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Abstract—Passive monitoring by distributed wireless sniffers
has been used to strategically capture the network traffic, as
the basis of automatic network diagnosis. However, the tradi-
tional monitoring techniques fall short in cognitive radio networks
(CRNs) due to the much larger number of channels to be mon-
itored and the secondary users’ channel availability uncertainty
imposed by primary user activities. To better serve CRNs, we
propose a systematic passive monitoring framework, i.e., Spec-
Monitor, for traffic collection using a limited number of sniffers
in Wi-Fi-like CRNs. We jointly consider primary user activity and
secondary user channel access pattern to optimize the traffic cap-
turing strategy. In particular, we exploit a nonparametric density
estimation method to learn and predict secondary users’ access
pattern in an online fashion, which rapidly adapts to the users’
dynamic behaviors and supports accurate estimation of merged
access patterns from multiple users. We also design near-optimal
monitoring algorithms that maximize two levels of quality-of-
monitoring goals based on the predicted channel access patterns.
The simulations and experiments show that SpecMonitor outper-
forms the existing schemes significantly.

Index Terms—Cognitive radio network, passive monitoring,
non-parametric density estimation, optimization algorithm.

I. INTRODUCTION

COGNITIVE RADIO (CR) has been envisioned as a new
paradigm to better utilize the spectrum resources, by

allowing unlicensed or secondary users (SUs) to opportunis-
tically access the licensed bands, as long as they do not cause
any interference to licensed or primary users (PUs). While most
of the prior research in CRNs focused on the problem of estab-
lishing a single link between SUs [1], recent research has gone
beyond a single link to identify the challenges of implementing
a Wi-Fi like CR network [2] consisting of secondary Access
Points (APs) associated with multiple secondary clients.
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Passive monitoring has been used to measure Wi-Fi net-
works [3]–[5] using a dedicated set of hardware devices, called
sniffers. It has been shown to complement the wire side mon-
itoring by gathering detailed PHY/MAC information. Passive
monitoring serves as the basis of numerous applications ranging
from network forensics, fault diagnosis to resource manage-
ment. As the quality of those applications mainly depends on
that of traffic monitoring, it is non-trivial to build a traffic
monitoring framework with excellent monitoring performance.
Passive monitoring is particularly important to CRNs, because:
1) cognitive radios are programmable and difficult to manage;
2) the interference requirement in CRNs is mandatory and
extremely high. In this paper, we consider the construction of a
passive monitoring framework for Wi-Fi like CR networks, or
“WhiteFi” networks for short.

However, passive monitoring becomes a challenging task in
WhiteFi networks. First, WhiteFi networks have a much wider
spectrum (50 MHz–698 MHz) than traditional wireless net-
works, which makes it infeasible to deploy one sniffer for each
channel. As a result, the sniffers have to decide which subsets
of channels they will operate on, referred to as sniffer channel
assignment problem. Second, SUs have to vacate the channels
immediately once PUs start transmissions on the corresponding
channels. Such inevitable channel switching behavior poten-
tially complicates the sniffers’ traffic monitoring strategies.
Last but not the least, network traffic on each channel typically
comes from multiple SUs, who share the spectrum by following
a certain medium access control (MAC) mechanism. Thus,
traffic patterns observed by the sniffers are highly dynamic,
further complicating the sniffers’ monitoring strategies.

To meet these challenges, we propose a monitoring frame-
work, SpecMonitor, which utilizes a non-parametric density
estimation method to model SUs’ channel usage pattern. This
method makes no assumptions on the unknown distribution of
channel access pattern, thus offers accurate and flexible models
which can be updated in an online fashion with acceptable
complexity. Moreover, we design a sliding window method to
perform online learning of data dynamics, and an accumulative
combination method to further improve modeling accuracy.
Then, SpecMonitor takes inputs from SUs’ channel usage
model to construct monitoring strategies.

In this paper, we consider two levels of monitoring ob-
jectives: frame-level and user-level, to diagnose different net-
work issues. The frame-level objective can be interpreted as
maximizing the frame-level quality-of-monitoring (FL-QoM),
defined as the amount of captured MAC frames of interest,
due to their significance for the subsequent aggregated traffic
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analysis [5]. The user-level objective is to maximize the user-
level quality-of-monitoring (UL-QoM), defined as the expected
number of active users monitored, which can facilitate user
behavior analysis [6]. We cast the monitoring optimization
problem as a sniffer channel assignment problem with objective
of maximizing the corresponding QoMs.

In this paper, we make the following contributions:
1) We design a general framework to monitor the WhiteFi

networks, which jointly considers the channel availability
and secondary user access pattern. In particular, we de-
sign an online non-parametric density estimation mecha-
nism to model the secondary user channel activity, which
is able to support dynamic and complex access patterns.

2) We formulate the sniffer channel assignment problems
as integer programming (IP) problems by incorporating
the channel switching costs with the QoM objective, for
which we provide algorithms to optimize two different
levels of QoMs respectively.

3) We present approximation algorithms to provide near-
optimal solutions. Numerical analysis shows the solutions
can offer objective values that are very close to the opti-
mal value, thus confirming their near-optimality. Further-
more, we conduct extensive simulations and experiments
to validate the efficacy and efficiency of our statistical
model and monitoring framework.

The remainder of this paper is organized as follows. We intro-
duce the related work in Section II. In Section III, we describe
the monitoring system model. The secondary user channel
access model is depicted in Section IV, followed by Section V,
which formulates the monitoring optimization problems and
provides near-optimal solutions. Section VI presents the eval-
uation results using both synthetic data from simulations and
real data from experiments. Finally, Section VII concludes
the paper.

