CutEdge function returns the starting node of the

edge. After each cutting operation, the algorithm will check if this starting node

o has become isolated, i.e., no outgoing edges (line 16). If true, o is marked as a

spatial outlier (line 17) and inserted into the outlier set Os (line 19). Note that it is

possible to return an empty set (i.e., no outliers found). Finally, when all m spatial

outliers have been identified, the partition loop is terminated and Os is returned.

The ranking of outliers is determined by the identification sequence.

4.2. Algorithm 2: Region outlier detection

One major benefit of the graph-based method is that it can detect region outliers.

A region outlier consists of a group of adjoining spatial objects whose nonspatial

attributes are similar to each other but quite different from the surrounding ob-

jects of this group. In a partitioned graph, a connected component can be deemed

as a region outlier if the variance in the component is small and the variance

between the component and its neighborhood is large. Algorithm 2 is designed es-

pecially for discovering region outliers. For simplicity, we call it ROD algorithm.

ROD has 6 input parameters: X contains the spatial attributes of the data set; Y

contains the nonspatial attribute values of the data set; k is the number of neigh-

bors; TEDGE denotes the threshold for edge-cutting; TSIM represents the threshold
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Algorithm 1: Point Outlier Detection (POD)

Input:

X is the set of n spatial objects;

Y is the set of nonspatial attribute values for X;

k is the number of neighbors;

m is the number of requested spatial outliers;

Output:

Os is a set to store detected spatial outliers

1: for(i=1; i ≤ n ; i++) {

2: /* calculate the neighborhood relationship */

3: NNk(xi) = GetNeighbors(X, xi); }

4: /* Generate a graph G based on NNk */

5: G = createGraph(X, Y , NNk);

6: /* standardize the attribute values by subgraph */

7: G = standardize(G);

8: /* create the edge priority queue */

9: EdgeQueue = createEdgeQueue(G);

10: Os = empty; /* initialize Os */

11: while ( sizeOf(Os) ≤ m ) {

12: edge = DeQueue(EdgeQueue); /* select the longest edge */

13: /* cut this edge and return the starting node */

14: o = CutEdge(G, edge);

15: /* check if o has become an isolated point*/

16: if ( isIsolated(o) ) {

17: MarkOutlier(Os, o); } }

18: /* output the outliers */

19: Output(Os);

for evaluating the evenness within a region; TDIFF is the threshold to measure the

difference between a region and its neighbors. The detailed algorithm is described

as follows.

Similar to Algorithm 1, a graph first needs to be created based on the kNN

relationship (line 5). Then a priority queue edgeQueue is constructed to rank all

edges in descending order based on their weights (line 7). Next, the algorithm

continuously selects the longest edge from the edgeQueue and cuts it if the weight

of this edge is larger than threshold TEDGE (lines 9-12). After cutting all edges

with weight above TEDGE, a function findCandidateRegions() is called to detect

candidate region outliers, regions (line 14). Each of these candidates is a connected
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Algorithm 2: Region Outlier Detection (ROD)

Input:

X is a set of n spatial objects;

Y is the set of nonspatial attribute values for X;

k is the number of neighbors;

TEDGE is the threshold for the edge weights to be cut;

TSIM is the threshold of within region similarity;

TDIFF is the threshold of between-region difference;

Output:

Os is a set of region outliers

1: for(i=1; i ≤ n ; i++) {

2: /* calculate the neighborhood relationship */

3: NNk(xi) = GetNeighbors(X, xi); }

4: /* Generate a kNN graph G */

5: G = createGraph(X, Y , NNk);

6: /* create a priority queue based on edge weight */

7: EdgeQueue = createEdgeQueue(G);

8: edge = DeQueue(EdgeQueue); //select the longest edge

9: while ( weightOf(edge) > TEDGE ) {

10: G = CutEdge(G, edge); // cut edge in the graph

11: /* select the longest edge */

12: edge = DeQueue(EdgeQueue); }

13: /* find all regions with size less than k*/

14: regions = findCandidateRegions(G);

15: for(i=1; i < sizeOf(regions) ; i++) {

16: if ( regionEvenness(regions[i]) > TSIM ) {

17: nbrs = getNbrOfRegion(G, regions[i]);

18: if ( computeDiff(regions[i], nbrs > TDIFF ) {

19: markOutlier(Os, regions[i]); } } }

20: /* output the outliers */

21: Output(Os);

region which contains less than k objects. regions is only a set of candidate outliers,

and each region in this set needs further verification. The verification includes three

steps: (1) for each candidate region[i], determine the set of its spatial neighbors,

nbrs, which contains all the distinct k-nearest neighbors of each point in regions[i].

