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Abstract—As the issue of freshwater shortage is increasing 
daily, it’s critical to take effective measures for water 
conservation. Based on previous studies, device level 
consumption could lead to significant conservation of 
freshwater.  However, current smart meter deployments 
only produce low sample rate aggregated data. In this paper, 
we examine the task of separating whole-home water 
consumption into its component appliances. A key challenge 
is to address the unique features of low sample rate data. To 
this end, we propose Sparse Coding with Featured 
Discriminative Dictionary (SCFDD) by incorporating 
inherent shape and activation features to capture the 
discriminative characteristics of devices. In addition, 
extensive experiments were performed to validate the 
effectiveness of SCFDD. 

I.  INTRODUCTION 
The scarcity of potable water is one of the most critical 

challenges facing the world.  The statistics shown in 
Nature 2010 [1] states that about 80% of the world’s 
population lives in short of potable water. Furthermore, 
according to the California Department of Water 
Resources, without more water supplies by 2020, the 
region will suffer a deficiency nearly as much as the total 
amount consumed today [2]. At the global level, the 
existing freshwater is only enough to extend out as much 
as 60 or 70 years [3]. Urban water consumption 
contributes to 50%-80% of public water supply systems 
and 26% of whole usage in the US[4]. 

Studies have shown that device-level water usage 
information is crucial for establishing effective 
conservation strategies [5-7]. This paper specifically 
considers the task of disaggregating residential water 
consumption targeting for conservation. Consumption 
disaggregation refers to the process of separating 
aggregated smart meter readings into the consumption of 
its devices, such as toilet, shower and washer. 

Recently, water consumption disaggregation has 
become an important topic to explore solutions for water 
conservation.  Most previous studies focus on sensing the 
open/close pressure waves of devices to identify the 
signatures for separation. These methods are capable of 
achieving more than 90% in accuracy measure. However, 
they depend on high sample rate (typically 1 kHz) data 
sources to analyze individual device features. The widely 
deployed smart meters only produce low sample rate (as 
low as 1/900 Hz) readings to ensure reliable data 
transmission. It’s critical to design an effective algorithm 
to disaggregate low sample rate aggregated data. 

The challenge is to cope with the issues caused by low 
sample rate data sources, since it’s impossible to identify 
the open/close signatures of devices from the data at such 
a low resolution [8, 9]. This inspires us to model new 
“signatures” for devices from low sample rate data. 
Through integrating the water usage cycles (or duration) 
with interval based consumption trend (per interval is 15 
min), we propose to use shape features as one “signature” 
for distinguishing devices. In addition, another “signature” 
is defined as the amplitude of activations, indicating the 
consumption of device. For instance, with respect to 
consumption, the “signature” of toilet is 1~5 gallons while 
that of shower is 6~30 gallons. We then integrate the 
inherent shape and activation features into Sparse Coding 
with Featured Discriminative Dictionary (SCFDD) to 
separate the whole-home data into its components. The 
contributions of this paper are as follows: 

• In-depth study on the inherent shape features 
of aggregated data: We inspect the shape 
features for every device, and propose an efficient 
algorithm to extract the features based on First-
order Relation. 

• Comprehensive examination of the amplitude 
of activations: The consumption characteristics of 
devices are investigated and considered as the 
discriminative features, which are depicted by the 
amplitude of activations. 

• Extension of Sparse Coding with Featured 
Discriminative Dictionary (SCFDD): SCFDD is 
proposed by incorporating the inherent shape and 
activation features into the sparse coding model, 
which can effectively perform water consumption 
disaggregation task. 

• Extensive experiments for illustrating the 
effectiveness of SCFDD: We demonstrated the 
effectiveness of SCFDD by comparing it with 
other models in both whole-home and device level 
measures. 

This paper is organized as follows. Section II covers 
the background and related work. The sparse coding with 
featured discriminative dictionary model is introduced in 
Section III. The effectiveness of the proposed method is 
validated with extensive experiments in Section IV. Our 
work is summarized in Section V.  

