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Abstract The probability density function (PDF) is an effective data model for a variety
of stream mining tasks. As such, accurate estimates of the PDF are essential to reducing
the uncertainties and errors associated with mining results. The nonparametric adaptive ker-
nel density estimator (AKDE) provides accurate, robust, and asymptotically consistent esti-
mates of a PDF. However, due to AKDE’s extensive computational requirements, it cannot
be directly applied to the data stream environment. This paper describes the development of
an AKDE approximation approach that heeds the constraints of the data stream environment
and supports efficient processing of multiple queries. To this end, this work proposes (1)
the concept of local regions to provide a partition-based variable bandwidth to capture local
density structures and enhance estimation quality; (2) a suite of linear-pass methods to con-
struct the local regions and kernel objects online; (3) an efficient multiple queries evaluation
algorithm; (4) a set of approximate techniques to increase the throughput of multiple density
queries processing; and (5) a fixed-size memory time-based sliding window that updates the
kernel objects in linear time. Comprehensive experiments were conducted with real-world
and synthetic data sets to validate the effectiveness and efficiency of the approach.
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1 Introduction

Advances in hardware and software technologies have caused a surge in the growth and
availability of voluminous information. Data streams are realizations of vast information
that are fast, continuous, mutable, ordered, and unbounded [5]. Numerous data streams stem
from the ubiquitous time series and span a wide range of applications such as finance,
medicine, and sensor networks. Some well-known streams are traded stock prices, brain
electrical impulses (e.g., electroencephalograms), and roadway performance metrics (e.g.,
vehicle speed). Applying analysis and mining techniques can help deepen knowledge in these
domains and enhance their applications. Therefore, the development of stream analysis tools
can provide far-reaching impacts to the general discipline of stream mining.

Underpinning many stream mining tasks is the use of the probability density function
(PDF) for the most recent data [3,5,15,34]. However, in real-world situations, the PDFs are
usually unknown and therefore must be estimated. Examples of stream mining tasks that
employ estimated PDFs include outlier detection by modeling a sensor’s sample distribution
and selecting data points of low probability [32]; concept drift detection via comparing the
current and past data streams’ probability density estimates [2]; and pattern discovery in
Internet traffic by visualizing the estimated probability density function of arriving packets
[34]. One could further the efficacy of probability density estimates by enabling queries for
an explicit time range using a sliding window [3]. The extension would be able to respond
to questions such as “What is the distribution of telnet connections within the last hour?”
and “How have the roadway’s speed and volume distributional patterns changed in the past
two hours since the snow began?” Another desired feature of probability estimation is the
inclusion of an efficient approach for estimating densities for multiple queries. As in the
examples above, the outlier detection strategy in [32] approximates the distance-based outlier
measure by invoking multiple queries within an interval. A variant to the above scenario is
the case of data stream monitoring where several users simultaneously query various parts
of the data distributions. Because existing stream-based density estimators are designed
to generate a single query estimate, processing multiple queries within these estimators
can lead to computational redundancies that degrade throughput. Hence, new estimation
techniques must be developed which can effectively remove these redundancies to rapidly
process multiple queries.

An effective technique to estimate an unknown probability density function is the non-
parametric kernel density estimator (KDE). KDE possesses several advantages that include
asymptotic consistency; rigorous mathematical foundation; generalization to other density
estimators such as orthogonal series and histograms; and inheritance of the kernel function’s
continuity and differentiability properties [29,30]. The standard formulation of the univariate
KDE for a query point x is given as follows: For n independent and identically distributed
sample points (i.e., kernel centers) x1 . . . xn with corresponding weights w1 . . . wn , band-
width h, and a kernel function K (·), the kernel density estimate is

pKDE(x) = 1
∑n

1 wi

n∑

i=1

wi

h
K

(
x − xi

h

)

The accuracy of the KDE does not significantly depend on the choice of kernel function K (·),
but rather on the selection of bandwidth h [29]. The bandwidth is regarded as a smoothing
parameter: A high h value can generate a smooth shape density (reduce variance), whereas a
low h value tends to provide an under-smoothed estimate (reduce bias). The drawback of the
KDE formulation is the requirement of assigning a global bandwidth. Due to the existence
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of local features, a single global bandwidth may not be sufficient to model complex density
structures (e.g., multimodal distributions). When the global bandwidth KDE technique is
used as the core step in mining tasks, the generated results can be misleading and potentially
disastrous for mission critical applications (e.g., military sensor surveillance). To overcome
this problem, this paper proposes the use of an adaptive KDE (AKDE) to improve the esti-
mation accuracy of local features within data streams. The AKDE is a variable bandwidth
technique, which has been shown to be effective in capturing local density features [28–30].
The general formulation of the AKDE is as follows:

pAKDE (x) = 1
∑n

1 wi

n∑

i=1

wi

H(xi )
K

(
x − xi

H(xi )

)

, H (xi ) ∝ f (xi )
−1 (1)

where H(xi ) is the bandwidth function that is inversely proportional to the true density
f (xi ).

1.1 Linear time adaptive KDE

Although the AKDE can produce superior estimation quality to the classical KDE, its com-
putational cost (O(n2)) far exceeds the traditional KDE (O(n)). In the AKDE, the bandwidth
H(·) is computed from the true density f (·). Because the true density is unknown, a pilot
function is defined to provide an estimate for f (·). Generally, the pilot function is modeled
by the classical KDE. This choice implies that evaluating H(·) is an O(n) operation. There-
fore, computing a query under the AKDE is a O(n2) because H(·) is computed at least once
for each sample point. This evaluation approach cannot be applied to data streams since it
clearly infringes upon the linear-pass restriction. Due to AKDE’s extensive computational
cost, there are currently no works that provide adaptive kernel density estimates for the data
stream environment.

1.2 Rapid multi-query estimation algorithms

Existing stream-based KDEs employ algorithms that operate on a single query element at a
time. However, there are several stream mining tasks that require the generation of multiple
estimates such as outlier detection and visualization. These stream mining tasks must submit
the queries in sequence, resulting in several redundant computations and throughput degra-
dation. Because the query points are determined ahead of time either by the mining algorithm
or by application usage (e.g., multiple users submitting queries), new query processing meth-
ods can be constructed to exploit this prior information in order to improve overall query
throughput.

This paper tackles the issue of developing efficient AKDE capable of rapidly generating
multiple density estimates over data streams. To that end, we propose the online local region
KDE (LR-KDE), an adaptive kernel density estimation framework for processing univariate
data streams. The major components of the proposed framework are (1) a new partition-based
variable bandwidth technique to capture local density structures and to enhance estimation
quality, (2) a suite of linear pass methods to construct local regions and its corresponding
kernel objects online, (3) a multiple density point evaluation algorithm that reduces the costs
of local region and kernel object searches, (4) a set of interpolation-based techniques that
provides approximation guarantees and further increases the query throughput, and (5) a
fixed-size memory time-based sliding window that updates and expires the kernel objects in
linear time. We also analyze the asymptotic costs and consistency property of the online LR-
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KDE (see Sect. 6). Extensive experiments were conducted to demonstrate the effectiveness
and efficiency of the approach.

The proceeding sections are organized as follows. Section 2 surveys the related works.
Section 3 provides the theoretical preliminary. Section 4 details our proposed framework.
The suite of algorithms for processing multiple density queries are described in Sect. 5, and
the consistency results and cost complexities are presented in Sect. 6. Section 7 demonstrates
empirical results and validation. The paper concludes with a summary of the research in
Sect. 8.

2 Related works

Early efforts in computationally tractable KDEs can be found in the domain of off-line
analysis. Zhang et al. [36,37] proposed a method to maintain a space-efficient KDE using
the CF-tree to cluster a set of kernels into a single kernel known as the CF-kernel. The CF-
kernel employs a global bandwidth that can lead to oversmoothing and loss of local density
information. Gray et al. [13] proposed a kernel space partitioning technique by utilizing a KD-
tree and bounded support kernels for off-line processing. The KD-tree reduces computations
by effectively pruning kernels, which do not contribute to the density query.

Several recent works have been proposed for the online management of KDE. These online
techniques can be classified into the following three categories:

1. Grid-based KDE—provides a uniform and discretized representation of the kernel points
2. Sample-based KDE—employs a sampling methodology on the data stream to reduce the

total kernel size
3. Cluster-based KDE—utilizes kernel merging techniques to maintain a fixed storage and

minimize the kernel merge error

2.1 Grid-based and sample-based

Aggarwal proposed a framework to capture the structural evolution of data streams using a
grid-based KDE [2]. The kernels are summarized in a multidimensional grid where a common
bandwidth is employed for each dimension. Concepts of forward and reverse density profiles
are introduced to discover the occurrences of concept drifts. Subramaniam et al. [32] proposed
an approach for outlier detection in sensor networks by modeling the densities of node
observations. Their scheme employs a uniformly sampled sequence-based sliding window to
summarize the kernels, and a global bandwidth is applied. Wegman et al. [34] introduced an
online KDE for the analysis of Internet traffic. They suggested the use of a sequence-based
and exponentially aging sliding window to accommodate a fixed storage environment. To
derive estimates, a single bandwidth KDE is employed on the sliding window.