II. RELATED WORK

Passive Monitoring in Traditional Wireless Networks: Pas-
sive monitoring in wireless networks has been an active re-
search area. Yeo et al. were the first to use dedicated sniffers
to passively measure a Wi-Fi network, successfully identi-
fying protocol anomalies and malicious WLAN usages [3].
Cheng et al. presented Jigsaw, which is a large-scale pas-
sive monitoring infrastructure to collect and dissect wireless
traffic for cross-layer network diagnosis in a large enterprise
Wi-Fi network [4], [5]. While the above works focused on
developing the monitoring infrastructure, some recent works
investigated the problem of optimal sniffer channel assignment
to maximize the amount of monitored information. Shin et al.
[7] formulated the sniffer channel assignment problem in the
wireless mesh network as a maximal coverage problem, and
designed approximation algorithms to solve this problem. In
[8], Chhetri et al. further extended the preceding work by
taking into account the users’ access patterns. They proposed
two monitoring models: user-centric model and sniffer-centric
model. However, they assume the statistics for different users’
activities are known. Recently, Arora et al. [9] proposed to
use multi-armed bandit to perform sequential learning of the

unknown channel statistics, which can be used to facilitate
optimal channel assignments. However, multi-armed bandit is
too complex to be used for online and efficient channel as-
signments. In this paper, we present an efficient online channel
assignment mechanism without any prior knowledge of channel
access statistics, which is the first mechanism in the literature
to provide optimized channel assignments in real-time. All the
above works only considered maximizing the number of active
users covered by the sniffers, while we further address the
problem of maximizing the number of captured frames.

Spectrum Monitoring in Cognitive Radio Networks: Chen
et al. studied frame capturing problem for network forensics in
CRNs [10], in which support vector regression (SVR) method
is employed to predict the frame arrival time to guide channel
assignments. They have similar objectives as ours, however, our
method has the following advantages: 1) SVR method requires
a time consuming training phase, while we utilize density
estimation to produce new estimates in an online fashion avoid-
ing of the expensive training and retraining phases; 2) SVR
method falls short of dealing with interleaved traffic from
multiple users, which corresponds to dynamic traffic statistics,
while our scheme can adapt promptly to the traffic dynamics;
3) their monitoring framework has poor performance when
the monitored channels carry high data rate traffic, because of
frequent channel switching behavior induced by the heuristic
channel assignments. In contrast, as we jointly consider channel
switching costs and frame capturing gains to optimize channel
assignments, our method can achieve better performance with
fast traffic flows. Recently, Yi et al. formulated the secondary
user data capturing problem as multi-armed bandit problem
[11], which takes a long period of learning process before it
is able to produce an accurate estimation of user access pattern.
Thus, their method is not efficient enough to capture adaptive
and interleaved traffic patterns either.

III. SYSTEM MODEL

A. Monitoring System Model

In this section, we describe the monitoring system model for
CR networks. We consider CR networks with coexisting PUs
and SUs. The most common PUs are TV towers and wireless
microphones (WMs). Our monitoring system is interested in the
network traffic from SUs including APs and clients who form a
WhiteFi network, as illustrated in Fig. 1. Curious readers please
refer to [2] for the design and implementation details of WhiteFi
system.

For a multi-hop network, we segment the whole network
region into small regions, called monitoring areas, and assign
a certain number of sniffers to monitor the traffic for each
monitoring area. Each sniffer may be equipped with multiple
antennas, which allow him/her to sense/capture traffic over
multiple channels at one time. We assume different AP-client
pairs in the monitoring area pick different working channels
to avoid interference, and each sniffer can overhear all the
inbound and outbound traffic from any secondary device inside
its monitoring area if they tune into the same channel. Similar
to [10], some sniffers are used as dedicated inspection sniffers
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Fig. 1. Monitoring system architecture for WhiteFi network inside a monitor-
ing area.

that periodically sense channels to gain channel usage statistics,
while other sniffers called operation sniffers are responsible for
capturing information. All the sniffers are connected to a sniffer
center for centralized decision making, as shown in Fig. 1.
Each inspection sniffer is assigned multiple channels to scan.
A sensing slot is a period during which the inspection sniffer
scans through all the assigned channels. In the following, a slot
stands for the sensing slot unless otherwise noted.

B. Channel Access Model

A sensing slot is composed of channel sensing and chan-
nel switching time, whose length depends on the number of
channels to be scanned. Typically, a channel sensing period is
approximately 1 ms per channel using energy detection [12],
while channel switching for a commodity 802.11b/g network
card takes about 1–5 ms [13].

During each slot, the inspection sniffer scans several chan-
nels to reveal their channel states (active/idle). Here, an active
slot indicates a slot during which the sniffer spots SUs’ traffic
after channel sensing, while idle slot represents the opposite. As
channel sensing period is less than a full slot length, the discov-
ered active/idle state may not reflect the genuine state of a slot.
Let Xi

k be the state of channel i at k-th sensing slot, which takes
only binary values “1/0”, corresponding to active/idle state (in
the following, we omit the subscript i for i-th channel). Then,
the sequential data Xk (k = 1, 2, . . .) are used to calculate the
active slot interarrival time for each channel, which is defined
as the time interval between two consecutive active slots. In our
design, inspection sniffers produce active slot interarrival time
as their sensing outcomes, which will be used as the inputs to
build channel access model as explained in Section IV.

Note that one straightforward way of meeting frame captur-
ing objectives is to predict SUs’ frame arrival time by mod-
eling frame arrival pattern. However, it is infeasible to derive
optimized channel assignments with dynamic frame length and
unslotted frame transmission [10]. Instead of directly modeling
frame arrival pattern, we model the active slot interarrival pat-
tern as the basis of our monitoring framework, in which moni-
toring an active slot implies capturing all the frames in the slot.

Fig. 2. The percentage of frames in active slots (20 ms slot length).

Fig. 3. Frame/Active slot interarrival time distribution (20 ms sensing slot,
2 ms sensing period).

To motivate/justify the adoption of active slot interarrival time,
we performed a real-world experiment using the traffic from
different types of applications (e.g. Web browsing, Bittorrent,
FTP) in operational 802.11g WLAN. The experiment settings
are illustrated in Section VI-B. Fig. 2 shows the percentage
of frames in active slots corresponding to different sensing
periods, from which we notice most of the frames reside in
the identified active slots, especially when the sensing period
is longer than 2 ms. In other words, by capturing frames in
active slots, we are able to collect most of the frames. Fig. 3
plots the histograms of frame interarrival time versus active
slot interarrival time, with each bar showing the percentage
of frames or active slots whose interarrival time is indicated
by the x-axis. These two distributions appear very similar to
each other with most of the frames concentrated within small
interarrival time region, indicating active slot interarrival time
well characterizes channel usage pattern. For ease of reference,
the commonly used notations are summarized in Table I.

