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Abstract This paper proposes three methods of association analysis that address two chal-
lenges of Big Data: capturing relatedness among real-world events in high data volumes,
and modeling similar events that are described disparately under high data variability. The
proposed methods take as input a set of geotemporally-encoded text streams about violent
events called “storylines”. These storylines are associated for two purposes: to investigate if
an event could occur again, and to measure influence, i.e., how one event could help explain
the occurrence of another. The first proposed method, Distance-based Bayesian Inference,
uses spatial distance to relate similar events that are described differently, addressing the
challenge of high variability. The second and third methods, Spatial Association Index and
Spatio-logical Inference, measure the influence of storylines in different locations, dealing
with the high-volume challenge. Extensive experiments on social unrest inMexico and wars
in the Middle East showed that these methods can achieve precision and recall as high as
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80 % in retrieval tasks that use both keywords and geospatial information as search crite-
ria. In addition, the experiments demonstrated high effectiveness in uncovering real-world
storylines for exploratory analysis.

Keywords Spatial-temporal systems · Entity relationship modeling · Social media
networks · Spatial and physical reasoning · Semantic networks · Big Data

1 Introduction

Violent events are often the byproducts of complex factors of various natures (financial,
political, and religious). For a violent event to take place, the right mix of signals must come
together in order to elicit reaction. Take as an example Fig. 1, which depicts some of the
locations of the Poll Tax Riots of Great Britain in 1990. Social unrest broke out after the
government enacted a flat-rate tax on each adult. But before those acts of violence occurred,
other developments led up to them: activists organized protests at Trafalgar Square, police
closed a few of London’s Underground stations, transit was rerouted in some streets, and
shops closed in certain areas. The key idea here is that violent events tend to be associated
with other spatially and temporally-related nearby processes, which are prevalent in Big
Data. These processes are composed of any number of constituent parts that, when identified
properly, can help uncover the final event.

While the above example is not surprising (after all, protests can frequently lead to riots),
acts of violence are not always transparent. The Montreal Stanley Cup Riot of 1993, for
instance, developed quickly as the crowd celebrated a win, and had no apparent reason to
engage in violence, when in fact it did. Violent events can take on many characteristics, four
of which are observed in the above example and stated below:

1. event cascading: single developments provide little insight into the overall event. On
their own, street closures are not alarming. But when combined with other develop-
ments, such as gathering of protesters and closed shops, a much bleaker picture begins
to emerge;

2. event propagation: developments evolve in spatial regions through nearby areas, fad-
ing into the distance. Shops, for instance, close doors near the event, but not far away
from it;

Fig. 1 Approximate spread of the Poll Tax Riots of London in 1990. Red lines represent street closures
around Trafalgar Square. Yellow dots denote concentration of protesters. Squares are closed subway stations,
and black dots show locations of reported riots propagating north towards Piccadilly Circus
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3. event sequencing: the temporal sequence in which developments occur is essential to
explain facts. Disruption in transportation, for example, commonly takes place after
protesters have gathered, but less frequently before;

4. event interaction: developments represent interactions among entities: police try to
contain protesters, rioters throw stones, looters attack shops, etc. Some interactions
provoke strong reactions, while others do not.

This study targets two Big Data challenges: determining which events influence one
another in high data volumes; and identifying instances of related events described in dis-
parate formats which could reoccur in time. One interesting question is whether such an
event (highly observed, but described in various ways), can be associated with others based
on previous knowledge of seemingly related developments. In other words, would it be pos-
sible to infer looting at London’s Piccadilly Circus from protests that took place earlier
at Trafalgar Square? Making such determinations has proven elusive even with the most
advanced reasoning systems available today [33].

While making associations between events has been an art as much as a science, the
connection strength between two events can be estimated by expanding the four charac-
teristics mentioned above to the following hypothesis: an event can be identified by the
constituent parts that lead to it, observing their spatial propagation and temporal order-
ing, and taking into account their semantic interactions. The goal of this study is to reason
over spatio-temporal sequences of developments in Big Data (i.e., storylines) that can lead
to other events, and provide a numerical view of their associations. For a focused discussion,
violent events are used as a case study.

Figure 2 gives an example of what this work entails. The figure shows two event
sequences A and B across a short timeline (31 March, 1990). Sequence A is composed
of three developments taking place along the day: Whitcomb St. is blocked, protests occur
at Trafalgar Square, and Charing Cross station is closed. They culminate in looting in the
vicinity of Piccadilly Circus at 7 pm. Sequence B has three different events in different
locations, but also leads to the same looting at Piccadilly Circus. Given the two sequences
(and possibly others), the goal is to give each sequence a numerical quantification of how
they are associated with the looting. One would like to say that Sequence A is associated

Fig. 2 Example of association from spatio-temporal storytelling on two event sequences. Sequence A
explains the looting at Piccadilly Circus as an implication of the blocking ofWhitcomb St., protests at Trafal-
gar Square, and closing of Charing Cross. Sequence B, alternatively, relates the same looting with a school
closing atWaterloo Pl, a march to Richmond Terrace, and the pushing of the crowd toWest End. The 0.75 and
0.51 values indicate the beliefs with which sequences A and B are respectively associated with the looting.
For its higher value, sequence A has a higher level of association to the looting than sequence B
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with the looting at Piccadilly Circus with a certain value (0.75), while Sequence B is asso-
ciated with the same looting with a lower value (0.51) than Sequence A. Thus, Sequence
A is more tightly associated with the looting than B. These values can be either a prob-
ability or an index, two approaches explored later. As noted earlier, the above sequences
represent streams of information that tell a story, and thus we frame this problem as one of
storytelling, which is explained below.

Broadly speaking, storytelling is the process of connecting entities through their
characteristics, actions, and events [29] in order to create meaningful streams of infor-
mation. In the Poll Tax Riots example above, a possible storyline would be the sequence

, where entities {activists, protest,
police, streets} are connected through semantic relationships {organize, containedby,
closed}, and tagged with a location and timestamp. Information retrieval and web research
have studied this problem, i.e., modeling storylines from documents and search results,
and linking documents into stories [7, 9, 14] (the terms stories and storylines are used
interchangeably). A violent event can be viewed as a vector of three important dimen-
sions: the spatial regions where entities interact; temporal coherence which dictates the
proper ordering of developments; and the interactions that lead to social outcomes. This
study enforces these three dimensions and focuses on spatio-temporal storytelling related to
violent events, presenting the following contributions:

1. Designing spatio-temporal methods to analyze events: Violent events become more
humanly-understandable in short spans of space and time. For this purpose, this paper
proposes two methods: a Spatial Association Index (SAI), which measures the related-
ness among nearby events and addresses the high-volume challenge of Big Data; and
a distance-based variation of Bayesian Inference (DbB), which relaxes the notion of
similarity between storylines and deals with the high-variability challenge of Big Data.

2. Reasoning with Spatio-logical Inference: Key to understanding violent events is to
differentiate their relevant components from unimportant ones. This work proposes
Spatio-logical Inference (SLI) to find the likelihood that an outcome will occur and
deals with the high-volume challenge of Big Data. In this manner, analysts can focus on
fewer happenings rather than thousands (or millions) of uninformative developments.

3. Analyzing events in disparate data formats: The high variability of Big Data imposes
no constraint on how information may be received. On that account, this research uti-
lizes both structured and unstructured data sources, pre-processes them as storylines,
and provides association reasoning that can be helpful for practical use regardless of
their vocabularies.

4. Performing extensive experiments over disparate datasets: Because Big Data com-
prises various formats, this work performs extensive experiments with different data
sources. Namely, it uses Twitter data and the Global Database of Events, Language,
and Tone (GDELT), the latter being a well-established dataset of events from where we
target conflicts in the Middle East and other parts of Asia.

As noted above, this paper presents three methods of associating analysis. The first,
Distance-based Bayesian Inference, calculates the probability that an event will occur again.
In contrast to traditional Bayesian Inference, it allows events of different natures (e.g., “riot”
and “demonstration”) to be considered the same for frequency calculation purposes, which
is more realistic in the real world. The second, Spatial Association Index, measures the influ-
ence of one event in one location to another event in another location. Its goal is to find if
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the former has any correlation to the latter. The third and last method, Spatio-logical Infer-
ence, investigates if two or more events have a strong (or weak) association with another
event such that the first ones can explain the last one. Please see Sections 3.3, 4.1, and 4.2
for an explanation of each method along with numerical examples.

In summary, the first method finds reoccurrences of events, the second measures their
influence on one another, and the third investigates if some events can explain others.
Clearly, they perform different tasks, and thus are not competitors. However, they can be
complementary to one another. Since the first method finds frequent events, these events
could be used as input to the second method, which calculates levels of influence in differ-
ent spatial regions. Further, the most influential events could be used as input to the third
method as a way to understand how they propagate in space and time. It is also important
to notice that some of these methods may be appropriate for some tasks, but not rele-
vant to others. For example, in applications in which every event is just as important as
the next, all events may have to be investigated. In these cases, finding the most frequent
ones by Bayesian Inference may not be needed. Finding which ones are more influen-
tial (second method), however, may be important to differentiate the ones that cause more
impact in the environment. With that in mind, the above methods are designed such that
they operate independently from one another. The remainder of this paper is organized
as follows. Section 2 describes related work and points their differences to the proposed
approaches. Section 3 explains the framework and definitions used in this paper. The dis-
cussion on association analysis continues in Section 4, detailing the proposed approaches,
while extensive experiments are presented in Section 5. A conclusion is finally given in
Section 6.

2 Related work

Storytelling comprises a set of analytical tasks that can be performed in many ways. It
can be best described as a platform of knowledge exploration for fact finding, association
discovery, and decision-making. The work proposed in this paper, therefore, spans many
areas of expertise, from graph analysis to geographic networks. This research best lines up
with the approaches described below.