If the size of nbrs is smaller than the size of regions[i], region[i] is not likely to
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be a region outlier since outliers usually refers to a small set of irregular objects

compared with large amount of regular objects; (2) check the evenness of nonspatial

attribute values in regions[i]. If the degree of evenness is smaller than the threshold

TSIM , regions[i] should not be identified as an outlier; (3) compute the nonspatial

attribute value difference between region[i] and nbrs. If the difference is less than

the threshold TDIFF , regions[i] is not an outlier (lines 15-19). Once regions[i] has

been verified as a region outlier through the above procedures, it will be inserted

into Os (line 21).

There are two essential issues in setting the ROD algorithm: how to evaluate the

evenness within a region and how to measure the difference between a region and its

neighborhood. The evenness of a region can be evaluated by “Coefficient of Varia-

tion” (dividing standard deviation by mean), by “Inter-Quartile Range” (difference

between the first and third Quartiles), or by “MinMax Difference” (Max−Min
Mean ). The

variation between two regions can be measured using diff = |mr−mnbr|
(mr+mnbr)/2

, where mr

is the median nonspatial attribute value of a region r and mnbr is the median non-

spatial attribute value of r’s neighbors. A high diff value represents large difference

between a region and its neighbors. While such methods can be useful in determin-

ing threshold values such as TDIFF , TSIM , and TEDGE, this can also be a judgment

call based on what is appropriate for the application in question. A medical appli-

cation, for instance, may consider a 5% discrepancy between two attributes to be

excessive. On the other hand, a real estate application may accept values of up

to 30%. Thus, a domain expert may be the best option to determine appropriate

thresholds.

4.3. Time complexity

In the POD algorithm, a k nearest neighbor (kNN) query is issued for each spatial

point. It will take O(n) to perform kNN query for n objects if a grid-based indexing

is used and the grid directory resides in memory. The cost of generating a kNN

graph is O(kn), and the edge weight standardization takes O(kn) computation.

The priority queue generation has time complexity of O((kn)log(kn)) based on

heap sort. The number of edge cuts is indeterministic, so we assume there are at

most n edge-cuts. The cost of checking “isolated” status of a point is O(k), thus

the cost for checking all edge cuts is O(kn). In summary, assuming n ≫ k and

n ≫ m, the total time complexity of POD algorithm is O(n) + O(kn) + O(kn)

+ O((kn)log(kn)) + O(kn) ≈ O(nlogn) for grid-base indexing. The computation

cost is primarily determined by priority queue generation.

For the ROD algorithm, the time complexity of kNN computation, graph gen-

eration, and edge weight priority queue creation is the same as that of the POD

algorithm. For edge cutting cost, we can assume the total number of edge-cuts

is n, leading to complexity of O(n). In addition, it takes O(n) to identify can-

didate regions. The verification procedure costs O(mk), where m is the number

of detected region outliers and m ≪ n. Finally, the total time complexity of the
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ROD algorithm is O(n) + O(kn) + O((kn)log(kn)) + O(n) + O(n) + O(mk) ≈

O(nlogn), which is also primarily determined by priority queue generation.

Another aspect that may influence running time is the neighborhood size. In

the current literature, there are not many algorithms that can perform efficiently

when the data set is large and high-dimensional. In this case, scalability becomes

an important factor in the determination of neighborhood size. When small neigh-

borhoods are chosen, the general tendency will be for a higher number of subgraphs

to be created. Increasing the neighborhood, i.e., less clusters overall, will often de-

crease the subgraph partitions. There’s no single clear-cut way to determine which

approach is best. Since edge cutting cannot be evaluated ahead of time, neighbor-

hood size may be left to the domain expert’s discretion as an application parameter.

