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With the ever increasing volume of geo-referenced datasets, there is a real need for better statistical esti-
mation and prediction techniques for spatial analysis. Most existing approaches focus on predicting multi-
variate Gaussian spatial processes, but as the data may consist of non-Gaussian (or mixed type) variables,
this creates two challenges: (1) how to accurately capture the dependencies among different data types, both
Gaussian and non-Gaussian; and (2) how to efficiently predict multivariate non-Gaussian spatial processes.
In this article, we propose a generic approach for predicting multiple response variables of mixed types. The
proposed approach accurately captures cross-spatial dependencies among response variables and reduces
the computational burden by projecting the spatial process to a lower dimensional space with knot-based
techniques. Efficient approximations are provided to estimate posterior marginals of latent variables for the
predictive process, and extensive experimental evaluations based on both simulation and real-life datasets
are provided to demonstrate the effectiveness and efficiency of this new approach.
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1. INTRODUCTION

Increasing public sensitivity and concern regarding environmental issues have led to
huge amounts of spatial data being collected, and this volume continues to increase at
an even faster pace. As one of today’s major research issues, the prediction of multi-
variate spatial observations has attracted significant attention from many researchers,
particularly those working in areas such as biology [McBratney et al. 2005], epidemi-
ology [Kibria et al. 2002], geography [Gelfand et al. 2004], and economics [Chica-Olmo
2007]. For example, weather forecasting is an important area of investigation with
serious implications for many aspects of human life.

Spatial prediction is the process of estimating values of a target quantity at unvis-
ited locations, based on the observed measures at sampled ones. In the univariate case,
spatial prediction has been well studied for different data types, including continuous
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[Cressie 1991; Wackernagel 2003; Zhuo et al. 2011; Torgo and Ohashi 2011], discrete
[Oliveira 2000; Webster and Oliver 1990], and Poisson spatial processes [Wolpert and
Ickstadt 1997]. Recently, a number of methods have been proposed for processing large
univariate spatial datasets of different types, including fixed rank kriging [Cressie and
Johannesson 2008], the knot-based spatial process [Banerjee et al. 2008], and the inte-
grated nested Laplace approximation (INLA)-based predictive process [Rue et al. 2009].
In many cases, geo-referenced datasets are multivariate. Multivariate spatial analysis
refers to those situations wherein there is an explicit vector of responses at each spa-
tial location of interest and focuses on capturing potential relationships among spatial
locations and multiple responses. The prediction of multivariate spatial processes at
unsampled locations plays an important role when there are cross-spatial dependencies
between multiple response variables of interest and there is therefore a considerable
literature on the modeling and prediction of multivariate spatial processes [Cressie
1991; Ohashi and Torgo 2012]. Most related works focus on multivariate Gaussian pro-
cesses (GPs), the key component of which is the modeling of cross-covariance functions
between attributes at different spatial locations.

Multivariate spatial interpolation has attracted a great of research due to its use-
fulness in a wide range of applications, such as monitoring environmental pollution,
managing responses to natural disasters, and public health-related activities. Obser-
vations are often of mixed types, including numerical, nominal, and count, each of
which contains interesting information. In geological studies, it is often desirable to
predict related properties of different types, such as moisture content (numeric), gran-
ularity (count), and coloration (categorical) for pedological data [Chagneau et al. 2010].
These mixed type responses and cross-variable dependencies further complicate the
spatial inference process. The prediction of multivariate non-Gaussian (or mixed type)
data has been identified as one of the 10 most important challenges in data mining
for the next decade [Piatetsky-Shapiro et al. 2006]. Consider the example of weather
monitoring. Weather forecasts can benefit from the more accurate estimation of real-
time precipitation amounts, storm surges, and flood warnings for the protection of
life and property, but this requires predictive models that can extract all the critical
information simultaneously. The general objective here is to learn more about the rela-
tionships between response variables (flood warnings, chance of rain, and wind speed)
and predictor variables (location, elevation, season, and plant areas). This is a typi-
cal application of spatial prediction involving mixed type observations, which creates
multiple issues: Challenge 1) Modeling mixed type observations. What is the best way
to model non-Gaussian multivariate spatial data that is as analytically intractable as
Gaussian data in spatial prediction? For example, modeling the mixed-type response
variables involved in weather forecasting, including precipitation amounts (numeric),
flood warnings (binary: yes/no), and cloud levels (ordinal: mostly or partly cloudy).
Challenge 2) Capturing correlations among dependent variables. Multivariate spatial
analysis potentially involves two confounded dimensions of dependencies—between
different responses, and between different spatial locations. Among these multivariate
response types, there exist statistical relationships that need capturing. For example,
the effects of wind speed on cloud level, and the possibility of flooding caused by the
precipitation amounts. Such dependencies need integrating into the predictive model
to improve the final estimation. Challenge 3) Improving scalability and availability.
When training the predictive model, large amounts of weather data across multiple
locations are being collected and estimating the forecast model thus involves expensive
matrix decompositions whose computational complexity increases in cubic order with
the number of spatial locations, rendering the task infeasible for large spatial datasets.
Challenge 4) Analytically intractable posterior inferences. As an additional challenge,
the likelihood related to non-Gaussian observations yields a distribution that is