2.2 Cluster-based

Zhou et al. [38] introduced the M-kernel, a cluster-based KDE maintenance strategy that
performs numerically based kernel mergers under a fading window. The merging algorithm
combines two kernels to produce the minimum integrated absolute error between the original
pair and the merged result. This scheme allows for a fixed memory representation of the
kernels. However, under the M-kernel, the consistency of the estimate is not guaranteed and
the approach can exhibit high update costs due to its numerical-based merging strategy. In
a similar vein, Heinz et al. [16] proposed a constant time pairwise merging technique that
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guarantees consistency. Their kernel method employs a single bandwidth that has been shown
to be effective in approximating the classical KDE.

2.3 Multiple query processing

Efficient estimation of multiple density points has been proposed for off-line KDE techniques.
These methods operate on a transformed estimation problem expressed as a convolution of
the kernel weight and kernel influence function [33]. The convolution is efficiently computed
via orthogonal series techniques such as discrete Fourier transform or fast Fourier transform
[10,26]. However, estimating multiple points through convolution-based approaches is lim-
ited in two critical ways: (1) A grid-based KDE must be employed and (2) orthogonal series
computation can only be applied when the underlying KDE utilizes a global bandwidth [33].
These two drawbacks can reduce the estimation quality due to the uniform space partition-
ing of the grid-based method and the global bandwidth’s inability to effectively model local
structures. For the stream-based estimators, multiple queries are resolved by invoking several
single query estimates in a first-in-first-out order. These multiple invocations can result in sig-
nificant computational overhead due to the redundant searches of (potential noncontributing)
kernel objects and suboptimal sequencing of query order. For data streams, any excess time
allocated to computations can result in denials of much needed estimates to the application.
Due to the above issues, this work develops efficient algorithms for the LR-KDE that can
rapidly estimate multiple density queries.

Most KDE approaches employ a single bandwidth strategy; hence, they cannot accurately
estimate the stream’s local features. The M-kernel, although it applies a variable bandwidth
approach, is not assured to be asymptotically consistent. As a consequence, the M-kernel is
not guaranteed to converge as the sample size increases. The proposed LR-KDE differentiates
itself from existing works in the following aspects:

1. Local feature estimation—models local density features via partition-based bandwidth
to improve estimation quality.

2. Consistency—assures asymptotic consistency under the proposed variable bandwidth
strategy.

3. Multi-query optimization—generates multiple density estimates that eliminate redundant
query operations and enhance overall query throughput with a worst-case cost of O(DM)

where D is the query size and M is the number of kernels.
4. Linear-pass processing—employs O(M) algorithms to process kernel updates and den-

sity queries.
5. Time-based window—provides a fixed-size time-based sliding window.

Online histograms have also been proposed in the field of database optimization to provide
query selectivity estimates and approximate queries [21]. Some online histograms include
dynamic quantiles [12], equidepth histograms [11], and V-optimal histograms [14]. Due to
the histogram’s inherent discontinuities and slower convergence, the histogram may not be
suited for the tasks of stream analysis [30]. Feature discretization (binning) methods have
been proposed in the machine learning community to support the modeling of mixed format
data [9,24]. There are two major categories, including supervised and unsupervised methods.
Supervised methods include adaptive quantizers [7], supervised monothetic contrast crite-
rions (MCC) [25], and predictive value maximization (PVM) [35]. Unsupervised methods
include equal width binning, equal frequency binning, and unsupervised MCC [25]. Most of
these methods were designed for classical prediction models such as decision tree and naive
Bayes classifier. However, these methods did not consider the special properties of KDE,
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such as the relative density variance of density estimates, and may not be directly applicable
to the problem of adaptive KDE estimation.

3 Theoretical preliminary

A formal description of the density estimation problem is provided in the following: Given a
data stream S = {

x (1), x (i), . . . , x (n)
}

where x (i) is a real-valued scalar (i.e., sample point)
and each x (i) is associated with a time stamp τ(x (i)) ∈ [τmin, τmax], it generates and main-
tains an adaptive kernel density estimator f̂ AK DE (·) of S. The storage, update, and query
costs of f̂ AK DE (·) should be at most O(M) where M is a constant and M � ‖S‖ = n.
For multiple density estimation, a multiple density estimator is defined and described as fol-
lows: f̂MU LT I _AK DE

(〈d1, d2, . . . , d|D|〉
) = 〈 f̂ AK DE (d1), f̂ AK DE (d2), . . . , f̂ AK DE (d|D|)〉

where D is the query set and di is an element of D. The storage and update costs should not
exceed those of f̂ AK DE (·) and the query cost bounded to O(DM).

With respect to stream applications, one of the fundamental issues of the AKDE is its high
computational cost for determining the bandwidth H(·) (Eq. 1). To reduce this computational
requirement, a bandwidth approximation technique is proposed for the AKDE. Let T =
{xi : xi ≤ xi+1, 1 ≤ i ≤ n, xi ∈ S} be an ordered representation of the kernels in S. Define
the relative density variance, R(k, l), as the sample variance of the set of estimated densities
at xk . . . xl ∈ T where 1 ≤ k ≤ l ≤ n. The bandwidth approximation procedure is given as
follows:

1. Partition T into Q local regions (i.e., intervals) such that each local region’s R(·, ·) value
is minimized

2. For each local region, assign a bandwidth that is unique to its constituent kernels

The above scheme serves to capture the local densities within the total span of the distri-
bution. The obtained approximation is consistent with the structure of AKDE’s bandwidth,
i.e., similar bandwidth values are assigned to kernels of similar densities. Hence, the local
regions can be seen as a piecewise constant representation of H(·).

Two design challenges exist in applying the above approximation approach: (1) the effi-
cient derivation of the relative density variance and (2) the development of a technique for
local region identification. In the following, the pairwise adjacent distance uniformity the-
orem is introduced to provide an efficient venue for estimating the density variance. The
theorem is followed by the definition of an optimization problem for the task of identifying
local regions.

3.1 Derivation of relative density variance

As previously defined, local regions provide a total and disjoint partitioning of the kernel
domain which minimizes the intra-variance of the density estimates. A unique bandwidth
is assigned to each local region based on the regional kernel characteristics. If each kernel
is given its own unique local region, then the local region-based KDE (with the appropriate
bandwidth function) is a reformulation of the traditional AKDE. However, if the number
of the local regions is less than the number of kernels, then the local region KDE is an
approximation of the AKDE. The problem now is how to derive a method that can efficiently
calculate the density estimate variance for a given range of kernels. One possible approach
is to estimate the densities via the traditional KDE approach. However, this poses the same
computational issue as the AKDE. An alternative and more viable solution is to employ the
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pairwise and adjacent kernel distances to derive relevant properties of the density variance.
To that endeavor, the pairwise adjacent distance uniformity theorem is introduced.

Let G be a set of ordered and identically weighted kernels whose pairwise and adjacent
distance variance is zero; then under certain conditions, it can be shown that the densities at
the kernel centers (under a global bandwidth KDE) in G are uniform. The significance of this
theorem is that it provides a venue of estimating the density variance through information
of the kernels’ pairwise and adjacent distances (PAD). As a result, computationally tractable
bandwidth approximations can be developed from the kernels’ PAD information. The proof
of the PAD uniformity theorem is as follows:

Theorem 3.1 (Pairwise adjacent distance uniformity) Let V = {xi : xi ≤ xi+1and1 ≤ i ≤ n}
be a set of sorted kernel centers associated with a bounded and radially symmetric
kernel function with uniform weight and bandwidth. Furthermore, let the sorted ker-
nels be adjacently equidistant such that |xi+1 − xi | = ∣

∣x j+1 − x j
∣
∣ ∀i, j . Suppose G =

{xk : x1 + bandwidth ≤ xk ≤ xn − bandwidth}. Then for the kernel density estimate,
f̂ (x), the following property must hold: f̂ (xk) = f̂ (xl)∀xk, xl ∈ G.

Proof Let xk, xl ∈ V be any two kernel centers and define a set Ix = {xi : |xi − x | <

bandwidth}. Ix is the set of kernel centers for which their corresponding bandwidths intersect
x ; thus, Ix possess all the kernels that contribute nonzero values to the kernel density estimate
f̂ (x). Consider Ixk and Ixl , and without loss of generality, choose a kernel center, α ≤ xk ,
from Ixk . Because all the kernel centers within G are adjacently equidistant, there must exist
an element, β ≤ xl , from Ixl such that xk − α = xl − β. Since the kernels are radially
symmetric with equal bandwidth and identically weighted, the contribution of α to f̂ (xk) is
equal to the contribution of β to f̂ (xl). For any chosen α in Ixk , there exists a corresponding
β in Ixl for which their contributions are equal. This relationship also holds for any β in Ixl

corresponding to an α in Ixk . Hence, there is a one-to-one relationship between α in Ixk and
β in Ixl , which implies that the sum of the kernel contributions of Ixk to f̂ (xk) and Ixl to
f̂ (xl) is equal. Therefore, f̂ (xk) = f̂ (xl)∀xk, xl ∈ G.