II. BACKGROUND & RELATED WORK 
We provide the notations and concepts, and introduce 

sparse coding based approaches. 
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A. Notations and Concepts 
Assume we are given � different devices, such as toilet, 

shower, and washer. For each device � � ��� � �, we have 
a water consumption matrix �	 
 ��� , where �  is the 
number of intervals in one day, and � is the number of 
days. The �th column of �	, denoted by �	�, is the �th day’s 
water usage for device � , where � =1, …, m. The � th 
element of �	� , denoted by �	�� , � � ���� , is the � th 
interval’s water usage in the � th day for device � . We 
denote aggregated water consumption over all devices as �� � � �	�	 . Thus, each column of �� indicates one day’s 
aggregated water consumption of all devices. In the 
training process, we have individual device consumption 
data, ��� � � � � ��. At test time, we only have a new set of 
aggregated consumption data, ��� , and the goal is to 
disaggregate it into its components , ���� � � ��� . 

Sparse coding for source separation [10] and energy 
disaggregation [11] is to learn device based dictionary, and 
then separate aggregated signals into individual devices. 
Formally, for device �, the data matrix is denoted as �	 , �	 � �	�	 �  	 , where �	 
 ��!"  is the dictionary for 
device �, and the columns of �	  contain a set of #	  basis 
functions; �	 
 �!"� is named as the activations of the 
device �’s dictionary;  	 is Gaussian, white noise [12]. The 
notion of sparseness is achieved by shaping the probability 
distribution of each element within �	  to have a high 
probability at zero. 

B. Discriminative Sparse Coding 
We discuss the basic idea of discriminative sparse 

coding in energy disaggregation [11], where the prior on 
activations of non-negative sparse coding [13] is Laplace 
distribution. The complete-data likelihood could be 
converted into the following optimization function [12], 

  $%&�"'(��"'( �) *�	 + �	�	*,) � -� .	�/�/   
subject to 01	�0) 2 �� � � ��� � #	 Eq. (1) 

  
where �	� �	  and �	  are defined as in section II.A., - 
 �3  is a regularization parameter. *4*,  is the 

Frobenius norm, and *5*)  is the �)  norm. The device 
based dictionary and activation is learned based on Eq. (1) 
through executing convex optimization on each variable 
when holding the other fixed. 

With the assumption that the activations estimated 
from Eq. (1) are the best possible values, and augmented 
regularized disaggregation error objective function is 
defined as shown in Eq. (2) to drive dictionary to be 
discriminative. 6789:;��<�� ��<�� �=�<�> � � ?@�	� �	� �	A�	B�   
subject to �C�<� � DEFG$%&�H<I'( ?�, where, ?@�	� �	� �	A � �) 0�	 + �	�C	0,) � - � .J	�/�/ �  

?� � K�� + L�� M ��N O��P�QRK,
) �

Eq. (2) 

-� @�	A	�/	�/   
  4�<� is the short hand of 4�� � � 4�. As the ��<� bases 

are the same as learned from Eq. (1), while the �=�<� bases 
are discriminatively optimized in order to move �C�<� close 
to the activations learned from Eq. (1). Finally, the 
optimization process of Eq. (2) is completed with 
structured perceptron algorithm [14]. 

C. Related Work 
The primary attempts for disaggregation tasks focus on 

power consumption disaggregation. Nonintrusive 
Appliance Load Monitoring (NALM) was proposed by 
Hart [15] for breaking apart residential power consumption, 
and he indicated that the distinct power consumption 
signatures of different electrical appliances could be 
depicted with Finite State Machines (FSM). Recently, 
Kolter et al. proposed Discriminative Disaggregation 
Sparse Coding (DDSC) for separating low sample rate 
aggregated power readings [11]. However, the proposed 
method requires a large amount of training data for 
training purpose. An unsupervised framework for the 
disaggregation of low frequency power measurements [16] 
was proposed by integrating some additional features (e.g. 
time of day) into Factorial Hidden Markov Model 
(FHMM). 

With respect to water consumption disaggregation, 
Froehlich et al. designed pressure-based sensors for water 
fixtures to identify the activity at individual water fixtures 
within a home [17]. But this method depends on high 
sample rate data. A HMM based approach was proposed in 
[18] to analyze human activities with low sample rate 
aggregated smart meter readings. However, this method 
analyses activities in one sequenced data, limiting its 
ability to parse parallel activities. 

