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Abstract: In massive Twitter datasets, tweets deriving from different domains, e.g., civil unrest, can
be extracted to constitute spatio-temporal Twitter events for spatio-temporal distribution pattern
detection. Existing algorithms generally employ scan statistics to detect spatio-temporal hotspots
from Twitter events and do not consider the spatio-temporal evolving process of Twitter events.
In this paper, a framework is proposed to discover evolving domain related spatio-temporal patterns
from Twitter data. Given a target domain, a dynamic query expansion is employed to extract related
tweets to form spatio-temporal Twitter events. The new spatial clustering approach proposed here is
based on the use of multi-level constrained Delaunay triangulation to capture the spatial distribution
patterns of Twitter events. An additional spatio-temporal clustering process is then performed
to reveal spatio-temporal clusters and outliers that are evolving into spatial distribution patterns.
Extensive experiments on Twitter datasets related to an outbreak of civil unrest in Mexico demonstrate
the effectiveness and practicability of the new method. The proposed method will be helpful to
accurately predict the spatio-temporal evolution process of Twitter events, which belongs to a deeper
geographical analysis of spatio-temporal Big Data.

Keywords: Evolving spatio-temporal patterns; target domains; spatio-temporal Twitter events;
spatial clustering; spatio-temporal clustering

1. Introduction

Spatio-temporal Big Data has the characteristics of volume, variety, velocity, veracity and
value. And nowadays the knowledge discovery from spatio-temporal Big Data is mainly focused
on summarization, obfuscated outliers, rare associations, and obfuscated process prediction, which
are expansions of traditional spatio-temporal data mining. In location-based social networks, Twitter
has attracted the largest number of users since its launch in 2006 [1]. As mobile phones become
more intelligent and wireless network coverage expands, anyone with a mobile phone can send
tweets almost anywhere, anytime. As a result, Twitter has experienced an explosive growth in its
user base [2]. Nowadays most intelligent mobile phones are GPS-enabled, so geographical location
information is often included as an additional tag in tweets. Combined with the time annotation,
this type of spatio-temporal information can be embedded in tweets to describe where and when
the tweets are broadcast. So the Twitter data has become a kind of spatio-temporal Big Data. Due to
the high degree of freedom and openness of Twitter, massive amounts of useless information that is
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unrelated to significant events is broadcast that simply reports common interactions among friends.
Moreover, Twitter can be considered as a large black box that contains numerous topics reflecting
various events from different domains, e.g., disasters [3], crimes [4], traffic [5], and epidemics [6].
Ways to extract hidden, unknown and significant events from the huge mass of Twitter data has thus
become a research hotspot in computer science [7,8], human science [9,10] and GIS [11–14] in recent
years. The research approaches applied can be roughly classified into three categories depending on
which of the above three fields is the focus: (1) scholars in computer science consider tweets as textual
information that changes over time, so topics related to different domains can be extracted by text
classification methods such as Latent Dirichlet Allocation (LDA) and clustering; (2) in human science,
scholars usually treat Twitter as a tool to record human behaviors; for example moving behaviors can
be reflected by the changes in number of Twitter users coming into and going out of a certain region;
and (3) researchers in GIS commonly extract domain related events to identify spatio-temporal outliers
or hotspots. The research reported here utilized the third of these approaches to spatio-temporal
pattern detection from Twitter.

In a spatio-temporal event dataset, each entity represents an event that occurred at the location
and time tagged [15]. Further, spatio-temporal Twitter events are defined as a series of point entities
with geo-location and time information embedded in domain related tweets. Taking Figure 1 as an
example, this depicts the spatio-temporal Twitter events related to ‘civil unrest’ for the month of
July, 2012 throughout Mexico. Unlike previous research in this area, the spatio-temporal approach
proposed here focuses specifically on the evolution of domain related spatio-temporal patterns in
Twitter. The major contributions of this study are as follows:

• Development of a mining framework: a unified framework is proposed to discover evolving
domain-related spatio-temporal patterns in Twitter. Prior knowledge is not required in the
new framework.

• Extraction of domain related Twitter events by dynamic query expansion: For the target
domain, related tweets can be obtained using a dynamic query expansion strategy. These tweets
tagged with geo-location and time information constitute spatio-temporal Twitter events.

• Discovery of evolving spatio-temporal patterns from Twitter events: For the extracted domain
related spatio-temporal Twitter events, spatial clusters and outliers are detected by spatial
clustering, after which the spatio-temporal patterns are discovered by spatio-temporal clustering
as they evolve.

• Experimental evaluation using real Twitter data: The proposed framework was extensively
tested for spatio-temporal Twitter events related to ‘civil unrest’ in Mexico. The advantages and
effectiveness of the new method are demonstrated by comparing the results with alternative
methods and baseline data.
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The rest of this paper is organized as follows. Section 2 reviews the related work and Section 3
explains our motivation and research strategy. Section 4 describes the model used to extract the domain
related Twitter events, after which the approach used to discover the spatio-temporal patterns in the
Twitter events as they evolved is presented in Section 5. Section 6 reports on the extensive experiments
on real world Twitter data and their analysis, and the paper concludes by summarizing the study’s
important findings in Section 7.

2. Related work

2.1. Twitter Event Extraction

Existing Twitter event extraction methods mainly derive from machine learning, with approaches
such as LDA (Latent Dirichlet Allocation), SVM (Support Vector Machine), and HMM (Hidden Markov
Models). LDA is an unsupervised learning algorithm that was originally developed to classify general
texts [16] but has more recently been employed to classify Twitter data into different topics [7,8].
SVM is a supervised learning algorithm for classification. Given a target domain, it begins by requiring
users to label sections of domain related tweets as samples, after which these training samples are used
to extract related tweets [17]. Chakrabarti and Punera (2011) [18] took a different approach, employing
a modified HMM model to learn the characteristic of sample tweets and then extract related tweets.

2.2. Cluster, Outlier and Hotspot Detection

In the field of spatio-temporal data mining, spatio-temporal clustering [15,19], outlier
detection [20,21] and hotspot detection [22] are all key research techniques. As both geo-location
and time information are often embedded in tweets, this facilitating spatio-temporal data mining in
Twitter data. Research in this area can be classified into two types: (1) spatio-temporal distribution
pattern detection from initial Twitter data; and (2) spatio-temporal distribution pattern detection from
domain related Twitter events.

Spatio-temporal distribution pattern detection from initial Twitter data. Here, Twitter data
is directly utilized to detect latent spatio-temporal clusters, outliers or hotspots without extracting
topics, then deeper analysis is performed on any patterns detected to verify whether a special event
has occurred. For example, Lee et al. (2011) [10] divided the whole research region into sub-regions
based on the spatial distribution of tweets by clustering. For each sub-region, the time stamps with
unusually large number of tweets were then detected by boxplot. Cheng and Wicks (2014) [12] detected
spatio-temporal hotspots using space-time scan statistics from Twitter. Different topics were extracted
by LDA for each spatio-temporal hotspot and the ratio of topics was used to determine whether the
spatio-temporal hotspot described a specific event.

Spatio-temporal distribution pattern detection from domain related Twitter events. In this
type of approach, a target domain is usually specified and then spatio-temporal pattern mining
performed on domain related tweets. For example, Chae et al. (2012) [11] employed LDA to extract
groups of topics related to different domains. For each domain, a time series can be obtained by
recording the number of tweets with domain related topics as time progresses. For each time series,
after removing any seasonal trends those time stamps recording unusually large numbers of tweets
were identified as abnormal events using Z-core. In a previous study, we proposed a dynamic query
expansion to extract domain related tweets from Twitter [13]. The extracted tweets constituted a group
of spatial events for a given period of time and a local modularity spatial scan was developed to detect
spatial hotspots. Bakillah et al. (2014) [14] built social graphs in Twitter based on various interaction
modes and enhanced fast-greedy optimization of modularity was employed to extract different
thematic communities. For disjoint time periods, spatial clusters were detected by VDBSCAN [23] for
each thematic community from a spatial point of view.