3.2 Optimization problem for local region identification

Leveraging upon Theorem 3.1, identification of the local regions can be achieved by mini-
mizing the variance of the kernels’ pairwise and adjacent distance values. In the following,
an optimization problem is established to identify local regions based on the kernels’ PAD
information. Assume that a local region, L , possesses a set of kernels (centers), y j . . . ym ,
where y j ≤ y j+1 ≤ ym for 1 ≤ j ≤ m ≤ n, and n is the total number of kernels. Set L’s
i th adjacent distance to be Ld(i) = y j+i+1 − y j+i , and define the variance of L’s kernel
pairwise and adjacent distances as follows:

var(Ld) = 1

‖L‖ − 1

‖L‖−1∑

i=1

(

Ld(i) −
∑‖L‖−1

1 Ld(i)

‖L‖ − 1

)2

(2)

where ‖L‖ is the number of kernels in L .
In practice, the density estimate makes use of arbitrarily weighted kernels. Hence, con-

sideration of varying weights must be made in the local region formulation. Let z1 . . . zn be a
set of sorted kernel centers assigned to a bounded, radially symmetric, and equal bandwidth
kernel function, such that |zi+1 − zi | = |z j+1 − z j | ∀i, j . Let w(zi ) be the nonnegative
weight of kernel center zi and f̂ (zi ) be the density estimate at zi . From the KDE definition,
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f̂ (zi ) ∝ w(zi ) ⇒ var( f̂ (Z)) ∝ var(w(Z)). Therefore, minimizing var( f̂ (Z)) is equiva-
lent to minimizing var(w(Z)). Let Lkw(i) be the weight of kernel y j+i in L , and define L’s
kernel weight variance, var(Lkw), as follows:

var(Lkw) = 1

‖L‖
‖L‖∑

i=1

(

Lkw(i) −
∑‖L‖

1 Lkw(i)

L

)2

(3)

Using the local region PAD (Eq. 2) and the kernel weight variance (Eq. 3) formulae,
partition the entire sample points y1 . . . yn into Q disjoint local regions by minimizing the
aggregate variance of all Ld and Lkw:

Min
Q∑

i=1

‖L‖
(

var(L(i)
d ) + μ · var

(
L(i)

kw

))
(4)

where μ is the weight assigned to L’s kernel weight variance.
The solution to the above local region optimization problem generates local regions with

minimum overall intra-density variation. Moreover, the problem is solved by exclusively
employing the kernels’ PAD and weight information which are amenable to efficient imple-
mentations.

4 Proposed approach: online local region KDE

The local region identification problem can be solved via dynamic programming techniques
in time O(n2 Q) where Q is the number of local regions; however, this solution exceeds the
constraints of the data stream problem. Therefore, an incremental local region identification
technique is proposed. The technique employs a locally optimal decision strategy to reduce
the identification task to O(nQ). As a result, the online local region KDE (LR-KDE) is
proposed for the efficient generation of density estimates in data streams. An overview of the
LR-KDE architecture is given in Sect. 4.1. Detailed descriptions of the local region and kernel
constructions are provided in Sects. 4.2 and 4.3. Lastly, the density computation algorithm
is described in Sect. 4.4.

4.1 Online LR-KDE overview

The online LR-KDE is composed of the following primary components:

1. Local region management—identifies and manages local regions by employing a locally
optimal dynamic binning method for the entire set of kernels.

2. Kernel maintenance—updates the kernels with new data points in a fixed-size memory
environment, and maintains and provides density evaluation of kernels whose time stamps
are within [τmin, τmax].

Figure 1 illustrates the LR-KDE approach. An online binning method is applied on the
set of all kernels where each bin represents a local region. The bins are maintained in the
data structure, bin list, which can store at most Q number of bins. The kernel set manages
and organizes all kernels in a sorted queue ordered by their centers. A maximum of M ≥ Q
kernels is maintained in the kernel set. The time list structure is a sorted queue of kernel
arrival times. The objective of the time list is to model a time-based sliding window (using
the FIFO policy) and to support efficient operations of kernel expirations and insertions. The
following is a summary of the main operations for inserting a new data point Knew:
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Fig. 1 LR-KDE architecture

1. Bin list update: Find the bin whose interval (bounded by its corresponding minimum and
maximum kernels) intersects Knew; add a reference to Knew to the bin’s set of kernels;
and forward Knew to the kernel set list. If no intersecting bin exists, create a new bin for
Knew and (possibly) merge two adjacent bins to maintain a maximum of Q bins.

2. Kernel set insertion: Insert Knew into position by searching the kernel set. If after the
insert, the kernel set size is greater than M , then merge two kernels that minimize the
overall accuracy loss.

3. Time list synchronization: After Knew is added to the kernel set, its arrival time is appended
to the tail of the time list. If a kernel merger occurs, then its corresponding time stamps
in the time list will also need to be updated. The head of the time list will be verified
against τmin in order to remove expired kernels.

4.2 Local region management

The following describes an incremental bin management approach for the identification of
local regions. A formal definition of the bin and its property are given as follows:

Bin Vector—a bin vector, B, is defined as follows: B= [
bks, bss, bws, bwss, bwcs, bwcss, bsp

]

bks is the set of kernels in B sorted by their kernel centers. The following feature definitions
refer to set bks . bss denotes the squared sum of the kernel centers. bws gives the sum of the
kernel weights. bwss yields the squared sum of the kernel weights. bwcs indicates the sum of
the weighted kernel centers. bwcss provides the weighted squared sum of the kernel centers.
Let x1 . . . xbc be the sorted kernel centers in bks , and then the sum of adjacent kernel centers
product is bsp = ∑bc−1

i=1 xi xi+1.
The bin vector possesses the additivity property [36]. This property allows the combining

of bins in constant time. Let B
(1) and B

(2) be a pair of disjoint bins, max(b(1)
ks ) = the max-

imum kernel center value in b(1)
ks , and min(b(2)

ks ) = minimum kernel center value in b(2)
ks . If

max(b(1)
ks ) < min(b(2)

ks ), then the sum of bin vectors B
(1) + B

(2) is:

B
(1) + B

(2) =
[
lb(1)

ks ∪ b(2)
ks , b(1)

ss + b(2)
ss , b(1)

ws + b(2)
ws , b(1)

wss + b(2)
wss, b(1)

wcs + b(2)
wcs, b(1)

wcss

+ b(2)
wcss, b(1)

sp + b(2)
sp + max(b(1)

ks ) · min(b(2)
ks )

]
(5)

Bin creation and merger Bins are updated as new kernels enter the system. For the bin
list, there are two cases to address when Knew enters: (Case 1) The number of bins in bin list
is less than Q, and (Case 2) the number of bins in bin list is equal to Q.

Case 1 (The number of bins in bin list is less than Q): Suppose that the kernel center value
of Knew does not intersect any of the bins’ regions, then a new bin is created with Knew as its
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center point and its bin vector values initialized with Knew. If the kernel center value Knew

does intersect a bin’s region, then the vector of elements of that bin is updated with Knew.
After a bin is created or an existing one is updated, a reference to this kernel is added to the
kernel set (as shown in Fig. 1) if this kernel center does exist in the kernel set. Otherwise, the
kernel with the same center has its weight updated. The bin management algorithm continues
in this manner until Q bins have formed.

Case 2 (The number of bins in bin list is equal to Q): Assume that the kernel center of Knew

does not intersect any of the bins’ regions. In this scenario, a new bin is created for Knew and
two bins (including one formed by Knew) are merged to maintain Q number of bins. Details
of the merger are described below. In the case that kernel center of Knew intersects a bin’s
region, then the intersecting bin’s vector is updated with Knew. The kernel set is updated with
Knew in a similar fashion to Case 1.

The merger of two bins is defined by its additivity property (Eq. 5). Because the bins
represent local regions, they must remain continuous and mutually disjoint. Therefore, the
merger can only occur between adjacent bins. The merger candidates are selected based on
the objective function of the local region optimization (Eq. 4). The following is an expanded
expression of the local region PAD variance (Eq. 2) in terms of kernel centers x1, xi , . . . , xn :

var(Ld) = 2

‖L‖ − 1

⎛

⎝
‖L‖∑

i=1

x2
i −

‖L‖−1∑

i=1

xi xi+1 −
(

x2
1 + x‖L‖2

2

)⎞

⎠ −
(

x‖L‖ − x1

‖L‖ − 1

)2

(6)

With the above equation, the PAD variance of a bin can be directly computed using its
corresponding kernel center values. Because the bin vectors maintain several statistics of
the kernel centers, we can exploit these summaries to efficiently calculate the i th bin’s PAD
variance in constant time as follows:

B
(i)
dv = 2

∥
∥b(i)

ks

∥
∥ − 1

⎛

⎜
⎝b(i)

ss − b(i)
sp −

⎛

⎜
⎝

min
(

b(i)
ks

)2 + max
(

b(i)
ks

)2

2

⎞

⎟
⎠ − (max(b(i)

ks ) min(b(i)
ks ))2

2
∥
∥b(i)

ks

∥
∥ − 2

⎞

⎟
⎠ (7)

Similarly, the statistics can also be used to calculate the i th bin’s kernel weight variance in
constant time as follows (reformulation of Eq. 3):

B
(i)
wv = b(i)

wss
∥
∥b(i)

ks

∥
∥

−
(

b(i)
ws

∥
∥b(i)

ks

∥
∥

)2

(8)