Under high data dimensionality (i.e., multiple attributes are considered), the algo-

rithm tends to scale more poorly. When n objects are considered, each kNN query

requires O(n2) when many data attributes are included in the analysis. Thus, most

approaches limit the number of attributes that are taken into consideration, or

perform dimensionality reduction as a preprocessing stage.

4.4. Adapting POD to multi-attributes

We can adapt the POD algorithm to detect multi-attribute spatial outliers. For

spatial data with multiple non-spatial attributes, the POD algorithm is the same

except that a different dissimilarity measure will be used to derive edge weights.

We apply Mahalanobis distance on the POD algorithm, serving as the edge weights

between pairs of neighbors. Mahalanobis distance takes into account the measured

attributes, along with average, variance and covariance. Compared with Euclidean

distance, Mahalanobis distance is more accurate to represent the difference between

two vectors. Note that Mahalanobis distance treats each attribute as equally impor-

tant. As such, if the application in question ranks attributes in any sort of priority,

it is important to pre-process the attributes in a such a way that less desirable

attributes (if any) are punished to a lower degree of influence.

Suppose q attribute values (q ≥ 1) are measured from x, a spatial object in

the data set. Given a set of spatial points X = {x1, x2, . . . , xn}, an attribute func-

tion f is defined as a map from X to Rq (the q dimensional Euclidean space)

such that for each spatial point x, f(x) equals the attribute vector y. This can be

written as

yi = f(xi)

= (f1(xi), f2(xi), . . . , fq(xi))
T

= (yi1, yi2, . . . , yiq)
T

for i = 1, 2, . . . , n. For a given integer k, let NNk(xi) denote the k nearest neighbors

of point xi. In order to detect spatial outliers, we compare all values of y measured

at x with the corresponding quantities from the neighbors of x.
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For n spatially-referenced objects x1, . . . , xn, the sample mean of their non-

spatial attributes is calculated as

µs =
1

n

n
∑

i=1

yi

and sample variance-covariance matrix is

∑

s

=
1

n− 1

n
∑

i=1

[yi − µs][yi − µs]
T .

Mahalanobis distance between object xi and object xj is defined as

d(xi, xj) =

√

√

√

√(f(xi)− f(xj))T
−1
∑

s

(f(xi)− f(xj)) .

d(xi, xj) can be used as the weight of edge −−−→xi, xj . The edge with the largest Ma-

halanobis distance shows the largest difference between two end nodes, thus being

cut first. The computation of the Mahalanobis distance adds O(q2 ∗n) to the POD

algorithm. So the total time complexity of POD for processing multiple attributes

is O(q2 ∗ n+ nlogn) ≈ O(nlogn), assuming q ≪ n.

5. Experiment

In this section, we discuss our experiments on two real data sets: Fair Market

Rents data provided by the PDR − DHUD (Policy Development and Research,

U.S. Department of Housing and Urban Development), and U.S. Census Bureau

demographics, to validate the effectiveness of our proposed algorithms. The experi-

ment design is introduced in Section 5.1. Section 5.2 provides analysis and detailed

examples related to the various results.

5.1. Experiment design

The Fair Market Rent data contain the 50th percentile rents for fiscal year 2005 at

county level. This data include the rental prices for efficiencies, one-bedroom apart-

ments, two-bedroom apartments, three-bedroom apartments, and four-bedroom

apartments in 3000+ counties across the United States. The proposed algorithms

can help administrative personnel identify and then investigate outlier counties

whose rental prices are much different from their neighboring counties. Apartment

renters can also explore the rent data to find a place where the rent is abnormal.

The location of each county is determined by the longitude and latitude of its

center. The proposed algorithms facilitate the discovery of abnormal rent rates by

comparing reports from neighboring counties. The number of neighbors was chosen

to be k = 8, which represents eight different directions from the centering county:



July 11, 2011 16:21 WSPC-IJAIT S0218213011000309

738 C.-T. Lu et al.

East, West, North, South, Northeast, Northwest, Southeast, and Southwest. The

distance between a county and its neighbors is the Euclidean distance between their

centers. The experiments contain three parts: point and region outlier detection us-

ing U.S. Housing data, and multiple-attribute outlier detection using U.S. Census

data. At the algorithm level, we use a grid-based indexing scheme while main-

taining the grid directory in memory. Disk-based approaches may also be used.

