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ABSTRACT
This paper presents an unsupervised method for systemat-
ically identifying anomalies in music datasets. The model
integrates categorical regression and robust estimation tech-
niques to infer anomalous scores in music clips. When applied
to a music genre recognition dataset, the new method is able
to detect corrupted, distorted, or mislabeled audio samples
based on commonly used features in music information re-
trieval. The evaluation results show that the algorithm
outperforms other anomaly detection methods and is capable
of finding problematic samples identified by human experts.
The proposed method introduces a preliminary framework
for anomaly detection in music data that can serve as a useful
tool to improve data integrity in the future.

Keywords
Anomaly detection; music information retrieval; unsupervised

1. INTRODUCTION
Music information retrieval (MIR) is an active research

area that integrates knowledge from a number of different
fields, including Electrical Engineering, Computer Science,
Psychology, and Musicology [7]. Many previous studies in
this area have adopted machine learning techniques and
applied them to audio data to build an intelligent system
that understands music. The evaluation of such systems,
as described by Schedl et al. [7], requires different datasets
and annotations depending on the tasks. However, since
the annotation process for music data is both complex and
subjective, the quality of the annotations created by human
experts can vary considerably from dataset to dataset, po-
tentially introducing errors into the system and adversely
affecting the performance. Finding a way to enhance the
correctness of these datasets is thus crucial for the further
improvement of MIR systems.

A typical example of the types of problems encountered
concerns the Music Genre Recognition (MGR). According
to Sturm [10], the most frequent used dataset in MGR is
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GTZAN [12], and many existing systems are evaluated based
on their performance in classifying GTZAN audio data into
its annotated genre class. However, Sturm points out that
this dataset actually contains a significant fraction of cor-
rupted files, repeated clips, and misclassified genre labels.
These are clearly undesirable for the proper training of an
MGR system.

In the data mining community, the corruptions listed above
are referred to as anomalies or outliers. Identifying these
outliers in a given dataset could be formulated as an anomaly
detection problem [3]. Although anomaly detection methods
are widely applied in various types of datasets, they are
rarely discussed in the MIR community.

In this paper, we propose an unsupervised approach to
address this problem and to detect the anomalies in music
datasets. A statistics-based model is developed to capture
the normal behavior of feature representations. Adding a
Student-t prior to the latent error variable in the model
maintains the robustness of the estimation of the normal
behavior and absorbs the anomalous effects into this latent
variable. The contributions of this paper are summarized as
follows:
• An unsupervised music anomaly detection ap-

proach: An unsupervised approach for detecting ano-
malies in music datasets is proposed. No anomaly label
is required.
• A categorical anomaly detection model: A re-

gression based categorical anomaly detection model
using a robust estimation strategy is also proposed.
Furthermore, an approach to approximate the analyti-
cally intractable inference is also developed.
• Benchmark experiments: Results on the bench-

mark dataset demonstrated that the proposed approach
outperforms existing state-of-the-art methods.

2. METHOD

2.1 Feature Extraction
In this paper, a set of baseline features based on Tzanetakis

and Cook’s features [12] is extracted for comparison with
prior work in this area. The extracted features can be divided
into three categories: spectral, temporal and rhythmic. All
of these features are extracted using a block-wise analysis
method. The process begins by down-mixing the audio signal
to a mono signal, that is then segmented into overlapping
blocks (block size: 23 ms, hop size: 11 ms). The temporal
features are computed from the time domain signal of each
block directly. The spectral features are computed from the
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magnitude spectrum of each block using a Hann window.
The rhythmic features are extracted from the beat histogram
of the entire time domain signal. The selected features are
as follows (for details of the implementations, please refer to
[5]):
• Spectral Features (d = 16): Spectral Centroid (SC),

Spectral Roll-off (SR), Spectral Flux (SF), 13 Mel Fre-
quency Cepstral Coefficients (MFCCs)
• Temporal Features (d = 1): Zero Crossing Rate

(ZCR)
• Rhythmic Features (d = 8): Period0 (P0), Ampli-

tude0 (A0), RatioPeriod1 (RP1), Amplitude1 (A1),
RatioPeriod2 (RP2), Amplitude2 (A2), RatioPeriod3
(RP3), Amplitude3 (A3).

Spectral and temporal features are aggregated in texture
windows of length 0.743 s following the standard procedure
as outlined in [12]. The mean and standard deviation of the
features within a window are then computed to create a new
feature vector. Finally, all the resulting feature vectors are
reaggregated with their mean and standard deviation, gener-
ating a single feature vector that represents each individual
recording in the dataset.