There is a lack of models designed for disaggregating 
low sample rate water consumption. Existing methods are 
mainly proposed for power consumption disaggregation, 
which are incapable of analyzing the features of 
aggregated smart meter readings collected at a low 
resolution. HMM based method analyses the activities 
with interval based consumption; however, it has limited 
ability to estimate the consumption for devices. 

III. SPARSE CODING WITH FEATURED DISCRIMINATIVE 
DICTIONARY 

We begin by examining the shape features for low 
sample rate water consumption. Subsequently, we insepct 
activation features to characterize the consumption feature 
for devices.  The signal disaggregation is finally performed 
with Maximum a Posteriori (MAP) estimation. 

A. Inherent Shape  Features Discovery 
Based on domain knowledge, it is suggested that the 

time duration and consumption trend are distinct across 
devices [19]. For example, time duration of toilet is around 
1~3 minutes, while time duration of shower is around 
3~20 minutes. Under the context of this paper, the sample 
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rate of smart meters is 1/900 HZ, indicating that per 
reading is 15 min, and there are 96 intervals in one day. 
We use span and consumption trend to depict shape 
features. 

Definition 1. (Span) For any device � , the span of � , 
denoted by S	 , is defined as the enumeration of all 
possible time duration of device � measured as the number 
of intervals.  

Take toilet as an example, there are two possible time 
duration, 1 or 2. So by Definition 1, S � T��UV . Since 
water consumption is continuous, it’s complex to define 
trend features. For instance, only with respect to 2 
intervals, toilet might contain infinite combinations as long 
as the sum is in a certain range (1~5 gallons [19]), such as 

WXY�ZY�[\ � X��YY�]\ � XY�]��Y\ � XY�[U�]\ � X^�U��Z\ � XY�[Y�[\ � X��Y��Y\ � � _� Eq. (3) 

where each vector shows one possible toilet 
consumption distributed over 2 intervals (for 
simplification, we only show the 2 of 96 intervals in one 
day). Actually, the infinite possibilities cause the problem 
to be intractable. Thus, it’s critical to invent a new method 
for approximation. Inspecting data shown in Eq. (3), we 
could intuitively reach the pattern that there exists 
numerical relation (larger than, equal, or less than) 
between values in these two intervals. This indicates that 
the maximum number of consumption trend over ` 
intervals is ^a@ab�Ac), where ` is an integer larger than 0. It 
grows exponentially with the number of intervals. To 
simplify this problem, we propose a novel method to 
approximate the trend of consumption through only 
considering first-order relations (see Definition 2).  

Definition 2. (First-order Relation) Given any time 
series consisting d  real values e��� �ed , we first use efgh and e�ij  to respectively denote the minimum and 
maximum values of these d  real values. The first order 
relation on this time series is defined as,  
  

k@�A � l������Y�  
�mGd � � 

Eq.
(4) 

�mGe� n e)� d n � �mGe� � e) � e�ij� d n �opqrst�ur 
  

k@pA � G v ��GGGGGGGGGGGGGY�GGGGGGGGGGGGGk@p + �A� 
�mGe/ n e/b�� d n � �mGe/ w e/b�� d n � �mGe/ � e/b�� d n � 

  
where p � U�� � dG. 

For example, all data in Eq. (3) are approximated as,  

WXY�\ � X�Y\ � X��\_ Eq. (5) 

where the first vector in Eq. (5) indicates that the first 
element is less than the second element; the second vector 
indicates the first element is larger than the second element; 
and the last vector indicates these two elements are the 
same.  

Based on Eq.(4), we can convert all vectors in Eq. (3) 
to Eq. (5). For a specific device �, we have significantly 
reduced the complexity from infinity (x ) to Uy"z + � , 
where S	z is the zth element in S	. Practically, considering 
general water consumption devices, such as toilet, shower, 
and washer, the maximum interval based duration is 7 (1 
hour and 45 minutes). This indicates that the most 
complex ordering combination is U{ + � � �UZ, which is 
certainly acceptable. 

Definition 3. (Consumption Mapping) Given any device �  and its corresponding span S	 . For |�	� 
 �	 , � ���� ��, consider any possible time series combination }	�~  
of non-zero values in �	�  while holding original time 
sequence, where ~ 
 S	  specifies the span of current 
combination. Then consumption mapping is the process to 
apply first-order relation on }	�~  to get k}"�~ . 