However, time complexity will tend to increase since disk I/O must be taken into

consideration. In our experiments, memory-based indexing proved efficient for our

data sets.

5.2. Result analysis

5.2.1. Point outlier detection

We applied four algorithms to the apartment rent data set, including z-algorithm,

scatterplot, Moran scatterplot, and the proposed graph-based outlier detection al-

gorithm POD. Table 2 shows the top ten outlier counties based on one-bedroom

rent in year 2005. The number in parenthesis denotes the average rent for one-

bedroom apartments in a given county. POD algorithm identifies seven common

counties as does the z algorithm, which is a commonly used approach.

POD algorithm can avoid identifying “false” outliers. For example, Dorchester

Co.(MD) is identified as the 7th outlier by Moran scatterplot algorithm. How-

ever, Dorchester Co. is not very outlying if we take a closer look. Figure 7 illus-

trates the rental prices of Dorchester Co.(451) and its 8 neighbors (575, 576, 513,

1045, 460, 750, 548, 702). The number in each county denotes the average rent

in US dollar. Generally, the rent difference within 140 dollar is viewed as nor-

mal. More than half of the neighboring counties have normal rent difference with

Dorchester Co., so Dorchester Co. should not be classified as a spatial outlier.

Dorchester Co. is identified by Moran scatterplot mainly because it has a neighbor,

Calvert Co.(MD), which has a very high rent (1045) and significantly raises the

average rent of the neighborhood. The POD algorithm does not have this prob-

lem, because the edge-cutting makes each neighboring county contribute equally

to the outlierness of the centering county. In addition, POD algorithm can de-

tect outliers that are not identified by other three methods. For example, Dukes

Co.(MA) is ranked as the sixth outlier by POD algorithm. As shown in Figure 8,

the one-bed rent in Dukes Co. is 941, which is much higher than its 7 neighbors

(difference > 150) except Nantucket Co.(MA). Nantucket Co. has been identified

as the 2nd outlier which has very high attribute value, 1250. If the arithmetic av-

erage is used to represent the overall characteristics of Dukes Co.’s neighbors in

other three algorithms, Nantucket Co. will significantly increase the neighborhood

average. Therefore, the difference between Dukes Co. and its neighborhood average

will be small, thus causing Dukes Co. not to be detected by other three algorithms.

However, it is an authentic outlier, since its attribute value is much different from

most of its neighboring counties.
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Table 2. Top 10 spatial outliers detected by z-value, scatterplot, Moran scatterplot, and graph-partition algorithms based on 1-bedroom rent.

Methods

Rank z Alg. Scatterplot Moran Scatterplot POD Alg.

1 Nantucket, MA(1250) Nantucket, MA(1250) Blaine, ID(801) Blaine, ID(801)

2 Pitkin, CO(1095) Caroline, VA(495) Teton, WY(748) Nantucket, MA(1250)

3 Frederick, MD(1045) Blaine, ID(801) Elbert, CO(444) Teton, WY(748)

4 Suffolk, MA(1120) Teton, WY(748) Surry, VA(446) Summit, UT (901)

5 Blaine, ID(801) Elbert, CO(444) La Paz, AZ(471) Suffolk, MA(1120)

6 Summit, UT(901) Plymouth, MA(636) Moffat, CO(435) Dukes, MA(941)

7 Teton, WY(748) Worcester, MA(549) Dorchester, MD(451) Fairfield, CT(1239)

8 Ventura, CA(1093) Summit, UT(901) Sumter, FL(415) Dane, WI(660)

9 Fairfield, CT (1239) Barnstable, MA(729) Polk, WI(465) Centre, PA(610)

10 Clarke, VA(956) Pitkin, CO(1095) Polk, GA(414) Pitkin, CO(1095)
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Fig. 7. Dorchester Co.(MD) detected by Moran scatterplot algorithm based on the one-bedroom
rent data in 2005.