IV. USER CHANNEL ACCESS PREDICTION

In this section, we propose a unified model to estimate
secondary user channel access pattern, as the front-end of
SpecMonitor. In order to build the unified model, we first
study the primary user detection issue, and then we design an
online non-parametric density estimation mechanism to predict
SUs’ slotted channel access probability (SCAP ) pertained to
each sensing slot. As its name suggests, slotted channel access
probability is defined as the probability of SUs’ channel access
during each slot.
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TABLE I
SUMMARY OF SYMBOLS AND NOTATIONS

A. Primary User Detection

To enable CR communications, SUs need real time knowl-
edge of PUs’ activity to identify available spectrum. Similarly,
the sniffers are also required to detect PUs’ activity in order
not to waste time and energy listening on the primary-occupied
channels. Primary user detection can be achieved by using
either spectrum sensing or by querying a geo-location white
space database over the Internet. Spectrum sensing is expensive
in cost, energy consumption and complexity of hardware. On
the other hand, the database approach is easier to implement,
which allows devices to report their locations to a web server
that returns a list of available channels at that location. How-
ever, database approach suffers from utilization inefficiency,
since it uses propagation models to decide the available spec-
trum, and hence, is conservative in the channels it returns for a
given location. Either of these two approaches can be applied
to our monitoring framework.

Feature detection is one popular spectrum sensing method for
the sniffers to detect PUs’ appearance. The feature detection
algorithms described in [14] can be used to sample the UHF
spectrum to detect the presence of TV broadcasts and wireless
microphone signals, which can effectively differentiate between
the SUs’ and PUs’ signals. Then, the sniffers can directly
perform feature detection in the beginning of every slot to sense
the availability of monitored channels.

The database approach allows both sniffers and SUs to query
the database for spectrum availability at a certain location.
After querying the database, the SUs begin operating on a
set of available channels, while inspection sniffers tune onto
these available channels to monitor SUs’ traffic patterns, and
operation sniffers are assigned to the SU-occupied channels
correspondingly. In SpecMonitor, we adopt the database ap-
proach for simplicity.

B. Secondary User Channel Access Model

In this section, we propose a framework to estimate the
secondary users’ SCAP at each slot by modeling the active
slot interarrival time distribution. The SUs’ channel access

pattern in WhiteFi networks is complicated, mainly due to the
dynamics brought by time-evolving mixed traffic from multiple
SUs with channel switching behavior.

1) Non-Parametric Density Estimation Model: Instead of
assuming a specific active slot interarrival time distribution for
quantifying SUs’ traffic pattern, we propose a SU channel usage
model using the non-parametric density estimation method to
better capture SUs’ traffic dynamics. Currently, one of the
most popular non-parametric density estimation approaches is
Kernel Density Estimator (KDE) with a Gaussian kernel func-
tion [15]. Given n independent realizations Xi (i = 1, 2, . . . , n)
drawn from an unknown probability density function (pdf)
f(x), the Gaussian KDE with bandwidth σ is defined as:

f̂(x;σ) :=
1

n

n∑
i=1

KG(x,Xi, σ), x ∈ R (1)

where

KG(x,Xi, σ) =
1√
2πσ

e−(x−Xi)
2/(2σ2) (2)

from which we can see that Gaussian KDE is essentially the
overall sum of Gaussian kernels centered at location Xi with
an equal bandwidth σ.

In fact, the setting of σ is of utmost importance for the density
estimation performance. A classic measure to determine the
optimal σ is Mean Integrated Squared Error (MISE):

MISE{f̂}(σ) := E
[
f̂(x;σ)− f(x)

]2
(3)

where f(x) is the underlying genuine distribution. Assuming a
large sample set, we can obtain an asymptotic approximation to
MISE, denoted as asymptotic MISE (AMISE), written as [15]:

AMISE{f̂}(σ) =
1

4
σ4 ‖f ′′(x)‖2 + 1

2n
√
πσ

(4)

where f ′′(x) is the second derivative of f(x), and ‖ · ‖ denotes
the Euclidean norm on R. Thus, the asymptotic optimal value
of σ∗ is obtained by minimizing AMISE:

σ∗ =

(
1

2n
√
π ‖f ′′(x)‖2

)1/5

. (5)

In order to compute σ∗ from (5), we need to approxi-
mate ‖f ′′(x)‖2 by estimating the general form ‖f (j)(x)‖2
for arbitrary j. The corresponding optimal solution σ∗

j =

(1/(2n
√
π‖f (j)(x)‖2))1/5 with a generalized term of ‖f (j)(x)‖2

can be solved in a recursive form, namely σ∗
j = γj(σ

∗
j+1),

where γj is a complicated formula given in [15]. Then, a fixed
point iteration method is employed to compute σ∗

2, which is
equivalent to the target value σ∗. This KDE algorithm provides
a viable means of automatically selecting optimal bandwidths
with superior density estimation performance.

2) Modeling Active Slot Interarrival Time Distribution: The
KDE collects the data set of active slot interarrival time mea-
sured by inspection sniffers to generate the density estimates.
Since the distribution of collected data sets may vary over time,
the modeling accuracy of the KDE will be affected by taking
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into account outdated historic data. Thereby, only the most re-
cent data should be imported into the modeling process. On the
other hand, the modeling accuracy also largely depends on the
size of the input data sets. If we only consider the most recent
observations by discarding all the historical ones, the modeling
accuracy will be brought down significantly. Furthermore, the
amount of inputs to KDE has great impacts on its computational
efficiency. Generally speaking, KDE with a small data set runs
more efficiently than that with a large data set. Therefore, the
major issue of this model is to decide how much historical
data should be incorporated for density estimation, in order to
produce an accurate and efficient model.

Now we present our proposed online non-parametric density
estimation protocol. The basic idea is to use sliding window
method to perform online updating of the density estimates,
and to incorporate additional historic data sets for improving
the estimation accuracy. The whole protocol is presented in
Algorithm 1, which is repeated for each channel. Whenever
a new observation arrives, the online estimation model only
takes the data in a sliding window of size W , i.e., the data sets
exporting to the KDE only hold the most recent W observa-
tions. The setting of window size W is pertained to the data
dynamics, thus is empirical. A simple guideline would be: first,
we set an initial value for the sliding window size and run KDE;
second, we move the sliding window forward to see whether the
estimated distribution changes over time; third, if the change is
significant, we decrease the window size, otherwise, increase
it, until we reach a satisfactory window size. Specifically in
the WhiteFi network scenario, we set a relatively small W as
50 data samples, since the data distribution will change more
dynamically than that in a traditional wireless network.