2.1 Storytelling and connecting the dots

The phrase ‘storytelling’ was introduced by Kumar et al. [14] as a generalization of
redescription mining. At a high level, redescription mining takes as input a set of objects
and subsets defined over those objects with the goal of identifying objects described in two
or more different ways. In [9], Hossain et. al. develop this idea to connect two unrelated
PubMed documents where connectivity is defined based on a graph structure, using the
notions of hammocks (similarity) and cliques (neighborhoods). This work was generalized
to entity networks in [8] and specifically targeted for use in intelligence analysis. This class
of work represents traditional storytelling approaches that do not take into consideration the
geospatial features present in the data.

In the realm of frequent pattern mining, research related to this paper comes from Cas-
cading Spatio-Temporal Pattern Discovery (CSTP), proposed by Mohan et al. [20]. CSTP
identifies partially-ordered subsets of event types that are colocated and sequential. The goal
of this approach is not to perform storytelling per se, but its focus on event association is a
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significant step in that direction. With modifications, CSTP can be a valuable tool comple-
mentary to this paper with respect to the proposed Spatial Association Index and to the rule
generation of the Spatio-Logical Inference.

Connecting the dots-type approaches focus on document linkage rather than entity con-
nectivity. They apply textual reasoning as a strong facet of the targeted methods. Link
strength utilizes the notion of coherence across documents, which is proposed by [25].
Stories are modeled as chains of articles, where the appearance of shared words across docu-
ments help establish their relatedness. Extending that work, the authors also propose related
methods to generate document summaries, i.e. Metro Maps, in [27] and [26], which target
scientific literature. Overall, connecting the dots methods rely on the abundance of robust
content, which cannot be assumed with Twitter and GDELT data. Thus, connecting the dots
is less than ideal for such data feeds.

Regarding the approaches discussed above, this paper strives to incorporate some of their
strengths to be applicable in a Big Data scenario. It uses Ripley’s K function as a density
metric to shrink the data space from millions of entities to a range in the thousands. It
also uses probabilities of the most frequent events such that not all of them need to be
investigated. And working under the general assumption that Big Data does not impose a
limit on document numbers, spatio-temporal storytelling does not operate at the document
level. Rather, it constrains the views at the entity level regardless of the documents in which
they are described.

This study focuses on violent events. However, there are several domains of inquiry
that can be related to storytelling’s event sequences in different scenarios. In Transporta-
tion Planning, for instance, location recommendation, whether for safety reasons or tourism
purposes, has been a popular area of investigation. The work of Zhang et al. [32] pro-
poses an approach (LORE) to exploit sequential influence on location recommendations
that incrementally mines patterns from location sequences and predicts the probability of a
user visiting a certain location. This type of itinerary planning is also targeted by Bolzoni
et al. [1] by adding category information to points of interest (POI). Storytelling provides
some of the same features by connecting locations to interesting real-world developments.
They differ, however, in that the former are concerned with identifying interesting locations,
whereas storytelling focuses on finding interesting events across different places. A more
subtle use of storytelling can be done in the field of communications. Emergency respon-
ders, as an example, can enhance their use of daily information posted on social media. Liu
et al. [17] devised an application to detect traffic events based on terms posted on Twitter.
These terms can be described as the interactions between two entities in a road accident,
for example. In [2], Bouros et al. exploit the concept of influence to identify users that
can impact a large number of other important users within a given spatial region, which
could be useful in understanding viral marketing and other developments. The above areas
are only some of the many fields which can benefit from the type of association analy-
sis that this research contributes, and serves to demonstrate storytelling’s wide levels of
applicability.

2.2 Inferencing and forecasting

While the goal of this study is not to perform forecasting, it entails association analysis,
which has a certain affinity with forecasting approaches. Some authors prefer the terms
‘event prediction’ while others speak of ‘causality’. One such work proposed by Radinsky
et al. reasons over the causes of events described in news articles [23]. They present an
algorithm that takes as input a causality pair to find a causality predictor based on entities.
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They depart from this paper’s approach, which does not compare entity attributes, but rather
investigates association in close spatial proximity.

Another work worth mentioning is prediction from textual data described in [21, 22]. The
authors propose to capture the effects of an event by propagating it through a hierarchical
model, namely an abstraction tree, that contains events and rules. In this paper, a rule-based
method is proposed, but does not rely on a trained model that stores rules for subsequent
use. It compares events, which may be viewed as nodes with weights and does not depend
on the extensive availability of entity attributes.

The above discussion hints at the importance of Bayesian Inference in forecasting.
Among classical methods, it is one of the strongest foundations for cause-effect relation-
ships. Bayesian Inference in its traditional form, however, is challenging for a few reasons:
(1) it needs many instances of the same events to occur in like sequences to establish cer-
tainty; (2) without modification, it does not consider subjective criteria, such as behavioral
knowledge. Things “are” or “are not”; (3) it does not take into account spatial reasoning.
Every element, no matter where they reside, are regarded equally. In terms of violent events,
these three aspects represent challenges that must be dealt with. For this reason, this study
does utilize Bayesian Inference as an association method, but does not solely rely on it.
This study will also propose three other approaches that can handle some of the Big Data
challenges in specific domains of application.

2.3 Link analysis

Often relying on graphs as a modeling abstraction, Link Analysis observes the evolution
of entities in space and time [5, 19] and the identification of patterns [4, 6]. Link analysis
has become popular because Big Data can be better viewed as a graph, rather than as a
collection of disconnected documents. The goal of link analysis, however, is not to explore
stories or do association mining. Rather, it is an attempt to quantify changes in entities and
manage relationships, which leads to the notion of ranking.

Ranking has been popularly applied to web pages since the seminal works of Brin and
Page [3] and Kleinberg [12]. The former computes the importance of a web page based
on its links and an initial damping factor. The latter also considers the page’s links, but is
dependent on an initial query that generates a root set, and is augmented by other pages that
point to the root set.

Within the same family of the above approaches, there have been other proposed meth-
ods, such as the Indegree Algorithm [18] and theHITS Algorithm [12]. The former considers
the popularity factor as a ranking measure while the latter introduced the notion of hub and
authority. In terms of storytelling, both of these types of ranking would be challenging since
popularity is too subjective a concept, and there is no clear-cut way to determine which enti-
ties would be authorities and which would be hubs. In general, link analysis takes a graph
as input and operates on it. Our work, however, goes back one step, and generates the graph
from Big Data as a prior requirement. It then performs the necessary analysis on the graph.

Differences Each of the above research fields provides benefits to the various tasks
involved in storytelling. The proposed work in this paper, for instance, requires geolocation
of entities as it relies on a spatio-temporal model. This brings significant benefits to handling
Big Data, since space and time can serve as limiting filters in high data volumes, and spatio-
temporal coherence can help identify similar events described disparately. Link analysis and
Connecting the Dots can help identify important relationships. Given the benefits of each
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method, this paper does not show competing approaches. Rather, it presents complemen-
tary techniques that demonstrate how storylines can be a valuable analysis tool, addresses
some of the volume and variability concerns of Big Data, and covers a spatio-temporal niche
which remains largely untapped.

3 On relating violent events

This section provides preliminary information that describes the proposed research. Section
3.1 discusses justifications for the ideas in this study. Section 3.2 introduces the analysis
framework and definitions used throughout the remainder of the paper. The first proposed
method begins in Section 3.3.

3.1 Reasoning over violent events

The main objective of this study is to investigate how storylines are related to one another
using different association strategies. In terms of Big Data, this study is concerned with
effectiveness of the results, more so than their efficiency. In other words, storylines must
be generated and associated using the most amount of information in a timely manner.
However, finding true storylines that reflect real-world developments takes priority over
finding every possible storyline, many of which may have no truth to them.

A key consideration here is determining if a sequence of initial events has any relation-
ship to a subsequent final event, in which case the former would be deemed associated with
the latter. Alternatively, it can also be thought of in terms of propagation, i.e., whether one
storyline influences another. Note that this study refrains from claiming that events are being
forecast, predicted, or detected. Nor does it claim that one event causes another, as those
assertions can be strongly misleading and highly uncertain. Without heavy data analysis and
strong supporting evidence, this type of causality is extremely difficult to demonstrate [13].

Consider, for example, the Boston Marathon Bombings of 2013, which was reported
in millions of data feeds, and which was the result of two persons acquiring explosive
devices, delivering them to specific locations, and setting off the attacks. In practice, one

seeks the extent to which necessarily implies

a . Instead of prediction or causality, just as important is to demonstrate
association, which is a looser concept and can be intuitively justified with the following:

1. Event support: An event does not happen at random. It requires prior support, whether
financial, logistical, or others, which is described in Big Data, and can be clearly-
worded or implicit. Mathematically, it can be stated that when n entities are observed in
a spatial region, then there exists an entity n+ 1 which is bound to be observed as well.
This denotes Bayesian Inference and by extension Distance-based Bayesian Inference;

2. Event influence: Events may affect other events propagating through different regions.
This means that an event in one area can influence a different event in a different area,
allowing one to compute a Spatial Association Index, which is described later;

3. Event interpretation: Violent events unfold as a consequence of prior developments.
While Big Data may describe these events in detail, it is often contaminated with noise
that masks the true development. This leads to the notion of association in terms of
Spatio-logical Inference in which a large number of possibilities that explain a violent
event can be reduced to the most probable ones;
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The above items ground relatedness between entities and events described in Big Data,
giving rise to the association strategies that we propose and explain in the next subsections.

3.2 Analysis framework

At a high level, the work proposed in this study follows the steps shown in Fig. 3. Briefly,
entities are extracted from the datasets (step ), geocoded and identified with timestamps
(step ). Storylines are then generated (step ), and finally, association analysis is per-
formed (step ). To generate the storylines, the work detailed in [24] is reused, and briefly
summarized here.