In summary, most previous work in this area has focused on detecting fixed spatio-temporal
distribution patterns from Twitter. However, there is also an evolving relationship between the
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spatio-temporal development of a Twitter event and its final spatial distribution. In this paper, we
propose a new framework that combines dynamic query expansion with a spatio-temporal mining
approach to discover newly evolving domain related spatio-temporal patterns from Twitter.

3. Motivation and Proposed Strategy

3.1. Motivation

Existing domain related tweet extraction methods mostly fail to consider the hidden relationships
among tweets. For example, if an earthquake occurs at place ‘A’ then any tweets containing phrases
such as ‘A, damage, collapsed buildings’, even if they do not specifically say ‘earthquake’, are also
likely to be related to the earthquake. Therefore, it is necessary to analyze the hidden relationships in
Twitter data if we are to adequately extract domain related tweets.

Further, existing research on mining spatio-temporal patterns from Twitter events focuses
primarily on detecting outliers or hotspots directly from the distribution of the tweets; over a given
time period these spatio-temporal Twitter events can evolve into certain spatial distribution patterns,
e.g., spatial clusters or outliers. However, to the best of our knowledge there have not been studies
seeking to discover the spatio-temporal evolution process for each spatial pattern. For example, a
group of tweets representing a spatio-temporal event dataset with 10 time stamps is simulated in
Figure 2. Figure 2a gives the spatio-temporal distribution while Figure 2b shows the spatial projection
of all events. Figure 2c is the spatial projection at each time stamp. The spatial distribution patterns
formed by all spatio-temporal events for this time period are hidden in Figure 2b, which contains
four types of patterns: spatial clusters, global spatial outliers, local spatial outliers and inner spatial
outliers. In Figure 2c, events at each stamp are differently labeled based on the patterns in Figure 2b.
The evolving process by which each of the three distinct spatial patterns develops is as follows: (1) a
dense cluster derives from its center at T = 1 and extends until the whole cluster is formed at T = 4,
after which this cluster gradually diminishes from its center and disappears at T = 8; (2) For a sparse
cluster, events appear to arise randomly in its upper section from T = 1 to 4 and only after T = 5 does
the lower part of this cluster gradually come into being. At T = 7, some events in the upper section
begin to appear again; and (3) Global outliers are present at all times, but the local outliers appear only
between T = 3 and 7. The inner spatial outliers are formed gradually from the center from T = 4 to 6
and then do not change.

By integrating the spatial distribution of Twitter events at different time stamps shown in Figure 2c,
in the research we are aiming to discover those spatio-temporal clusters or outliers, i.e., evolving
spatio-temporal patterns, which will evolve into the final spatial distribution patterns shown in
Figure 2b.

3.2. A New Strategy for Discovering Evolving Domain Related Spatio-Temporal Patterns in Twitter

To discover and visualize the spatio-temporal patterns evolving in the Twitter data for a given
domain, a framework is proposed here that is based on a dynamic query expansion and spatio-temporal
pattern mining approach, as shown in Figure 3. There are two main parts in our proposed framework,
described in turn below.

Detection of domain related Twitter events. In this part, a model for dynamic query expansion
is built to adequately extract domain related Twitter events that consists of: (1) the seed query, where
some seeds that directly match the domain are queried; (2) the expanded query, which extracts those
tweets related to the domain by considering the relationships hidden in the Twitter data; and (3) the
spatio-temporal Twitter event extraction, where the domain related tweets with spatio-temporal
information constitute the spatio-temporal Twitter events.

Discovery of evolving spatio-temporal patterns. In this part, a spatio-temporal clustering
approach is proposed that consists of: (1) spatial projection, where spatio-temporal Twitter
events are spatially projected to obtain the spatial distribution; (2) spatial clustering based on
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multi-constrained Delaunay triangulation is developed to detect various types of spatial distribution
patterns; (3) spatio-temporal neighborhood building, which considers both spatial proximity and
time consecutiveness to create spatio-temporal neighborhoods for each Twitter event; and (4)
spatio-temporal clustering is performed based on these spatio-temporal neighborhoods to discover
any spatio-temporal patterns as they evolve.
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4. Domain Related Twitter Event Detection

In this section, a model for the dynamic query expansion is built that is capable of extracting
domain related spatio-temporal Twitter events. In Section 4.1, we provide definitions for the terms
‘Twitter information graph’, ‘seed query’, ‘expanded query’ and ‘weight measurement’. Section 4.2
moves on to consider the process of dynamic query expansion, after which spatio-temporal Twitter
events are defined in Section 4.3.

4.1. Basic Definitions

Twitter information graph: Given an initial set of Twitter data, an information graph G = (V, E, W,
ST) can be obtained. Here, V denotes the nodes in G, which consists of tweets and features (e.g., users,
terms, hashtags). E denotes the undirected edges connecting related nodes in G. For example, if a
feature exists in some tweets then this feature is connected with these tweets. For each node in G,
a weight is assigned and all the weights constitute W. For a given domain, the weights of all the nodes
reflect the relevance to this domain. Finally, ST gives the geo-location (e.g., longitude and latitude) and
time information embedded in each tweet.

By considering the multiple relationships among tweets and features, those tweets related to a
given domain can be extracted by a kind of dynamic query expansion. Two parts, the seed query and
the expanded query, are included and these can be described as follows:

Seed query: Given a target domain, the seed query extracts those key words in V that are
consistent with the domain semantically. For example, if the given domain is ‘civil unrest’ then the
queried seeds can be {(‘protest’), (‘march’)}.

Expanded query: Here the seeds are those nodes that are directly related to the given domain.
However, in most situations more related nodes can be queried further based on the seeds. For example,
assume the seeds {(‘protest’), (‘march)} are obtained. As {(‘YoSoy132’), (‘Zocal’)} frequently appear in
the same tweet with the seeds, for example as: ‘A mega march against the imposition of PRI: YoSoy132
protestors arrived at El Zocalo.’, then {(‘YoSoy132’), (‘Zocal’)} can become key words in an expanded
query. The expanded query can then extract those key words in V that are related to the seeds by some
hidden relationships.

Weight measurement: Among all the tweets and features in V, there are two main types of
relationships, i.e., features ↔ tweets and tweets ↔ tweets. If a feature exists in those tweets with
high weights for the domain then this feature will also have a high weight and vice versa. If a tweet
replies to another tweet with a high weight then it will also receive a high weight. Thus, the weights of
features are mainly affected by the related tweets, while the weights of tweets are determined by both
the related features and other tweets with which they have replying relationships. These weights can
be described as:

W(F) = IDFFEF↔TW(T) (1)

W(T) = ω1ET↔FW(F) + ω2ET↔TW(T) (2)

Here, W(F) and W(T) denote the weights of features and tweets, respectively. EF↔T denotes a
matrix describing the relationship between features and tweets. If a feature belongs to a tweet, the
corresponding value in the matrix is equal to 1 and otherwise it is equal to 0. ET↔F is the transpose of
EF↔T. Similarly, ET↔T describes the relationship between tweets and other tweets. If a tweet replies to
another tweet, the corresponding value in ET↔T is equal to 1 and otherwise it is equal to 0. IDFF is the
inverse document frequency matrix for the features [24]. ω1 and ω2 denote the degree of influence
from features and other tweets, respectively, on the analyzed tweet.