Algorithm 1 Online non-parametric density estimation
protocol

1: Input: W , nw, tw, current sensing result Xk at k-th
sensing slot.

2: If Xk! = 0
3: Calculate the new observed active slot interarrival

time Tint(k);
4: Update the current data set Z(k) = {Tint(k), . . . ,

Tint(k −W + 1)};
5: Update the input data set Zin = Z(k);

Update the current density estimate [F̃ (k), f̃(k)] =
KDE(Zin);

6: for i← 1 to nw

7: Perform KS test: KStest(Z(k),Z(k − i · tw));
8: If pass KS test
9: Update the input data set Zin = {Z(k) ∪ Z(k −

i · tw)};
10: end
11: Update the current density estimate [F̃ (k), f̃(k)] =

KDE(Zin);
12: else return.

One of the most favorable features of sliding window method
is attributed to its support for online learning of density es-
timates. As time advances, our density estimator will take

newest sets of data falling inside the sliding window to compute
the latest estimate. Therefore, our model enables the effective
characterization of the time-evolving active slot interarrival
distribution, and allows us to update density estimates with
every newly arrival observation.

However, the major drawback of the sliding window method
resides in the following fact: the sliding window to specify input
data also deteriorates the accuracy of KDE, because the size
of sliding window restricts the number of observations (only
W ). Hence, we need to improve the estimates by expanding the
input data size.

As depicted in Algorithm 1, we propose to combine the data
sets from multiple sliding windows according to some well-
defined criteria, in order to enlarge the sample space. How
to define such criteria for merging sample space is crucial
to the ultimate estimation performance. At first glance, more
recent windows of data sets should have higher relevance to
current window. Therefore, one intuitive method to achieve
more accurate estimation is to combine the most recent density
estimates from latest windows to capture the data freshness
[16]. However, because of the uncertain channel availability and
underlying MAC protocol, multiple clients may generate inter-
leaved traffic due to alternate channel accesses. Therefore, the
most recent windows may not necessarily reflect the underlying
density of current window best, while some earlier historical
data originating from the same clients pertaining to the current
window might do. Accordingly, we propose an accumulative
combination method to make the decision of merging historical
data based on statistical correlation among the samples. As
shown in Algorithm 1, we simplify the computation of statis-
tical correlations by employing Kolmogorov-Smirnov test (KS
test). KS test is characterized as a non-parametric inferential
statistical method, since it makes no assumption about the
distributions of samples, thus is completely data-driven. The
Kolmogorov-Smirnov statistic is defined as follows.

Definition 1: Consider two sets of observations Z1 and
Z2, with n1 = |Z1| and n2 = |Z2| samples. The Kolmogorov-
Smirnov statistic is defined as:

Dz1,z2 = supx |F1(x)− F2(x)|

where F1 and F2 represent the empirical cumulative distribu-
tion functions (cdfs) of the samples in Z1 and Z2, respectively.

Then, given Dz1,z2 , we can confirm two sample sets are
from the same distribution with a certain significance level
β, if

√
n1n2/(n1 + n2)Dz1,z2 ≤ Kβ , where Kβ can be set

according to a well-defined table [17]. Note that cdf is a
byproduct of the KDE, denoted as F̃ (k) in Algorithm 1. After
KS test, we combine all the data sets passing the tests into one
single data set, which is provided for the KDE to update density
estimates f̃(k) for the current slot. To tradeoff the performance
improvement and computational overhead, we limit the number
of KS tests by only preserving the previous nw windows of data
sets for each channel. Meanwhile, two consecutive windows
only differ with one data point, thus it becomes more beneficial
to test windows with interval of tw samples. In this way,
every previous window passing the KS test can export tw more
samples into the merged data set (see line 10 of Algorithm 1).
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Consequently, we derive an accurate density estimate for
active slot interarrival time distribution at each channel, by
online learning of data dynamics and cumulative combination
of historic data.

3) Computing Slotted Channel Access Probability: The
problem we are going to address in this section is how to
estimate the SCAP based on the predicted distribution of
active slot interarrival time. As mentioned before, SCAP (k +
1) represents the probability that (k + 1)-th slot is active. In
theory, the predicted secondary user SCAP at (k + 1)-th slot
should be represented as SCAP (k + 1) = Pr(Xk+1 = 1|X1,
. . . , Xk), whose computation appears intractable since it takes
all the historic channel states into consideration. However, we
can take advantage of the updated active slot interarrival time
distribution to simplify the computation. We note that if the
current slot is active, the current active slot interarrival time will
be the time period between the current slot and the most recent
active slot. Consequently, the probability that current slot is ac-
tive SCAP (k + 1) can be interpreted as the probability that the
active slot interarrival time is equal to the time period between
the current slot and the preceding active slot. If we assume
the preceding active slot is k, SCAP (k + 1) = Pr(Xk+1 =
1|Xk = 1) with active slot interarrival time becoming Δ.
If we assume the preceding active slot is j, SCAP (k +
1) = Pr(Xk+1 = 1|Xk = 0, . . . , Xj+1 = 0, Xj = 1) with ac-
tive alot interarrival time becoming (k + 1− j) ·Δ. Therefore,
the predicted SCAP (k + 1) can be written as follows:

SCAP (k + 1) =

⎧⎨
⎩

Pr(Xk+1 = 1|Xk = 1), if Xk = 1,
Pr(Xk+1 = 1|Xk = 0,
. . . , Xj+1 = 0, Xj = 1), if Xk = 0.

=

{∫Δ

0 f̃(k)dt, if Xk = 1∫ (k+1−j)·Δ
(k−j)·Δ f̃(k)dt, if Xk = 0,

(6)

where Δ is defined as the sensing slot length. The algorithm
to compute the SCAP for each slot is given in Algorithm 2.
SCAP provides an appropriate measure for quantifying the
secondary user channel access pattern, which takes into account
the channel availability, SUs’ current activity, and SUs’ traffic
pattern learnt from their past activities. The major goal of the
inspection sniffers is to predict SCAP (k + 1) that guides the
operation sniffers’ channel assignment strategies, which is
the main focus of the following section.

