
Steds: Social Media based Transportation Event
Detection with Text Summarization

Kaiqun Fu
Virginia Tech

Falls Church, Virginia, 22043
Email: fukaiqun@vt.edu

Chang-Tien Lu
Virginia Tech

Falls Church, Virginia, 22043
Email: ctlu@vt.edu

Rakesh Nune
District of Columbia

Department of Transportation
Washington DC, 20003

Email: rakesh.nune@dc.gov

Jason X. Tao
District of Columbia

Department of Transportation
Washington DC, 20003

Email: jason.tao@dc.gov

Abstract—Ubiquitous user-input contents on social media and
online services have generated a tremendous amount of informa-
tion. Such information has great potential applications in various
areas such as events detection and text summarization. In this
paper, a social media based traffic status monitoring system is
established. The system is initiated by a transportation related
keyword generation process. Then an association rules based
iterative query expansion algorithm is applied to extract real time
transportation related tweets for incident management purpose.
We also confirm the feasibility of summarizing the redundant
tweets to generate concise and comprehensible textual contents.
Comparison results show that our query expansion method for
tweets extraction outperforms the previous ones. Analysis and
case studies further demonstrate the practical usefulness of our
tweets summarization algorithm.

Index Terms—component, social media analysis, data mining,
intelligent transportation systems, tweets extraction.

I. INTRODUCTION

Early detection of traffic incidents is critical to reduce
the impact of incidents on the traffic conditions. There are
multiple incident detection sources which include reports of
roadway operation patrollers, citizen calls, CCTV (closed-
circuit television) monitoring and alerts from vehicle detection
stations. In most of the major cities, the CCTV system is the
most important means to detect and verify traffic incidents.
However, incident detection delay or incapability may take
place due to the low percentage of CCTV coverage. These
drawbacks motivate us to explore the application of social me-
dia data analysis in incident detection and traffic management.

In the past decade, as social media (e.g., Twitter, Instagram
and Facebook) became more and more popular, social media
data has been collected and used in various applications. For
instance, Xie et al. [1] explored the social media data to
predict and track disease outbreaks. Jafarzadeh [2] explored
the benefits of integrating social media tools into emergency
communications and monitoring the social media contents
during an emergency or disaster. Schulz et al. [3] developed
an approach for efficient processing and storing of social
media data for emergency management purpose. Applying
social media analysis in traffic management is a relatively new
concept. Cui et al. [4] proposed a prototype system that can
capture and publish traffic status generated by a Chinese social
network (Sina Weibo). Today, many government organizations

and news companies are using social media such as Twitter
to communicate with the public and commuters on traffic
incidents. On the other hand, many commuters report inci-
dents, special events or congestion levels that on route through
the social media. Therefore, the contents of popular social
media contain abundant information on traffic incidents and
roadway congestion. It is feasible to extract and analyze the
social media data for detecting traffic incidents and obtaining
supplemental incident information.

However, the abundant information provided by Twitter is
sometimes redundant; this is due to two factors: 1) Twitter
retweets: To repost or forward another user’s message on the
social networking website Twitter; 2) Different eyewitnesses
can post tweets with every identical contents about the same
incident. These types of information redundancies can be an
obstacle for the incident management systems which consider
social media as their building blocks. For instance, important
incidents related tweets can be buried under a stack of tweets
discussing the same trivial incident. [5] In order to prevent
the needles from being buried in the haystack, text mining
and natural language processing techniques [6] [7] are used
to summarize the redundant tweets with similar meanings.
For instance, Fu et al. [8] proposed a summarization system
for social media contents such as Yelp restaurant reviews and
tweets to enhance the routing performance.

In this paper, we present Steds (Social Media based
Transportation Event Detection with Text Summarization),
an efficient approach to extract and analyze real-time traffic
related twitter data for incident management purpose. Steds
takes the advantages of the sufficient information sources from
the social media by applying the tweets extraction technique.
On the other hand, it resolves the information redundancy
problem by utilizing the tweets summarization algorithm. The
major contributions of Steds can be summarized as follows:
• Developing a real-time social media based traffic

incidents detection platform: By applying the client-
server model, the proposed web based incident detection
platform is capable of monitoring traffic related tweets in
a local area. Moreover, such platform can be implemented
to other regions.

• Proposing a query expansion algorithm for traffic
related tweets: The proposed system applies query ex-

1

pansion techniques to collect transportation related tweets
from Twitter server. A backend database is established to
maintain the large amount of traffic related tweets.