That approach takes as input a dataset with entities for which locations and timestamps
are available (or can be obtained). Locations are geocoded into latitudes and longitudes, and
entities are extracted, stored, and indexed spatially. Relationships between entities are also
extracted. A relationship is an interaction between two entities, such as when “person1 talks
to person2”, in which case the relationship is “talks to”. An entity graph is then built by
creating links among the extracted entities using the extracted relationships. For each entity
in the graph, a ConceptRank (i.e., a variation of PageRank) is calculated. The storylines
are formed in 3 steps: (1) the user selects an entity to be the entrypoint, i.e, the point from
where the story begins; (2) from the entrypoint, the algorithm applies Ripley’s K function
to find an optimal radius within which the concentration of entities is dense; (3) within that
radius, the entrypoint is linked to the top-k entities of highest ConceptRank, sorted in time
order. The set of linked entities that this process generates is the final storyline, which has

the general format . The length of the

storyline may vary without bound.
The steps described above are suitable for Big Data for three reasons: (1) graphs pro-

vide a scalable data structure that can handle increasing numbers of entities and events;
(2) ConceptRank can be computed in a distributed environment for large graphs, or locally
for subsets of a graph; (3) Entity connectivity can be constrained to the ones relevant for
particular domains, and disregarded for others.

Because the number of generated storylines can be massive (a consequence of Big Data),
an intermediate step should be taken to perform hierarchical clustering. The clustering pro-
cess serves two purposes: segregate the events in the storylines into related groups and allow
processing to be done on a per-cluster basis, which is more manageable. In the final step,

Fig. 3 Associative process using spatio-temporal storylines. In steps 1 and 2, entities are extracted from
the input data sources along with their locations and timestamps. Storylines are subsequently generated
from them (step 3). Further in step 4, the storylines are used as input to three event association approaches:
Distance-based Bayesian Inference (dbB), Spatial Association Index (SAI), and Spatio-logical Inference
(SLI). Each of these three methods respectively output a numerical association score: a probability of event
occurrence, a measure of association between storylines, and a measure of compatibility between events
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the three methods mentioned previously are explored to reason over violent events, provid-
ing intuitive justifications for their use. Those methods, Distance-based Bayesian Inference
(DbB), Spatial Association Index (SAI), and Spatio-logical Inference (SLI) provide the foun-
dation for Sections 3.3, 4.1, and 4.2. In the scope of this study, a storyline describes an event
(or development) as the interaction among entities linked by relationships. A violent event
is one that causes hardship at the individual, organizational, or governmental levels. Phys-
ical harm does not need to be involved. Unless otherwise stated, the following definitions
will apply going forward:

Definition 1 An entity e represents a person, location, organization, event, or object
described in a document. Only entities for which a location and a timestamp can be obtained
are considered in this study.

Definition 2 A relationship, connection, or link defines a unit of interaction between two
entities and is denoted by . All relationships are intended to
be directional.

Definition 3 A trigger event or a final event represents a real-world development extracted
from text, such as an “explosion” or a “protest”. They can be user-defined or application-
specific based on an external ontology.

Definition 4 A storyline is a time-ordered sequence of n entities {e1, . . . , en} where con-
secutive pairs (ei, ej ) are linked by one relationship. The number of entities n is the length
of the storyline.

3.3 Distance-based Bayesian inference

With traditional Bayesian Inference, probabilities are calculated by viewing each storyline
as a Bayesian Network, in which each entity represents a node specified by a Conditional
Probability Distribution(CPD). Specifically, if a storyline is described by three entities

, one may want to find out its likelihood of occurring again, which is given by
the joint probability of that entire storyline:

P(A, B, C) = P(A) × P(B|A) × P(C|B) (1)

or, alternatively, one may want to simply find the probability of observing knowing that
was observed in the past:

P(C|B) = P(B|C) × P(C)

P (B)
(2)

Given the above, association can be determined either for single entities (or events) or
for the entire storyline. In either case, the frequencies of all entities associated with
a storyline must be known a priori. Figure 4a shows an entity graph related to the
Boston Marathon Bombings of 2013 and Fig. 4b lists five of its possible storylines
(S1 through S5). Assume those five storylines represent the entire available dataset.

One piece of available prior knowledge is the killing of police officer .

Now assume one would like to know the likelihood that another police officer will
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Fig. 4 Boston Marathon Bombings spatio-temporal sequence. In a, each shape represents an entity observed
in the data source. The edges denote relationships between the entities. In b, S1 through S5 represent five
storylines connecting different entities. The English verbs define their relationships and correspond to the
edges of the concept graph in (a)

be murdered in the near future. The best answer lies with S4, which is the only sto-

ryline that contains a presence and also someone related

to a previous similar crime . Numerically, this likelihood corre-
sponds to the joint probability of that storyline in relation to all the other four story-

lines:

. The following

can then be stated: given this limited data, there is less than a 1 % chance of another
police officer being murdered in the vicinity of the Boston area. This is traditional Bayesian
Inference, which works well for highly-frequent storylines, but poses two problems for sto-
rytelling: entities must match perfectly (the ambiguity that comes with Big Data is a big
problem!) and it does not consider the aspect of location. Next, we propose a method that
relieves these two issues.

An intuitive approach to determine association is to simply search the data
space for similar storylines that reoccur in constant time intervals. For instance, if

is observed every 5
years, then one can assume this pattern will be observed again in the next five-year interval.
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In many applications, however, sequences such as those seldom repeat in a perfect man-
ner. But they may reoccur with slight variations and in different places. Thus, flood may
still be associated with violence, but perhaps not due to cholera, and maybe not in Sudan.
Malaria may instead be the new factor in Zambia. This notion of spatial variability permits
us to define ‘ontologically-similar storylines” in the following manner: (1) two storylines
are ontologically similar if the location of at least one entity in one storyline is within a d

distance of the location of an entity in the other storyline; (2) and apart from location, the
two storylines must share at least one entity. And unlike what traditional Bayesian Inference
would require, entities must not match perfectly. As long as the entities belong to the same
‘concept’ or ‘category’, they are deemed to be the same, such as “cholera” and “malaria”.
Similarity, in this case, is determined by a user-defined ontological structure appropriate for
a specific application domain.

In the above discussion, as long as two storylines are in close spatial proximity and
share at least some characteristics, then they are deemed to be associated. For exam-
ple, assume that for any given day, either storyline S1 = or storyline

has appeared for the past year (for simplicity, letters are used for
entity names and relationship tags are not shown). Assume also that is the location on
both S1 and S2. Since they have the same location, and share two other entities ( and ),
then it can be stated that S1 and S2 are ontologically similar. This idea can be seen in Fig.
4b where the concept of MIT could be replaced with any “school” or “university”, and S.
Collier could be regarded as any “law enforcement officer”, not just one specific person.
Because Big Data may manifest itself in unlimited formats, we adopt this relaxed defini-
tion of similarity. Knowing that “cholera” and “malaria” can be treated as “diseases” saves
many computing cycles, and allows greater data coverage than what an algorithm would
normally accomplish under the magnitude of Big Data. And since these storylines may now
be considered to be the “same”, traditional Bayesian Inference can be applied on them to
find their probability of occurrence. This is what we define as Distance-based Bayesian
Inference, which relaxes location and typing, and is attractive for its simplicity. As part of
the experiments, we present this method as one of the association strategies.

4 On the association of violent events

Sections 4.1 and 4.2 present approaches to discover event associations based on spatial
influence and event relatedness.

4.1 Spatial association index

Amore powerful aspect of associating violent events, however, is to measure influence, i.e.,
whether the observation of a storyline in one place influences the occurrence of another
storyline in another place. This is especially helpful under Big Data because events tend
to be highly intermingled, and thus relating or pulling them apart becomes difficult. The
Boston Marathon Bombings, for instance, provoked a myriad of reactions ranging from
street closures around the blast site to a shootout in Watertown, a nearby area. In other
words, an event in area A triggered other events in areas B, C, D, etc. At a high level, this is
spatial correlation [28] framed in terms of entities and their interactions, rather than through
traditional comparison of specific attributes, as in the work of [31].

The first consideration to be made is the following: if the influence of area A on area B
is high, then there is a high likelihood that whenever A experiences a storyline, there exists
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Fig. 5 Hypothetical set of storylines located in different regions. a Three storylines of different numbers
of entities. b Six storylines spread across various cities. The circles denote entities and the edges represent
relationships. Red lines denote the shortest normalized distances between corresponding storylines

other storyline(s) that B will experience (the analogous case for low values is the same).
The goal then is to find out those storyline(s) that B will experience and identify the violent
events behind them. Note that the storylines observed by A could, but need not be the same
as the storylines observed by B. In order to gauge the level of influence between locations
given their respective storylines, we propose a Spatial Association Index (SAI) below.

4.1.1 Comparing storylines

The influence between two entities is perceived to be stronger when they are located within
a reasonably-short distance of one another, and thus location is an important aspect. In addi-
tion, for associations to happen, there must exist a minimum amount of commonality that
bridges the two locations. In other words, events must not only be spatially close, but must
also share entities. We combine these ideas to design the index below. First, the following
definitions are necessary:

Definition 5 The distance between storyline Sx , composed of entities E = {e1, . . . , en} and
location ly , denoted dist(Sx ,ly), is the shortest distance between any ei ∈ E and any point in
ly .

Definition 6 The distance between two storylines Sx and Sy , composed respectively of
entities Ex = {e1, . . . , en} and Ey = {e1, . . . , en}, and denoted dist(Sx ,Sy), is the shortest
distance between any ei ∈ Ex and ek ∈ Ey .

Def(s). 5 and 6 establish distance as a function of the closest entity to a specific loca-
tion or to another entity in space. Here, distance is treated in spatial terms, and preferably
usingmetricmeasures such as Euclidean, since they conform to symmetricity, which simpli-
fies distance computations, and is highly desirable for Big Data. In practical use, however,
other metrics can be just as applicable. Using the above definitions, we propose the Spatial
Association Index (SAI) between two storylines Sx and Sy as:

SAI (Sx, Sy) = log

{
1

dist (Sx, Sy)
× n

}
(3)

where n is the number of shared entities between storylines Sx and Sy (if there is a high
discrepancy between the number of entities between storylines, then normalizing n is nec-
essary based on the shortest and longest storylines of the dataset). Equation 3 indicates that
shorter distances and high numbers of shared entities contribute to a larger value, which
indicates a stronger level of association, and is indeed the desired effect. As an example,
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Fig. 5a shows three storylines, S1, S2, and S3, all of different lengths. S1 and S2 share
5 entities , and . The two closest entities between S1 and S2 are
and , which at a distance of 0.55 (normalized on a [0,1] scale), determine the dis-
tance between these two storylines. Calculating their SAI, therefore, yields SAI (S1, S2) =
log

{
1

0.55 × 5
}

= 0.96. Repeating the calculation for S1 and S3 results in SAI (S1, S3) =
log

{
1

0.35 × 4
}

= 1.05.