Algorithm 2 The Computation of Slotted Channel Access
Probability

1: Input: current density estimate f̃(k), current sensing
result Xk, the sensing slot length Δ.

2: Initialization: IdleCount = 1
3: If Xk! = 0
4: Compute SCAP (k + 1) =

∫Δ

0 f̃(k)dt;
5: Reset IdleCount = 1;
6: else
7: Update IdleCount = IdleCount+ 1;
8: Compute SCAP (k + 1) =

∫ (IdleCount·Δ)

(IdleCount−1)·Δ f̃(k)dt;
9: end

V. NEAR-OPTIMAL MONITORING MECHANISM

The monitoring mechanism of SpecMonitor addresses the
problem of sniffer channel assignment to maximize two differ-
ent levels of QoMs, which is carried out by the sniffer center.
In particular, at k-th slot, the sniffer center collects all the
channel usage information gathered by the inspection sniffers to
produce a prediction set of SCAP (k + 1) for all the channels
simultaneously. This set of predicted SCAP is then leveraged
to provide optimized channel assignments for the forthcom-
ing slot.

Although channel switching enables the sniffers to capture
channel dynamics adaptively, its negative effects should not be
neglected in computing QoMs, especially in the CRNs with
channel availability issue. We claim that channel switching
indeed produces non-negligible overhead in terms of frame
losses in practice. In the following, we show our formulation of
sniffer channel assignment problem with two levels of QoMs,
respectively.

A. Frame-Level Quality-of-Monitoring Optimization

The goal of FL-QoM optimization is to maximize the number
of captured frames, given a set of channels and operation
sniffers inside one monitoring area. In Section III, we show that
active slot interarrival pattern is closely associated with frame
arrival pattern, so that the number of captured frames during K
slots from a certain channel can be written as: Nf =

∑K
k=0(Ik ·

n
(k)
f ), where Ik is an indicator indicating whether the k-th slot

is active, n(k)
f denotes the number of frames inside the k-th

slot. Therefore, instead of directly maximizing the number of
captured frames, we transform FL-QoM into an objective of
maximizing the number of active slots captured. For notation
convenience, let us define index sets i ∈ N = {1, . . . , N},
s ∈ Sop = {1, . . . ,M} for indexing channels and operation
sniffer antennas respectively. The optimization problem can be
formulated as the following integer programming (IP) problem:

maximize

N∑
i=1

SCAPi(k + 1) · yi(k + 1)

− α

M∑
s=1

N∑
i=1

1

2
[zs,i(k + 1)− zs,i(k)]

2 (7)

subject to
N∑
i=1

zs,i(k) ≤ 1, ∀ s ∈ Sop, ∀ k (8)

M∑
s=1

zs,i(k) ≤ 1, ∀ i ∈ N , ∀ k (9)

yi(k) =

M∑
s=1

zs,i(k), ∀ i ∈ N , ∀ k (10)

yi(k), zs,i(k) ∈ {0, 1},
∀ s ∈ Sop, i ∈ N , ∀ k. (11)

Each operation sniffer antenna in the set Sop is associated
with a binary decision vector zs,i(k) ∈ {0, 1}, i ∈ N , which
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is called sniffer channel assignment indicator, with zs,i(k) = 1
if the sniffer is assigned to channel i at slot k; 0 otherwise.
yi(k + 1) is the binary variable indicating whether or not the
channel i is monitored by some sniffer in (k + 1)-th slot. The
IP formulation is supposed to run iteratively: at k-th slot, after
obtaining zs,i(k) and predicted SCAPi(k + 1), we can acquire
yi(k + 1) and zs,i(k + 1) by solving the IP problem. Clearly,
the sniffer channel assignment is updated once every slot, which
allows our mechanism to quickly adapt to the traffic dynamics.

Note that the objective function (7) is comprised of two
parts: the positive part represents the average number of cap-
tured active slots, while the negative part indicates the channel
switching costs. For simplicity, we use the number of channel
switches between every two subsequent slots to approximate
the channel switching costs. In addition, we set a switching
cost weight α to represent the relative significance of channel
switching costs w.r.t. the gains obtained from captured slots,
which is a constant value residing within [0, 1]. Here, we define
α as the ratio of channel switching duration to the slot duration.
If channel switching takes 5 ms and one slot has 20 ms, we have
α = 1/4. However, the definition of α can be further extended
to incorporate more sophisticated metrics for channel switching
costs. For instance, we can further incorporate the probability
that the current channel will be idle in the next slot, because
sniffer’s channel switching does not incur frame loss overhead
if the sniffer listens on an expected idle channel.

The constraints (8), (10) arise due to the facts that one sniffer
antenna can only monitor one channel, and one channel is better
to be covered by one sniffer antenna inside the monitoring area.
In particular, we put forward the second constraint, because
if we allow multiple antennas to listen over the same channel
in the same area, their captured frames will provide duplicate
information. This IP problem can be viewed as a NP-hard
problem following the proof in [8], thus we need to find an
approximation algorithm to solve the IP problem.

LP rounding algorithm has been adopted to solve the IP
problem [7], [8]. This algorithm solves the LP-relaxation of
the IP formulation, and then rounds the fractional results into
integral solutions using for example the probabilistic rounding
algorithm (PRA) [18]. However, this algorithm is only appli-
cable to linear program problem, while in our formulation,
the objective function contains some quadratic terms. We then
reformulate the objective function to remove the nonlinear
terms. As zs,i(k)

2 = zs,i(k) when zs,i(k) ∈ {0, 1}, the objec-
tive function (7) can be rewritten into a linear form as follows:

N∑
i=1

SCAPi(k + 1) · yi(k + 1)

−α
M∑
s=1

N∑
i=1

1

2
[zs,i(k + 1)+zs,i(k)− 2zs,i(k) · zs,i(k + 1)] .