• Designing a text summarization method for redundant
traffic related tweets: extractive and centroid based
summarization algorithm is implemented to summarize
the redundant tweets, for the purpose of deducting similar
contents.

• Conducting extensive experiments for tweets extrac-
tion performance: the effectiveness and efficiency of our
tweets were evaluated on the convergence speed with ex-
isting approaches. The convergence speed is represented
by two metrics.

The remainder of this paper is organized as follows. Section
II presents technical details for the transportation related
tweets extraction and query expansion algorithm. This section
also introduces the redundant tweets summarization algorithm.
Experiments and results on query expansion and tweets sum-
marization are presented in section III. Conclusions are drawn
in section IV.

II. METHODOLOGY

This section describes the detailed techniques and algo-
rithms involved in Steds. An iteratively processed query ex-
pansion is designed on the fundamentals of an influential
users set selection scheme. Real time tweet crawling procedure
is performed for transportation related tweet extraction. An
extractive summarization algorithm is designed to eliminate
the tweets redundancy.

A. Keywords Generation

In order to successfully extract traffic incident related
tweets, it is necessary to establish a set of keywords that will
be sent over twitter to query data through the twitter timeline
API [9]. We have identified four influential Twitter users
(seed users) who actively post traffic information. These four
account names are “WTOPtraffic”, “VaDOT”, “drgridlock”
and “DCPoliceDep”, which are held by WTOP (a popular
radio station in metropolitan Washington DC area), Virginia
Department of Transportation, the Washington Post and Dis-
trict of Columbia Police Department, respectively. Note that
an assumption is made that we consider all tweets from
these influential users are transportation related tweets. A data
collector is built to collect 3200 recent tweets posted by four
influential users that compose a document set, denoted as Ti.

A statistic method called “term frequency inverse document
frequency” (or simply as tf-idf) is applied to document set Ti
to determine the importance of each word in the set. tf-idf the
product of two statistics, term frequency and inverse document
frequency. For word t and document d, the term frequency
tf(t,d) is defined as:

tf(t, d) =
f(t, d)

MAX{f(w, d) : w ∈ d}
(1)

where f(t, d) is the number of times that term t occurs in
document d.

The inverse document frequency, or idf, is a measure of how
much information the word provides, that is, whether the term
is common or rare across all documents. idf is defined as:

idf(t,D) = log(
N

|{d ∈ D : t ∈ d}|
) (2)

where D is a corpus of all document, N is the number of
documents in the corpus, and |d ∈ D : t ∈ d| is the number of
documents where word t appears. In our case, each tweet is a
document, and all tweets together compose a corpus. Since all
words to be analyzed are from the extracted tweets, |d ∈ D :
t ∈ d| will never be zero. We choose a total of 50 words with
highest tf-idf weights as the traffic incident related keywords.
QInit denotes the initial set of keywords extracted from the

influential users. The keywords list QInit can be used as input
to the Twitter Search API to crawl all the tweets that match the
queries, and denote this set of tweets as T1. A new query Qi

will be generated by the query expansion algorithms based on
Ti from the previous day. The final keywords after iterations
are shown in TABLE I. The data flow of the data collection
and tweets query expansion algorithms are presented in Fig. 1

Fig. 1. Data Collection and Tweets Query Expansion

B. Query Expansion

Enormous noises in extracted tweets will be introduced
when single keywords such as “crash” or “lane” is used
as queries. In addition, the number of tweets from the data
crawler will easily reach the assigned rate limit. The previous
works proposed an n-gram based approach to solve the prob-
lems [4]. However, such method has significant drawbacks:
1) the parameter n in n-gram must be pre-determined; 2) n-
gram is only capable of proceeding fixed number of grams, it
cannot identify arbitrary length of keywords sets. In order to
solve these issues, we applied the Apriori algorithm [10] to
tweets set Ti to develop the association rules of keywords and
then construct Twitter queries using a combination of a few
keywords (or called “wordset”) rather than single keyword.