Comparing the two results, one can then claim that storyline S1 is more tightly associated
with storyline S3 than to S2. In everyday language, these results would be akin to stating
that whenever events of the first storyline happen in one location, they are more likely to be
followed by events of the third storyline. Note that the SAI values are not restricted to the
range [0,1], and thus, are not probabilities. Rather, they are a spatial measure of influence
that can be used to compare storylines. True probabilities can be computed using Bayesian
Inference as described previously.

Equation 3 requires that two storylines be supplied ahead of time. In exploratory analysis,
however, one may want to investigate not simply two storylines, but rather the influence of a
source location on a target location based on their respective storylines. A classical example
are protests, which many times originate peacefully in a small area and spread as looting,
fights, and other acts of violence in various directions. In such a scenario, influence is better
understood as a location-to-location process based on an initial random source storyline S,
which is discussed next.

4.1.2 Comparing locations

For location to location, what is initially given is one storyline. Then the goal is to determine
the influence of its location on other nearby locations. To achieve this redefined notion of
influence, we reuse the SAI index above in the following algorithm:

1. Identify locations: starting from a user-specified source storyline S in a desired area of
study, identify the closest location to S that shares at least one entity with S. Label the
identified location Ltarget and the location of the closest entity in S as Lsource.

2. Retrieve storylines: find the set of all storylines that refer to location Ltarget . Call that
set ALL-STORYLINES.

3. Calculate the index: using ALL-STORYLINES, compute the Spatial Association Index
of Lsource on Ltarget w.r.t. S:

SAI (Lsource, Ltarget , S) =
|ALL−ST ORYLINES|∑

i=1

SAI (S,ALL − ST ORYLINESi)

(4)

The above algorithm can be used on Big Data in two ways. For textual characteristics of enti-
ties and events, a search engine based on TF-IDF and an inverted file index provides quick
access to millions of records even when several ontological schemes are used. For locations,
a spatial index, such as R-tree, permits efficient retrieval of spatial features at varying reso-
lutions, such as per address, state/province, or country. The above algorithm operates in the
following manner: given a source storyline, it finds the closest nearby region that also has
storylines with similar entities (at least one). It then investigates all of the discovered sto-
rylines for that nearby region, calculating their SAI values, and summing them up into one
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aggregated value. This aggregated value represents a numerical measure of storyline influ-
ence between the originating location (source) and the investigated location (target). Again,
the higher the SAI, the stronger the level of association between the locations. A visual
example follows.

Figure 5b shows five regions (Brookline, Newton, Revere, Cambridge, and Quincy)
around the Boston area. Except for Revere, all areas contain at least one storyline, and
some of their entities are shared across regions. This is the case of entity , which is
observed at different times in Brookline, Boston, and Cambridge. Imagine that an analyst
would like to understand how the events in Boston imply events in those other areas. Fol-
lowing the algorithm above, the analyst would first identify the closest area to Boston that
has a storyline which shares one or more entities with a Boston storyline. It turns out that
storylines of all areas share entities with the Boston storylines. In this case, the chosen
location is Cambridge since it is the closest to Boston considering driving distance (when
several locations are equally distant, the one with the highest number of common entities
is selected before a random choice is made). Thus, according to step 1, Lsource = Boston

and Ldestination = Cambridge. As per step 2, we now retrieve all storylines associated
with Cambridge, which according to Fig. 5b are S3, S5, and S6. In the last step, we com-
pute all SAI values between S1 and each of S3, S5, and S6 (Eq. 3), and sum them up (Eq.
4). Considering the storyline distances shown by red lines in Fig. 5(b), the computations
would be: SAI (Boston,Cambridge) = SAI (S1, S3) + SAI (S1, S5) + SAI (S1, S6) =
log

{
1

0.25 × 4
}

+ log
{

1
0.55 × 2

}
+ log

{
1

0.35 × 1
}

= 2.21. One could certainly perform

the same calculations for any other areas, e.g., SAI(Boston,Brookline), and compare their
Spatial Association Index.

The algorithm outputs one SAI value for each pair of storylines. Optimizations can be
done, such as pruning locations known to be uninteresting, or removing storylines known to
be uninformative. Intuitively, this approach allows the analyst to see how events propagate in
time and space. It does so by providing a numerical value of confidence that developments
in one place will be followed by developments in another place. It should be noted, however,
that this does not translate to a prediction. In prediction, one fact implies that another fact
will occur, having a strong implication to cause and effect. Here, we are simply stating that
two or more facts will be observed in sequence, without any assumption that one will cause
the others. This is the motivation as to why the SAI has a strong association potential, and
thus its name. For example, one could state that a “bombing in Boston” is strongly associated
with “law enforcement in Cambridge” with SAI x. To avoid specific scenarios unlikely to
repeat (such as the BostonMarathon Bombings), a better assertion is that action1 in location
A is associated with action2 in location B, when dist(A,B)≤ distance d and their SAI≤
threshold t .

Later in this paper, the experiments will demonstrate how storylines observed in cer-
tain locations are associated with seemingly disparate events in other locations. These
experiments use real datasets related to social unrest in Mexico.

4.2 Spatio-logical inference

As mentioned earlier, violent events can be viewed as the end result of larger processes
composed of one or more trigger events. In the Poll Tax Riots, for example, some of those
trigger eventswere identified, two of which were that activists organized protests and police
closed some streets. Intuitively, each of these trigger events contribute a certain amount of
momentum to the riots, with some weighing in more heavily than others. The goal here is
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Fig. 6 A spatial diagram of entity interactions enclosed in ovals. The left and center ovals represent trigger
events, and the rightmost one is the final event. Each event has a text description, is denoted by φ1, φ2, and
φ3, and has a soft truth value. The sequence conveys a storyline in which as police observe protesters, and
protesters push against the crowd, a riot ensues

to come up with these weights, which are called “soft truths”, such that, when put together,
the final violent event can be deemed probable or not.

A soft truth is simply a numerical belief in the range [0,1] that two entities will interact in
a particular way. Thus, one person may have seen police observing protesters and assign this
fact a soft truth of 0.75 (almost certain). Another person, on the other hand, was not sure the
police was involved, lowering the soft truth to 0.25 (not certain). Under this approach, Big
Data can be viewed as a vast collection of soft truths that can be manipulated in a piecewise
fashion. The combination of event sequences and soft truths allows one to generate rules
and determine how well they lead to the violent event (i.e., their distance to satisfaction),
which is explained below.

4.2.1 Rule processing

Informally, this problem can be expressed as follows: given a storyline composed of several
interacting entities which leads to a final violent event, a method is needed to combine the
individual soft truths of each interaction. We can then use the the prior events to make a
decision of whether the consolidated interactions are compatible with the final violent event
or not. If they can generate the violent event, then we say that the prior events are compatible
with the final event.

Consider Fig. 6 which depicts different sets of entities (police, protesters, crowd) inter-
acting among themselves in the streets. There are three interactions, denoted φ1, φ2, and φ3,
each described in text with an associated soft truth value. The soft truths can be obtained
from various sources: historical frequencies, input of domain experts, and random sampling,
among others. An algorithmic method is needed to answer the following question: is the
combination of “police observe protesters” (φ1) and “protesters push against crowd” (φ2)
enough for the crowd to “cause a riot” (φ3)? Formally, this problem can be modeled in First
Order Logic with the following statement:

The above statement establishes a logical rule (r1) that relates two trigger events via
an “and” relationship (∧) to the final event, which is the riot. All of these events are in
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the format predicate(entityx ,entityz). It should read that entityx performs the predicate on
entityz, meaning that when police observe protesters and protesters push against the crowd,
it implies that a riot will break out. This type of statement represents hard logic, i.e., it
determines whether developments will or will not happen, such as in a binary fashion. In
terms of violent events, hard logic in many instances is not applicable because one can
seldom state with certainty that a riot will or will not occur. For this reason, instead of hard
logic, a more appropriate way of reasoning over this type of question is to relax the binary
restriction, and permit interactions to have a soft truth in a continuous fashion. Relaxing
these restrictions allows Rule r1 to be rewritten as follows:

And generalizing them:

RW : φ1(ea, eb)(w1) ∧ . . . ∧ φn(eu, ev)(wn) =⇒ φn+1(ew, ez)(wn+1)

where RW is the rule weight, φi is either a trigger event or the final event, ei represents
an entity (or set of) and wi is a soft truth value. Note that trigger events always appear
in the antecedent of the rule (i.e., before the =⇒ sign), and the final event always appear
in the consequent of the rule (i.e., after the =⇒ sign). In Rules r2 and r3 respectively, the
trigger events have soft truths (0.8, 0.4, 0.9, 0.3) and the final events have soft truths (0.7,
0.1). The rules themselves have weights 0.25 and 0.44. In practice, the rules put in formal
notation statements related to what “people think” or “may have seen” or “has happened”
given uncertainty. There could be different rules that also lead to the same outcome (i.e., the
riot), such as:

Given its higher rule weight, Rule r4 is preferable to r2 and r3 (possibly because it involves
weapons!). In a real application, thousands of such rules can be generated, which should
be expected in a Big Data scenario, and requires a numerical method to determine how
good each rule actually is. In practice, we must find whether the trigger events satisfy the
riot, and if not, their distance from satisfaction. What was described so far is derived from
Probabilistic Soft Logic (PSL) [11]. PSL allows one to determine if the trigger events of a
rule satisfy the final event for that same rule. If they do, one can then state that the rule is
compatible with the final event.