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 36, Publication date: March 2017.



Spatial Prediction for Multivariate Non-Gaussian Data 36:3

nonstandard and analytically intractable by nature. Therefore, approximate methods
are needed for the particular likelihood function of multivariate mixed-type responses.

Traditional spatial models often assume the outcomes follow normal distributions,
which is difficult to verify empirically and overly restrictive. Only a limited amount of
research has been proposed to support non-Gaussian multivariate spatial processes.
Markov Chain Monte Carlo (MCMC) methods [Schmidt and Rodriguez 2011] are pop-
ular ways for addressing problems that are analytically intractable [Bandyopadhyay
2005; Ridgeway and Madigan 2002; Li et al. 2008; Zhang and Sheng 2004; Boley
and Grosskreutz 2008]. However, it becomes prohibitively expensive for large spatial
datasets . To the best of our knowledge, there is no previous work that addresses all
the above challenging problems. This article proposes a flexible hierarchical Bayesian
framework that supports simultaneous modeling and prediction of mixed-type obser-
vations. A joint distribution for multivariate spatial responses is specified indirectly
through specific link functions and the complicated dependencies among them are
captured by the“cross-covariances,” which are easily parameterized. Efficient approxi-
mations are integrated to estimate the posterior marginals of latent variables. In order
to reduce the computational burden, we project the spatial process to a lower dimension
space by utilizing knot-based techniques [Banerjee et al. 2008]. Our generic approach
model can also be applied to several data mining problems, including spatial outlier
detection [Wu et al. 2009, 2010], spatial temporal outlier detection [Liu et al. 2011;
Wu et al. 2008], spatial-temporal scan [Mohammadi et al. 2009], and spatial anomaly
cluster identification [Neill and Moore 2004]. The major contributions of this work can
be summarized as follows.

—Constructing novel multivariate non-Gaussian hierarchical framework. The spatial
model is based on a hierarchical framework and designed to take account of mixed
type random variables. Specifically, the mixed-type attributes are mapped to latent
numerical random variables via corresponding link functions, such as the logit func-
tion for binary attributes and the log function for count attributes.

—Capturing dependencies among mixed-type responses. The dependency among mixed
type attributes is mapped to the relationship between their latent variables using a
conditional variance covariance matrix. This enables the complicated correlations to
be captured more easily by parameterizing them in an analytically tractable way.

—Modeling a multivariate non-Gaussian reduced-rank predictive process. The knot-
based technique is utilized to model the predictive process as a reduced-rank spatial
process, which projects the process realizations of the spatial model onto a lower
dimensional subspace. This projection significantly reduces the computational cost.

—Designing an enhanced statistical approximation. By integrating the link functions
into spatial references, the likelihood models involved are no longer analytically
tractable. Gaussian approximation and iterative Laplace approximation (LA) can
then be utilized to make approximations to the posterior marginal of latent variables
for the predictive processes.

—Conducting extensive experiments for performance evaluations. Theoretical analysis
and extensive experiments on both simulations and real datasets have been con-
ducted for this study. The results clearly demonstrated the superior performance of
the proposed hierarchical mixed model compared to existing state-of-the art compar-
ison approaches, with comparable prediction accuracy and computational efficiency.