Therefore, the objective function of bin mergers can be computed as follows:

Min J =
Q∑

i=1

∥
∥b(i)

ks

∥
∥

(
B

(i)
dv + μ · B

(i)
wv

)
(9)

for i = 1 . . . Q.
When Knew is added, updating all of the bin’s features (with the exception of bsp) fol-

lows straightforward algebraic calculations and incurs constant time execution. To efficiently
update bsp , the following operations are employed:

Find the position of Knew within bks , and set r to this index position. This implies that
the kernels, xr−1 and xr+1, are Knew’s adjacent neighbors. Then update bsp as follows:

b(new)
sp = b(old)

sp − xr+1xr−1 + xr−1xr + xr xr+1 (10)
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4.3 Kernel maintenance

In order to maintain the kernels in a fixed memory environment, a kernel clustering paradigm
is employed. If the size of the kernel set is M , then the insertion of Knew will cause an overflow
and invoke the merger of two kernels. Let G(1)(x) and G(2)(x) be weighted kernels, and then
the merged kernel, G(merge)(x), is determined by utilizing a kernel merging approach as
follows [19]:

G(1)(x) = w(1)K

(
x1 − x

h

)

, G(2)(x) = w(2)K

(
x2 − x

h

)

G(merge)(x) = (w(1) + w(2))K

(
xmerge − x

h

)

(11)

where xmerge is the merged kernel center of x1 and x2.
G(1)(x) and G(2)(x) are selected such that the following L2 error distance is minimized:

L2 =
∞∫

−∞

(
G(1)(x) + G(2)(x) − G(merge)(x)

)2
dx (12)

It can be shown that the L2 distance increases proportionally with the kernel distance;
hence, the mergers only occur between adjacent kernels. It can be shown that minimizing L2

error can be done in constant time [15].
The remainder of this section presents the time-based sliding window algorithm that

ensures all elements in kernel set are within the time range, [τmin, τmax]. The algorithm
is followed by a description of the density evaluation which leverages upon the bin list
structure for efficient computation. Lastly, the selected kernel function and bandwidth forms
are provided.

Time-based sliding window Let τtl be the length of the time window. To produce a sliding
window, set τmax to the current time and set τmin = τmax − τtl . The time list is implemented
as a first-in-first-out queue with the head node being the oldest time stamp. When Knew is
inserted into the kernel set, the time handling algorithm inserts the kernel’s arrival time, gta ,
and the kernel’s extended time span, gets (i.e., time to remain in window after expiration and
initially set to 0) to the tail of time list. Assume that two kernels, G(1) and G(2), are merged
to become G(merge). The time list updating process proceeds as follows:

1. Remove the corresponding time list nodes of K (1) and K (2)

2. Define G(merge)’s arrival time and time span as follows:

G(merge)
ta = min

{
g(1)

ta , g(2)
ta

}
(13)

G(merge)
ts = max

{
g(1)

ta + g(1)
ets , g(2)

ta + g(2)
ets

}
− g(merge)

sta (14)

3. Insert K (merge)’s arrival time into the time list

Kernel expiration is performed by comparing the time list’s head node, deleting all associated
kernels with gta < τmin and gets = 0, and updating the bin list. As for expiring a kernel with
gets > 0, assume that the weight of the kernel is uniformly distributed across its time span.
Therefore, the kernel will remain in the kernel set, but its weight will be adjusted based on
the following function:

g(updated)
w =

(

1 − τmin − g(old)
ta

g(old)
ets

)

g(old)
w (15)
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where g(i)
w is the weight of kernel i .

4.4 Single query computation

The following describes the algorithm to solve a single density query which takes advantage
of the local region pruning capability. The corresponding kernel function and bandwidth
forms are also discussed. For a single query point d , the evaluation algorithm proceeds as
follows:

1. Bin search and kernel filtering: Find the relevant set of bins that can potentially contribute
a nonzero value to d . Let h(B) be the bandwidth of kernels in bin B, and then the bins
can be found by scanning the bin list and selecting those bins that fulfill the following
condition: d ∩ [

min(B) − h(B), max(B) + h(B)
] �= ∅.

2. Kernel search: Scan the kernels within each relevant bin and sum the density contribution
of kernels whose support intersect is d . Formally stated, let K be a kernel in B, then
compute the sum of kernel density contributions where d ∩ [

K − h(B), K + h(B)
] �= ∅.

The evaluation technique presented above capitalizes upon the bin list structure by effectively
pruning kernels which do not contribute to the final estimation result. Furthermore, the
bandwidth is computed from bin features in constant time.

Kernel function and bandwidth forms The class of admissible kernel functions must satisfy
the conditions of Theorem 3.1 which requires that the kernels be (1) radially symmetric and
(2) compactly supported. The compact support property also eases the burden of computing
the density estimates by eliminating kernels with

∣
∣ x

h

∣
∣ ≥ 1. Some kernels of the admissible

class are the Bi-weight, Rectangular, and Epanechnikov kernels [30]. It has been shown that
the Epanechnikov kernel minimizes the asymptotic mean integrated squared error (AMISE),
and therefore, it is optimal among all other kernels [23]. The Epanechnikov kernel is given
as follows:

K (x) = 3

4
(1 − x2) for |x | < 1, and 0 otherwise (16)

Due to Epanechnikov kernel’s compact support, radial symmetry, and optimality w.r.t. the
ASIME, this kernel is chosen for the proposed LR-KDE.

Each bin of the LR-KDE describes a region of similar densities; hence, the captured
distribution within each bin can be expected to be unimodal. Also recall that the LR-KDE
assigns a unique bandwidth to each bin. Therefore, for each bin, the chosen bandwidth form
is the normal rule which has been shown to perform well under a wide range of unimodal
distributions [30]:

h(B) = √
5σ (B) −5

√
n(B) (17)

where σ (B) is the kernel centers’ standard deviation of bin B and n(B) is the number of kernels
in bin B.

Note that σ (B) can be directly calculated from the bin features, i.e., σ (B) =
√

bwcss
bws

−
(

bwcs
bws

)2
;

therefore, computing the bandwidth, h(B), is achieved in O(1) time.

5 Multiple density query processing framework

This section describes two main approaches to process multiple density queries within the
LR-KDE. First, a multiple density query algorithm is provided that reduces the sequential
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processing of the single query estimates by minimizing the redundant searches for local
regions and kernel objects. Second, an optimized multiple density query algorithm is proposed
that approximates the above exact multiple density query algorithm by utilizing constant time
interpolation techniques. For the optimized approach, three variants are developed based on
different data models.

5.1 Multiple kernel density estimate generation

When evaluating multiple density queries using the single query algorithm (Sect. 4.4), the
bin search and kernel filtering (Step 1) are executed in proportion to the number of query
points. Additionally, the kernel search (Step 2) will visit noncontributing objects (if they exist)
for each density query. Consequently, this results in redundant operations for queries that
intersect an identical set of bins. The situation occurs for any pair of queries that are strictly
within h(B1) + h(B2) distance apart where B1 = B2 or B1 and B2 are adjacent bins. Another
source of inefficiency arises from the kernel search routine where potentially noncontributing
kernel objects are visited multiple times. Since these noncontributing kernels do not affect
the final estimates, their processing can be eliminated when evaluating multiple density
queries. The set of noncontributing kernels are guaranteed to be empty for a query d when
the intersecting bin’s bandwidth-adjusted boundaries

[
min(bks) − hB, max(bks) + hB

]
are

strictly within the query’s contribution range (d − hB, d + hB). However, depending on the
distribution of the query set, the queries can produce unnecessarily large amounts of visits
to noncontributing kernel objects (e.g., queries close to the bin boundaries). The following
multiple density query algorithm minimizes the redundant processing associated with the
single query algorithm.

Multiple density query algorithm The multiple density query algorithm for a given input
query set D = {

d1, d2, . . . , d|D|
}

is as follows:

1. Query set preprocessing: Sort the query elements into an array.
2. Kernel filtering: Scan the bin list to obtain a set of bins for which their bandwidth-adjusted

intervals intersect the query range, i.e., [min(D), max(D)]. This process removes and
filters out kernel objects that are guaranteed to provide no contribution to D.

3. Density aggregation: For each B of the intersecting bins obtained from Step 2, visit each
of the corresponding kernel object, perform a binary search on the sorted queries D using
the kernel object center x as key, and calculate/aggregate the density contributions of all
queries that intersect the kernel’s bandwidth range

[
x − h(B), x + h(B)

]
.

The multiple density query algorithm above removes the redundant filtering of kernels by
invoking a one-time pass of the bin list to derive a filtered set of kernel objects. The redundant
visits to noncontributing kernels within the filtered set are minimized by only invoking a
single pass over the candidate kernels that can be much less than the multiple passes required
(proportional to |D|). Lastly, the presorting of the queries reduces each query search to a
logarithmic cost when scanning the kernel objects.

5.2 Optimized multiple query processing

The following describes an approach that further improves the multiple density query algo-
rithm. If some errors with respect to the single density query are allowed, then the operations
related to the kernel object search and aggregation can be reduced and substituted with a fast
interpolation technique. A proof on the error bound for the optimized methods is provided
in Sect. 6.2. The following provides the optimized multiple density query approach.
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Optimized multiple density query framework The optimized multiple density query
approach for a given input query set D = {

d1, d2, . . . , d|D|
}

is as follows:

1. Control point extraction: Generate a sufficiently small set of control points from D (with
size s|D| where 0 < s ≤ 1) and output the control points in sorted order.