4.2. Dynamic Query Expansion

Based on these basic definitions, a dynamic query expansion can be described in the following:
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Step I Initialization of domain related nodes: Given a target domain, the seed query proceeds
to extract key words. In the tweet set T, the tweets matching these key words consist of the initial
domain related tweets T(0). Those features connected with T(0) constitute the initial domain features
F(0). The weights of all the tweets in T(0) are equal to 1 while the weights of other tweets, i.e., those
tweets in T − T(0), are equal to 0.

Step II Expanded query by iteration: For the kth (k ≥ 2) iteration of the expanded query, the
weights of the features in F(k) and tweets in T(k) are initially calculated as:

W[F(k)] = IDFFEF↔TW[T(k−1)] (3)

W[T(k)] = ω1ET↔FW[F(k)] + ω2ET↔TW[T(k−1)] (4)

Then, for tweets in T(k) and T − T(k), if the maximal weigh in T − T(k) is larger than the minimal
weight in T(k) then the two corresponding tweets will be swapped. This process of swapping will
continue until max {W[T − T(k)]} ≤min {W[T(k)]}.

Step III Generation of domain related tweets: For the kth (k ≥ 2) iteration of the expanded query,
after the updating of weights for features in F(k) and tweets in T(k), once max {W[T − T(k)]} ≤ min
{W[T(k)]} is satisfied then the process of the expanded query is terminated. For the final set of domain
related features F(k), all features having at least one edge with the tweets in F(k) are considered to be
highly relevant to the target domain. All tweets containing these domain related features are thus
considered to be domain related tweets in T.

The time complexity mainly derives from the dynamic query expansion and is approximately
O{ni[nF*nTF + nT*(nTF + nTT)]}, where ni is the number of iterations performed, nF and nT are the
number of features and tweets, respectively, nTF is the number of connections between tweets and a
feature, and nTT is the number of connections between two different tweets. Note that nTF << nF and
nTT << nT.

4.3. Spatio-Temporal Twitter Events

Combining the geo-location and time information embedded in the tweets, the domain related
spatio-temporal Twitter events can be defined as:

Spatio-temporal Twitter events: Given a set of extracted domain related tweets, each tweet, along
with its geo-location and time information, is considered to be a spatio-temporal Twitter event sttei,
sttei = (xi, yi, ti), and all spatio-temporal Twitter events constitute a set STTE = {stte1, stte2, . . . , stteN}.

Spatial Twitter events: Given STTE, the corresponding spatial Twitter events are the spatial
distribution of STTE after spatial projection. Taking the simulated dataset in Figure 2 as an example,
assume Figure 2a gives the spatio-temporal Twitter events for a target domain. Then Figure 2b shows
the corresponding spatial Twitter events. The spatial Twitter events are composed of n spatial points,
denoted as STE = {ste1, ste2, . . . , sten}. Each spatial Twitter event stei includes geo-location information,
i.e., stei = (xi, yi)

5. Evolving Spatio-Temporal Patterns Discovery

This section describes two steps that are performed on the STTE: (1) Spatial distribution
pattern detection; and (2) the discovery of evolving spatio-temporal patterns. Section 5.1 examines
the approach used for the spatial distribution pattern detection, while the process of discovering
spatio-temporal patterns as they evolve is described in Section 5.2. Finally, the algorithms are described
in Section 5.3.

5.1. Spatial Distribution Patterns Detection

In order to detect spatial distribution patterns from spatial point events, a number of spatial
clustering [25,26] and spatial outlier detection [27,28] methods have been proposed. However, these
methods cannot accurately detect different types of spatial clusters and outliers simultaneously.



ISPRS Int. J. Geo-Inf. 2016, 5, 193 9 of 29

Delaunay triangulation has been proven to be an efficient tool for constructing spatial proximity
relationships for spatial datasets and has thus been successfully employed in spatial clustering [25,26].
Unfortunately, for spatial point events multiple types of clusters and outliers may be involved,
as described in Section 3.1 and existing methods are unable to accurately obtain these spatial patterns.
For example, Figure 4a shows the Delaunay triangulation for the spatial events in Figure 2b, with
three types of inconsistent long edges connecting different types of spatial patterns: (1) I-long edges
intersected with green dashed lines, where global long edges connect global spatial outliers such as
the point and the small cluster on the right side of Figure 4a with other patterns; (2) II-long edges
intersected with blue dashed lines, where local long edges connect local spatial outliers such as the
point and the small cluster in the middle of Figure 4a with other patterns; and (3) III-long edges
intersected with red dashed lines, which are usually located in a relatively even cluster due to the
existence of inner spatial outlier regions such as the small dense cluster in the sparse quasi-circular
cluster in Figure 4a. In order to accurately extract various types of spatial outliers and clusters from
STE, a strategy of multi-constrained Delaunay triangulation, which is employed to remove the above
three kinds of long edges in hierarchy, is proposed. This is described in detail below.
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where Mean(RVol) and Std(RVol) represent the average value and the standard of the set RVol, 
respectively. For a smaller sub-graph, the term on the right-hand side of the symbol “≤” in Equation 
(10) will take a larger value and can therefore be used to identify spatial outliers. Figure 5a,b give the 
spatial outlier points and regions, respectively, while Figure 5c shows the spatial clusters. 

Figure 4. The process of imposing multi-constraints on Delaunay triangulation. (a) the initial Delaunay
triangulation; (b) the result of imposing constraints at the macro level; (c) the result of imposing
constraints at the middle level; (d) the result of imposing constraints at the micro level.

5.1.1. Identification and Removal of I-Long Edges

I-long edges: Given an STE, the corresponding Delaunay triangulation can be built where the
I-long edges, denoted as Long_EdgesI(DT), are defined as:

Long_EdgesI (DT) =
{

Ei

∣∣∣∣|Ei| ≥ Mean (DT) +
Mean (DT)
|Ei|

∗ Std (DT)
}

, Ei ∈ DT (5)

where DT denotes the Delaunay triangulation while Ei is any edge in DT with the length of
|Ei|. Mean(DT) and Std(DT) denote the average length of edges in DT and the corresponding
standard, respectively.



ISPRS Int. J. Geo-Inf. 2016, 5, 193 10 of 29

Here, Mean(DT)
|Ei |

is an adjusting coefficient that is inversely proportional to the length of
edges. Mean(DT) and Std(DT) are both constants, so a longer edge will correspond to a smaller
Mean (DT) + Mean(DT)

|Ei |
∗ Std (DT). As a result, the coefficient Mean(DT)

|Ei |
is sufficient to identify I-long

edges. By removing all I-long edges, a series of sub-graphs for the remaining edges can be obtained,
i.e., G(1)

1, G(1)
2, G(1)

3 in Figure 4b. In these sub-graphs the global spatial outliers have been separated
from other patterns. II-long edges and III-long edges are further identified below in order to isolate other
spatial patterns.

5.1.2. Identification and Removal of II-Long Edges

II-long edges: For any stei in sub-graph G(1)
k, there are a set of local edges LEi connecting stei with

other events. The average length of these local edges and the corresponding standard are denoted as
Mean(LEi) and Std(LEi), respectively. Further, those II-long edges, denoted as Long_EdgesII(G(1)

k), are
defined as

Long_EdgesII(G(1)
k) =

{
Local_Edge(j)

∣∣∣|Local_Edge(j)| ≥ Mean (LEi) +
Mean(LEi)
|Local_Edge(j)| ∗ Std

(
G(1)

k

)}

where Local_Edge(j) ∈ LEi and Std(G(1)
k) =

|G(1)
k |

∑
i=1

Std(LEi)∣∣G(1)
k
∣∣ (6)

where Std(G(1)
k) represents the average standard of LEi in G(1)

k. Similarly, Mean(LEi)
|Local_Edge(j)| is also an

adjusting coefficient to sufficiently identify II-long edges.
After removing all II-long edges in each G(1)

k, a new series of sub-graphs can be obtained, i.e., G(2)
1,

G(2)
2, . . . , G(2)

6 in Figure 4c. Those local spatial outliers are further separated. However, some relatively
long edges remain in the magnified region in Figure 4c, so the III-long edges that lead the inner spatial
outlier region cannot be further divided. These III-long edges need to be identified and dealt with.