2.2 Model Design
Given N feature vectors X = {X1, ...,XN} and their cor-

responding categories Y = {Y1, ..., YN}, where each Yn ∈
{C1, C2, ..., CM}, we formulate the relation of Y and X based
on a linear assumption. The input-output relationship can
be represented as a regression model:

g(Y ) = Xβ + ε, (1)

where g is the categorical link function, β is the regression
coefficient matrix, and ε is a random variable that represents
the white-noise vector of each instance. The link function
g is a logit function that is paired with a category CM , i.e.,
ln (P (Yn = Cm)/P (Yn = CM )) = Xnβm + εnm. Since the
probabilities of the categories will sum to one, we can derive
the following modeling equations:

P (Yn = Cm) =
exp {Xnβm + εnm}

1 +
∑M−1
l=1 exp {Xnβl + εnl}

(2)

and

P (Yn = CM ) =
1

1 +
∑M−1
l=1 exp {Xnβl + εnl}

(3)

The coefficient vector β usually represents the decision bound-
ary in a classification problem. Here, β is used to capture
the normal behavior of the data. Following the convention,
we assume that each βm obeys a Gaussian distribution with
a predefined mean vector and a predefined covariance matrix
Σβ , i.e.,

βm ∼ N(βm|0,Σβ) (4)

In traditional regression applications, the error factor ε is
generally assumed to follow a Gaussian distribution. How-
ever, a Gaussian distribution lacks tolerance for anomalies
since the probability distribution is near zero at points far
away from the distribution mean. In the study of robust
statistics, it is suggested to assume that this random variable
follows a heavy-tailed distribution in order to improve the
capability of capturing anomalies [11].

In this work, we assume that the error is a zero-mean
Student-t random variable, which has been shown to be a

useful way to improve the robustness of the logistic regres-
sion model [6]. The probability density function is as the
following:

p(ε|σ2
ε , df) =

Γ( df+1
2

)

Γ( df
2

)
√
πdfσ2

‘ ε

(
1 +

ε2

dfσ2
ε

)1( df+1
2

)

(5)

where σ2 is the scaling parameter, and df is the number of
the degrees of freedom. We utilize the Student-t variable as
an ”error-buffer” here to absorb the error introduced by the
anomaly instances, thus allowing us to easily differentiate
between the anomalies and errors.

2.3 Approximate Inference
Since the response is a categorical variable, the inference

becomes intractable. We make a Bayesian assumption to the
model and use the variational-EM algorithm [1] to approxi-
mate the inference. We start from the joint distribution of
the model:

p(Y, β, ε) ∝ p(Y |β, ε)p(β)p(ε) (6)

Suppose there is a proposal distribution q(Y, ε, β) that
approximates p, s.t. q ' p. Based on the structure of
the model, we can factorize q into two parts, i.e., q(ε) and
q(β). The estimation of the variational variables is updated
by maximizing the optimal factors until the convergence
criterion is satisfied. For each individual update we apply
iterated re-weighted least squares (IRLS) to find the optimum.
Applying the Taylor expansion to the log expectations above,
we can obtain a quadratic form in ln q = − 1

2
νTQν + νT b,

where ν represent the target variable to update, and

b(ν) = ∇∇νq(ν)−∇νq(ν) (7)

Q(ν) = ∇∇νq(ν) (8)

In each iteration, we update the value of ν by

ν(new) = Q−1(ν(old))b(ν(old)) (9)

Thus, by iteratively updating β and ε, with estimating
the gradient and Hessian in each iteration, the process will
converge to a local optimum of these variables.

2.4 Anomaly Detection Process
The full process, shown in Algorithm 1, consists of feature

extraction and anomaly identification. It begins by taking
the music clips and extracting their features. The anomaly
identification process then takes the extracted feature vectors

Algorithm 1 Detection Process

Require: Dataset of music clips D
Ensure: The anomalous instances
1: set [Y,X] = extractFeatures(D)
2: set β∗ = β0, ε∗ = 0
3: while Not converge do
4: set β∗ = argmaxβ(p(β|X,Y, ε∗))
5: set ε∗ = argmaxε(p(ε|X,Y, β∗))
6: set L = ln(p(θ|X,Y, ε∗))
7: end while
8: set AnomalySet = φ
9: for all ε∗n in ε∗ do

10: if ε∗n > ErrorThreshold then
11: put n in AnomalySet
12: end if
13: end for
14: return AnomalySet
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Method P R F AUC

Linear Detection 0.59 0.55 0.57 0.91
Clustering 0.23 0.23 0.23 0.74
KNN 0.27 0.26 0.27 0.78
LOF 0.26 0.25 0.25 0.74

Table 1: Average Detection Rate for Injected Data

and the corresponding categories as the input, and returns a
set of indices of the anomalous instances as the output.