2. Control point evaluation: Estimate the densities of the control points obtained from Step
1 by employing the exact multiple density query algorithm.

3. Query set interpolation: Approximate the queries in D by utilizing a linear regression
technique to interpolate density estimates. Other regression techniques can also be used
to further enhance accuracy or reduce the number of control points required.

The above algorithm significantly reduces the calculation necessary for exact densities
(O ((|D| + M) log(|D|) + |D| M)) and generates approximate solutions (O (M log(|C |))
+ |D| M) where |C | ≤ |D|) through fast linear interpolation (see Sect. 5.3 for derivations).
In order to provide accurate results (relative to the exact method), the extracted control points
are designed to model the distribution of the query set. Hence, three variants are proposed
which employ different approaches to generate the control points in Step 1. The three variants
are random-based generation, uniform-based generation, and histogram-based generation.

The random-based generation technique employs a random sampling technique that
produces a sorted set of independent and identically distributed subsamples of the query set D
which results in a total query cost of O ((|C | + M) (log(|C |)) + |D|M) where |C | is the size
of the control points. In the uniform-based generation approach, the explicit requirement
to sort the control points is removed. In this approach, equidistant and ordered control points
for the span of D are generated, which requires only a single pass on D. Hence, the resulting
query cost is reduced to O (M log(|C |) + |D|M). However, a drawback of this approach is
its explicit embedding of a uniformly distributed query set which can generate inaccurate
control points for highly skewed query distributions. In order to better model the queries’
distribution and avoid the need to sort the control points, the histogram-based generation is
proposed. First, a histogram of the query set is calculated to guide the assignment of control
points. Second, the control points are assigned to locations that are locally equidistant within
a histogram bucket, and the ratio of locally equidistant points to the total number of control
points is identical to the bucket’s frequency. Using the histogram-based generation method,
control points are generated that can effectively model varying query distributions (e.g.,
skewed distribution). Because the histogram-based approach generates control points with a
cost linear to |D|, the total query cost is O (M log(|C |) + |D|M). For all of the above three
approaches, an initial pass over the query set is performed to determine the minimum and
maximum elements required for interpolation.

6 Analysis

This section provides the consistency results and cost analyses of the LR-KDE. An important
criterion for any KDE is its consistency, that is, as the number of samples approaches infinity,
the KDE converges to the true density. The time/space complexities of the online maintenance
technique and density evaluation approach are analyzed to guarantee that the LR-KDE heeds
the constraints of the data stream environment. Section 6.1 provides the proof of LR-KDE’s
asymptotic consistency. Section 6.2 gives the error bound for the optimized multiple density
evaluation. Section 6.3 analyzes the costs for maintaining the local regions and kernel objects.
Lastly, Sects. 6.4 and 6.5 provide the density evaluation costs for the single and multiple
density queries, respectively.
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6.1 Asymptotic consistency

Assume that all n samples are uniquely accessible and continuously persistent. To prove the
consistency of the local region KDE, it suffices to show that the density estimate within any
local region fulfills Parzen’s condition for the asymptotic convergence of a KDE [27]. Parzen
provides a sufficient condition described as follows:

If kernel K (·) is a bounded Borel function with
∫

|K (t)| dt < ∞,

∫

K (t)dt = 1 and |t K (t)| → 0 as |t | → ∞ (18)

and bandwidth hn indexed on n sample points satisfies

hn → 0 and nhn → ∞ as n → ∞ (19)

then for the KDE, f̂ (x), and true density, f (x),

f̂ (x) → f (x) in probability as n → ∞ (20)

Since a local region employs the Epanechnikov kernel, the kernel conditions given by
Parzen are completely satisfied. Recall that the bandwidth selected for a local region is the
normal rule: hn = √

5σ −5
√

n. Hence, it can be seen that the following holds: hn → 0
as n → ∞. Therefore, Parzen’s first bandwidth condition is satisfied. As for the second
condition, note that a local region is continuous and has compact support, which implies

sup(σ ) = c, where c is a constant

which implies

hn

n
=

√
5σ −5

√
n

n
=

√
5c

n6/5
→ 0 as n → ∞ ⇒ nh → ∞ (21)

Therefore, f̂ (x) → f (x) in probability as n → ∞
6.2 Error bound for optimized multiple density evaluation

Given that the normal rule is used to calculate the local region bandwidths and linear interpo-
lation is employed to approximate the densities, then the error at location z of the optimized
multiple density evaluation techniques (random-based, uniform-based, and histogram-based
generation methods) with respect to the exact LR-KDE is as follows:

e(z) ≤ 52/3(C0 − C1)
2w

3/5
max

8Wσ 3
min

maxy∈[C0,C1]

M∑

i=1

∣
∣
∣
∣
∣
K ′′

(
(y − xi )w

1/5
i√

5σi

)∣
∣
∣
∣
∣

(22)

where C0 and C1 are the control points used to evaluate z, W is the sum of kernel weights in
the kernel list, σmin is the minimum standard deviation ≥ 0 for a bin in the bin list, wmax is
the maximum sum of kernel weights for a bin in the bin list, wi is the sum of kernel weights
in the bin for which kernel i intersects, and σi is the standard deviation for the bin in which
kernel i intersects.

We first note that the bound for linear interpolation is as follows [8,31]:

e(z) ≤ (C0 − C1)
2

8
maxy∈[C0,C1]

∣
∣g′′(y)

∣
∣ (23)

123



300 A. Boedihardjo et al.

where g is a twice differentiable function. If f is a twice differentiable density function and
we let g = f , then the above expression gives a bound on the interpolation error of the
density f .

Since we are deriving a bound on the approximate methods’ (i.e., optimized multiple query
approaches) error from the exact LR-KDE, we obtain an expression of the local region-based
estimator using the normal rule as follows:

f̂ (z) = 1

W

M∑

i=1

w
1/5
i√
5σi

K

(
(z − xi )w

1/5
i√

5σi

)

(24)

The maximum value of f̂ ′′ is as follows:

f̂ ′′(z) = 1

W

M∑

i=1

(
w

1/5
i√
5σi

)3

K ′′
(

(z − xi )w
1/5
i√

5σi

)

(25)

max f̂ ′′(z) ≤ 1

W

M∑

i=1

(
w

1/5
max√

5σmin

)3

K ′′
(

(z − xi )w
1/5
i√

5σi

)

where σmin > 0 (26)

≤ 1

W

∑M

i=1

(
w

1/5
max√

5σmin

)3

maxy∈[C0,C1]

M∑

i=1

∣
∣
∣
∣
∣
K ′′

(
(y − xi )w

1/5
i√

5σi

)∣
∣
∣
∣
∣

(27)

= 52/3w
3/5
max

Wσ 3
min

maxy∈[C0,C1]

M∑

i=1

∣
∣
∣
∣
∣
K ′′

(
(y − xi ) w

1/5
i√

5σi

)∣
∣
∣
∣
∣

(28)

Substituting max f̂ ′′ into the linear interpolation error (Eq. 23), we have the following
error bound for the optimized multiple density evaluation estimators:

e(z) ≤ 52/3(C0 − C1)
2w

3/5
max

8Wσ 3
min

maxy∈[C0,C1]

M∑

i=1

∣
∣
∣
∣
∣
K ′′

(
(y − xi )w

1/5
i√

5σi

)∣
∣
∣
∣
∣

6.3 Online maintenance cost

Let I nsertCosttotal(Knew) be the total cost of inserting Knew, then the total cost of the
insertion procedure is:

I nsertCosttotal(Knew) = I nsertbinlist (Knew) + I nsertkernellist (Knew)

+I nserttimelist (Knew) (29)

Bin list cost : I nsertbinlist (Knew) is composed of a sequential search over the bin list
and merging a pair of bins. Hence, the cost of inserting Knew into the bin list is

I nsertbinlist (Knew) = O(Q) (30)

Kernel set cost: Similar to the bin insertion cost, the insertion to the kernel list is dominated
by the kernel search and the L2 error updates for each pair of adjacent kernels within the
affected bin. Let R be the number of kernels in the updated bin, and then the total cost of the
kernel list insertion is:

I nsertkernellist (Knew) = O(R)) (31)
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Time list cost: The dominant cost for inserting into the time list is the removal of all
expired kernels. This operation involves updates on the L2 errors and bin statistics. Let S be
the number of expired kernels and T be the total number of kernels within a bin of an expired
kernel; then the cost of inserting Knew into the time list is:

I nsertCosttimelist (Knew) = Removekernellist (Knew) + U pdatebin + U pdateL2kernellist

= O(S) + O(Q) + O(T ) = O(S) (32)

Since Q, R, S ≤ M , where M is the maximum size of the kernel list, the total cost of
inserting Knew is:

I nsertCosttotal(Knew) = O(M) (33)

Total space cost: The total space cost of the online maintenance algorithm is derived from
storing the three primary structures, bin list, kernel list, and time list in memory:

SpaceCosttotal = O(Q) + O(M) + O(M) = O(M) (34)

The above analysis shows that the time and space complexities of the proposed online
kernel maintenance algorithm are O(M). Since M is fixed, the proposed maintenance strategy
provides constant runtime and space complexities that meet the linear-pass constraint.