Note that zs,i(k) is already known before solving optimization
problem. The PRA algorithm has been proven [18] to produce
(1− 1/e)-optimal sniffer channel assignment in linear time.
However, the execution of PRA disregards the constraint (10)
completely. Hence, the resulted channel assignment obtained
from PRA cannot prevent multiple antennas from listening on

the same channel. We define this problem as channel conflict
problem, and the sniffer antennas assigned to the same channel
as conflict sniffer set.

In response, we propose a heuristic sniffer fixing strategy to
address the channel conflict problem, which takes the following
steps:

1) Find all the conflict sniffer sets in the solution obtained
from the PRA algorithm;

2) Pick one sniffer antenna in each conflict sniffer set ran-
domly, and fix it to the conflicted channel;

3) Run LP rounding algorithm again to get a new solution;
4) Test whether the new solution contains any conflict sniffer

set: if yes, go to step (1); otherwise return the solution.
The above heuristic channel assignment strategy fixes one

sniffer antenna to one channel every round by adding con-
straints, thus it guarantees to provide a feasible solution of
channel assignments for all the sniffers within linear time,
which turns out to be a near-optimal solution for the sniffer
channel assignment problem, as shown in Section V-C. In the
end, all the confliction will be addressed after running through
a sequence of LP rounding, which guarantees the convergence
of the algorithm.

We call the channels to be assigned as potential channels.
The resulted channel assignment strategy can provide the snif-
fers with the assignments of potential channels for the next
slot. Then, the sniffer center checks every potential channel to
determine whether it has already been monitored: if yes, it skips
assigning this channel; if no, it selects a sniffer antenna which
is not listening on any other potential channels to monitor this
channel. In this way, the channel switching costs are further
alleviated.

B. User-Level Quality-of-Monitoring Optimization

The objective of UL-QoM optimization is to maximize the
expected number of active users monitored. In order to capture
the user-level information, it is indispensable to identify the
source of each frame, even encrypted frames. Let Ui(k) for
i ∈ N denote the number of active users operating in channel i
at the k-th slot. We assume once a sniffer is tuned into a channel,
it covers all the active users operating in this channel. We do
not consider the channel switching costs in this case, because
there are typically multiple frames from a single user so that
a small number of frame loss due to channel switching does
not have a big impact on the number of users measured. The
UL-QoM optimization problem can be casted as the following
IP problem:

maximize
N∑
i=1

Ui(k) · SCAPi(k + 1) · yi(k + 1)

subject to (8)–(11). (12)

The above optimization problem can be solved using exactly
the same approximation algorithm illustrated in the previous
section, thus is omitted here. Note that Ui(k) can be measured
by counting the number of different MAC addresses from
frames passing through the AP running in channel i within time
slot k. In practice, Ui(k) may not be available at the beginning
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Fig. 4. Numerical analysis. (a) Normalized objective (with respect to the computed upper bound) for 20 channels and 10 sniffers with α = 0.3. (b) Normalized
objectives for different α.

of the k-th slot, so it can be approximated by the measurement
of Ui(k − 1), assuming users remain operating in the same
channel for the next time slot. Small errors in estimating
Ui(k) would not affect the performance much. In the extreme
case when false MAC addresses are inserted by the attackers,
more sophisticated approach is required. For instance, machine
learning methods to perform Internet traffic classification [19]
can be used to differentiate different users based on their
identified traffic types. This is out of the scope of this paper.

C. Numerical Analysis

In this section, we present numerical results for our approxi-
mation algorithm and compare them to the upper bound of the
problem. Without loss of generality, we focus on the FL-QoM
optimization problem.

Deriving an Upper Bound: The complexity of the optimiza-
tion problem formulated in Section V-A stems from the binary
yi(k) and zs,i(k) variables, for ∀ k. To derive an upper bound
for the problem, we relax the integer (binary) requirement on
yi(k) and zs,i(k) with 0 ≤ yi(k) ≤ 1 and 0 ≤ zs,i(k) ≤ 1. The
relaxed problem is a standard LP problem, the solution of
which can be obtained in polynomial time. Since the relaxation
enlarges the optimization space, the solution to the relaxed LP
problem yields an upper bound for the original optimization
problem.

Numerical Results: We consider N = 20 or 30 channels,
M = 10 or 20 sniffer antennas. SCAP values are randomly
generated for every channel over 1000 slots. We first present
the simulation results for 20 channels and 10 sniffer antennas.
We used the PRA approximation and sniffer fixing algorithms
to determine a feasible solution which serves as a low bound,
and compared the corresponding objective value with the upper
bound. Fig. 4(a) shows the normalized objective values with re-
spect to the computed upper bound (i.e., feasible solution/upper
bound) for 20 channels and 10 sniffer antennas. The average
normalized objective value obtained among 1000 slots is 0.95
and the standard deviation is 0.03. We further adjust switching
cost weight α to examine the variations of the normalized
objective values. Fig. 4(b) shows the tiny gap between the
achieved solution and the upper bound for different α.

Fig. 5. Number of captured active slots using our algorithm versus upper
bound for 20 channels and 10 sniffers with α = 0.3.

Since the actual optimal value lies between the feasible
solution value and the upper bound, the solution value of our
approximation algorithm must be even closer to the optimal
value than the foregoing normalized ratio (normalized objective
value). Thus, the derived solution value of our approximation
algorithm is close to optimality, confirming its near-optimality.
Finally, we run an experiment to compare the average number
of captured active slot using our algorithm with the upper bound
in Fig. 5. We notice that the difference between the monitoring
solution and upper bound is kept small over the time, which
proves the near-optimality of our approximation algorithm from
the experimental perspective.

D. Complexity Analysis

In this section, we analyze the complexity of the above
approximation algorithms. We first analyze the complexity of
LP rounding algorithm. The LP rounding algorithm involves
two major steps: (1) solving LP relaxation, and (2) executing
PRA algorithm. We notice that the above two IP problems
contain (N +MN) unknown variables. Therefore, the com-
plexity of solving the LP relaxation of IP formulation is given
as O((N +MN)3/ log(N +MN)) [7], which is determined
by the complexity of LP solver. On the other hand, the PRA
algorithm has a linear complexity O(M ∗N), governed by



YAN et al.: SPECMONITOR: TOWARD EFFICIENT PASSIVE TRAFFIC MONITORING FOR CRNs 5901

TABLE II
PARAMETERS

the input vector size (M ∗N) [18]. Thus, the LP rounding
algorithm can be solved with polynomial time complexity
O((N +MN)3/ log(N +MN)).