The Apriori algorithm is usually applied in the field of
transaction mining to establish frequent itemsets for boolean
association rules. The algorithm proceeds by identifying the
frequent individual items in the database and extending them
to larger and larger item sets as long as those item sets appear
sufficiently often in the database. In general, the concept of
the Apriori algorithm can be expressed in Algorithm 1.

where T denotes the total tweets for the previous time slot,
in our system, we choose one day as the time interval. ε
denotes the minimum support level. And the support level

2

TABLE I
TOP 50 KEYWORDS AFTER ITERATIONS

Word Freqency Rank Keywords
1-10 #dctraffic #mdtraffic #vatraffic crash due delays st traffic right ave

11-20 lane lanes rd nw accident buses left md nb bridge
21-30 sb earlier street near blocked loop congestion expect va dc
31-40 update road work following closed open vehicle inner car killed
41-50 new get minute directions close schedule police beltway operating us

Algorithm 1: Apriori Algorithm for keywords (queries)
generation

Function Apriori(T, ε)
L1 ← {large1 − keywordsets};
k ← 2 ; /* Set Initial Itemset Size to 2 */
while L1 6= Ø do

Ck ← {a ∪ {b}|a ∈ Lk−1 ∧ b ∈
⋃
K Lk−1 ∧ b 6∈ a};

for Tweetst ∈ T do
Ck ← {c|c ∈ Ck ∧ c ⊆ t};
for keywordsc ∈ Ct do

count[c] ← count[c] + 1 ; /* Update Frequency by 1 */

Lk ← {c|c ∈ Ck ∧ count[c] ≥ ε};
k ← k + 1 ; /* Update Itemset Size by 1 */

return
⋃
K Lk

indicates the frequency of the word set in T . The support level
for a given word set L = {word1, word2, ...} is calculated:

Supp(L) =
|{a|c ∈ T ∧ L ⊆ a}|

|T |
(3)

where |T | denotes the total number of tweets is the target
tweets set; |{a|c ∈ T ∧ L ⊆ a}| indicates the number of
supersets of L in T .

In general, Apriori algorithm can be summarized by follow-
ing steps: 1) Identity frequent itemsets that are the sets of item
with minimum support (noted by in the algorithm); 2) Apply
the Apriori property: Any subset of frequent itemset must also
be frequent. That means all subset of frequent itemset must
have minimum support; 3) Extend the length of itemset by the
join operation: To find Lk+1, a set of candidate k+1 itemsets
is generated by joining Lk with itself.

In this case, each keyword is viewed as an item and thus a
wordset is viewed as an itemset in the field of transaction
mining. The minimum support level is set to 0.02 in this
implementation. In order to highlight the most relevant tweets
from the extracted dataset, all tweets are ranked based on the
tf-idf weights of the contained keywords. For each tweet, a
score is calculated by adding the tf-idf weights of all keywords
appearing in the tweet. All extracted tweets are ranked by their
scores and stored into the backend database.

Fig. 2 illustrates a simple example, showing how the Apriori
algorithm can be utilized to identify the keywords sets. For
example, after stop words removal being processed towards
T, four single words are left with actual meanings: “crash”,
“lane”, “right”, and “left”. A word lattice illustrated in Fig. 2
is then constructed for all possible combinations of the single
words. Each node in Fig. 2 represents a word set Li. After
applying the Apriori algorithm, the lattice is left with all Lis
with Supp(Li) > ε, corresponds to the nodes above the red

curve cut in Fig. 2. Then the maximal frequent word set is
identified for this lattice, denoted by the red circles in Fig. 2.
Note that: a maximal frequent set is a frequent set for which
none of its immediate supersets are frequent.

Fig. 2. Wordset Lattice for Apriori Algorithm

C. Tweets Summarization

The motivation for implementing text summarization tech-
niques is to reduce and eliminate the need to read multiple sim-
ilar texts by replacing the individual objects with a summary of
the transportation topic related tweets. The technique involved
fall in the scope of the extractive summarization algorithms.
Based on these algorithms, sentences in each document are
represented by nodes in a complete graph, and the cosine
similarities are represented as the edges between the nodes.
Those edges with a cosine similarity less than a predefined
threshold will be removed. After the edge removal process,
summarization algorithms based on PageRank or LexRank is
applied to this graph. The proposed system applies LexRank
based algorithms, since the PageRank based algorithms are
more generally used for directed graphs. The topic ranked
sentences are considered as the summary for the documents.