Given a set of trigger events φ = {φ1, . . . , φn}, the assignment of φi → [0, 1]n rep-
resents the allocation of a soft truth value to an interaction between two entities. This
allocation is called an interpretation I (φi). PSL uses the Lukasiewicz t-norm and co-norm
to relax the traditional logical conjunction (∧) and disjunction (∨) into continuous values as
follows:

I =
⎧⎨
⎩

φ1∧̃φ2 = max{0, I (φ1) + I (φ2) − 1}
φ1∨̃φ2 = min{I (φ1) + I (φ2), 1}
¬̃ = 1 − I (l1)

(5)

The ˜ symbol is applied to denote the relaxed version of the normal logical operators, which
allows us to assert the following:

Definition 7 Given a rule r , composed of a set of trigger events � = {φ1, . . . , φn} and a
final event φf inal where each φi and φf inal have an interpretation in [0,1], r is satisfied if
and only if I (φ1, . . . , φn) ≤ I (φf inal).



896 Geoinformatica (2016) 20:879–921

Definition 7 states that the interaction established by the entities in the final event (φf inal)
must have at least the same soft truths as the interactions of its constituent trigger events
(φ1, . . . , φn). The rule’s distance to satisfaction for interpretation I is given by:

dr(I ) = max{0, I (φ1, . . . , φn) − I (φf inal)} (6)

As an example, take Rule r2, for which we wish to compute its distance to satisfaction
dr(I ). I(φ1, φ2) = max{0, 0.8 + 0.4 − 1} = 0.2. Since 0.2≤0.7, we say that the rule is
satisfied and dr(I ) = 0. This contrasts with Rule r3. where I(φ1, φ2) = max{0, 0.9+ 0.3−
1} = 0.2, and dr(I ) = max{0, 0.2 − 0.1} = 0.1. Rule 3 is more distant to satisfaction
than Rule 2. Interpretations can be challenging to deal with because different people have
different opinions and different perceptions of facts. This method provides a way to show
that some rules are more feasible than others from a numerical perspective. We now propose
an algorithm that generate these rules.

4.2.2 Rule generation

In this section, we propose an algorithm to generate rules using spatial distance as one of
their components, and thus the name spatio-logical inference. Look ahead to Table 6 and
the discussion in Section 5.3 for a brief visual example. More formally, this process obeys
the steps of Algorithm 1, explained below.

The algorithm takes as input a set of storylines composed of many events. Each event
is associated with a location (latitude and longitude). Because Big Data have the potential
to explode the number of locations, the analysis should be constrained to refined regions
where most entities reside or where most events take place. Several regions can be investi-
gated at a time. To alleviate the high variability of Big Data, an ontological scheme should
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coalesce the most common concepts into simpler categories. The user must input the fol-
lowing items: the number of desired rules to be generated (n), the desired size of each rule
(s), and a matrix of probabilities where each cell contains the likelihood of observing the
corresponding events (event pair Probability Matrix). This matrix is obtained from histori-
cal data (in the experiments, it uses the GDELT dataset). Rule size is defined as the number
of trigger events that composes the rule, i.e., the number of events concatenated by the ∧
relationship. In the previous example, the size of Rule 4, for instance, is 2. The algorithm
first initializes two items: RULES, a data structure to hold the final rules, as empty; and the
user-selected final event φk (line 1).

Pre-processing stage After initializing the final event to be targeted, the algorithm first
computes the distance between all events in the area of study, shown in line 3, to be used
later. The results are stored in a Distance-Matrix (line 4).

Main stage First, using the Distance-Matrix, a query finds a number s of events (i.e., a
number that matches the rule size) within a user-specified spatial distance d of the final
event. The results are stored in List{Trigger-Events} (line 8). The rule is then formed by
concatenating the found trigger events in the list to the final event φf inal via the “and ” (∧)
operator (line 9). What remains to be done is to set the soft truths for each event in the rule.
This is represented in lines 10 and 11 by doing a lookup in the probability matrix already
provided. The overall rule weight is obtained by averaging the distances of all events for
that rule, which can be obtained from the Distance-Matrix (line 13). The formed rule is then
stored in the output data structure RULES (line 14) and the distance is incremented for a
new search for more trigger events (line 15). The process continues until the desired number
of rules has been reached, at which point the RULES are output in line 17. In terms of com-
putational complexity, Algorithm 1 has its costliest step in building the Distance-Matrix.
Since every pair of events must be compared, that step operates in O(n2). However, this is
in reality less of a problem since it is a one-time operation. In addition, since the identified
locations tend to repeat, preprocessing them again is not necessary. Building the list of Trig-
ger Events operates in O(n), since it comprises matching one specific event with a list of
other events. Setting the soft truths for each event represents a look-up in the Probability-
Matrix, which runs in O(1) (constant time). Therefore, in the worst case, the algorithm runs
in O(n2).

5 Empirical evaluation and technical discussion

The goal of the experiments is to investigate how the three methods described in
Sections 3 and 4 can be employed to reason over real-world developments described in Big
Data. Section 5.1 describes the specifications of the experiments. Section 5.2 evaluates SAI
in two different modes. The SLI method is discussed in Section 5.3. Section 5.4 contrasts
the three different methods, with key observations given in Section 5.5.

5.1 Experiment setup

The experiments follow the specifications of Table 1 and the steps in the associated
image. Initially, Twitter and GDELT data related to violent events are ingested. As part of
pre-processing, necessary clean-up steps, such as removing retweets, are performed. The
storytelling process follows the approach in [24], and is briefly explained in Section 3.2. It
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extracts entities and their relationships, geocodes them, identifies timeframes, and links the
entities into storylines. In the associative analysis stage, the generated storylines are fed to
the proposed methods from where different association scores are computed according to
each method.

Data specification Two data sources were utilized: tweets spanning the years of 2011,
2012, and 2013; and GDELT data from 2011. Several experiments were performed with a
varying number of records used in each, as shown in Table 1. The data contained a high
variation of content: violent events reported in tweets and GDELT interactions, events of a
non-violent nature, and a large number of other records without any apparent association.
Two event types were targeted: education-related protests in Mexico and wars in Asia.

Comparative methods Evaluation was done on the three methods proposed in Sec-
tions 3 and 4 (Distance-based Bayesian Inference(DbB), Spatial Association Index (SAI),
Spatio-logical Inference (SLI)), which are designated as the ‘comparative methods’). Two
directions were taken: first, they were investigated and discussed separately, and second,
they were compared to one another. The following approach was taken: a subset of the data
was applied to the comparative methods to see what they were able to associate, and then
those findings were validated in a different subset of the data not used previously. This is
somewhat akin to a train-and-test approach. The number of records for each subset is spec-
ified in the experiment sections where they are discussed. In trying to approximate the high
variability of Big Data, the first examined method, SAI, used both Twitter and GDELT data
employing different record sets as shown on the table. SLI was also investigated separately
using 3,200,000GDELT records. For the part of the experiments that compared all methods,
2,580,000 GDELT records were utilized. Those records were different from the previous
ones. No specific data distribution was assumed, but areas of study where violent events
were known to be of a high enough frequency were used, such that associative analysis was
actually plausible.

Performance measures The evaluation’s purpose was to provide a variation of discus-
sions, and thus different directions were taken. The main goal was effectiveness, i.e., finding
relevant stories among millions of possibilities. In some of the experiments, only visualiza-
tion of the results was performed with the intent of providing an intuitive perspective. For
individual analysis, recall was selected as the performance measurement, leaving out pre-
cision for simplicity. Yet, when all comparative methods were compared, both precision
and recall were used. In terms of storytelling, it must be noted that both precision and recall
should be interpreted carefully, as different viewpoints may arise based on what one would
consider a “true” association as opposed to a “missed” association. Likewise, storylines do
not possess standard definitions for what should be considered “relevant” or “similar”. For
this reason, Table 2 defines this study’s usage of precision, recall, “successful association”,
“relevant event”, “similar events”, and “unobserved events”. As much as possible, the goal
was to reflect the definitions of precision and recall according to traditional Information
Retrieval, and provide a clear picture of what was being measured.

5.2 Association analysis using SAI

Unlike traditional probability, in which a score of 1.0 indicates full certainty, the Spatial
Association Index (SAI) is not constrained by an upper bound. As a result, one SAI value
on its own has little meaning. To be useful, it must be compared to or contrasted with other
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SAI values. In a perfect world, higher SAI indices always indicate that a violent event will
occur with higher likelihood than lower SAI indices. Thus, the highest possible SAI values
are sought, and investigated if they translate to sets of associated events known to be true.

For this part of the experiments, the dataset was composed of 9,800,000 tweets related
to civil unrest1 in Mexico for parts of 2011, 2012, and 2013. Using these tweets, storylines
were generated based on the approach described in [24]. Events related to education reform
were targeted, which provoked social strife in Mexico, and were documented as part of the
Gold Standard Report (GSR) from the Intelligence Advanced Research Projects Activity
(IARPA) [10]. GSR served as the ground truth for this part of the experiments.

Two sets of experiments were performed: (1) point-to-point mode: pairs of initial and
target storylines were investigated, and for each pair, their SAI values were calculated. For
the top-k pairs of highest SAI values, corresponding events in GSRwere identified. To deter-
mine whether the association was successful: if the target storyline was linked to the GSR
event through at least one entity and had the same distance (or less) to the initial storyline,
then the association was successful based on that SAI score; and (2) point-to-region mode:
starting from a set of initial storylines, the SAI values to storylines of nearby regions were
calculated. Then, those SAI values were compared between the different regions, finding
matching events for the different regions in GSR, and justifying which ones were correctly
associated (or not) as before. Each task involved four steps: (a) select an initial storyline;
(b) calculate the SAI values between the initial storyline and the other storylines; (c) select
a number of top-k SAI values; and (d) verify if those locations were the place of a violent
event that is documented in the GSR list. In other words, they sought the regions whose SAI
values translated to good recall-1= identif ied−as−relevant

identif ied−as−relevant+relevant−but−not−identif ied
. This

formula defined the fraction of events correctly identified as relevant over the set of events
that should have been identified as relevant, but were not.

Table 3 illustrates on the top row an initial storyline, which is denoted Si . This storyline,
which was observed in Mexico City in January 2013, reports a teachers’ strike for better
financial conditions. Each row of the table shows a target storyline (S1 through S10) gen-
erated from tweets, the target storyline’s location, its distance to the location of the initial
storyline (Mexico City), the SFI value between the initial storyline and the target storyline,
and a GSR event that confirms the veracity of the target storyline.