6.4 Single density evaluation cost

A single density evaluation is composed of a sequential search of the bin list and a scan of all
kernels which provides a nonzero contribution to the query point. Let EvalCosttotal(D) be
the total cost of determining the density at all the query points in D; then the total evaluation
cost is:

EvalCosttotal(D) =
∑

d∈D

⎛

⎝Searchbinlist (d) +
∑

q∈(binlist∩d)

Searchkernellist (d, q)

⎞

⎠

=
∑

d∈D
(Q + M) = |D|Q + |D|Mpkernellist (35)

where pkernellist is the expected ratio of the kernel list that are visited for each query d .
Since Q � M and Q⊥M , the evaluation runtime cost for a single query d ∈ D is:

EvalCostsingle(d) = Q + M = O(M) (36)

In practical applications, only a fraction of the kernels contribute to d , which implies that
Searchkernellist (d, q) � M . Therefore, the total evaluation cost can be much less than the
asymptotic cost described above. The space cost of the density evaluation is O(1) since the
evaluation algorithm makes use of a single counter to store the current density sum. Similar
to the time and space complexities of the maintenance algorithm, the evaluation runtime and
space costs are bounded by O(M) and hence meet the linear-pass constraint.

6.5 Multiple density evaluation cost

In this section, analyses of the exact multiple density query costs and the three variants of the
optimized density query algorithms are provided. For the exact method, the computation of
a density is composed of presorting the query set D, finding the set of kernel objects that can
potentially provide positive contribution to at least one element of D, and searching through
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the presorted query set. The total evaluation cost of the multiple density query algorithm for
a query set D is:

Multi EvalCosttotal(D) = Sort (D) + Searchbinlist (D)

+
∑

m∈(kernellist∩D)

(Searchquer yset (m) + Aggregatequer yset (m))

= |D| log(|D|) + Q + M log(|D|) + |D|Mpquer yset

= (|D| + M) (log(|D|)) + Q + |D|Mpquer yset (37)

where pquer yset is the expected ratio of the query set D that is visited for each kernel object.
As shown in Eq. 37, the exact multiple density query approach reduces the bin list search

to (|D| + M) (log (|D|))+ Q from |D|Q of the single query algorithm (see Eq. 35). Further-
more, due to the sorted query set D and utilization of a logarithmic search approach, visits to
noninfluenced query points are also diminished, which leads to pquer yset ≤ pkernellist . The
combined reduction results in a total cost reduction over multiple invocations of the single
density query algorithm. The space cost of the multiple density query algorithm is O(|D|),
which is required to store the iteratively updated densities of the query set.

In the following, the evaluation cost of the three multiple density query variants is analyzed.
For all the following cost analyses, C is defined to be the set of control points obtained from D
and |C | ≤ |D|. The first multiple density query algorithm variant, random-based generation
(RG) approach, has the following evaluation cost:

RG_Multi EvalCosttotal(D) = (|C | + M)(log(|C |)) + Q + |C |Mquer yset + 2 |D| − |C |
= O((|C | + M)(log(|C |)) + |D|M) (38)

The first three additive terms (i.e., (|C | + M) (log(|C |))+Q+|C |Mpquer yset ) correspond
to Step 2 of the algorithm where the exact multiple density query algorithm is invoked to
obtain the density values of C . The latter two terms (i.e., 2 |D| − |C |) refer to the cost of
determining the minimum/maximum elements in D and interpolating the remaining elements
D − C . The space cost of the random-based generation approach is O(|D|).

For the second multiple density query algorithm variant, uniform-based generation
(UG), the evaluation cost is as follows:

U G_Multi EvalCosttotal(D) = M log(|C |) + Q + |C | Mpquer yset + 2 |D|
= O(M log(|C |) + |D|M) (39)

The uniform-based generation approach differs from the random-based generation cost by
eliminating the cost associated with query presorting (|C | log(|C |)) and executing an extra
|C | number of interpolations. The space cost remains unchanged with O(|D|).

The third multiple density query algorithm variant, histogram-based generation (HG),
has the following cost:

H G_Multi EvalCosttotal(D) = M log(|C |) + Q + |C |Mpquer yset + 3|D|
= O(M log(|C |) + |D|M) (40)

The cost of the histogram-based generation approach imposes an additional operation over
the uniform-based approach to perform the histogram estimation, resulting in the last term
3|D|. Asymptotically, the evaluation cost of the histogram-based generation is equivalent to
the uniform-based approach. The space cost is O(|D| + H) where H is the bucket size of
the histogram.

123



Fast AKDE for data streams 303

7 Experiments

A set of comprehensive experiments have been conducted to validate the effectiveness and
efficiency of the proposed online LR-KDE. The experiments focused on three metrics: esti-
mation quality, maintenance time, and density evaluation time. Other existing online KDE
techniques were included for performance comparisons. The experiment design and metrics
are given in Sect. 7.1. The results of the estimation quality of the LR-KDE and competing
techniques are provided in Sect. 7.2. The LR-KDE density evaluation and construction costs
are evaluated in Sects. 7.3-7.4. Section 7.5 provides results of the sensitivity analysis. Lastly,
an in-depth discussion of the implications of the experimental results to practical streaming
applications is provided in Sect. 7.6.

7.1 Experiment design

The experiments applied a battery of synthetic and real-world data sets to study the effects of
various streaming conditions. The data sets were comprised of two synthetic and four real-
world time series data sets. The first 25K data samples were used for the experiments. The
data set reflects a wide range of streaming scenarios which includes distributions with simple
structures (e.g., unimodal) to distributions with complex and highly varied features (e.g.,
multi-scaled and multimodal). The data set also encompasses varying stationary properties
with different periodicity (e.g., power demand load (POWER) and traffic volume (TRAF-
FIC)). A detailed description of the data sets is shown in Table 1:

KDE techniques and parameters: Table 2 provides all of the evaluated techniques and
parameters:

For all of the evaluated techniques in Table 2 (except for time sample KDE), the time
windows were set to be the total length of the data stream.

Test methodology: The first component of the experiments was to measure the estimation
quality of the online KDE techniques. This was accomplished by establishing the ground
truths for all data sets. In the synthetic case, the exact density structures are given in Table 1.
For the real-world data sets, the true densities are defined to be the density estimates produced
by the off-line AKDE. For the AKDE, the nearest-neighbor KDE was used as the pilot
estimate [30]. The error measure used was the root mean square error (RMSE), which is
defined as follows:

RM SE(ρ) =
√

1

1,000

∑1,000

i=1
( f (xi ) − f̂ (ρ)(xi ))2 (41)

where f̂ (ρ)(·) is the ρ density estimation technique and x1 . . . x1,000 are query points that
uniformly divide the entire span of the distribution.

The maintenance time of an online KDE is defined as the total amount of time required to
insert and process a given set of data points. This measures the efficiency of the online KDE
in updating its kernel data structures to match the current stream. The density evaluation
time is defined as the average time to evaluate and compute a single density query. The
density evaluation time was measured after all of the data points were processed. In these
experiments, ten trials were conducted for each evaluation component and the averaged
results were reported.

Multiple query processing evaluation: Experiments were also conducted on the multiple
query approaches to test the impact on query efficiency and estimation quality. In particular,
the cumulative query times and the relative L1 deviations to the single query algorithm
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Table 1 Experimental data sets

Name Source Sampling
interval
length

Type # of Attributes Size Description

MIX2 Synthetic 1 s Float 1 25K Time series randomly
generated from the
following mixture
of normal
distributions with
randomly selected
μi and σi : F2 =
1
2

∑2
i=1 N (μi , σ

2
i )

MIX8 Synthetic 1 s Float 1 25K Time series randomly
generated from the
following mixture
of normal
distributions with
randomly selected
μi and σi : F8 =
1
8

∑8
i=1 N (μi , σ

2
i )

EEG Real-world 0.0078 s Integer 1 25K EEG of a rat in
wake/sleep cycle [22]

POWER Real-world 15 min Integer 1 25 K Power demand from a
Dutch research facility
[22]

ROBOT Real-world 0.008 s Float 3 (x-axis
selected)

24.5 K x-axis Accelerometer
measurements of a
Sony Aibo Robot
playing soccer [22]

TRAFFIC Real-world 5 min Integer 1 25 K Car volume readings
from a loop detector
near a California
baseball stadium
[1,4]

were measured on various query sizes and profiles. Query profiles were generated to reflect
real-world mining applications that were categorized into two profiles: UNIFORMprofile
and SKEWprofile. UNIFORMprofile reflects mining tasks that perform queries on a large
domain interval of equidistant points. This type of query is employed in mining algorithms
such as concept drift detection and visualization [15,17,18]. SKEWprofile models queries
that cover small subsets of the domain and tend to exhibit skewed distributions. This profile
is modeled by a unimodal distribution with a randomly assigned center and scale. This query
profile typifies mining tasks such as outlier detection and cluster analysis [20,32].

Experimental platform: The experiments were conducted on a Windows Server 2003
Enterprise Edition (32-bit) operating system. The hardware platform was a 2.0 GHz Intel
Pentium Core Duo 2 with 3 GB of RAM.