Fig. 8. Dukes Co.(MA) identified by POD algorithm based on the one-bedroom rent data in
2005.

5.2.2. Region outlier detection

We also applied ROD algorithm to the 2-bedroom rent data in 2005. The even-

ness within a region is evaluated by “MinMax” difference, which is calculated by
Max−Min

Mean . The threshold TSIM was chosen to be 0.15, which means the difference

between the minimum and the maximum nonspatial attribute values should be less
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Table 3. Two region outliers detected by ROD based on 2-bedroom rental prices in 2005.

Outliers Counties in the Region Neighboring Counties

1 Wake, NC(829) Orange, NC(829) Wilson, NC(602) Wayne, NC(549)

Johnston, NC(829) Franklin, NC(829) Vance, NC(507) Sampson, NC(431)

Durham, NC(829) Chatham, NC(829) Nash, NC(593) Moore, NC(616)

Harnett, NC(539) Greene, NC(467)

Person, NC(546) Caswell, NC(526)

Granville, NC(573) Alamance, NC(645)

Lee, NC(576) Warren, NC(522)

Randolph, NC(645)

2 Hinsdale, CO(1033) Ouray, CO(1033) San Juan, CO(692) Saguache, CO(494)

Mineral, CO(1033) Rio Grande, CO(494) Montrose, CO(634)

San Miguel, CO(1060) Dolores, CO(692) Delta, CO(578)

Conejos, CO(494) Archuleta, CO(742)

La Plata, CO(776) Montezuma, CO(582)

Gunnison, CO(757)

Fig. 9. A region outlier detected by ROD algorithm based on two-bedroom rent data in 2005.

than 15% of the average value. The dissimilarity between a region and its neighbor

set is measured with diff = |mr−mnbr |
(mr+mnbr)/2

. The threshold TDIFF was set to be 0.4,

which means that a region will be identified as an outlier if the difference with its

neighbors is more than 40% of the average of both sets. Table 3 shows two identified

region outliers: one consists of 6 counties and the other consists of 4 counties.

Figure 9 shows the first outlier region with 6 counties having the same rent values

829 (marked in light gray). This region has 15 neighboring counties (rent ranging
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Fig. 10. A region outlier detected by ROD algorithm based on two-bedroom rent data in 2005.

from 431 to 645), whose rents are much lower than the outlier region. Figure 10

presents the second outlier region with 4 counties, whose average two-bedroom rents

are 1060, 1033, 1033, and 1033 respectively. This region has 11 neighboring counties

whose rents are significantly lower than the four counties within the region. The

existing algorithms are not capable of detecting a group of counties as outliers.

In fact, many counties in the region cannot be detected by point outlier detection

methods, because their non-spatial attribute values are similar to most of their

neighbors.

5.2.3. Experiments on multiple attributes

We used a real U.S. Census data set to evaluate POD based on multiple attributes.

This data is a rich collection of American demographics from the U.S. Census

Bureau.29 It contains detailed statistics on population, race and ethnicity, age and

sex, education, employment, income, poverty, housing, and many other attributes

for each of the following different levels of geography: (1) the United State and

major regions of the country; (2) each state and metropolitan area; (3) all 3000+

counties in the United States; (4) municipalities, census tracts, and block groups.

The location of each county is determined by one or more polygons consisting of

hundreds of longitude and latitude pairs. The neighborhoods were chosen to be

dynamic, i.e., the neighborhood of a county was chosen to be the set of adjacent

counties.

We performed experiments with the following 11 attributes: population in 2001,

population percent change from April 1 2000 to July 1 2001, population percent

change from 1990 to 2000, percentage of persons under 5 years old in 2000, percent-

age of persons under 18 years old in 2000, percentage of persons over 65 years old
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in 2000, percentage of females, percentage of White persons, percentage of Black

persons, percentage of Asian persons, and percentage of American Indian persons.

Different attributes may have different magnitudes. For example, population of

a county is usually more than 10,000, but the percentage of population change is

mostly less than 1. Since our approach considers the differences between attributes,

we standardized the values for each attribute, thus to prevent the domination of

one over others. The experiment results are shown in Table 4.