5.2.1 SAI in point-to-point mode

This subsection investigates association based on the locations of two specific storylines
at a time, thus the “point-to-point” designation. Table 3 is sorted in decreasing SAI values.
Immediately, it can be seen that the lowest SAI value tied to a successful association is 0.48
(the last row in the table). Since S1 had the highest SAI value in the table, the first conclusion
was that Si was associated with the target storyline S1 better than it was associated with
any of the other nine storylines. In other words, a STRIKE by the TEACHERS for better
SALARY and FUNDSwas deemed a strong indicator of EDUCATION-related fighting by
the SNTE (workers’ union) for better SALARY and FUNDS, which is documented in the
corresponding GSR event. Note that both Si and S1 have the same location (Mexico City),
with zero distance of each other, which boosted their SAI value according to Eq. 3. They
also shared most entities, shown in uppercase letters.

1civil unrest denotes an event of social impact, such as a strike or a protest.
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Discussion At a distance of 28 km, S2 was only somewhat farther from Mexico City, but
had a much lower SAI score (1.52) than S1. The lower score was due to two reasons: the
longer distance between San Pedro Atlixco and Mexico City, and the fact that Si and S2
only share two entities (TEACHERS-TEACHERS and PROTEST-STRIKE). One notable
item is S10, whose storyline had the lowest SAI value of all (0.48), even though its distance
to Si (297 km) was much shorter than S6, S7, S8, and S9. It indicates that location is not
the only determining factor in an associative strategy, though an important one. Looking
at the table, it is generally true that longer distances determine lower SAI values, which
should be expected. However, this assumption breaks in S4 and S5, which seem to hold a
contradiction. The former is located farther away from Si than the latter, but has a higher
SAI value. The difference, again, is due to the number of shared entities with Si , which is
higher for the former than for the latter.

Based solely on this dataset, the premise is that, as a violent event, the STRIKE in
Mexico City described in Si is more likely to be followed by fighting by the SNTE also in
Mexico City (S1) than by a march by the SNTE in San Pedro Atlixco (S2). It could be further
stated that a PROTEST by TEACHERS in San Pedro Atlixco (S2) was more probable
than a TEACHER’s march against lower BUDGET in Tlaxcala (S3). Such observations
can be generalized into an associative model of how organizations mobilize people in social
settings, which can be further applied in tasks such as classification or rule association
mining.

Note that the above statements do not come solely from the comparison of a few sto-
rylines. Rather, they compare storylines that represent millions of entities involved in
thousands of violent events. These results are successful because all of the target storylines
were highly reflective of a real event (documented in the GSR), which is shown in the last
column of the table.

5.2.2 SAI in point-to-region mode

The discussion now switches to point-to-region mode, in which the objective is to investi-
gate the SAI values from an initial storyline to all other storylines contained in a different
region. Thus, given the same initial storyline as in the previous example, the goal is to know
if the STRIKE from the TEACHERS for better SALARY and FUNDS in Mexico City
propagated to other regions as similar events, or even caused different events to happen. The
higher the SAI value for a region, the higher the belief that storylines in that region would
reoccur.

Discussion Some of the results are shown in Table 4. The first thing to notice is that L1, in
the vicinity of Mexico City, had 545 storylines that drove the highest average SAI value in
the set (2.71). Noting that Li and L1 had the same location (Mexico City) and thus no dis-
tance between them, their high SAI value is not surprising. In practice, it would be similar
to stating that violent events often spread to nearby areas, such as rioting along connected
streets. A more interesting case is L2, which contained a significantly smaller number of
storylines (275), but not a much lower SAI value than L1 (2.31). Two reasons explain this
difference: first, Pachuca is not very far from Mexico City (87 km); second, Pachuca’s sto-
rylines have a high average number of shared entities with S1 (2.4). They helped boost the
SAI value calculated with Eq. 4. Veracruz, in L9, had a high number of storylines related to
education reform, but its long distance toMexico City (313 km) and a low number of shared
entities with S1 (1.5) gave it a low SAI score (0.54), making it challenging to associate
events in Mexico City with any of Veracruz’s events (Fig. 7).
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Fig. 7 Spatial propagation of education reform protests. Starting from Mexico City, similar events are
observed around the country. The map shows 10 of approximately 1,000 affected locations

The importance of the spatial aspect of this study must be emphasized, showing that all
items from L1 to L10 were highly dependent on location. Without the spatial consideration,
finding such events in Big Data would be unsurmountable. In this dataset, many of the
storylines had no location explicitly stated. However, their related tweets did contain at
least one metadata location that matched the location of the GSR event, and a timestamp
that closely pre-dated the report of the event. This is particularly interesting in the case of
L10, whose GSR event was shown in Zacatecas, but whose target location was shown in
Aguascalientes, which were only 43 km apart. The prominence of these storylines in close
proximity of one another was significant for a simple reason: it indicated that the proposed
SAI model based on spatial distance and shared entities could uncover related violent events
that could reoccur in nearby areas in the future. If an analyst were interested in at most three
regions of interest, Table 4 would allow her to speculate that from the initial storyline S1,
violent events with an education reform theme were more likely to take place in Mexico
City, Pachuca, and San Pedro Atlixco, with decreasing order of confidence. The analyst
might want to prioritize those regions.

While the GSR dataset catalogs civil unrest developments, this work also experimented
with GDELT [15], which is a more comprehensive database of events. It covers most
regions of the world in more granular categories, many of which have a violent nature.
One example of a GDELT event is an occurrence of ethnic cleansing on January 24,
2005, by Iraqi forces on individuals of Iranian origin. The event took place in latitude
31.0914 and longitude 46.0872, in the Dhi Qar province of Iraq. In this study, facts of
this nature are used in the generation of storylines, in the calculation of their SAI val-
ues to nearby regions, and in the verification of whether GDELT matched other similar
events for the regions of highest SAI values. If it did, the events were correctly associ-
ated for that particular SAI value. Here, a subset of GDELT events (the Observed Events),
is used in the calculation of the SAI for a region, and then a different set of GDELT
events (the Unobserved Events), are used in the calculation of recall as explained further
below.
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Table 5 Recall results based on 5.1 million GDELT events in four different categories

GDELT event type Source Target Country Observed Events / Avg. SAI Recall

countrya (Storyline) Unobserved Events

THREATEN (political dissent, repression,
AFG

Iran (s1) 8,245 / 14,465 3.15 0.57

military force, occupation, attack, mass Pakistan (s2) 7,129 / 15,842 1.75 0.45

violence)

PROTEST (political dissent, rally,

IRN

Afghanistan (s3) 5,745 / 9,575 2.03 0.60

hunger strike, passage obstruction) Iraq (s4) 6,054 / 9,924 2.43 0.61

Pakistan (s5) 5,347 / 7,638 1.90 0.70

Turkey (s6) 2,118 / 5,573 2.71 0.38

COERCE (seize property, impose

IRQ

Iran (s7) 10,218 / 12,615 3.21 0.81

sanctions, ban political parties, enact Kuwait (s8) 3,151 / 5,626 0.60 0.56

martial law, arrest) Syria (s9) 7,211 / 11,093 2.74 0.65

Turkey (s10) 1,616 / 3,298 1.12 0.49

ASSAULT (hijacks, torture, killings,

PAK

Afghanistan (s11) 2,744 / 3,563 2.98 0.77

suicide bombings) India (s12) 5,091 / 20,364 3.43 0.25

Iran (s13) 144 / 182 2.45 0.79

Each event type was investigated from a source country to a target country based on initial storylines s1
through s13. The observed events were included in the calculation of the Avg. SAI scores. Recall is the
percentage of the unobserved events that had an SAI score equal to or greater than the average SAI score
aAfghanistan, Iran, Iraq, Pakistan

s1: TALIBAN capture MAZHAR-I-SHARIF occupy IRANIAN CONSULATE kill DIPLOMATS.

s2: STUDENTS protest FORCES kill QASIM KHAN secure BORDER.

s3: TEHRAN hosts REFUGEES clash POLICE threaten ECONOMY.

s4: AIRCRAFT fire MISSILE hit STARK kill PERSONNEL.

s5: AGENTS kills PAKISTANIS chasing GUARDS reported FISHING.

s6: IRAN starts OIL supply TURKEY monitor BLAST.

s7: U.S. warns IRAN fight ISRAEL destroy WEAPONS.

s8: BA fly KUWAIT seize CITY hold PASSENGERS.

s9: IRAQ accuse SYRIA plan BOMBING rock MINISTRY.

s10: KADEK wins ELECTION combat PKK declares CEASE-FIRE.

s11: NATO attack SALALA engage CHECKPOST wound SOLDIERS.

s12: MUMBAI conspire PAKISTAN deprive EXTREMIST enter HOTEL.

s13: OFFICIAL shot MAN ran BALUCHISTAN taken NARCOTICS.

Table 5 lists fourGDELT Event Types documented for several countries. The first row, for
instance, indicates 8,245 THREATEN-type events perpetrated by an actor2 in Afghanistan
(AFG) on an actor in Iran. Starting from an initial storyline (shown on the bottom of the
table) that took place in the Source Country, the SAI values to each of the Observed Events
in the Target Country are calculated. Thus for row 1, we use Si to calculate the SAI values
to all the 8,245 observed events in Iran, which yielded an average SAI of 3.15. Recall is

2An actor can be a political organization, the military, militias, terrorist organizations, and individuals, among
others.
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then the percentage of the Unobserved Events that had an SAI value of x=3.15 or more,
which can be generalized as recall-2 = |SAI (unobservedevents)≥x|

|unobservedevents| . The SAI values can also
be compared, allowing one to state that violent events between AFG and Iran in row 1 was
more probable than violent events between AFG and Pakistan in row 2, where the Avg. SAI
was lower(1.75), for that category of events.