5.1.3. Identification and Removal of III-Long Edges

Figure 4c shows that III-long edges are usually located in locally extremely uneven regions, which
must therefore be identified first. This problem can be translated into finding those events whose local
edges have an extremely large length standard.

Local extremely uneven regions: For any stei in G(2)
k, all events connected with stei by local

edges LEi of stei are denoted as Constei. For local edges LEj of events in Constei, the average and standard
value of all Std(LEj) are denoted as MeanStd(Constei) and StdStd(Constei), respectively, where

MeanStd(Constei ) =

|Constei |
∑

j=1
Std(LEj)

|Constei |
and StdStd (Constei ) =

√√√√√√
|Constei |

∑
j=1

Std(LEj)

|Constei | − 1
(7)

Then any locally extremely uneven regions LEUR(G(2)
k) can be defined as:

LEUR(G(2)
k) =

{
stei |Std(LEi) ≥ MeanStd(Constei ) + 2

MeanStd(Constei )

Std(LEi)
∗ StdStd(G(2)

k)

}
, stei ∈ G(2)

k

where StdStd(G(2)
k) =

|G(2)
k |

∑
i=1

StdStd (Constei )∣∣G(2)
k
∣∣ (8)
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III-long edges: For each G(2)
k, those III-long edges, denoted as Long_EdgesIII(G(2)

k) , are defined as:

Long_EdgesIII(G(2)
k) =

{
Local_Edge(j)

∣∣∣|Local_Edge(j)| ≥ Mean (LEi) + 2 Mean(LEi)
|Local_Edge(j)| ∗ Std

(
G(1)

k

)}
where Local_Edge(j) ∈ LEi and LEi ∈ LEUR

(
G(2)

k

)
(9)

Equation (9) shows that III-long edges must be located in LEUR(G(2)
k) and their lengths need

to be larger than an indicator that is similar to the one defining II-long edges. Finally, all types of
spatial patterns, i.e., G(3)

1, G(3)
2, . . . , G(3)

7 in Figure 4d, are separated after removing III-long edges.
To determine which types of spatial patterns these sub-graphs are, in the following an indicator will be
defined that considers the volumes of these sub-graphs.

It should be pointed out that the previous multi-constraint Delaunay triangulation is mainly
designed to detect various types of spatial clusters with different shapes and densities [25,26].
The proposed multi-constraint Delaunay triangulation in this study can give a more detailed analysis
of the characteristics of edges from different levels, by which various spatial clusters and outliers can be
simultaneously detected. For example, III-long edges in Figure 4c are usually located in locally extremely
uneven regions, the proposed approach in this paper is able to identify these uneven regions and then
extract and delete the hidden III-long edges. This is the main difference from the multi-constrained
Delaunay triangulation used before.

5.1.4. Determination of Spatial Patterns

Spatial outliers usually contain very few stei and so are defined as those relatively small sub-graphs
after the elimination of long edges in the Delaunay triangulation [29]. In addition, those aggregated
structures except spatial outliers are defined as spatial clusters in this study. Therefore, following the
example of identification of long edges in Sections 5.1.1–5.1.3, the volume of each connected sub-graph
will be used to define an indicator for the identification of spatial outliers and clusters.

Spatial clusters and spatial outliers: For each sub-graph G(3)
k, the volume of G(3)

k, denoted as
Vol(G(3)

k) is defined as the number of events in G(3)
k. The mean volume of all the sub-graphs will be

employed to separate those small sub-graphs, so amounts of extremely small sub-graphs (with the
volume of 1 for example) may seriously obstruct the determination of other relatively small sub-graphs.
Therefore, the representative members rvoli are selected as those volumes that are not equal to each
other and gathered together to form a new set RVol. For example, if RVol = {1, 1, 1, 5, 5, 35, 40, 45, 55},
this new set RVol can be obtained and expressed as Rvol = {1, 5, 35, 40, 45, 55}. Then, spatial clusters SC
and spatial outliers SA are respectively defined as:

SC =

{
G(3)

k

∣∣∣∣∣Vol(G(3)
k) > Mean (RVol)− Vol(G(3)

k)

Mean (RVol)
∗ Std (RVol)

}

SO =

{
G(3)

k

∣∣∣∣∣Vol(G(3)
k) ≤ Mean (RVol)− Vol(G(3)

k)

Mean (RVol)
∗ Std (RVol)

}
(10)

where Mean(RVol) and Std(RVol) represent the average value and the standard of the set RVol,
respectively. For a smaller sub-graph, the term on the right-hand side of the symbol “≤” in
Equation (10) will take a larger value and can therefore be used to identify spatial outliers. Figure 5a,b
give the spatial outlier points and regions, respectively, while Figure 5c shows the spatial clusters.
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by which the ultimate spatial distribution patterns are formed, i.e., the evolving spatio-temporal 
patterns. In this section, these will be discovered based on spatio-temporal clustering using the 
following procedures. 

Spatial neighborhoods of STE: Given the spatial patterns obtained from STE, each pattern is a 
graph made up of a series of spatial Twitter events and the remaining edges in the Delaunay 
triangulation. For any stei, all other events stej connected with stei form spatial neighborhoods of stei, 
denoted as SNδ(stei), where δ is a threshold representing the number of edges on the shortest path 
between stei and stej. Given a δ, SNδ(stei) contains all the spatial Twitter events connected with stei by 
less than or equivalent to δ edges on the shortest path. For example, Figure 6a shows the spatial 
patterns obtained in Section 5.1. In the figure, ste1 is connected with ste2, ste3, …, ste5 directly, so ste2, 
ste3, …, ste5 form SN1(stei). And ste6, …, ste13  all belong to SN2(stei). 

Temporal expansion of STE: To determine the time stamp at which each spatial Twitter event 
occurred, a temporal expansion is performed on STE. Specifically, after the temporal expansion, each 
member stei in STE has m more attributes IsOccur_Tt, where m is the number of time stamps in STTE, 

Figure 5. The process of identifying spatial clusters and spatial outliers. (a) spatial outlier points;
(b) spatial outlier regions; (c) spatial outlier clusters.

5.2. Discovery of Evolving Spatio-Temporal Patterns

The spatio-temporal distribution patterns for the given time period reflect the evolving process
by which the ultimate spatial distribution patterns are formed, i.e., the evolving spatio-temporal
patterns. In this section, these will be discovered based on spatio-temporal clustering using the
following procedures.

Spatial neighborhoods of STE: Given the spatial patterns obtained from STE, each pattern is
a graph made up of a series of spatial Twitter events and the remaining edges in the Delaunay
triangulation. For any stei, all other events stej connected with stei form spatial neighborhoods of stei,
denoted as SNδ(stei), where δ is a threshold representing the number of edges on the shortest path
between stei and stej. Given a δ, SNδ(stei) contains all the spatial Twitter events connected with stei
by less than or equivalent to δ edges on the shortest path. For example, Figure 6a shows the spatial
patterns obtained in Section 5.1. In the figure, ste1 is connected with ste2, ste3, . . . , ste5 directly, so ste2,
ste3, . . . , ste5 form SN1(stei). And ste6, . . . , ste13 all belong to SN2(stei).
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TNε(sttei). Here, ε is a threshold that determines the range of that temporal neighborhood. 