Table 4 show the top 10 counties most likely to be spatial outliers. As can be

seen, Los Angeles Co. (CA) is selected as the top spatial outlier because it gen-

erated the largest Mahalanobis distance. Specifically, the largest distance mainly

comes from the contribution of the corresponding attribute population (standard-

ized value 32.16), compared with its neighboring counties, i.e., Ventura, Orange,

Kern, and San Bernardino. The second spatial outlier, Cook Co(IL), is identified

due to its high change in population less than 5 years old (standardized value 0.82),

compared with its neighboring counties, i.e., Du Page, McHenry, Kane, Lake, and

Will. The third and fourth spatial outliers, Shannon Co. and Todd Co. have high

percentage of Indian population (standardized Value 14.49 and 13.15, respectively)

compared with the Indian population of their neighboring counties. The remaining

five counties were detected as spatial outliers because the total contributions to the

Mahalanobis distance from various attribute values are significant. This shows that

the algorithms are effective in detecting spatial outliers.

5.3. Simulations

This section presents simulations to compare the performance between POD and

other related Spatial Outlier Detection (SOD) methods. The experimental study

followed the standard statistical approach for evaluating the performance of 5 SOD

methods.

Simulation Settings

Data Set: The simulation data were generated based on a standard statistical

model35 with the decomposition form:

Z(s) = β + ω(s) + ǫ(s)

where β ∼ N(0, 1), ω(s) refers to a Gaussian random field with covariogram model

C(h; θ), and ǫ(s) refers to measurement error or white noise variation. We considered

a popular exponential covariogram model. The exponential model is defined as

C(h; b, c) =



























b if x ≥ 0

b

(

1− exp

(

−
h

c

))

if 0 < h ≤ c

0 if h > c
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l.Table 4. The top 10 spatial outliers candidates detected by POD algorithm using standardized multiple attributes.

Pop 1990–2000 2000–2001
Rank County ≤ 5% ≤ 18% ≥ 65% Female White Black Asian Indian 2001 Change Change

1 Los Angeles(CA) 1.28 0.78 −1.24 0.06 2.24 0.06 7.08 −0.12 32.16 −0.23 0.37

2 Cook(IL) 0.82 0.16 −0.75 0.58 −1.77 1.18 2.56 −0.20 17.71 −0.36 −0.42

3 Shannon(SD) 4.27 6.21 −2.43 −0.19 −5.00 −0.60 −0.49 14.49 −0.26 0.92 0.98

4 Todd(SD) 5.29 5.80 −2.19 0.01 −4.49 −0.60 −0.42 13.15 −0.27 −0.16 0.94

5 Buffalo(SD) 3.99 4.95 −2.02 −0.92 −4.26 −0.60 −0.49 12.52 −0.30 0.27 −0.60

6 Menominee(WI) 2.96 4.20 −1.53 0.11 −4.56 −0.60 −0.49 13.41 −0.29 0.05 0.42

7 Sioux(ND) 3.89 4.64 −2.24 −0.76 −4.39 −0.60 −0.49 12.99 −0.29 −0.22 0.04

8 Harris(TX) 1.84 1.10 −1.80 −0.14 −1.62 0.66 2.75 −0.19 11.35 0.59 0.65

9 Maricopa(AZ) 1.47 0.47 −0.75 −0.24 −0.46 −0.35 0.91 0.03 10.45 2.10 1.69

10 Dewey(SD) 2.68 4.20 −1.58 0.32 −3.78 −0.60 −0.42 11.36 −0.28 −0.18 0.42
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Table 5. Parameter settings.