7.2 Estimation quality

Figure 2 gives the estimation quality results of all data sets and KDE techniques. Each clus-
tered bar plot represents the estimation errors for a particular data set where the x-axis is
the number of processed sample points and the y-axis is the RMSE of the density estimates.
The experiment showed that the LR-KDE (both single and multiple query approaches) pro-
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Table 2 Evaluated online KDE techniques

Name Technique Parameter

Sequence sample KDE Sequence sample-based KDE
[32,34]

Max. # of kernels = 1,000

Time sample KDE Time sample-based KDE
using the priority-sample
algorithm [6]

Max. # of kernels = 1,000

M-Kernel KDE Variable bandwidth cluster
KDE [38]

Max. # of kernels = 1,000

Simplex max. iter. = 5,000
Heinz KDE List-based cluster KDE [19] Max. # of kernels = 1,000
LR-KDE Single query Local Region KDE Max. # of kernels = 1,000,

μ = 1, 4 ≤ Q ≤ 8
Multi-LR-KDE Multiple query approach that

gives identical estimates to
the single query LR-KDE

Same as LR-KDE

Optimized
Multi-LR-KDE
(SAMPLE)

Multiple query approach
which employs a sampling
based methodology

Same as LR-KDE, s = .4

Optimized
Multi-LR-KDE
(UNIFORM)

Multiple query approach
which employs a uniform
gridding methodology

Same as LR-KDE, s = .4

Optimized
Multi-LR-KDE
(HISTOGRAM)

Multiple query approach
which employs a histogram
methodology

Same as LR-KDE, s = .4

vided lower RMSE than all competing techniques in the MIX2, MIX8, ROBOT, TRAFFIC,
POWER, and EEG data sets. The LR-based approaches produced significant RMSE reduc-
tions in MIX2 and MIX8 with errors that were at most half of the next best-performing
technique. Note that the time sample and sequence sample KDEs provided almost identical
performance in MIX2 and MIX8.

Both the single and multiple query LR-KDE converged as more samples were processed
in the MIX2, MIX8, POWER, and EEG data sets. However, for TRAFFIC and ROBOT,
the RMSE of LR-KDE increased at 20K and 24.5K points, respectively. This behavior was
similarly exhibited in other techniques such as M-kernel KDE. In the TRAFFIC data set, the
sequence sample KDE produced a drastic change in its RMSE at the 20K mark. All of these
observations suggest the presence of concept drifts in the POWER and EEG data sets.

Figures 3 and 4 show the plotted estimates of MIX2 and MIX8 by two of the lowest error
attaining techniques, LR-KDE and Heinz KDE. The x-axis represents the query points, and the
y-axis shows the density. MIX2 and MIX8 possess multiple isolated modes that can be difficult
to estimate with a single bandwidth KDE. For example, the Heinz KDE tended to oversmooth
the distributions as indicated by the underestimated peaks and overestimated troughs. The
oversmoothing can be attributed to Heinz KDE’s use of the normal rule bandwidth which is
known to oversmooth multimodal distributions [30]. In an attempt to improve the accuracy of
Heinz KDE, the only available parameter, kernel size, was increased from 1 to 25 K (treats all
available data samples as kernels). The increased kernel size produced ≤ 1% improvement
in the RMSE and showed no observable difference in the plotted estimates. When the kernel
size for LR-KDE was increased to 25 K, it resulted in 5.5 % (MIX2) and 7.8 % (MIX8)
improvements in the RMSE. Although the LR-KDE employs the normal rule bandwidth,
it restricts uniform bandwidth assignment to regions of similar densities. As a result, the
LR-KDE identified all of the modes and accurately captured the peaks and valleys.
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Fig. 2 Estimation quality results
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Fig. 3 Plots of estimated densities by LR-KDE and Heinz KDE for MIX2
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Fig. 4 Plots of estimated densities by LR-KDE and Heinz KDE for MIX8

7.3 Single query processing

The following section shows the runtime results of updating the kernel objects and the
evaluation times of the single query approaches.

Maintenance time: Figure 5 illustrates the impact of the various data streams on LR-
KDE’s kernel maintenance times. The x-axis indicates the data sets, and the y-axis measures
the maintenance times for processing the entire data. The maintenance times of the multiple
queries LR-KDE are identical to the single query approach since the only difference between
the two methods is in their query processing approaches. The real-world POWER, TRAFFIC,
and ROBOT data sets showed the most improvements for the LR-KDE. This observation is
attributable to the data sets’ largely ordered samples that reduced the amount of scans the
LR-KDE needed to perform. In the MIX8 and EEG data sets, the LR-KDE provided lower
or comparable times than all of the non-sample-based approaches. Note that the sample-
based techniques produced nearly identical results within the various data sets. The similar
maintenance times of the sample-based methods are expected since their required times to
select and replace kernels are similar and exclusively depend on the kernel set size. However,
the same was not observed on their estimation quality as shown in Fig. 2.

Figure 6 shows the relationship between maintenance time and sample size. The x-axis
is the number of samples processed, and the y-axis is the maintenance time. The POWER
data set is shown, but similar trends can be observed in the other data sets. All of the KDE
techniques exhibited times that were linear to the sample size; however, LR-KDE and Heinz
KDE provided the lowest cost rates in POWER, TRAFFIC, and ROBOT. The linear trend of
LR-KDE is also consistent with the analyses in Sect. 6. Standard deviation for all trials was
≤5 %.

Density Evaluation Time: Figure 7 shows the density query times of all data sets. The
x-axis represents all of the data sets, and the y-axis gives the average evaluation time for a

123



308 A. Boedihardjo et al.

0.04

0.4

4

40

400

4000

MIX2 MIX8 EEG POWER TRAFFIC ROBOT

M
ai

nt
en

an
ce

 T
im

e 
(s

)

Data Sets

LR-KDE

Heinz KDE

M-Kernel KDE

Sequence Sampled KDE

Time Sampled KDE

Fig. 5 Log-scaled maintenance time of all data sets

0

75

150

225

300

10K 15K 20K 25K

M
ai

nt
en

an
ce

 T
im

e 
(s

)
 

Processed Sample Size
 

LR-KDE

Heinz KDE

M-Kernel KDE

Time Sample KDE

Sequence Sample KDE

Fig. 6 Maintenance times of POWER

0

0.02

0.04

0.06

0.08

0.1

0.12

MIX2 MIX8 EEG POWER TRAFFIC ROBOT

A
ve

ra
ge

 T
im

e 
pe

r 
Q

ue
ry

 (
m

s)

Data Sets

LR-KDE

Heinz KDE

M-Kernel KDE

Time Sampled KDE

Sequence Sampled KDE

Fig. 7 Average density evaluation time for a single query

single density query. For MIX2, MIX8, EEG, and POWER data sets, the LR-KDE consistently
produced lower evaluation times than all of the competing techniques. For TRAFFIC and
ROBOT, the LR-KDE performed equally to Heinz KDE but better than the other techniques.
For the sample-based KDE, regardless of the kernel function employed, the entire kernel
set must be scanned to generate a density estimate. This approach resulted in a consistent,
but higher evaluation times than the LR-KDE and Heinz KDE. In summary, the results
demonstrated that the LR-KDE evaluation performance was better than or at least equal to
all of the competing techniques. Standard deviation for all trials was ≤10%.

7.4 Multiple query processing

This section provides an in-depth evaluation of the multiple query approaches for the LR-
KDE. Query runtimes were measured for all data sets under varying query profiles and sizes.
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Fig. 8 Query times for UNIFORMprofile

The relative deviations with respect to the single query approach were also measured for the
optimized methods.

Density evaluation time: The query times of the single and multiple query LR-KDEs
are provided in Figs. 8 and 9. The x-axis represents the query size ratio with respect to the
kernel set size, and the y-axis gives the average cumulative times. For all data sets and query
profiles (i.e., UNIFORMprofile and SKEWprofile), the multiple query approaches consis-
tently matched or outperformed the single query method. The improvements in throughput
for the multiple query approaches are due to the reduction in the bin list scans and kernel list
computations. However, a small overhead is incurred to sort the query set. Assuming that
the query set is much smaller than the kernel list, the empirical time reduction rates achieved
(Figs. 8 and 9) are approximate upper bounds on the kernel computation pruning rates. The
optimized techniques provided even lower cumulative query times than the nonoptimized
multiple query approach. However, between the optimized techniques, the UNIFORM and
HISTOGRAM techniques gave faster running times than the SAMPLE-based approach due to
the elimination of query presorting and linear time control point construction. In the ROBOT
and TRAFFIC data sets, the single query LR-KDE gave very low query times (see Fig. 7),
which resulted in even faster times (near 0) by the multiple query approaches. Overall, the
exact multiple query approach was effective in significantly lowering the evaluation of the
single query approach for all the data sets and query profiles. These runtimes were further
reduced by the optimized techniques which produced dramatic improvements over the single
query approach.