Spatio-temporal neighborhoods of STTE: Given any sttei and a TWε, the spatio-temporal 
neighborhoods of sttei, denoted as STNδ,ε(sttei), are derived from the following: 

(i) all spatio-temporal Twitter events belonging to SNδ(sttei); 
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Figure 6. The construction of spatial proximity relationships. (a) spatial Twitter events covering the
whole time period; (b–d) spatial Twitter events at T = 5, T = 6 and T = 7, respectively.

Temporal expansion of STE: To determine the time stamp at which each spatial Twitter event
occurred, a temporal expansion is performed on STE. Specifically, after the temporal expansion, each
member stei in STE has m more attributes IsOccur_Tt, where m is the number of time stamps in STTE,
that indicate whether a spatial Twitter event occurred at a specific time stamp; if a spatio-temporal
Twitter event occurred at T = t at stei, then the attribute value of IsOccur_Tt for stei, denoted as
stei·IsOccur_Tt, equals 1 and if not it is 0. For example, Figure 6b–d show the distribution of
spatio-temporal Twitter events at T = 5, 6 and 7, respectively. For the stei in Figure 6a, it can be
obtained that stei·IsOccur_T5 = 1, stei·IsOccur_T6 = 1 and stei·IsOccur_T7 = 0.

Spatial neighborhoods of STTE: Given STTE and STE, for any sttei located at stei’ at time t,
if there are spatial Twitter events in SNδ(stei’) with IsOccur_Tt = 1, then those spatio-temporal Twitter
events form spatial neighborhoods of sttei, denoted as SNδ(sttei). Figure 6b–d thus show the spatial
neighborhoods of STTE at T = 5, 6 and 7, respectively. Here, we assume δ = 1 and two spatio-temporal
Twitter events connected by an edge are in the same spatial neighborhood as each other.

Temporal neighborhoods of STTE: Given any sttei located at stei’ at time t and in a time window
TWε = [t-ε, t-ε+1, . . . , t-1, t+1, . . . , t+ε-1, t+ε], other spatio-temporal Twitter events that are also
occurring at stei’ at time twi (twi∈TWε) are members of the same temporal neighborhood as sttei,
denoted as TNε(sttei). Here, ε is a threshold that determines the range of that temporal neighborhood.

Spatio-temporal neighborhoods of STTE: Given any sttei and a TWε, the spatio-temporal
neighborhoods of sttei, denoted as STNδ,ε(sttei), are derived from the following:

(i) all spatio-temporal Twitter events belonging to SNδ(sttei);
(ii) all spatio-temporal Twitter events belonging to TNε(sttei); and

(iii) all spatio-temporal Twitter events corresponding to spatial Twitter events in SNδ(stei’) with
IsOccur_Ttwi(twi∈TWε)=1, where stei’ is the spatial Twitter event of sttei.
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Figure 7a shows the spatio-temporal Twitter events occurring at T = 5–7; the regions surrounded
by red circles are produced by the amplification process. Given TW1 = [t − 1, t + 1], the red, blue and
green points represent the above three treatments of STN1,1(sttei), respectively.
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distribution patterns. Figure 8 shows the discovered evolving spatio-temporal patterns, where STOP, 
STOR and STC are shown in Figure 8a,b, respectively, and Figure 8c exhibits the spatial distribution 
patterns of STE. This suggest several interesting conclusions that can be drawn. For example, in 
Figure 8c SO4, located in the lower right corner, belongs to a spatial outlier region but is derived from 
an STC, i.e., the spatio-temporal cluster represented by green squares in Figure 8b. In addition, the 
big spatial cluster SC1 incorporates both STC and STO. 

Figure 7. The construction of spatial proximity relationships. (a) spatio-temporal Twitter events from
T = 5 to T = 7; (b) spatio-temporal connecting graphs.

Spatio-temporal connected graphs of STTE: For each sttei in STTE, a series of edges can
be drawn to connect sttei and events in STNδ,ε(sttei). A graph can be constructed of all the
spatio-temporal Twitter events and these edges. All the connected sub-graphs are considered as
spatio-temporal connected graphs of STTE, denoted as STCG = {stcg1, stcg2, . . . , stcgn}. Figure 7b
shows the spatio-temporal connected graphs; stcgi, surrounded by the red ellipse, is an example of a
spatio-temporal connected graph.

Evolving spatio-temporal patterns: Given all stcgi of STTE and the volume of each stcgi,
spatio-temporal clusters (STC), spatio-temporal outlier points (STOP) and spatio-temporal outlier
regions (STOR) can be detected using the identification indicator of each of the above spatial
patterns. Then, all STC, STOP and STOR consist of evolving spatio-temporal patterns (STEP) of
STTE. In other words, STEP describe what kinds of spatio-temporal patterns evolve into each of
the spatial distribution patterns. Figure 8 shows the discovered evolving spatio-temporal patterns,
where STOP, STOR and STC are shown in Figure 8a,b, respectively, and Figure 8c exhibits the
spatial distribution patterns of STE. This suggest several interesting conclusions that can be drawn.
For example, in Figure 8c SO4, located in the lower right corner, belongs to a spatial outlier region but
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is derived from an STC, i.e., the spatio-temporal cluster represented by green squares in Figure 8b.
In addition, the big spatial cluster SC1 incorporates both STC and STO.
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Based on the related definitions introduced in Sections 5.1 and 5.2, the proposed algorithm for 
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(ii) Identify and remove inconsistent long edges, i.e., I-long edges, II-long edges and III-long edges, from 
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5.3. The Evolving_Pattern_Discovery Algorithm

Based on the related definitions introduced in Sections 5.1 and 5.2, the proposed algorithm for
discovering evolving spatio-temporal patterns from Twitter events can be described as follows:

Input: Spatio-temporal Twitter events STTE, projected spatial Twitter events STE, threshold δ and ε

Output: Evolving spatio-temporal patterns
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Step I Spatial distribution pattern detection from STE:

(i) Construct the Delaunay triangulation for STE to obtain the initial spatial proximity graph;
(ii) Identify and remove inconsistent long edges, i.e., I-long edges, II-long edges and III-long edges,

from the Delaunay triangulation;
(iii) Extract connected sub-graphs and identify spatial clusters and outliers based on the volume of

each connected sub-graph.

Step II Discovery of evolving spatio-temporal patterns from STTE:

(i) Determine the spatial neighborhoods of each spatial Twitter event and the spatial neighborhoods
of each spatio-temporal Twitter event based on δ;

(ii) Construct time windows based on ε and determine the temporal neighborhoods of each
spatio-temporal Twitter event;

(iii) Determine the spatio-temporal neighborhoods of each spatio-temporal Twitter event; and
(iv) Extract spatio-temporal connected graphs based on the spatio-temporal proximity relationships

and identify spatio-temporal clusters and outliers based on the volume of each spatio-temporal
connected graph.

In this algorithm, constructing Delaunay triangulation requires O(NlogN), where N is the number
of spatial Twitter events. Removing I-long edges and updating the graph require about O(N1 + N),
where N1 is the number of edges in the Delaunay triangulation. Similarly, the time complexity of
removing II-long edges and updating the graph are about O(N2 + N), where N2 is the number of the
remaining edges after removing I-long edges. The next step, which involves finding extremely uneven
regions, removing III-long edges and updating the graph again, require about O(N3 + 2N), where N3 is
the number of edges located in the extremely uneven regions. Finally, determining the spatio-temporal
neighborhoods of spatio-temporal Twitter events and clustering the spatio-temporal connected graphs
require about O(N’), where N’ is the number of spatio-temporal Twitter events.