Second, the heuristic sniffer fixing strategy will solve chan-
nel conflict problem by running through a series of LP rounding
algorithm. In the worst case scenario, it will invoke LP rounding
M times. Hence, the sniffer channel assignment problem can
be solved with an overall worst case complexity of O(M ∗
(N +MN)3/ log(N +MN)). The efficiency evaluation of
the algorithm implementation is presented in Section VI-A.

VI. EVALUATION

In this section, we conduct extensive simulations and exper-
iments to evaluate the performance of SpecMonitor for CRNs.
The simulations leverage synthetic traces, which allow us to
vary the number of channels and sniffers, as well as the traffic
patterns of different users. We also carry out experiments and
test the performance of SpecMonitor on real traces collected
from the experiments. Aside from implementing the proposed
SpecMonitor framework, we also implemented the following
algorithms for comparison.

• Random channel assignment: the sniffer channels are
randomly assigned.

• Greedy channel assignment: the sniffers are always as-
signed to the predicted busiest channels based on SCAP
at every sensing slot, i.e., the channels with the largest
SCAP .

• Support Vector Regression (SVR) channel assignment:
the sniffers are assigned to the channels in which the
next frame is predicted to arrive within a short period
based on the frame interarrival time predication using SVR
method [10].

We assume the PUs’ presence can be detected promptly
by both inspection and operation sniffers, as illustrated in
Section IV-A. The default systematic parameters used in the
evaluation are shown in the Table II.

A. Real-Time Monitoring Performance

As illustrated in Sections IV and V, our monitoring frame-
work has a very stringent real-time requirement. Basically, we
are required to complete the channel assignments before a
slot ends, i.e., within 20 ms according to our setting. In this
section, we evaluate the running time of SpecMonitor using
experiments, and propose to relax the stringent requirement
without compromising the monitoring performance. We imple-

TABLE III
AVERAGE RUNNING TIME WITH 20 CHANNELS AND

10 SNIFFER ANTENNAS (IN ms)

ment SpecMonitor framework using MATLAB R2011b on a
Windows machine with 3.2 GHz Intel Xeon W3565 CPU and
18 GB memory, including the channel access model and near-
optimal channel assignment algorithm. In our original design,
whenever there is a new observation of active slot interarrival
time, SCAP values are updated and channels are reassigned.

We carry out experiments to count the running time of
the monitoring framework and breakdown the running time
into different sections to identify the bottleneck as shown in
Table III. Note that the recorded running time is the average
value after running 1000 slots. The overall running time is
91.2 ms, with 97.5% of time spent on KDE operation and
optimization algorithm. By delving into the KDE function and
optimization algorithm, we find the bottleneck of KDE oper-
ation is on the fixed point iteration algorithm [15] consuming
95% of overall time for each KDE invocation, while the bot-
tleneck of optimization algorithm is on the linprog MATLAB
function (52%) and LP rounding algorithm with sniffer fixing
strategy (40%). In our experiment, the sniffer fixing strategy
runs through LP rounding algorithm two times on average until
a valid channel assignment is generated. Consequently, the
overall running time far exceeds a slot duration. To address
this issue, we can convert the code using more computationally
efficient programming language such as C.

Another alternative and more viable approach is to relax the
stringent real-time requirement. Instead of updating SCAP and
assigning channels every slot, we relax the per-slot updating
requirement into T -slot updating requirement, which allows
SCAP to be renewed every T slots. To satisfy the relaxed
requirement, the sniffer center only needs to check for new
observations and incorporate them in the channel usage model
every T slots. In other words, SCAP gets updated and channels
are reassigned, only if there is at least one new observation
during T slots. In our implementation, we can set T = 5, so that
the implemented model update and channel assignment com-
plete before the next channel assignment can be carried out, i.e.,
within 100 ms or 5 slots (as 91.2 ms < 100 ms). We show in the
following sections that per 5-slot updating does not sacrifice the
monitoring performance much compared with per-slot updat-
ing, thus it satisfies the real-time processing while retaining an
excellent performance. Note that we neglect the wire side com-
munication costs between inspection sniffers and sniffer center,
which are in the order of microsecond, regarded as negligible.

B. Frame Capturing Performance

In this section, frame capturing performances of different
channel assignment algorithms are evaluated. First, we gen-
erate synthetic traces to evaluate the frame capture rate and
channel switching cost. Frame capture rate is defined as the
ratio of the number of captured frames versus the overall
number of frames passing through all the channels up to the
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Fig. 6. Performance with different methods using synthetic time series data (5 channels, 3 sniffer antennas). (a) Frame capture rates. (b) Channel switching costs.

Fig. 7. Performance with varied number of sniffer antennas using different methods (α = 0.25, 20 channels). (a) Frame capture rates. (b) Channel switching
costs.

current time, while channel switching cost is represented by
the negative part of Eq. (7). Then, we collect real-world traces
using AirPcap Nx [20] with Wireshark. The traffic traces are
captured from multiple channels of operative WLANs (802.11g
mode) to emulate the scenarios in WhiteFi networks. We eval-
uate SpecMonitor by comparing its frame capturing perfor-
mance with other algorithms. For all the following evaluations,
we measure the performance of algorithms running through
1000 slots for 100 rounds.

1) Synthetic Traces: First, we generate synthetic time series
traces to represent frame interarrival time, using Gaussian
distribution with an exponential correlation function. Each
trace corresponds to the traffic generated in one channel with
different mean values to simulate different traffic loads. We
evaluate the capturing performance w.r.t. different switching
cost weights α. Generally speaking, one channel switching
causes a penalty of losing α slot, α ∈ [0, 1].

We assume the training process of SVR scheme has already
been done, which takes about 35 training samples [10]. Fig. 6(a)
shows the frame capture rates of different methods. With
the increase of α, frame capture rates of all three compared
schemes fall down steadily because of the increasing penalty for
channel switching. However, with excessive α, SpecMonitor
will force the sniffers to switch channel only when the reward
from channel switching is higher than the penalty; otherwise, it
keeps the sniffers staying in the current channels. In this way,
SpecMonitor retains an excellent frame capture performance.
Regarding the SVR scheme, it performs best when the channel
switching costs are neglected (α = 0 or 0.1), which means

SVR achieves accurate estimations of frame interarrival time.
However, when α grows larger than 0.2, frame capture rate
of SVR scheme drops steadily because of the aggravating
switching penalty caused by frame loss. Note that the capturing
performance of SpecMonitor also drops a bit due to higher
switching costs, but then reverts back to surpass the perfor-
mance curves of any other schemes.