If there is water consumption, it is shown as the non-
zero values in �	�. Thus, in Definition 3, we only consider �	� ’s non-zero values. Here we use �	  to denote the 
consumption mapping results of �	. 
Definition 4. (Shape Features) Given �	 , the shape 
features of device �  denoted by �	  is the set of unique 
elements in �	, � � ��� � �. 

The shape features of Eq. (3) are shown in Eq. (5). 
However, each element in the consumption mapping 
results is associated with one element in the time series set. 
For instance, the consumption mapping results of Eq. (3) is:  

WXY�\ � X�Y\ � XY�\ � XY�\ � X�Y\ � X��\ � X��\ � � _ Eq. (6) 

The proposed shape features effectively capture time 
duration and consumption trend. Based on prior 
knowledge [19], we can define the span for general 
devices. Taking shower as an example, time duration 3~20 
minutes is able to capture more than 95% situations. Thus, S	 � T��UV. 

The key to sparse coding is to learn discriminative 
dictionary for separating whole-home level consumption 
into appliance level usage. Based on the fact that shape 
features are the abstract discriminative characteristics of 
appliances, we incorporate shape features into the 
construction of dictionary �	� for device � in Algorithm 1. 

Algorithm 1 Learn discriminative dictionary based on 
shape features 
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input: data matrix for individual device �	 
 ��� ,  
predefined span for each device S	, � � ��� � �. 
output: shape features set and dictionary of particular 
device �	� �	�G,  � � ��� � �.  
variable: mapping results of every device �	, the initial 
values of �	 � LGN, � � ��� � �. 
1 for � � � to � 
2     for � � � to � 
3         �3 � �	� n Y. 
4         }	�~  � all possible time series combinations of �3   

subject to original time sequence, where ~ 
 S	  
indicates the span of current combination. 

5         k}"�~ � consumption mapping results of }	�~ . 

6         �	 � X�	� k}"�~ \. 
7         Extend }	�~  as a basis function through filling all  

other intervals to be zero, and add this basis  
function at the end of �	�G. 

8     end for 
9     �	 � ������@�	A 
10     �	� � �	�G�c0�	�0). 
11 end for 

In Algorithm 1, function ������@4A is the operation 
to find element based different vectors from matrix 4. The 
“�c” in line 10 means the normalization operation over all 
basis functions in �	�G. 

As the device based dictionary �	�G  is extracted from 
training data �	  constrained by shape features �	 , this 
indicates that �	�G  is customized for device � , which  
embodies device based distinctive characters: time 
duration and consumption trend. Thus, the discovered 
dictionary �� � ���� M �!"� �  is capable of 
discriminatively separating whole-home water 
consumption into its component appliances. 

B. Learn Inherent Activation Features and Refine �� 
We examine another important discriminative feature 

relating to the consumption of devices. For example, 
average water usage of one toilet is about 2.0 gallons, 
while that of one shower is about 17.8 gallons [19].  

Based on the fact that water consumption of individual 
device basically remain the same value over time [20], the 
non-zero activations will also remain the same. Because 
it’s activation that determines the consumption given fixed 
dictionary. In SCFDD, the sparse structure is ensured by �� 
norm.  

In addition to zero (or near zero) activations, we are 
most concerned about the non-zero activations to uncover 
individual device’s consumption. As the learned basis  �� 
has already been normalized, we approximate the 
corresponding activation as the consumption over basis. 
To determine the probability distribution function 
accurately captures the non-zero activations, we plot the 
histogram of activations in Figure 1. 