At first glance, Table 5 shows that the three rows of highest recall (S7, S11, and S13) also
had relatively high SAI values. This type of consistency is highly desirable as it may signal
that violent events in areas of high SAI values have a high potential to be identified and
thus associated correctly into the analysis. This consistency, however, must be interpreted
carefully as high SAI values do not necessarily imply high recall. This is the case with S6,
which were PROTEST-related events between Iran and Turkey. Its recall value was poor
(0.38) because most of the 5,573 unobserved events were not in the PROTEST category. It
would be unwise to assert a successful association of events for those. A similar scenario
can be seen for S12, where the events between Pakistan and India were of various natures.
One lesson to be learned here is that distribution of event types is an important factor. It is
important to filter out storylines that are completely different from the domain in question.

In terms of association analysis, SAI operates on Big Data as a criteria to differentiate
highly likely events from improbable ones. Here, different observations can be made. The
first storyline (S1) tells about a TALIBAN attack on a CONSULATE affecting DIPLOMATS.
Since 57 % of unobserved events that have similar entities are recalled, it can be asserted
a 57 % chance that an event with those entities will reoccur in a nearby location. Looking
down Table 5, one can make other associations, such as a 65 % chance of an Iraq-led attack
on a Syria target, as examplified in S9. Indeed, several of such events can be indentified,
such as a Taliban attack on the U.S. Consulate in 2010, and a militia-led suicide bomb-
ing by an Iraqi national in Syria in 2011. Table 5 also indicates that the regions between
Pakistan and India provided the best chances for succesfull association of events in the cat-
egory of ASSAULTS, since these two regions had the highest SAI values for that category
(3.43). The same is true for Iran and Turkey for the category of PROTEST (2.71) and Iraq
and Iran for COERCE (3.21). Figure 8 depicts spatial propagation of events based on the

Fig. 8 Spatial propagation of violent events in four parts of Asian countries enclosed in circles. Clockwise
from the top left, event types include protests originating in Iran, coercion in Iraq, assaults in Pakistan, and
threats in Afghanistan. The boxed numbers represent the SAI scores between the source country and the
country pointed to. Higher SAI values indicate higher potential for a successful forecast
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four Source Countries of Table 5 using their corresponding storylines. Visually, higher SAI
values indicate better chances of a successful association. Values can always be compared
starting from the same source country propagating to others, or constrasted across different
sources and different destinations.

5.3 Association with Spatio-logical inference

This section applies spatio-logical inference to transform storylines into weight-based rules,
which are then used in the association analysis.

The dataset comprised 3.2 million GDELT violent events that took place in Afghanistan.
Out of those records, 2.1 million were used to extract rules, find events of high probabil-
ity of occurrence using Spatio-Logical Inference, and use the results to find the number
of similar events that exist in the remaining 1.1 million. The measures were: recall-
3= similaridentif ied

similaridentif ied+similarmissed
as the number of similar events that were identified over

the total number of similar events among the 1.1 million; precision-1= similaridentif ied
allretrieved

as
the number of similar events that were identified over all retrieved records. Similar events
denote events of the same ontological resolution (specified by the user) located within dis-
tance to satisfaction ≤ t of one another, where t is a threshold. The experiments evaluated
different distance thresholds.

To extract rules from the dataset, Algorithm 1 was used, for which a brief example is
given here. Consider the three GDELT event types shown in Table 6 and geolocated in
the corresponding image, which has Afghanistan as the region of study. The frequency for

each event type is shown in parenthesis. Because the two closest events are and , at
a distance of 115 km, these two events make up the body of the rule. The remaining one,

event , becomes the implication:

carryout-vehicular-bombing(AFGMOS,AFGREB) ∧ use-as-human-shield
(AFGREB,AFGCVL) =⇒ attempt-to-assassinate(AFGCVL,AFGMIL)

To add the soft truths, look at Table 6 and see that the probability of event

, and . The overall weight of the rule is the
average distance between the three events, normalized in the range [0,1], which can be cal-
culated as 0.76, assuming a minimum distance of 0 km, and a maximum distance of 278
km. Thus the final rule looks like:

0.76 :
0.33︷ ︸︸ ︷

carryoutvehicularbombing(AFGMOS, AFGREB)∧
0.11︷ ︸︸ ︷

useashumanshield(AFGREB, AFGCV L)

=⇒
0.55︷ ︸︸ ︷

attempttoassassinate(AFGCV L, AFGMIL)

The above rule is then used to find its distance to satisfaction as described in Section 4.2. In
the experiments, the overall weight of every rule is set to 1.0 (every rule is equally impor-
tant), and thus, the focus is set on the soft truths instead. The correctly associated events
are the rules with the least distance to satisfaction. Based on that, precision and recall are
utilized as the evaluation measures. It should be clear that the above example is a simple sce-
nario with only three events. Given vast numbers of events, the number of rules can easily
explode. Optimizations should be done, such as shortening distances or filtering out spe-
cific event types in order to alleviate computation costs. In this study, weights are based on
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frequencies and spatial distances, but it is possible that different approaches may be better
suited for different domains of knowledge.

Discussion In the context of violent events, a key consideration is whether relevant events
can be associated with one another, knowing that relevance is a highly subjective matter.
For measurement purposes, this paper defines relevance in a comparative scale based on
either Euclidean distance or distance to satisfaction: lower values are always more relevant
than higher ones. Association among events can be investigated in three configurations: (1)
all events are the same, such as when instances of fights result in other fights; (2) all events
are different, such as when a fight and police crackdown result in a riot; (3) otherwise,
events are mixed. Assume that there exists a set of trigger events (φ1 to φn) that lead to
a final violent event (φf inal) with a d Euclidean distance or distance to satisfaction. Then
one can assert a successful association for other unseen final violent events provided that
the trigger events lead to the same final violent events with the same or lower distance d. In
other words, comparing the association between two sets of events, if the events match (or
partially match) on at least one trigger event and distance is just as low, then a successful
association is made. If no events match or distance d is off (higher than a threshold), then
the association is a miss.

Using the above ideas, all events from our dataset that fit those conditions are retrieved,
allowing a count of how many were associated correctly, and how many were not. For sim-
plicity, the region of study is limited to a range where the maximum distance between any
two events is 100 km. Figure 9 shows six plots with different measurements for discussion.
High recall values indicate that previously-unseen events were being found without going
over a distance limit. This is shown in Fig. 9a, in which recall values ranged from 40 % to
66 %. In the range where distance between events lay between 0 to 50 km, recall remained
fairly constant at around 62 % for mixed events. This indicated that, for many of the gen-
erated rules, their constituent events lead to the same final violent event with a distance of
50 km or less. For events of the same type, recall trended upward up to 50 km, but only got
worse thereafter. More intriguing were unique events, in which recall was good with short
distances (0–20 km) or long distances (80–100 km), but often worse for distances between
(21–79 km). The lesson learned from this example was the following: the soft truth values
established in the rules seemed to be appropriate for the initial part of the graph (shorter
distances) and the late stages (longer distances), but may not have been ideal for mid-range
distances.

Those values were candidates for adjustment, but trying to readjust them may only be a
temporary fix, since Big Data cannot be assumed to have a specific distribution. Proceeding
to Fig. 9c, the distance to satisfaction trended down most of the way with the exception of a
spike at 0.6. The downward portion related to the notion that fewer of the final violent events
were being found, or when found, the distance to satisfaction was too high (i.e., above the
limit established by the rule that found it). The analyst would be interested in investigating
the events associated with low recall to see if adjusting the soft-truth values would afford
better results. It is possible that the values were indeed correct, and that the low recall came
as a result of violent events in the unseen data not matching the ones in the observed data.

Similar trends as the above were also seen in Fig. 9b, which shows precision by
Euclidean distance. In general, one would expect high recall for short distances and vice-
versa. Intuitively, government in Kabul experienced many bombings over time, but ones
which were not necessarily related to other bombings in far-away cities, such as Charikar.
However, the data indicated that, in many instances, longer distances between events
displayed higher precision than shorter ones. This is the case in Fig. 9b where the highest
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Fig. 9 Results from spatio-logical inference. A Effect of distance between events on recall. B Effect of
distance between events on precision. C Effect of the distance to satisfaction on recall. D Effect of the
distance to satisfaction on precision. E Effect of the number of generated rules on recall. F Distribution of
violent events in cities of Afghanistan.G Effect of the number of documents on storyline generation.H Time
it takes to compute association scores based on the number of storylines

precision for mixed events was approximately 60 % with a distance of 60 km. For unique
events, this fact was even more pronounced, since the highest precision (57 %) lined up
with the longest distance (100 km). This is indicative of a particular type of event that
takes place in many locations (e.g., protests against corruption taking place across multi-
ple cities): the violent events matched with similar conditions (i.e., similar trigger events)
even when the cities were far apart. Figure 9d shows the effects of distance to satisfaction
on precision. This trend did not deviate significantly from the Euclidean distance approach,
even though high precision at times does come from lower distances. The fact that the two
approaches had similar results is encouraging because it indicates that our reasoning was
valid.

In terms of processing times, Fig. 9g provides a snapshot of how long it takes to process
documents into storylines. Documents, in this case, are tweets where the storyline gener-
ation process was distributed in a Hadoop cluster of 10 machines (4 GB Ram, quad-core,
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64-bit). At times, the generation of storylines is close to linear with respect to the number of
documents. Most of the cost of building storylines comes from identifying entities (people,
organizations, objects), geocoding, and indexing them. Where the graph grows relatively
fast, such as between 0 and 20,000 documents, indicates that not many repeated entities
and locations are being found. This requires more processing, which not surprisingly takes
longer.