The process starts by taking the MGR dataset D and
performing a feature extraction to obtain the feature vector
X and its corresponding class labels Y . Next, the anomaly
detection method starts with initial values of the variables β0
and ε0. The process iteratively updates the model variables β
and ε using the approach introduced above (lines 3–7). After
the variables have converged, the error variable ε is checked to
identify anomalies (lines 8–13). As a reasonable assumption,
similar to the analysis of Gaussian distributions, instances
with ε greater than 3 times of the standard deviation are
labeled anomalies.

3. EXPERIMENT

3.1 Experimental Design
The experiments were conducted on the popular GTZAN

dataset [12]. This dataset consists of 10 music genres (blues,
classical, country, disco, hip-hop, jazz, metal, pop, reggae,
and rock), each with 100 audio tracks. All tracks consist of
a 30-second excerpt of complex mixtures of music.

For this study, two sets of experiments were conducted
to test the performance of the proposed method and three
other benchmark methods. In the first experiment, we used
a purified GTZAN dataset that excludes the conspicuous
misclassified and jitter music clips reported in [9]. An in-
jection process was performed by randomly choosing 5% of
the instances in each genre, and randomizing their genre
labels to create outliers. Sturm’s report identifies around
50 conspicuous files, which corresponds to about 5% of the
total number of files in the dataset. We generated 10 random
realizations of the dataset, and evaluated the measures with
the average for this 10-run batch. This experiment simulates
the best-case scenario, where the dataset is clean and all
genres are well separated in feature space. The results thus
serve as a sanity check for all the methods.

In the second experiment, we applied our method to the full
GTZAN dataset directly. The outliers identified were then
compared with the list reported in [9]. This experiment is
effectively a real-world scenario in which case the automated
anomaly detection methods are expected to find the outliers
identified by human experts. Two sets of features represent
the dataset, one is the feature set as described in Sect. 2 and
the other a minimal feature set using only 13 MFCCs, as
reported in the work of Hansen et al. [4].

3.2 Benchmark Methods
We compared the results obtained using our approach with

those of three unsupervised benchmark methods. Due to
the small number of true anomaly labels and their uneven
distributions across different genres, the application of a
supervised anomaly classifier was deemed not feasible and
thus excluded in this experiment.
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Figure 1: ROC curves on injected data

1. Clustering : an intuitive method for detecting misclas-
sified music clips is to group them into M clusters.
Ideally, all of the music clips in the same cluster should
belong to the same genre so the instances with dif-
ferent category indices than the majority are labeled
as anomalies. In this experiment, we used k-means
clustering with the centroids initialized using the mean
of each genre.

2. k-Nearest Neighbor (KNN): the KNN-based method
calculates the distance from each instance to its k-
nearest neighbor and marks those points with high
average distances to their neighbors as anomalies. In
our experiment, values for k between 1 and 20 were
tested and the value with the best result were chosen.
We set k = 10 in the injection set and k = 1 in the
expert-label set.

3. Local Outlier Factor (LOF): LOF [2] is one of the most
popular anomaly detection methods. Similar to the
KNN method, it calculates the local density of each
instance that can be estimated from the distance of
its k-nearest neighbors. This approach compares an
object’s local density to its neighbors’ and identifies
the objects with significant lower local densities as
anomalies. The value of k was chosen using the same
approach as for the KNN method. We set k = 15
in both the injection experiment and the expert-label
experiment.

3.3 Experimental Results
Our evaluation of the results obtained for the four methods

was based on four standard metrics: precision P , recall R,
F-measure F , and Area Under ROC Curve AUC. The first
set of experiments was conducted on the injected data set.
As shown in Table 1, the proposed method outperformed the
three benchmark methods on all of the metrics.

Figure 1 shows the ROC curves for injected data. In
the figure, LinearDetection refers to the proposed method,
which is based on a linear assumption. Since our method
has the best performance with respect to the AUC, the
anomaly scores given by our approach provides the most
useful information for ranking the significance of the detected
anomalies. The advantage of the proposed method is that
the regression model captures the input-output relationship
between the features and the genres, while the benchmark
methods rely solely on the distribution of features and may
thus fail to capture the actual pattern.