  

 

 
We found that gamma distribution is suitable to fit 

most activation features.  Since gamma distribution has 
two parameters (�� �), it has more freedom to scale for 
various shapes. Thus, 

�;.	�� � �	� �	> � �	�"�@�	A ;.	��>�"b�rb�"i"�� (7) 

Algorithm 2 Learn activation features and refine 
dictionary 
input: dictionary of particular deviceG�	�G, � � ��� � �. 
output: activation features �	� �	 , refined dictionary of 
each deviceG�C	, � � ��� � �.  
// Phase1: Learn activation features 

1 for � � � to �  
2     �	 � DEF$%&�"'(0�	 + �	��	0,) � - � @�	A����  
3     �	� �	 � DEF$D��"��"�@�	� �	 � �	A 
4 end for 

//Phase2: Refine �	�G 
5 for � � � to � 
6     repeat 
7         �C	 � DEF$%&�"'(*�	 + �	�	*,)  
8         �C	 � DEF$%&�"'(0�	 + �	��	0,) � -� @�	A����  
9         �	 � ������G��� %�E¡G¢E�$GG�C	 
10         Check the span of all basis functions in �C	, and  

delete those that are out of span of device �. 
11         �C	 � �C	G�c0�C	0). 
12     until �	 � £ and convergence. 
13 end for

 
To induce the model to prefer the activation fit for the 

learned gamma distribution, we iteratively remove the 
abnormal activation values through statistical hypothesis 
testing.  

We detect outliers in gamma distribution through 
applying the hypothesis testing algorithm proposed by 
Zerbet and Nikulin [21]. Consequently, we set the spot 
activations to be zero, and then continue iterating until no 
abnormal values are detected. The process to learn 

Figure 1. Histogram of non-zero activations. 
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activation features and refine dictionary is shown in 
Algorithm 2. 

C. Signal Disaggregation 
The generative model for aggregated data, 

� � L�� M �!"N ¤��P�!"
¥ (8) 

Given the dictionary �C , activation features �	� �	 , we 
first estimate �C as 

�C � DEF$%&�'(0� + ��0,) � -¦�	��	��  (9) 

Moreover, for each device � , we detect the outliers 
from �C	  as �	 . Repeat above process until the union set � � § �		  is empty. 

In summary, we have presented the model SCFDD for 
disaggregation task. The inherent shape and activation 
features are discovered as the differentiate features. The 
Gamma distribution is used to propel the activations to 
accommodate the amplitude of consumption. 

IV. EXPERIMENT EVALUATION 
In this section, we evaluate the performance of the 

proposed methods based on real-world scenarios. 

A. Experiment Setup 
1) Datasets: A large-scale dataset containing nearly 

one million individual water use “events” was collected 
by Aquacraft from 1,188 residents in 12 study sites (such 
as Boulder, Colorado and Lompoc, California) [22]. Water 
consumption for various end uses was measured using 
compact data loggers and a PC-based flow trace analysis 
software. 

2) Benchmark Methods: We have included the most 
recent machine learning methodologies for low sample 
rate data disaggregation: discriminative sparse coding for 
energy disaggregation and FHMM based methods for 
energy disaggregation. For the fitness purpose, we 
compared the proposed methods with five existing related 
models: discriminative disaggregation sparse coding 
(DDSC), discriminative disaggregation sparse coding with 
total consumption priors (DDSC + TCP), discriminative 
disaggregation sparse coding with group lasso (DDSC + 
GL), discriminative disaggregation sparse coding with 
total consumption priors and group lasso (DDSC + TCP + 
GL), and FHMM. We focused on analyzing three main 
devices’ water consumption: toilet, shower and washer.  

3) Evaluation Metrics for Disaggregation Several 
existing evaluation metrics are applied to evaluate the 
disaggregation performance. First, we used normalize 
disaggregation error [23] and accuracy [11] to show  the 

general disaggregation performance for whole-home level. 
To evaluate the disaggregation performance for particular 
device, we used precision, recall and F-measure at device 
level, where precision is the fraction of disaggregated 
consumption that is correctly classified while recall is the 
fraction of true device level consumption that is 
successfully separated, and F-measure is U  ¨sr©�u�o# sr©.��GcG@¨sr©�uo# � sr©.��A. 
B. Performance Evaluation and Comparison 

To demonstrate the effectiveness of SCFDD, we 
compare it with five benchmark methods. 

TABLE I shows the disaggregation performance 
obtained by many prediction methods. SCFDD performed 
nearly as well or better than all other methods. DDSC and 
FHMM almost have the same performance. Furthermore, 
SCFDD was capable of classifying real-world water usage 
at device level with more than 65% F-measures for toilet, 
shower, and 30% for washer. Specifically, for shower and 
washer, the GL extension to DDSC achieved a very poor 
performance for testing set. This is caused by the fact that 
GL distorts the model for fitting the testing data. 