Variable Settings

N N ∈ 100, 200. Randomly generate n spatial locations si (i ∈ [1, N ]) in the range
[0, 25]× [0, 25]

b c b = 5; c = 5, 15, 25

β β1 N(0, 1) and βi = 0, i = 2, . . . , 5

σ0, σC σ2

0
= 2, 10; σ2

C
= 20

α α = 0.05, 0.10, 0.15

K K = 5, 10

where h refers to the spatial distance between two sample objects si and sj , the pa-

rameter b refers to a constant variance for each Z(s), and c refers to a valid distance

range for nontrivial dependence (or covariance). For the white noise component, we

employed the following standard model:36

ǫ(s) ∼

{

N(0, σ2
0) with probability 1− α

N(0, σ2
C) with probability α

There are three related parameters σ2
0 , σ

2
C and α ·σ2

0 is the variance of a normal

white noise, σ2
C is the variance of contaminated error that generates outliers, and α

is used to control the number of outliers. Note that it is possible that the distribu-

tion N(0, σ2
C) generates some normal white noises. All true outliers must be only

identified based on standard statistical test by calculating the conditional mean

and standard deviation for each observation.35 In the simulations, we tested several

representative settings for each parameter, which are summarized in Table 5.

Outlier detection methods: We compared our methods with other common

local-based SOD methods, including Z-test,20 Scatterplot,17 MoranScatterplot,37

and SLOM-test.38 Our proposed methods are identified as POD. The implementa-

tions of all existing methods are based on their published algorithm descriptions.

Performance metric: We tested the performance of all methods for every com-

bination of parameter setting in Table 5. For each specific combination, we ran the

experiments ten times and then calculated the mean of accuracy for each method.

To compare the accuracies of each method, we used the standard ROC curves.

As shown in Table , POD outperforms other approaches. They identify the

true outliers (like Blaine(ID), Fairfield(CT), Summit(UT), etc). Compared with

the other 4 methods, Z-value tends to miss some true outliers, like St. Mary’s(MD)

and FairField(CT), etc. The four accompanying mini tables give the rental prices

of the county and its neighbors. As we can see, the rents of some neighbors (such

as Calvert(1045) and Charles(1045)) are high while others (Westmoreland(496),
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Top 10 spatial outliers with single attribute detected by five different approaches.

Z-Value SLOM ScaPlot M-ScaPlot POD

1 Nantucket(MA) Blaine(ID) KingGeorge(VA) Blaine(ID) Blaine(ID)

2 Pitkin(CO) Teton(WY) Plymouth(MA) Teton(WY) Teton(WY)

3 Summit(UT) Lubbock(TX) Blaine(ID) Elbert(CO) Summit(UT)

4 Orange(CA) Summit(UT) Caroline(VA) Surry(VA) Suffolk(MA)

5 Blaine(ID) Pennington(SD) Howard(MD) LaPaz(AZ) Coconino(AZ)

6 Clarke(VA) Hughes(SD) Kern(CA) Kanabec(MN) Fairfield(CT)

7 Suffolk(MA) Dane(WI) Teton(WY) Dorchester(MD) Nantucket(MA)

8 Frederick(MD) Boone(MO) Summit(UT) Sumter(FL) Dane(WI)

9 Coconino(AZ) Yellowstone(MT) SanJoaquin(CA) Blanco(TX) Pitkin(CO)

10 Ventura(CA) Codington(SD) Worcester(MA) Sussex(VA) Eagle(O)

Current and Mean B with a forward
polarity.

County Rent

St. Mary’s(MD) 702

Calvert(MD) 1045

Westmoreland(VA) 496

Richmond(VA) 496

Charles(MD) 1045

Northumberland(VA) 496

Essex(VA) 496

King(VA) 611

Lancaster(VA) 496

Dorchester(MD) 451

Caroline(VA) 496

Current and Mean B with a reversed
polarity.

County Rent

Rockingham(NH) 750

Strafford(NH) 648

Essex(MA) 878

Hillsborough(NH) 605

Middlesex(MA) 884

Suffolk(MA) 1120

York(ME) 577

Merrimack(NH) 624

Belknap(NH) 592

Norfolk(MA) 914

Carroll(NH) 564

Current and Mean B with a forward
polarity.

County Rent

San Benito(CA) 824

Monterey(CA) 1045

Santa(CA) 1111

Merced(CA) 536

Santa(CA) 1107

Stanislaus(CA) 645

San(CA) 635

Alameda(CA) 1132

Madera(CA) 556

San(CA) 1305

Fresno(CA) 556

Current and Mean B with a re-
versed polarity.