Relative deviation: Figures 10 and 11 show the mean relative L1 deviation ratio to
the single query algorithm for all query profiles. The results of the exact multiple query
approach are not given since they generate identical estimates to the single query algo-
rithm. In Fig. 10 (UNIFORMprofile), all of the estimates produced less than 9 % deviation,
while the HISTOGRAM and UNIFORM techniques both gave less than 7.5 % deviation. The
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Fig. 9 Query times for SKEWprofile

Fig. 10 Relative deviation from
single query algorithm for
UNIFORMprofile
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HISTOGRAM- and UNIFORM-based variants consistently produced lower deviations than
the SAMPLE-based technique due to its ability to model sparsely populated query points. The
SAMPLE-based technique requires higher sampling rate to produce more accurate control
points. However, for the SKEWprofile, the SAMPLE- and HISTOGRAM-based techniques
are able to obtain significantly lower deviation than the UNIFORM-based approach. In this
scenario, the uniform assumption of the query distribution is not met, which results in higher
deviation for the UNIFORM approach. Because the HISTOGRAM- and SAMPLE-based
techniques do not impose such a stringent assumption on the queries’ distributional struc-
ture, these techniques produce significantly lower deviations.

7.5 Sensitivity analysis

In this section, we describe a study on the effects of LR-KDE’s estimation quality for various
parameter values of bin size Q, kernel weight variance factor μ, and control points size ratio
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Fig. 11 Relative deviation from
single query algorithm for
SKEWprofile
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Fig. 12 RMSE of varying bin size (Q)

s. The data sets used for this study are MIX2, POWER, and MIX8. These data sets represent
a spectrum of simple to complex densities. The quality measure used for varying Q and μ

is the RMSE. The relative L1 deviation score is used to test the effect of differing s values
for the multiple query approaches. To apply the LR-KDE in practice, the parameters Q, μ,
and s are estimated by checking the LR-KDE quality measures for various values, and the
settings with the highest quality measures will be returned as the final parameter values.

Effect of varying bin size (Q): Figure 12 shows the estimation quality results of the LR-
KDE approaches for a range of bin sizes Q. The x-axis represents Q, and the y-axis gives the
RMSE of the estimates. The results of the exact multiple query LR-KDE are not shown since
they produced identical estimates to the single query LR-KDE. In MIX2, it is observed that
the RMSE increased slightly with the increase in Q. This is an expected behavior since the
structure of MIX2 is relatively simple (i.e., MIX2 has two modes) and a higher Q increases
the chance of overfitting. Within that data, the multi-query methods obtained lower errors
than the single query algorithm at Q = 10, and it appeared that the selected control points
and interpolations were able to reduce some of the variability. However, in general this is
not the case since the multiple query SAMPLE-based method can give volatile estimates
when s is low. For the MIX8 and POWER data sets, the estimation quality improved as Q is
increased but degraded slightly at the higher range Q ≥ 8. However, the impact of varying
Q with respect to the estimation quality obtained by the competing methods is dampened
by the fact that the errors produced by the other methods are still higher than the LR-KDE
techniques (see Fig. 2) across the entire range of Q.
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Fig. 13 RMSE of varying kernel weight variance factor (μ)
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Fig. 14 Relative L1 deviation percentage of varying control point size ratio (s) for UNIFORMprofile

Effect of varying kernel weight variance factor (µ): Figure 13 provides the estimation
quality results for varying values of μ. The x-axis represents μ, and the y-axis gives the RMSE
of the estimates. The results of the exact multiple query LR-KDE are not shown since they
produced identical estimates to the single query LR-KDE. In the MIX8 data set, low values
of μ ≤ 0.5 provided higher estimation quality. For this data set, the PAD criterion played a
more crucial role than kernel weight variance in generating appropriate local regions, except
the POWER data set where the kernel weight variance criterion indicated a stronger influence
on the estimation quality. These two scenarios show the importance of including both the
PAD and kernel weight variance criterions into the local region generation. The MIX2 data
set showed a similar pattern to POWER; however, its effect from increasing the contribution
of the kernel weight variance is not as pronounced as POWER since the error values remain
largely unchanged throughout the entire μ range.

Effect of varying control points size ratio (s): Figures 14 and 15 provide the relative
L1 deviation percentage (w.r.t. exact method) of the approximate multiple query approaches
across a range of s values. The x-axis represents s, and the y-axis gives the relative L1
deviation percentage. In the UNIFORMprofile query set (Fig. 14), the deviation decreased
drastically from 0.1 to 0.4 and continued to decrease (at a slower rate) as s increased. The
SAMPLE-based approach showed more variability as s decreased since it does not have suf-
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Fig. 15 Relative L1 deviation percentage of varying control point size ratio (s) for SKEWprofile

ficient control points to accurately estimate the query distribution. Both the HISTOGRAM
and UNIFORM methods performed identically well since they both can capture the uni-
form query distribution. In Fig. 15 of the SKEWprofile query set, the HISTOGRAM- and
SAMPLE-based approaches exhibited lower deviation to the UNIFORM approach. In both
the UNIFORMprofile and SKEWprofile for all data sets, the HISTOGRAM approach pro-
vided the lowest deviations.

7.6 Discussion

Application of the local region concept to kernel density estimates has shown to be effective
in modeling the local density features in data stream. As a result, the LR-KDE provided
superior estimation quality over the competing techniques in both real-world and synthetic
data sets. The LR-KDE was also able to improve the estimation accuracy in data sets that did
not exhibit strong localities (e.g., predominantly unimodal data sets such as ROBOT). Since
real-world data streams can exhibit strong local features (e.g., clustered outliers), it can be
expected that stream mining applications would benefit from the use of the LR-KDE.

LR-KDE also improved the computational efficiency over the competing techniques. Local
regions allow nonrelevant kernels to be pruned from further processing, which results in the
simultaneous reduction in maintenance and query times. Furthermore, the LR-KDE retained
the same order of space cost as the other online KDE techniques. The multiple query algo-
rithms for LR-KDE can further improve the throughput of density estimates for mining tasks
that generate multiple point queries. These cost reduction techniques are essential to stream
mining tasks where results need to be furnished in real time and processed in a fixed-size
memory environment.

The space/time complexity of LR-KDE shown in Sect. 6 (Eqs. 33, 34) applies to mas-
sive data sets. The space/time cost of updating the LR-KDE with a new data element is
O(M) where M is the number of maintained kernels and M remains constant throughout
its execution. Hence, the total cost of updating the LR-KDE for an arbitrary data size N is
O(N M), which is linear to the data set size. The experimental result of Fig. 6 shows this
linear trend in the update cost of the LR-KDE. The figure also shows that LR-KDE achieved
faster times than all the other techniques. Density evaluation on the LR-KDE is only invoked
on the maintained kernels and therefore does not depend on the data size. The cost to perform
density evaluation is O(M) (see cost analysis in Sects. 6.3, 6.4). In addition, Fig. 7 shows
that LR-KDE provides superior or comparable performance to all the other stream-based
methods. Because LR-KDE is guaranteed to expend at most O(M) space/time for an update
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and density evaluation and the empirical results showed support of this property, the LR-KDE
is a viable and efficient approach for processing massive data streams.

A concrete mining task that would benefit from LR-KDE’s improved estimation quality
and throughput is density-based clustering, in particular those density-based approaches that
employ bump hunting algorithms for determining the cluster centers [30]. For example,
Figs. 3 and 4 show that the LR-KDE captures and differentiates all of the modes almost
exactly, which would allow the bump hunting method to optimally isolate the cluster centers.
In contrast, the next best-performing technique (Heinz KDE) could not capture some of
these modes that would increase the likelihood for the bump hunting algorithm to dismiss
some potentially vital clusters. Such false dismissals can lead to missed emergent events and
potential disastrous results. Within the context of a real-time environment, minimizing the
time required to discover emergent events is essential to the overall success of the mining
algorithm.

Density estimation can also be applied to the problem of outlier detection. An outlier can be
defined as a sample point whose probability of occurrence falls below a predefined threshold
[32]. Suppose that density estimates are employed to perform the above outlier detection
scheme, then the rates of false dismissals are dependent on the accuracy of the estimated
model. For instance, if the estimate is oversmoothed, then the rate of false dismissals may
be increased in regions of low probability. In these regions, the true density of the sample
points may be much smaller than their estimated values. Hence, a more accurate density
estimation model, such as LR-KDE, can help reduce the false dismissals and improve the
outlier detection performance.

8 Conclusion

This paper addresses the issue of developing an efficient and asymptotically consistent online
adaptive density estimation technique to meet the stringent constraints of the data stream
environment. In that endeavor, we propose an online- and local region-based AKDE frame-
work (LR-KDE) for univariate streams. The contributions of this work include the first KDE
approach that supports adaptive bandwidth and efficient multiple query processing over data
streams with approximation guarantees, the development of the pairwise distance criterion
that effectively approximates the AKDE and guarantees asymptotic consistency, the design
of linear-pass algorithms to maintain and compute kernel density estimates over a time-based
sliding window, and the construction of a set of efficient algorithms to accurately estimate
multiple density queries. Theoretical analyses are provided to validate the asymptotic con-
sistency and computational complexities of the LR-KDE. Experiments demonstrated that
the LR-KDE enhanced estimation quality, improved maintenance performance, and reduced
density evaluation time over the existing techniques. The experiments also showed that LR-
KDE can improve the effectiveness of real-time stream mining tasks such as clustering and
outlier detection.
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