6. Experimental Evaluation and Analysis by Visualization

This section evaluates the effectiveness and practicality of the new framework proposed here
by testing it experimentally on a real life dataset. In Section 6.1, the dataset and labels utilized in the
experiments are described in detail, after which the experimental analysis is presented in Section 6.2.
Finally, Section 6.3 examines the results of the analysis of evolving spatio-temporal patterns.

6.1. Dataset and Labels

The Twitter dataset was purchased from www.datasift.com after a processing of data reduction.
It consisted of 10% of all the tweets sent from 21 June 2012 to 31 May 2013 in 10 countries of Latin
America and covered the target domain ‘civil unrest’. The tweets from 21 June 2012 to 1 September 2012
in one country, Mexico, was selected to create the case study. It must be noticed that the errors existing
in the Twitter data will have an influence on the detection results, so those tweets with significant
errors, those published in the ocean for example, have been deleted before performing the experiments.
This case study provides an appropriate experimental test for the validation of the framework because
ground truth data is available for this scenario. Here the ground truth consists of a group of significant
events provided by a Gold Standard Report (GSR) provided by http://www.mitre.org/. Specifically,
among the top 100 newspapers in Latin America provided by International Media and Newspapers,
the top 3 ones in Mexico, i.e., La Jornada, Reforma and Milenio, were selected to collect news related
to ‘civil unrest’ with the input from both the most influential international news outlets and subject
matter experts. Events in the news reported by the above two ways would be defined as conflict events.
Authoritative news outlets and experts guarantee that the events from GSR are reliable.

For the seed query, 10 tweets related to civil unrest were chosen by users based on the guidance of
domain experts to initiate the process [13]. All terms in the 10 tweets were ranked in descending order

www.datasift.com
http://www.mitre.org/
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based on their corresponding DFIDF values [24]. The top 5 terms were selected as the seed terms and
included both ‘protest’ and ‘march’. Based on these 5 seed terms, a dynamic query expansion was
performed to extract spatio-temporal Twitter events and projected spatial Twitter events. Significant
events from the GSR were also projected into the spatio-temporal cube based on their spatial and time
tags. Figure 9a,b show the spatio-temporal distribution and spatial projection of both the extracted
domain related Twitter events (shown by black points) and the significant events (shown by red
triangles) provided by the GSR, respectively.
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distribution viewed from two different perspectives; (b) the corresponding STE obtained by spatial
projection of the spatio-temporal Twitter events.

6.2. Experimental Comparisons

In a previous study we demonstrated that dynamic query expansion is an effective tool for
extracting domain related Twitter events [13]. Therefore, given the extracted domain related
Twitter events, two spatio-temporal point events clustering methods, namely ST-DBSCAN [19] and
STSNN [15], are utilized here for comparison. In all experimental results, the symbol “×” represent
the spatial and spatio-temporal outlier points. For spatial/spatio-temporal clusters and outlier regions,
they are represented by symbols with different shapes and colors.
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6.2.1. The Results Obtained by the New Method

Figure 10 shows the spatial distribution patterns for STE produced by our new method, where
Figure 10a depicts the spatial clusters and Figure 10b both the spatial outlier points and regions.
Figure 10a reveals that 8 spatial clusters with different shapes and densities are obtained and that these
can be further divided into three main regions, R1, R2 and R3. R1 and R3 are composed of SC5 and
SC7, respectively, while R2 covers all the remaining 6 clusters. By comparing these results with the
significant events reported in the GSR, these events are mainly distributed in R2, especially in SC1.
The spatial outlier points and regions in Figure 10b mainly distribute in the area surrounding R2 and
in northern Mexico. One can see that parts of spatial outliers cover all the remaining significant events
except those covered by spatial clusters. This indicates that spatial outliers are not just useless noise
but can indicate important events as well as spatial clusters.
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Figure 10. The spatial distribution patterns for STE. (a) spatial clusters; (b) spatial outliers. SOP and
SOR represent spatial outlier points and regions respectively.

Based on these spatial distribution patterns, the evolving spatio-temporal patterns can be
discovered after setting the thresholds δ and ε. To observe how the results vary for different parameters,
δ and ε are assigned values of 1, 2 and 3 to generate a total of 9 pairs of parameters. Figure 11 illustrates
all the evolving spatio-temporal patterns for each pair of parameters, where STOP, STOR and STC
are shown from left to right, respectively. The figure shows that as δ and ε increase, STOP diminishes
while both STOR and STC increase their spatio-temporal ranges. When δ and ε are set as infinity, the
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spatio-temporal Twitter events whose spatial projections belong to the same spatial distribution pattern
are clustered together. Note that because STOP, STOR and STC evolve into their corresponding
spatial distribution patterns, each STOP, STOR or STC contain only those spatio-temporal Twitter
events located in the same spatial distribution pattern. The proposed method also extracts those
spatio-temporal clusters (e.g., those regions signified by ellipses in Figure 11) that form spatial outlier
regions. The most significant characteristic of this type of spatio-temporal cluster is that it locally
aggregates in the spatial dimension and is continuous in the time dimension.ISPRS Int. J. Geo-Inf. 2016, 5, 193 19 of 29 
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δ = 3, ε = 2; (i) δ = 3, ε = 3. 

6.2.2. The Results Obtained by ST-DBSCAN 

For ST-DBSCAN, the threshold Eps is set as 70 km, 85 km and 100 km, in turn, and MinPts is set 
as 5, 10 and 15. Repeated experiments revealed that the clustering results are mainly affected by Eps 
and MinPts, so ΔT is set at 2 days throughout. The results for the 9 sets of parameters are shown in 
Figure 12, clearly revealing that a larger Eps and a smaller MinPts correspond to larger spatio-
temporal clusters. In Figure 12a, two spatio-temporal regions are represented by two black ellipses, 
labelled STR1 and STR2. As Eps increases and MinPts diminishes, the spatio-temporal cluster in STR1 
expands significantly while STR2 is formed by a series of small clusters at all times. ST-DBSCAN only 
identifies the dense clusters in STR1 and cannot discover the clusters with small spatial ranges but 

Figure 11. The evolving spatio-temporal patterns of STTE discovered by the proposed method. (a) δ = 1,
ε = 1; (b) δ = 1, ε = 2; (c) δ = 1, ε = 3; (d) δ = 2, ε = 1; (e) δ = 2, ε = 2; (f) δ = 2, ε = 3; (g) δ = 3, ε = 1; (h) δ = 3,
ε = 2; (i) δ = 3, ε = 3.