The remainder of this article is organized as follows. Section 2 reviews related works.
Section 3 presents a generic multivariate non-Gaussian model that can not only model
mixed-type data (Challenge 1), but also capture correlations among them (Challenge 2).
This section also introduces the reduced rank spatial predictive process (Challenge 3).
Section 4 proposes an approximate inference for multivariate spatial prediction to
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solve the issue of analytical intractable inference (Challenge 4). Experiments on both
simulated and real datasets are presented in Section 5, and the article concludes with
a summary of the research in Section 6.

2. RELATED WORK

This section summarizes the current status of research achievements on spatial ref-
erences, including spatial multivariate prediction for numeric data, spatial temporal
multivariate prediction, and spatial multivariate prediction for mixed-Type Data.

Spatial Multivariate Analysis for Numeric Data. Most research works [Bailey and
Krzanowski 2000; Wang and Wall 2003] on multivariate spatial analysis have focused
on capturing potential relationships among spatial locations and multiple responses.
The book by Wackernagel [2003] and the review by Gelfand and Banerjee [2010] pro-
vide comprehensive surveys of a wide range of different spatial Gaussian multivariate
modeling and prediction techniques. For example, cokriging [Goovaerts 1997] exploits
the spatial dependencies within the variables as well as the cross-spatial dependen-
cies. Bailey and Krzanowski [2000] proposed two approaches that are concerned with
the identification of linear components and identifying factors. Wang and Wall [2003]
designed a generalized common spatial factor model in which the parameters are esti-
mated using the Bayesian method and MCMC techniques, and Ren and Banerjee [2013]
discussed how to capture associations among responses by reducing the dimensions of
both the length of the response vectors and the very large number of spatial locations.
Christensen and Amemiya [2001] developed a generalized shifted-factor model that al-
lows asymmetric spatial dependencies, and then they [Christensen and Amemiya 2002]
went on to propose a latent variable-based approach to fitting model and estimating
parameter. Bonilla et al. [2008] described multi-task learning based on a GP prior that
has inter-task dependencies. The model utilized a convariance function on multiple
features under the assumption of noise-free observations. Kanevski [2012] proposed a
generic non-linear multivariate modelling by using the best MTL (Multitask Learning)
group. The model was based on the criterion of nonlinear predictability of each depen-
dent variable by analyzing all possible models composed from the rest of the variables.
Finally, Minozzo and Ferracuti [2012] provided some valid constructions of stationary
stochastic processes that are capable of modeling multivariate skew-normal data.

Multivariate Spatial-Temporal Data Analysis. Various approaches have been pro-
posed for analyzing multivariate space-time data. Calder [2007] introduced a Bayesian
convolution model that provides a descriptive parametrization of the cross-covariance
structure of space-time processes and dimension reduction features. Zhu et al. [2005]
extended a multivariate space-only model to space–time data by utilizing an adjust-
ment of the Monte Carlo Expectation-Maximization algorithm. Reich and Fuentes
[2007] designed a new Bayesian multivariate spatial statistical framework that builds
on the stick breaking prior to handling sudden changed data in time or space. Choi
et al. [2009] introduced a Bayesian hierarchical framework wherein a linear model of
coregionalization was developed to account for spatial and temporal dependency for
each observation as well as the correlations among them. Grzebyk and Wackernagel
[1994] presented the Bilinear Model that is suitable for modeling a coregionalization
in space or along the time axis.

Spatial Multivariate Prediction for Mixed-Type Data. A number of related works
have focused on non-Gaussian multivariate domains. Wibrin et al. [2006] explored the
Bayesian Maximum Entropy (BME) approach in which both continuous and categori-
cal values are considered using a “cross-covariance” function. Schmidt and Rodriguez
[2011] proposed MCMC methods for modeling multivariate counts, while Chagneau
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et al. proposed a hierarchical Bayesian model for the modeling of Gaussian, count,
and ordinal variables, and designed MCMC methods using the Gibbs sampler with
Metropolis–Hastings (M-H) steps. Minozzo and Fruttini [2004] proposed a model based
on a generalized linear mixed multivariate framework. By integrating Monte Carlo
Expectation-Maximization, Minozzo and Ferrari [2013] designed another hierarchical
model in which non-Gaussian variables of different kinds can be processed simultane-
ously. However, most of these methods are unable to provide a flexible framework that
supports multivariate mixed-type data inferences simultaneously, including binomial,
count, nominal, ordinal, and numeric data types.