Flat trends, such as between 40,000 and 60,000 documents, point to repeated data (such
as locations that have already been identified previously) that do not need to be processed
again. With repeated data, more documents can be handled. In a Big Data scenario of a
specific domain, this graph may trend flatter, since specific domains will rely on a lesser
variation of data than general data would. Figure 9h provides a snapshot of how long it
takes to go through the computation of the association scores, which are the DbB, SAI, and
SLI. This is based on 1,000,000 storylines composed of at most 4 entities. The general trend
is that SLI can complete more calculations than SAI or DBb for the same amount of time.
This is due to the fact that SLI is mostly about table lookups for historical frequencies along
with simple calculations. On the other hand, SAI needs to look for storylines in neighboring
regions and identify similar entities. Thus, it tends to take longer to compute its association
score. Note, however, that these graphs do not relate to the “goodness” of the storylines.
It only provides an idea of how long it takes to run each method based on an increasing
number of documents. For informational purposes, 1 million tweets can be translated into 4-
entity storylines (and calculation scores computed) in approximately 90 min, in a distributed
environment of 10 machines (Hadoop). In a standalone machine, the same process takes
approximately 7.5 hours. For Big Data, this is an important consideration, but which must
be analyzed carefully in terms of storyline coherence.

The above discussion points to the importance of relating event types, locations, dis-
tances, and frequencies in the discussion of violent events. These were the components used
in the generation of the event-based rules. These features represent a robust set of com-
ponents that populate Big Data. Figure 9e summarizes recall in terms of the number of
generated rules according to event type. This time, distance was disregarded, which had a
different effect on the results. When distance was not considered, recall was consistently
high when events had different types, but suffered considerably for mixed ones, with a
higher variation for same event types. The closest that the three lines came together was at
approximately 33k generated rules, where recall ranged from 41 % to 54 %. This is a sig-
nificant difference from the distance approach, and underscores the importance of spatial
analysis. For illustrative purposes, Fig. 9f depicts the distribution of three events for the 10
largest cities in Afghanistan, which were used in this dataset. It shows, for instance, that
(for this partial dataset) vehicular bombings were mostly frequent in Kandahar, Kabul, and
Jalalabad (in this order), while Kabul itself saw most of the human shield events. While
this graph is not the complete dataset used in the experiments, it gives the reader a sense of
the spatial locations being investigated and the event types being investigated.

Finally, Table 7 displays some of the events that the proposed approach was able to
correctly associate. Starting from a sample generated rule (G1), whose final violent event
was related to destruction of property, and had a distance to satisfaction = 0.25, the
table first shows a set of four rules that were correctly associated (F1, F2, F3, F4). F1,
for example, tells about some sort of “negotiation” that involves an action of “release”,
which eventually ended up as “confiscation of property”. Without the benefit of exter-
nal knowledge, the details of this case was not known. However, it can be affirmed with
confidence that this event was very close in concept to the original rule G1, which also
had a “release” component, involved “destruction of property”, and had lower distance to
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satisfaction than the original rule G1 (0.13 as opposed to 0.25). These events took place in
2010 in Afghanistan at a distance of 34 km from each other. The same was true for F3,
which also dealt with “destruction of property”, though coming from totally separate trig-
ger events related to “military cooperation” and a “curfew”. F2 and F4 had slightly higher
distance to satisfaction, albeit still below the limit of 0.25 established by G1.

Further down, the table shows four other rules that were not considered valid associa-
tions. The first one, M1, did not have a similar final violent event to G1. M2 shared no
trigger events at all with G1, and thus was not valid because the approach needs at least one
element in common. M3 and M4 were both too distant in terms of distance to satisfaction
from 0.25, and thus were rejected as well.

In storytelling, the high number of entities and events is always of concern, especially
in a Big Data environment. It is important, thus, to understand the number of rules that
are generated and how they affect recall, which is shown in Fig. 9e. The plot separates
whether the events considered were of the same nature (e.g., bombing followed by another
bombing), unique natures (e.g., bombing followed by an assassination attempt), or a mix
of them. When event types are mixed, recall remained fairly constant despite the increase
in the number of generated rules. It hints at the distribution of the data: events were well
spread out throughout space. An analyst studying many event types concurrently may find
this fact interesting. The situation was vastly different when the events were all the same or
all different. In this case, recall displayed greater variation (28–57 % and 54–71 %, respec-
tively). The graph also shows that fewer rules were not necessarily better than more rules
(as one might expect). In fact, some of the best recall values can be seen exactly at the
end of the graph when the number of generated rules hits 100 k. Although this may not
seem intuitive, violent events can be more easily explainable when their constituent devel-
opments have different natures, as opposed to when they are composed of the same event
types.

5.4 Comparison of the different association strategies

In this section, the three association strategies explained earlier are put in perspective. The
goal is not to find the best strategy, but rather to contrast them. One line of research comple-
mentary to this work, but which often does not include spatial storytelling, is event detection,
to which further reading is suggested. [16, 30]. The following discussion is framed in terms
of precision and recall, as done before.

Table 8 lists a set of 5 event types, labeled E1 through E5, from the GDELT dataset
that were targeted as final violent events. 2.58 million records were used: 1.8 million as
input and 0.78 million for validation. For each event type, the table shows precision and
recall values, calculated as explained earlier, using the three technical approaches discussed
in Section 3.1. The highest values are shown in bold type. Events considered were those
whose probability of occurrence was 10 % or more (less than 10 % was less significant in
our dataset).

xThe way to interpret the table, exemplified for row 1, is as follows. Upon running
Distance-based Bayesian Inference for event E1 (attempt to assassinate) in the initial set of
1.58 million events, the results indicated 5,101 combinations (not shown in table) of trig-
ger events that led to E1 with a probability ≥ 10 %. However, when validating against
the remaining 0.78 million records, those combinations only contained 985 out of 2662
events with a probability≥ 10% (and that shared at least one event with the generating
combination), yielding a precision of 0.37. For recall, 985 combinations were found, but
1539 should have been identified, resulting in a recall of 0.64. For the other approaches,
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instead of a simple probability, the criteria were SAI ≤ 1.0 and distance to satisfaction
df ≤ 1.5.

Discussion: For Distance-based Bayes, precision was often low, but with mixed signals.
It was significant for E2 (carry out vehicular bombing), but much lower for E1 (attempt to
assassinate) and for E4 (conduct strike or boycott for rights). The reason for the low scores
had to do with frequency, which was fairly low for this type of event. In general, recall was
consistently high, especially in E1, whose frequency of “assassinations” was also high in
the dataset.

The Spatial Association Index demonstrated the highest precision of any of the
approaches for events E1, E2, and E3. Its positive aspect was consistency even when it was
not the highest. Its precision was never lower than 0.45, though for larger distances, lower
scores were observed consistently. SAI is highly sensitive to how many events are far apart
versus nearby, and seems to favor the latter. The data distribution was certainly a factor here
as was event colocation. For example, the dataset had many instances of the same pairs of
events that led to E4 (conduct strike or boycott for rights) with high values of SAI . This
explains the 0.67 precision of E4. It is true that some of the SAI values were low (E5), but
those can be explained by the low numbers of similar events in the validating dataset. Its
recall values were good across all events with the exception of E5 (0.52).

Two observations can be made about Spatio-logical Inference (SLI ): first, precision
showed good consistency for low distances to satisfaction, which is desirable in terms of
association. However, one should also expect low precision for high distances to satisfac-
tion, which in general does not occur when df >1.0. While high precision is normally
desirable, it would be preferable for df to oppose precision hand-in-hand (low to high,
and high to low). Precision values were unexpectedly high for E4 and E5 (0.78 and 0.61,
respectively). Indeed, these values came from many rules that were established by far-apart
events of the same ontological category with high soft truth values, and thus their high pre-
cision. SLI behaved in a stable manner in terms of recall, and interestingly, especially when
distances were long. While Table 8 only shows a limited number of results, the overall
experience points to SLI as having the best recall results.

5.5 Key Observations

The discussion in this paper evolved from storylines composed of events, and possessing
two of the challenges that come with Big Data: high data volumes and high data variability.
As such, the first inclination is to favor the three distance-based approaches (DbB, SAI ,
and SLI ), and momentarily disregard methods that do not take into account location as
a feature. It would be attractive to single one of them out as the most robust associating
strategy, one which would be able to capture all associations with high certainty. While such
an answer is not feasible, several considerations can be made based on knowledge of the
dataset and the adjustment of parameters:

1. Distance variation: The experiments of Section 5.4 demonstrated that, for datasets
across large spatial regions (across countries, for example), DbB provided higher pre-
cision than the other approaches. For low event distances (for example, crime hotspots
in Washington D.C.), on the other hand, either SAI (Section 5.2) or SLI (Section 5.3)
showed better performance.

2. Precision vs. recall: When high recall is more important than high precision, better
results can be obtained with DbB or SFI . On the other hand, SAI showed higher pre-
cision scores in experiments not shown here, as long as the application was constrained
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to a specific domain. For general use, however, there is still little basis to advocate for
one method versus the others.

3. Concept resolution: Categorization can contribute significantly to precision and recall.
Combining several events into common classifications increases the chances of finding
similar occurrences, and helps deal with the high variability of Big Data. An important
implication, however, is that such combinations result in loss of information, and must
be taken carefully.

4. Data distribution: The characteristics of the data, such as distribution, should be inves-
tigated. Since a single distribution type cannot be guaranteed under Big Data, one way
to avoid this problem is to apply sampling during the storyline generation process.
Many sampling methods have been proposed, which can potentially make the storylines
less prone to bias and and lead to better application results.

5. Thresholds: The experiments of Section 5.4 compared the different methods based
on midpoint thresholds, such as a minimum probability of 10% that an event would
occur. These are values that worked well in the scope of this paper, but can certainly be
manipulated or even parameterized as user-defined inputs. These distances are highly
dependent on the application domain and, whenever possible, should be experimented
with until optimal values are identified.

6 Conclusion

This study demonstrates that spatio-temporal storytelling is able to capture important associ-
ations among violent events reported in social media and traditional databases, two common
sources of Big Data. The major contributions are three methods of association analysis:
Distance-based Bayesian Inference relates similar events that are described differently,
addressing high variability in Big Data; Spatial Association Indexmeasures the influence of
the storylines from one geographical location to others, limiting high data volumes to con-
strained regions; and Spatio-logical Inference compute a score to determine if a set of initial
events is related to a final violent event, filtering irrelevant developments. The latter two
provide a means to deal with the high volumes in Big Data. These methods can be highly
valuable in the analysis of event searches, propagation, influence, and forecasting.
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