6.2.2. The Results Obtained by ST-DBSCAN

For ST-DBSCAN, the threshold Eps is set as 70 km, 85 km and 100 km, in turn, and MinPts is set
as 5, 10 and 15. Repeated experiments revealed that the clustering results are mainly affected by Eps
and MinPts, so ∆T is set at 2 days throughout. The results for the 9 sets of parameters are shown in
Figure 12, clearly revealing that a larger Eps and a smaller MinPts correspond to larger spatio-temporal
clusters. In Figure 12a, two spatio-temporal regions are represented by two black ellipses, labelled
STR1 and STR2. As Eps increases and MinPts diminishes, the spatio-temporal cluster in STR1 expands
significantly while STR2 is formed by a series of small clusters at all times. ST-DBSCAN only identifies
the dense clusters in STR1 and cannot discover the clusters with small spatial ranges but large temporal
ranges such as the ones in STR2. However, when Eps is 100 km and MinPts is 5 the spatio-temporal
cluster in STR1 contains spatio-temporal Twitter events located in different spatial distribution patterns,
as shown in Figure 12c.
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kT and MinPts are both set at 0.5k. The threshold ΔT is again set as 2 days. The clustering results for 
each group of parameters are shown in Figure 13. Here, only a number of discrete small clusters are 
obtained for k = 6 and 10, but when k is set as 16, a single large spherical spatio-temporal cluster 
appears in STR1, as shown in Figure 13c. However, this approach suffers from the same problem as 
ST-DBSCAN, in that both ignore the final spatial distribution patterns of Twitter events. In addition, 
neither is able to accurately identify those clusters with small spatial ranges and large temporal 
ranges, such as the one in STR2. In the spatial dimension, this kind of cluster only represents spatial 
outliers located in a local region collectively, but when considering both space and time indicates that 
these events take place continuously over a long period of time. It therefore belongs to an important 
spatio-temporal cluster that is evolving into a spatial outlier region. For k = 20, more significant spatio-
temporal cluster are obtained, represented by STR3 and STR4 in Figure 13d. However, the cluster in 
STR2 of Figure 13c is still not completely detected, for example by STR5 in Figure 13d. 

Figure 12. The spatio-temporal clusters discovered by ST-DBSCAN. (a) Eps = 70, MinPts = 5, ∆T = 2;
(b) Eps = 85, MinPts = 5, ∆T = 2; (c) Eps = 100, MinPts = 5, ∆T = 2; (d) Eps = 70, MinPts = 10, ∆T = 2;
(e) Eps = 85, MinPts = 10, ∆T = 2; (f) Eps = 100, MinPts = 10, ∆T = 2; (g) Eps = 70, MinPts = 15, ∆T = 2;
(h) Eps = 85, MinPts = 15, ∆T = 2; (i) Eps = 100, MinPts = 15, ∆T = 2.

6.2.3. The Results Obtained by STSNN

For STSNN, the threshold k is set as 6, 10, 16 and 20 and based on a suggestion by Liu et al. (2014),
kT and MinPts are both set at 0.5k. The threshold ∆T is again set as 2 days. The clustering results
for each group of parameters are shown in Figure 13. Here, only a number of discrete small clusters
are obtained for k = 6 and 10, but when k is set as 16, a single large spherical spatio-temporal cluster
appears in STR1, as shown in Figure 13c. However, this approach suffers from the same problem as
ST-DBSCAN, in that both ignore the final spatial distribution patterns of Twitter events. In addition,
neither is able to accurately identify those clusters with small spatial ranges and large temporal
ranges, such as the one in STR2. In the spatial dimension, this kind of cluster only represents spatial
outliers located in a local region collectively, but when considering both space and time indicates that
these events take place continuously over a long period of time. It therefore belongs to an important
spatio-temporal cluster that is evolving into a spatial outlier region. For k = 20, more significant
spatio-temporal cluster are obtained, represented by STR3 and STR4 in Figure 13d. However, the
cluster in STR2 of Figure 13c is still not completely detected, for example by STR5 in Figure 13d.
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ΔT = 2. 
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The details of the spatio-temporal clusters that evolve into spatial clusters can be visualized, as 
shown in Figure 14. For each group of results, the spatio-temporal distribution, spatial locations and 
time spans (denoted by ‘↔’) of the spatio-temporal clusters are shown from left to right. The spatio-
temporal clusters with (δ, ε) = (1, 1 days) have small spatial and temporal ranges, as shown in Figure 
14a, and are mostly distributed in sporadic spatial clusters, with no significant spatio-temporal 
clusters forming (SC5 and SC8). In addition, these mainly take place on 2 sets of dates [2012.6.21, 
2012.7.28] and [2012.8.16, 2012.9.01], and over a short period of time. As δ increases and ε remains the 
same, the spatial ranges of these spatio-temporal clusters expand significantly, as can be seen by 
comparing Figure 14d,g with Figure 14a. Similarly, as ε increases and δ remains the same, each spatio-
temporal cluster extends over a longer time period, as shown in Figure 14b,c. δ can also affect the 
time periods of the spatio-temporal clusters. For example, in Figure 14d, for (δ, ε) = (2, 1 days) not 
only do the spatial ranges of STC1 in SC1 expand but the time period lengthens from [2012.6.21, 

Figure 13. The spatio-temporal clusters discovered by STSNN. (a) k = 6, kT = 3, MinPts = 3, ∆T = 2;
(b) k = 10, kT = 5, MinPts = 5, ∆T = 2; (c) k = 16, kT = 8, MinPts = 8, ∆T = 2; (d) k = 20, kT = 10, MinPts = 10,
∆T = 2.

6.3. Analysis of Evolving Spatio-Temporal Patterns

A specific analysis of the evolving spatio-temporal patterns reveals that for the results obtained
by the new method and reported in Section 6.2, the emphasis is on analyzing how the spatio-temporal
clusters that go on to form spatial clusters vary as the parameters change. Moreover, by focusing on a
single set of these results, a more detailed analysis of the evolution of spatio-temporal patterns can be
obtained and the results will be compared with the significant events identified from the GSR.

6.3.1. Analysis of Spatio-Temporal Clusters by Our Method

The details of the spatio-temporal clusters that evolve into spatial clusters can be visualized, as
shown in Figure 14. For each group of results, the spatio-temporal distribution, spatial locations
and time spans (denoted by ‘↔’) of the spatio-temporal clusters are shown from left to right.
The spatio-temporal clusters with (δ, ε) = (1, 1 days) have small spatial and temporal ranges, as shown in
Figure 14a, and are mostly distributed in sporadic spatial clusters, with no significant spatio-temporal
clusters forming (SC5 and SC8). In addition, these mainly take place on 2 sets of dates [2012.6.21,
2012.7.28] and [2012.8.16, 2012.9.01], and over a short period of time. As δ increases and ε remains
the same, the spatial ranges of these spatio-temporal clusters expand significantly, as can be seen
by comparing Figure 14d,g with Figure 14a. Similarly, as ε increases and δ remains the same, each
spatio-temporal cluster extends over a longer time period, as shown in Figure 14b,c. δ can also affect the



ISPRS Int. J. Geo-Inf. 2016, 5, 193 23 of 29

time periods of the spatio-temporal clusters. For example, in Figure 14d, for (δ, ε) = (2, 1 days) not only
do the spatial ranges of STC1 in SC1 expand but the time period lengthens from [2012.6.21, 2012.7.28]
to [2012.6.21, 2012.8.02]. At the same time, ε can also affect the spatial ranges of the spatio-temporal
clusters; when δ remains the same and ε increases to 2 or 3 days, Figure 14b,c reveal that a new
spatio-temporal cluster STC5 appears in SC5 that is not visible in Figure 14a.

ISPRS Int. J. Geo-Inf. 2016, 5, 193 23 of 29 

 

2012.7.28] to [2012.6.21, 2012.8.02]. At the same time, ε can also affect the spatial ranges of the spatio-
temporal clusters; when δ remains the same and ε increases to 2 or 3 days, Figure 14b,c reveal that a 
new spatio-temporal cluster STC5 appears in SC5 that is not visible in Figure 14a.  

For the obtained evolving spatio-temporal patterns, δ and ε can to a large extent reflect the 
outbreak degree of STTE. For example, spatio-temporal clusters with small δ and ε mean those STTE 
extend only a short distance in the spatial dimension and continuously in the time dimension, but as 
δ and ε increase, the new members that appear in addition to the original spatio-temporal clusters 
represent a process of wide and discontinuous extension. 

(a) 

(b) 

(c) 

(d) 

Figure 14. Cont.