Fig. 6(b) shows channel switching costs w.r.t. α, from which
we can see SVR methods induce highest switching costs among
all methods, because of its unslotted and heuristic switching
strategy. In contrast, the switching cost of SpecMonitor remains
the lowest.

Finally, Fig. 7(a) shows the different capturing capabilities
w.r.t. the number of sniffer antennas, the frame capturing
performance of all the methods keeps growing with the in-
creasing number of antennas. SpecMonitor achieves the high-
est frame capture rate. We also compare channel switching
costs in Fig. 7(b). With more sniffer antennas, the channel
switching costs of SVR method decreases significantly, because
the increased traffic capturing capability refrains SVR method
from aggressive channel switching behavior. Meanwhile, the
other methods have much less, yet more stable channel
switching costs.

2) Real Traces: We collect the real traces from 802.11g
WLAN network, captured by a sniffer listening on the channel
established by one AP and client pair running various appli-
cations. The captured traces include both the uplink traffic
to AP and the downlink traffic from AP. We consider five
different types of trace data (FTP, BT, Web Browsing, Skype
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Fig. 8. Performance using real-world traffic (7 channels, 4 sniffer antennas). (a) Frame capture rates. (b) Channel switching costs.

Voice and Skype Video) with one trace per channel. FTP and
BT traces are obtained by running an automated script on
the client to download/upload several files from/to a server
continuously, and we write another automated script to browse
several websites to collect Web Browsing trace. Skype voice
trace and video trace are collected by connecting to a client
using Skype voice call or Skype video call. We evaluate the
performance with seven channels of real-world traffic, while the
additional two channels contain mixed traffic pattern. Namely,
one is the traffic combined from two clients using Skype Voice
and BT, and the other one is generated from two clients using
Skype Voice and Web Browsing. The performance is shown in
Fig. 8(a) and (b), from which we can see SVR method performs
even worse than random scheme. The reason is that the SVR
method takes a long time for retraining, when the predicted
value has a large deviation from the genuine one because of
the real-world traffic dynamics. Frequent retraining and chan-
nel switching operations significantly deteriorate the capturing
capability of SVR method. However, SpecMonitor retains the
best performance, except in the case of small α, the greedy
method performs better when channel switching only incurs
a small penalty. This comparison result also indicates that our
model can accurately capture the traffic statistics regardless of
whether the traffic is interleaved or not.

3) Comparison of Multi-Slot Updating and Per-Slot Up-
dating: As mentioned in Section VI-A, multi-slot updating
relaxes the real-time requirement. In this section, we compare
the performance of multi-slot updating with per-slot updating.
Fig. 9 presents the frame capturing performance comparison for
multi-slot updating and per-slot updating, which shows a slight
performance degradation using multi-slot updating method.
Interestingly, 5-slot updating achieves a better frame capture
performance when α = 0.7, because it incurs less switching
costs by switching at least every 5 slots. However, in most
cases, per-slot updating captures more frames, due to its more
rapid adaptation to the traffic dynamics. From this performance
comparison, we conclude that 5-slot updating retains an excel-
lent frame capturing performance while fulfilling the real-time
requirements as presented in Section VI-A.

The intuition behind the fact that T-slot updating achieves
similar results is that the data distribution presented in our
experiments does not change rapidly over the course of T slots.
However, this fact does not apply to all the traffic scenarios.

Fig. 9. Average frame capture rate comparison of multi-slot updating and per-
slot updating with 20 channels and 10 sniffer antennas.

For example, for traffic scenarios when the traffic statistics
are rapidly changing, T should be assigned a small value. The
exact value of T can be picked using the above performance
comparison method, via evaluating the performance of various
T values and selecting a larger one with acceptable performance
degradation.

C. User Capturing Performance

Finally, we evaluate the performance for maximizing
UL-QoM using synthetic data. We assume different chan-
nels contain different numbers of SUs, and the numbers are
dynamically changing within range [0, 10] (assume uniform
distribution); also the frame interarrival time is exponentially
distributed with mean values residing in [1, 40], specifying
the traffic pattern. First, we compare the expected number of
captured users per slot using three different monitoring schemes
in Fig. 10(a). The result indicates that SpecMonitor is able
to capture more users per slot, because the optimized moni-
toring strategy keeps the sniffers watching the channels with
more users.

Then, we define Active User Capture Rate as the ratio of
number of active users captured versus the overall number of
the active users appeared in all the channels. The performance
of active user capture rate w.r.t. different number of sniffers is
shown in Fig. 10(b), from which we notice that SpecMonitor
can select best sets of channels to maximize the number of
active users captured during the monitoring period. The result
implies SpecMonitor significantly outperforms two baseline
schemes, in terms of user capturing performance.
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Fig. 10. User capture performance with 20 channels. (a) User-level QoM objective. (b) Active user capture rate.

VII. CONCLUSION

In this paper, we have introduced a systematic passive mon-
itoring framework, SpecMonitor, for Wi-Fi like CRNs to max-
imize two levels of QoMs incorporating switching costs. Both
the primary user and secondary user channel usage patterns are
considered to optimize the monitoring strategy. Specifically, we
proposed an online non-parametric density estimation scheme
to learn and predict the time-evolving mixed traffic pattern from
SUs. Based on the predicted traffic pattern, the optimization
problems of sniffer channel assignment are formulated, for
which we designed near-optimal monitoring algorithms. One
major limitation of the SpecMonitor system is that SpecMonitor
requires a substantial amount of traffic of interest on the channel
in order to produce a reasonable channel access model. If the
traffic amount over a channel is small, the produced model
may be unreliable. In future research, we will consider the
impact of traffic amount to the channel access model. We plan
to evaluate the modeling accuracy in real time. The model
built with a small traffic amount will be deemed as unreliable,
which will not be used for future predictions and channel
assignments.
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