We also compared our feature set with a minimal feature
set containing only MFCCs, as used in [4]. As shown in
Table 2, the performance metric for all the methods dropped
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Method P R F AUC

Linear Detection 0.52 0.40 0.45 0.87
Clustering 0.08 0.07 0.07 0.61
KNN 0.12 0.11 0.12 0.68
LOF 0.13 0.13 0.13 0.70

Table 2: Average detection rate for injected data
with only MFCCs features

Method P R F AUC

Linear Detection 0.18 0.23 0.20 0.63
Clustering 0.08 0.07 0.07 0.41
KNN 0.10 0.09 0.10 0.50
LOF 0.10 0.09 0.10 0.51

Table 3: Detection rates for GTZAN data (Sturm’s
anomalies)

in this case. In particular, the performance of the Clustering
method wa significantly dropped. This observation suggests
that in MFCC feature space, the genres overlap substantially
and cannot be separated by clustering.

In the second set of experiments, the anomaly detection
process was applied to the full GTZAN dataset and aim to
detect the misclassified music clips reported by Sturm [9].
The results are shown in Table 3. Although our method
still outperformed the benchmark methods, the performance
decreased noticeably compared to the injection setup. Based
on the metrics utilized here, none of these methods are able
to detect anomalies with high accuracy. Comparing our
results with the anomalies reported in [9], we found that our
method is able to detect the jitter clips (reggae: No. 87), and
some of the obviously misclassified clips, including reggae:
No. 88, disco: No. 41, pop: No. 81, hip-hop: No. 31, all
of which achieved high anomaly score with our method.
Interestingly, we also found that neither our method nor
any of the benchmark methods could successfully detect
anomalies in the metal genre (metal : Nos. 46–57). These
music clips are in fact punk rock but are annotated as metal
in the GTZAN dataset. It can be observed that the extracted
features for these music clips are very similar to other metal
clips. This implies that the features used for this approach
are not able to sufficiently differentiate punk rock from metal.
One important task for future work is therefore to improve
the identification of representative features to allow for better
differentiation between similar genres.

It should also be pointed out that while people mostly
agree on the genre labels hip-hop and blues, they tend to
disagree on the category rock [8], demonstrating the inherent
ambiguity of many music genres. This trend can be observed
in Table 4, where the detection rates for metal and rock are
the lowest among all the genres. This is most likely due
to the inherent ambiguity in these genre categories, which
could result in inconsistent patterns in the feature space
and thus increase the difficulty of anomaly detection. All
of the methods failed to detect the alternative rock clips
reported by Sturm (metal : Nos. 96–99); the feature vectors
of these clips are generally similar to those of other metal
music clips. To the best of our understanding, these clips can
also be categorized as nu-metal, which is a sub-category of
metal music in the taxonomy of genre. This again highlights
the natural ambiguity involved in classifying music. One
potential solution is to develop a multi-class modeling method
to tolerate this ambiguity and suggest alternative classes that
might also be applicable to individual music clips.

Genre # Anomalies # Positives P R

Blues 0 1 N/A N/A
Classical 0 0 N/A N/A
Country 4 8 0.13 0.25
Disco 7 9 0.33 0.42
Hip-hop 2 6 0.17 0.50
Jazz 2 0 N/A 0.00
Metal 16 1 0.00 0.00
Pop 3 6 0.33 0.67
Reggae 7 10 0.30 0.43
Rock 2 15 0.00 0.00

Table 4: Detection rate on GTZAN data by genre

4. CONCLUSION
In this paper, we have presented an unsupervised approach

for automatic anomaly detection in music datasets. The pro-
posed approach incorporates a novel statistical model to
identify suspect files in existing music datasets with no train-
ing data required. The experimental results demonstrated
that our method outperformed other benchmark anomaly
detection approaches when applied to the GTZAN dataset.
In the future, more features will be investigated to find bet-
ter and meaningful representations for anomaly detection in
music datasets.
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J. Arenas-Garcia, J. Larsen, and S. Jensen. Learning
and clean-up in a large scale music database. In
European Signal Processing Conference (EUSIPCO),
pages 946–950, 2007.

[5] A. Lerch. An Introduction to Audio Content Analysis:
Applications in Signal Processing and Music
Informatics. John Wiley and Sons, 2012.

[6] C. Liu. Robit Regression: A Simple Robust Alternative
to Logistic and Probit Regression, pages 227–238. John
Wiley & Sons, Ltd, 2005.
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