ISPRS Int. J. Geo-Inf. 2016, 5, 193 24 of 29
ISPRS Int. J. Geo-Inf. 2016, 5, 193 24 of 29 

 

(e) 

(f) 

(g) 

(h) 

(i) 

Figure 14. The spatio-temporal clusters in STTE that form the spatial clusters in STE and their spatial 
locations and time periods. (a) δ = 1, ε = 1; (b) δ = 1, ε = 2; (c) δ = 1, ε = 3; (d) δ = 2, ε = 1; (e) δ = 2, ε = 2; 
(f) δ = 2, ε = 3; (g) δ = 3, ε = 1; (h) δ = 3, ε = 2; (i) δ = 3, ε = 3. 

Figure 14. The spatio-temporal clusters in STTE that form the spatial clusters in STE and their spatial
locations and time periods. (a) δ = 1, ε = 1; (b) δ = 1, ε = 2; (c) δ = 1, ε = 3; (d) δ = 2, ε = 1; (e) δ = 2, ε = 2;
(f) δ = 2, ε = 3; (g) δ = 3, ε = 1; (h) δ = 3, ε = 2; (i) δ = 3, ε = 3.
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For the obtained evolving spatio-temporal patterns, δ and ε can to a large extent reflect the
outbreak degree of STTE. For example, spatio-temporal clusters with small δ and ε mean those STTE
extend only a short distance in the spatial dimension and continuously in the time dimension, but as
δ and ε increase, the new members that appear in addition to the original spatio-temporal clusters
represent a process of wide and discontinuous extension.

Furthermore, a more detailed analysis illustrates how those spatio-temporal Twitter events evolve
into the final spatial distribution patterns by selecting (δ, ε) = (2, 2 days) because of their eclectic nature.
Figure 15a,c show the obtained spatio-temporal outlier points, regions and spatio-temporal clusters
from left to right, respectively, while the corresponding spatial locations and time periods are shown
in Figure 15b,d. The figures reveal 12 spatio-temporal clusters that are in the process of evolving into
spatial outliers, mainly located in central and northern Mexico. In Figure 15b, STC1-STC11 is present
from late-June to mid- and late-July, while STC12 first appears on 20 August 2012 and lasts until
1 September 2012. A number of spatio-temporal outlier points and regions also form spatial outliers.
Spatial clusters are generally evolved into by spatio-temporal clusters, as shown in Figure 15c,d,
and most occur between late June to late-July and early-August, with the final four lasting from
mid-August to about 31 August 2012. Spatio-temporal outlier points and regions are also implicated
in the evolution of spatial clusters, especially those clusters located in central Mexico.
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To compare our results with the significant events identified by the GSR, three typical cities 
where significant numbers of events were reported, namely Ciudad de México, Pachuca de Soto and 
Monterrey, are selected for further analysis. Figure 16a gives the spatial location of these three cities 
and the reported dates of significant events are listed in Figure 16b. By combining Figure 16a with 
Figure 15b,d, one can see that Ciudad de México and Pachuca de Soto both fall within the range of 
SC1. Ciudad de México also locates in both STC3 and STC15 while Pachuca de Soto locates in STC3. 
In addition, Monterrey is in STC1 and STC12, both of which form spatial outliers and are represented 
by ‘▲’ in Figure 15b. Figure 16b reveals that significant events were reported in Ciudad de México 
almost daily throughout July and August, while Pachuca de Soto is reported to have had significant 
events during mid-July, late-July and on 13 August 2012. STC3 and STC15 in Figure 15d exist during 
the periods [2012.6.21, 2012.8.15] and [2012.8.16, 2012.9.01], respectively. For Monterrey, significant 
events were reported during early-July, mid-July and late-August. STC1 and STC12 in Figure 16b 
exist during the periods [2012.6.21, 2012.8.02] and [2012.8.20, 2012.9.01], respectively. Therefore, the 
evolving spatio-temporal patterns obtained using the new method are highly consistent with the 
reported significant events. 
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Figure 15. The evolving spatio-temporal patterns discovered for STTE with the parameters δ = 2,
ε = 2. (a,b) the evolving spatio-temporal patterns of spatial outliers and their spatial locations and time
ranges; (c,d) the evolving spatio-temporal patterns of spatial clusters and their spatial locations and
time ranges.

6.3.2. Comparison with Labels

To compare our results with the significant events identified by the GSR, three typical cities
where significant numbers of events were reported, namely Ciudad de México, Pachuca de Soto and
Monterrey, are selected for further analysis. Figure 16a gives the spatial location of these three cities
and the reported dates of significant events are listed in Figure 16b. By combining Figure 16a with
Figure 15b,d, one can see that Ciudad de México and Pachuca de Soto both fall within the range of
SC1. Ciudad de México also locates in both STC3 and STC15 while Pachuca de Soto locates in STC3.
In addition, Monterrey is in STC1 and STC12, both of which form spatial outliers and are represented
by ‘’ in Figure 15b. Figure 16b reveals that significant events were reported in Ciudad de México
almost daily throughout July and August, while Pachuca de Soto is reported to have had significant
events during mid-July, late-July and on 13 August 2012. STC3 and STC15 in Figure 15d exist during
the periods [2012.6.21, 2012.8.15] and [2012.8.16, 2012.9.01], respectively. For Monterrey, significant
events were reported during early-July, mid-July and late-August. STC1 and STC12 in Figure 16b
exist during the periods [2012.6.21, 2012.8.02] and [2012.8.20, 2012.9.01], respectively. Therefore, the
evolving spatio-temporal patterns obtained using the new method are highly consistent with the
reported significant events.
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reporting dates of significant events for the three cities. 

7. Conclusions 
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7. Conclusions

This paper proposes a framework for discovering evolving domain related spatio-temporal
patterns from Twitter data. In our new framework, a dynamic query expansion is employed to extract
spatio-temporal Twitter events from the initial Twitter data for a given target domain, after which a
spatio-temporal approach that was specifically developed to discover the evolving spatio-temporal
patterns of the domain related Twitter events is applied. By utilizing Twitter datasets in Mexico for the
domain of civil unrest, an experimental comparison with ST-DBSCAN and STSNN was conducted to
illustrate the effectiveness of our proposed method and its practicality demonstrated by comparing
the results obtained by our method with the significant events identified in the Gold Standard Report.

In summary, the GSR only collected those dates when events reached their climax, but these
events were usually preceded by a period during which minor conflicts escalated and were followed
by the subsequent fallout from the event. The evolving spatio-temporal patterns for the Twitter events
can reflect the characteristic of reported events based on the reactions of the human observers and
participants. It would thus be helpful to refine this approach further in order to accurately predict the
evolution process for different types of events in each representative region (i.e., those spatial clusters
and outliers). However, to effectively perform the geographical analysis of Big Data, such as social
media data focused on in this study, the data quality cannot be ignored because it is very common that
there possibly contain numerous errors in the initial data. Also, the social media data is usually biased
from the population, so it is a challenge that the bias should be remedied to make the data to reflect
the spatio-temporal patterns correctly [30]. Therefore, our future work will focus on the analysis of
quality, incompletion and uncertainty for Twitter data and further modifying our proposed methods.
The modifiable temporal unit problem (MTUP) problem can impact the detection results, so how
to select optimal width of time window by considering the MTUP problem and specific practical
applications will also be investigated in the future [31,32]. As the variety of spatio-temporal Big Data,
there is a challenge of mining potential spatio-temporal patterns from multiple datasets across different
domains with different representations, distributions, scales, densities and so on [33,34]. In addition,
methods of geographical visualization should be developed to present the complicated analyzed
results to users vividly and comprehensibly.
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