For the purpose of determining the correlation between
tweets and identifying the most salient one out of the set of
tweets with similar content, the similarities between the tweets
are quantified with the idf-modified-cosine similarity, given by:

idf −modified− cosine(x, y) =∑
w∈x,y

tfw,xtfw,y(idfw)
2√ ∑

xi∈x
(tfxi,xidfxi)

2 ×
√ ∑

yi∈y
(tfyi,yidfyi)

2
(4)

3

where the term tfw,t is the number of occurrences of the
word w in the tweet t. The idf-modified-cosine similarity,
in our scenario, can also be considered as the salience of
the tweet. Fig. 3 shows an example of weighted idf-cosine
similarity graph. The nodes in the graph are the tweets and
the edges in the graph are the idf-modified-cosine similarity
between two tweets. The weight of the edge correspond
the similarity value of between two tweets. Note that we
classify the value into three levels: similarity ∈ [0.0, 0.6],
similarity ∈ [0.6, 0.8] and similarity ∈ [0.8, 1.0].

In order to identify the most salient tweet among the
similar tweets set, the edges with low salience (similarity ∈
[0.0, 0.6], the dash lines) are removed from the similarity
graph. This removal can be intuitively considered as graph
separation, the result would be several separated graph com-
ponents. For example, the solid edges and the nodes in Fig. 3
construct one component. Each tweet in one component has
high similarity between all other tweets in the same compo-
nent, and low similarity with tweets outside the component.

Fig. 3. Weighted Cosine Similarity Graph

Within one specific component, a LexRank score can be
calculated by applying the following methods:

p(u) =
∑

v∈adj[u]

p(v)

deg(v)
(5)

where p(u) is the centrality of the node u, adj[u] is the set
of nodes that are adjacent to u, and deg(v) is the degree of
the node v. Equation (5) can be written in the matrix notation
as:

p = BT p (6)

where the matrix B is obtained from the adjacency matrix
of the similarity graph by dividing each element by the
corresponding row sum. As illustrated in equation (6), pT

is the left eigenvector of the matrix B with corresponding
eigenvalue of 1. Then the LexRank score can be calculated
recursively as pT is given.

III. EXPERIMENTS AND ANALYSIS

In this section, the performance of the proposed algorithm
is evaluated. In the experiments, we introduce two metrics

and two comparison methods that are proposed previously in
the literature. Case studies based on real data are presented
for demonstrating the practical applications of the proposed
summarization algorithm.

A. Experiment Data

We utilized Twitter timeline API [11] for collecting the
historical data of the influential users. Search API was pro-
cessed for crawling the real time Twitter data. Parameters for
this API includes a query, which we iteratively generate from
the query expansion algorithm; as we consider Metropolitan
Washington D. C. area as our experimental environment, a
geocode parameter is set to be the center of Washington D.
C., with a radius of 10 miles: “38.897345, -77.036196, 15mi”.
Data crawling process has been started since September 2013,
and it has been processed 24 hours a day, 7 days a week. The
overall dataset has a time span of 20 months; a size of 28.6
GB. All datasets are stored in MongoDB, server is provided
by the District of Columbia Department of Transportation.

B. Query Expansion Experiments and Results

For the purposes of empirical study, the evaluation of the
query expansion algorithm plays an important role in propos-
ing the algorithm. However, our data source and datasets have
several special properties: 1) our Twitter data source is real
time, 2) the datasets are contents of tweets, very different
from the target datasets such as articles or web pages that
traditional query expansion algorithms focus on, and 3) lack
of ground truth data for results comparison. Due to these
properties, it is hard to evaluate the precision of our generated
queries. Nevertheless, according to our observations to the
iteratively generated queries, a pattern of convergence was
found. The evaluations can be processed in an alternative
perspective, namely, the speed of the query convergence. The
intuition of such method is to calculate the difference between
two consecutive queries, a convergence would be observed
if the difference is converging to zero. In later parts of the
subsection, two metrics will be introduced to be indicators of
the rate of convergence, and two pervious methods will be
compared against our algorithm.

1) Metrics: Two metrics were adopted to evaluate the
results of all the methods tested:
• Cosine Similarity: As a well-recognized metric for mea-

suring the text proximity, cosine similarity is used to
evaluate the similarity between two consecutive queries:

cos(~Qd, ~Qd−1) =
~Qd · ~Qd−1

| ~Qd| · | ~Qd−1|
(7)

where the term ~Qdis the vector formalized for the query
at time interval d. In our system, the time is one day. A
valid queries comparison is made between day d and day
d− 1.

• Jaccard Index: A statistic way comparing the similarity
and diversity of sample sets. In our system, the queries
are considered as sets of words, it is capable of defining

4

the similarity of two consecutive queries in a different
perspective:

J(Qd, Qd−1) =
Qd ∩Qd−1

Qd ∪Qd−1
(8)

where the term Qd is a set presentation of the query Q at
time interval d. And every word in the query represents
the element in the set.