County Rent

Yellowstone(MT) 452

Musselshell(MT) 398

Carbon(MT) 405

Golden(MT) 398

Stillwater(MT) 398

Big(MT) 398

Petroleum(MT) 398

Treasure(MT) 398

Big(MT) 417

Park(MT) 428

Sweet(MT) 398



July 14, 2011 12:4 WSPC-IJAIT S0218213011000309

A Graph-Based Approach to Detect Abnormal Spatial Points and Regions 747

(a) α = 0.1, σ2

0
= 2, c = 15, K = 5, N = 100 (b) α = 0.1, σ2

0
= 2, c = 15, K = 10, N = 100

(c) α = 0.15, σ2

0
= 2, c = 15, K = 5, N = 100 (d) α = 0.15, σ2

0
= 2, c = 15, K = 10, N = 100

(e) α = 0.15, σ2

0
= 2, c = 15, K = 5, N = 200 (f) α = 0.15, σ2

0
= 2, c = 15, K = 10, N = 200

Fig. 11. (color online) ROC Curves. Same settings (n = 100, b = 5, c = 5).
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Richmond(196), Northumberland(496), etc) are lower. Intuitively, the rent in St.

Mary’s is very different from those of its neighbors. However, such outlying be-

havior cannot be detected by Z-Value, SLOM, scatterplot and Moran scatterplot.

This is due to their intrinsic properties when identifying the outlying behavior. For

example, Z-Value identifies the outliers by normalizing the difference between a

spatial object and the average of its spatial neighbors. Moran scatterplot detects

the spatial outliers by normalizing the attribute values against the average values

of the corresponding neighborhood. Averaging the rents of the neighbors neutral-

izes such significant differences. POD based methods can also avoid identifying the

false outliers while SLOM, Scatterplot, and Moran-Scatterplot not only miss some

true outliers, but incorrectly recognize some not very outlying points as true out-

liers. For example, Yellowstone(MT) by SLOM approach and Dorchester(MD) by

Moran-Scatterplot approach. Take county Dorchester(MD) as an example. Most of

its neighbors have somewhat similar values. Therefore, it should not be identified

as a spatial outlier. It is identified as an outlier by Moran-Scatterplot approach

mainly because of Calvert(MD).

Detection Accuracy: We compared the outlier detection accuracies of different

methods based on different combinations of parameter settings as shown in Ta-

ble 5. Six representative results are displayed in each one of the graphs, showing

the detection of true and false positives. Obviously, SOD (aka POD in our ap-

proach) has significant performance increases. POD achieved 15-20% improvement

over SLOM methods, 30-40% over Moran-Scatterplot method and about 50% over

Scatterplot method. Meanwhile, Z-value test has also very impressive performance

on the simulation. Z-value is under the null hypothesis stating that the data fits

a normal distribution. It computes the mean and standard deviation of the entire

dataset to compute the outlierness for each object. Since our simulation data is just

generated from standard normalized distribution, there is no doubt that Z-value is

one of the most appropriate methods for the simulation data. Some of the ROC

curves derived from POD-based methods have somewhat similar trend with that of

Z-value method. In a sense, POD based approach can accurately detect the outliers

in the dataset with normal distribution although they do not make such hypothesis.

When being utilized into a real dataset with unknown distribution, Z-value may

not show such good performance since many datasets do not conform to normal

distribution.

6. Conclusion

In this paper, we propose two spatial outlier detection algorithms based on kNN

graph: one to detect point outliers and another to identify region outliers. More-

over, we extend our approach to include multiple attributes based on Mahalanobis

Distance. The construction of kNN graphs makes it possible to connect adjacent

points to a region if their nonspatial attribute values are similar. Therefore, the
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ability to identify region outliers distinguishes our method from existing spatial

outlier detection algorithms. In addition, the edge cut strategy can reduce the neg-

ative impact of objects with very large/small values on their neighbors. Thus the

graph-based approach can detect legitimate outliers ignored by other methods and

avoid identifying “false” outliers.The experiments conducted on the US House Rent

data and U.S. Census data validated the effectiveness of the proposed methods.
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