 
TABLE I. DISAGGREGATION RESULTS OF METHODS (DDSC: 
DISCRIMINATIVE DISAGGREGATION SPARSE CODING, FHMM: 

FACTORIAL HIDDEN MARKOV MODEL, TCP: TOTAL CONSUMPTION 
PRIOR, GL: GROUP LASSO) 

Method 

Device 

  
Precision: training set, testing set 
Recall: training set, testing set 
F-measure: training set, testing set 

Toilet Shower Washer 

DDSC 

52.91%, 31.71% 
60.46%, 55.87% 
56.44%, 40.46% 

79.86%, 49.34% 
66.16%, 22.57% 
72.37%, 30.97% 

41.62%, 20.73% 
59.96%, 23.97% 
49.13%, 22.23% 

FHMM 
60.72%, 54.39% 
47.83%, 45.76% 
53.51%, 49.70% 

69.03%, 63.27% 
50.45%, 45.99% 
58.29%, 53.27% 

14.11%, 18.30% 
42.49%, 44.69% 
21.19%, 25.97% 

DDSC+ 
TCP 

45.27%, 17.68% 
54.15%, 20.03% 
49.31%, 18.78% 

59.79%, 39.13% 
67.47%, 42.16% 
63.40%, 40.58% 

39.74%, 14.60% 
53.23%, 16.68% 
45.51%, 15.57% 

DDSC+ 
GL 

40.78%, 27.89% 
61.80%, 66.99% 
49.14%, 39.39% 

71.18%, 23.71% 
42.35%, 4.73% 
53.10%, 7.88% 

49.46%, 7.19% 
69.28%, 2.78% 
57.72%, 4.01% 

DDSC+ 
TCP+ 
GL 

51.45%, 28.44% 
74.96%, 69.11% 
61.02%, 40.30% 

82.31%, 24.56% 
49.12%, 4.48% 
61.52%, 7.58% 

47.11%, 7.04% 
70.40%, 2.65% 
56.45%, 3.85% 

SCFDD 
84.52%, 58.78% 
88.06%, 73.81% 
86.25%, 65.45% 

93.58%, 74.61% 
80.03%, 59.72% 
86.28%, 66.34% 

58.56%, 39.49% 
92.89%, 25.43% 
71.83%, 30.94% 

 
There is a large gap between training set performance 

and the testing set performance for washer with respect to 
precision, recall and F-measure. This is caused by the bias 
values in the data. Since the frequency of washer is much 
lower than that of toilet or shower, it’s much easier to 
cause the decrease of performance for washer than the 
others. 

As shown in Figure 2, SCFDD outperformed most 
other methods with respect to both accuracy and 
normalized disaggregation error, which indicate the 
average amount of water usage predicted correctly over 
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the day. Especially, SCFDD could reach more than 70% in 
accuracy and less than 0.3 in NDE. As expected, the GL 
extension degrades both accuracy and NDE of DDSC. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
DDSC + TCP could achieve a higher accuracy than all 

others for both training and testing set, due to the 
consideration of forcing the total estimated amount data to 
be as close as the true aggregated data. SCFDD could 
achieve near zero NDE. This is caused by the fact that 
SCFDD is capable of capturing both shape and amplitude 
features for correctly estimating the consumption of 
individual devices. 

 

V. CONCLUSION 
Water consumption disaggregation is a domain where 

advances in data mining and machine learning could have 
a significant impact on. In this paper, we provide a 
concrete solution to the disaggregation of low sample rate 
smart meter readings. We extract the inherent shape and 
activation features to discriminatively characterize devices. 
SCFDD is constructed by incorporating the discovered 
features into sparse coding for disaggregation task. We 
apply Gamma distribution to drive the activations of basis 
to fit the amplitude of consumption. The MAP estimator is 
employed to predict the consumption of devices. Finally, 
extensive experiments are performed to demonstrate the 
effectiveness of SCFDD by comparing it with several 
benchmark methods. 
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Figure 2.  Whole-home performance of models. 

 

(a).  Acc. of the modes. 

(b).  NDE of the modes. 
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