2) Comparison Methods: Our proposed query expansion
algorithm is compared with two existing methods.

Plain tf-idf model: This method is based on the ranking of
the tf-idf score. And this model is solely dependent on the tf-
idf score. Plain tf-idf models detailed strategy is: 1) separate
the previous days tweets by 1 hour time interval consider each
time interval as a document; 2) calculate the tf-idf score for
each unique word (vocabulary) in the previous days tweets; 3)
rank the words based on their tf-idf scores, and select the top
50 words as the query for the next day. Note that all words
contained in queries generated by this model are single-words.

N-gram model: This model was proposed by Cui et al.
[4] for extracting traffic information from social media in-
teractions. The detailed strategy is: 1) define the parameter N
for the number of words contained in the word set query; 2)
calculate the occurrences for each N -word set; 3) rank the
N -word sets based on their occurrences in all tweets from
the previous day. Note that the words contained in queries
generated by this model have a fixed length of N .

3) Performance Analysis: Fig. 4(a) shows the results for
convergence speed under different metrics. In Fig. 4(a) we
cannot find a clear pattern of convergence for the N-gram
model; as for the tf-idf model, the cosine similarity converges
with a relatively slow speed (at day 8); we find that our
proposed Apriori based query expansion algorithm (Steds)
achieves the fastest query convergence speed (at day 6). In
Fig. 4(b), similar patterns can be found from the perspective
of Jaccard Index, however, the convergence speeds reflected by
tf-idf model and Apriori based model do not show a significant
difference.

Note that according to observations, two interesting facts
are observed: 1) Event Sensitivity: some special or unex-
pected events occurrence can affect the convergence of the
query locally, as shown in Fig. 4(a), a local peak at the
end of the curve; 2) Weekly Periodicity: after the queries
have converged, a weekly fluctuation is presented: relatively
high cosine similarities on weekdays, weekends have low
cosine similarities. This pattern shows that on weekdays,
the transportation related tweets share more stable keywords.
On the weekends, however, the shared keywords vary more
intensively.

4) Results Analysis: A daily tweets volume distribution
analysis is studied, from which a weekly pattern is discovered.
Also, the evolution of the queries is demonstrated in this
section.

Daily Tweets Volume Distribution: An intuitive user in-
terface is built to display the latest traffic tweets along with
visualizations tools like histogram in Steds. The implemented

(a) Cosine Similarity

(b) Jaccard Index

Fig. 4. Performance Evaluations with Cosine Similarity and Jaccard Index

user interface allows the users to search for the incident
or congestion related tweets on particular dates and times.
This feature helps the operators at traffic management center
to obtain supplemental incident information which may be
missing from the existing incident profiles. Tweets volume
histograms for a regular work day and a weekend day are
displayed in Fig.5(a) and 5(b). The figures clearly shows that
in a regular work day, more traffic related tweets are posted
during morning and afternoon rush hours. In a weekend day,
most traffic related tweets are posted in the evening time from
5:00PM to 8:00PM. This is consistent with the travel rates and
incident rates over daily time.

(a) Work days Tweets Volume (b) Weekends Tweets Volume

Fig. 5. Tweets Volume Distributions on Different Dates

Evolution of Query Expansion: Fig. 6 shows the word
clouds for the initial query and resulting queries after itera-
tions of expansions. Fig. 6(a) shows the word cloud for the
original query generated by the influential users tweets sets Ti.
Fig. 6(b), 6(c), and 6(d) show the queries generated by itera-
tions two, four and six, respectively. These results indicate that
the query is changing gradually from a specific topic (set of
keywords) that focuses solely on the influential users to a more
general transportation related topic. Based on our observations,
the query will eventually converge after an average of 6 query
expansion iterations has been performed. The expanded query
broadens the searching space while maintaining appropriate

5

filtering keywords. It thus helps to retrieve more traffic related
data while preserving the data quality.

(a) Initial Query (b) Iteration #2

(c) Iteration #4 (d) Iteration #6

Fig. 6. Word Cloud for Query Expansion

C. Case Studies for Summarization Algorithm

Case studies are provided in this section for demonstrate
the practical usefulness for Steds. Steds System retrieved 142
tweets during a five hours time span (from 5:00 PM to 10:00
PM). However, most of which are retweets or tweets with
similar contents. Then the tweets summarization algorithm was
utilized. The results for Steds are listed in TABLE II.

TABLE II
TWEET SUMMARIZATION RESULTS AT APR. 26th 2015 10:00 PM

Light Rail trains can’t run right now because of FreddyGray protesters
are on the tracks on Howard St @wbalradio
Leaving the @Orioles game - head SOUTH. Use 395 to 95 or Greene
to 295. DO NOT GO EAST OR NORTH @wbalradio
Howard Street remains CLOSED north of I 395 @wbalradio
Heavier traffic on I 395 SOUTH leaving the city. Looks like @Orioles
fans may be leaving early @wbalradio
From @mtamaryland - ALL SERVICE on Light Rail and Metro
Subway has resumed. Now normal. No delays reported @wbalradio
Traffic stuck on Pratt St has been cleared out. Lombard is the biggest
mess now. Lombard CLOSED near Eutaw. @wbalradio

Six summarized transportation related events have been
extracted for April 26, 2015 10:00 PM: 1) Rail trains delay
due to Freddy Gray protest. The tweet was originally posted
by the user @JimWBALTraffic at 5:20 PM. And the report
is proved to be true according to the new reports. 2) Heavy
traffic on 295 SOUTH, due to Baltimore Orioles game. This
tweet was originally posted by the user @JimWBALTraffic at
2: 10 PM. The event is verified according to the Baltimore
Orioles schedule. 3) Street closure alert update. This tweet
was originally posted by @JimWBALTraffic at 3: 30 PM. It
was a following up street closure update. And the rest of the
summarized tweets: 4) Heavy traffic alert update; 5) Rail train
delay dismissed; and 6) heavy traffic report are updates for
the previous extracted events. According to the results, Steds
successfully summarized 142 tweets and generated a concise
tweets summary of length 6. This shows the efficiency of the
summarization performance.

IV. CONCLUSION

This paper presents Steds: an efficient and practical social
media based traffic status monitoring system. Based on a set
of influential users, a transportation related keywords extrac-
tion scheme is constructed. An outstanding query expansion
algorithm for tweets is proposed. A tweet crawling process is
then performed based on the expanded queries. A state-of-the-
art tweets summarization algorithm is designed to eliminate
the redundant tweets information. In addition, we show that
the proposed tweets query expansion algorithm outperforms
the previous methods. Case studies confirm the feasibility of
summarizing the redundant tweets to generate concise textual
contents.

ACKNOWLEDGMENT

This work is supported by the District of Columbia De-
partment of Transportation (DCDOT) under contract number
DCKA-2015-C-0029. Disclaimer: The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DCDOT or the
DC Government.

REFERENCES

[1] Y. Xie, Z. Chen, Y. Cheng, K. Zhang, A. Agrawal, W.-K. Liao, and
A. Choudhary, “Detecting and tracking disease outbreaks by mining
social media data,” in Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence. AAAI Press, 2013, pp. 2958–
2960.

[2] R. S. Jafarzadeh, “Emergency management 2.0 Integrating social media
in emergency communications,” Journal of Emergency Management,
vol. 9, no. 4, pp. 15–18, 2011.

[3] A. Schulz, J. Ortmann, and F. Probst, “Getting user-generated content
structured: Overcoming information overload in emergency manage-
ment,” in Global Humanitarian Technology Conference (GHTC), 2012
IEEE. IEEE, 2012, pp. 143–148.

[4] J. Cui, R. Fu, C. Dong, and Z. Zhang, “Extraction of traffic information
from social media interactions: Methods and experiments,” in Intelligent
Transportation Systems (ITSC), 2014 IEEE 17th International Confer-
ence on. IEEE, 2014, pp. 1549–1554.

[5] K. Fu, R. Nune, and J. X. Tao, “Social media data analysis for traffic
incident detection and management,” in Transportation Research Board
94th Annual Meeting. TRB, 2015.

[6] G. Erkan and D. R. Radev, “Lexrank: graph-based lexical centrality
as salience in text summarization,” Journal of Artificial Intelligence
Research, pp. 457–479, 2004.

[7] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” 1999.

[8] K. Fu, Y.-C. Lu, and C.-T. Lu, “Treads: A safe route recommender
using social media mining and text summarization,” in Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2014, pp. 557–560.

[9] K. Makice, Twitter API: Up and running: Learn how to build applica-
tions with the Twitter API. ” O’Reilly Media, Inc.”, 2009.

[10] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

[11] I. Twitter. (2013) Rest apis — twitter developers. [Online]. Available:
https://dev.twitter.com/rest/public

6