3. THEORETICAL BACKGROUND

This section introduces the exponential family, the framework for the knot-based spa-
tial process and the approximation Bayesian inference using INLA.

3.1. The Exponential Family

Let Y (s) be a response variable at the location s ∈ D ⊂ R2. It is assumed that Y (s)
follows an exponential family distribution with the probability density:

f (Y (s)|θ (s), τ ) = exp
(

Y (s)θ (s) − a(θ (s))
d(τ )

+ h(Y (s), τ )
)

, (1)

where θ (s) and τ are the model parameters. θ (s) is related to the mean of the distribution
that varies by location, and τ is a dispersion parameter related to the variance of the
distribution. The functions h(y(s), τ ), a(θ (s)), and d(τ ) are known. Y (s) has mean and
variance

E(Y (s)) := μ(s) = a′(θ (s)), (2)

Var(Y (s)) := σ (s)2 = a′′(θ (s))d(τ ), (3)

where a′(θ (s)) and a′′(θ (s)) are the first and second derivatives of a(θ (s)). Many popular
distributions belong to this family, including the Gaussian, exponential, Binomial,
Poisson, gamma, Inverse Gaussian, Dirichlet, and Chi-Squared Beta distributions.

For example, the Binomial distribution B(n(s), π (s)) has the density

p(Y (s)) =
(

n(s)
Y (s)

)
π (s)Y (s)(1 − π (s))n(s)−Y (s). (4)

Taking log, we can rewrite the density function as

log p(Y (s)) = Y (s) log
(

π (s)
1 − π (s)

)
+ n(s) log(1 − π (s)) + log

(
n(s)
Y (s)

)
. (5)

This shows that θ (s) = log( π(s)
1−π(s) ), a(θ (s)) = n(s) log(1 + exp θ (s)), and h(Y (s), τ ) =

log( n(s)
Y (s) ), where the second term in the density function is rewritten as log(1 − π (s)) =

− log(1 + exp θ (s)).

3.2. Knot-Based Spatial Process Model

Estimation and prediction in spatial process models often involve a high computational
complexity, which is cubic order with the number of spatial locations. To facilitate the
spatial process, Banerjee et al. [2008] proposed a knot-based spatial predictive model
to reduce the computational cost through lower dimensional process observations.

Let us define a numerical random field Y (s) on a domain D ⊆ R2, and let
Y = (Y (s1), . . . , Y (sn))′ be the n × 1 vector of observed responses, each of which is

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 36, Publication date: March 2017.



36:6 X. Liu et al.

accompanied by a p × 1 vector of spatially referenced predictors, x(s). The associated
spatial regression model can be represented as

Y (s) = xT (s)β + ω(s) + ε(s). (6)

The spatial process ω(s) captures spatial correlations and is a GP with zero mean
and a covariance function C(s, s′; θ ). Spatial prediction requires matrix factorizations
involving the dense n×ncovariance matrix that may become prohibitively expensive for
a large n. Instead, knot-based models consider a fixed set of “knots” S∗ = (s∗

1, . . . , s∗
n∗ )

with n∗ � n. The GP ω∗(s) yields an n∗-vector of realizations over the knots, that
is, ω∗ = (ω(s∗

1), . . . , ω(s∗
n∗ ))′, which follows a GP{0, C(s∗

i , s∗
j ; θ )}. Spatial estimation at a

generic site s is operated through

ω̃(s) = E{ω(s)|ω∗} = cT (s; θ )C∗−1(θ )ω∗, (7)

where c(s; θ ) = [C(s, s∗
j ; θ )n∗

j=1]. As shown in Equation (2), the predictive process w̃(s)
is derived from the parent process ω(s). The realizations of ω̃(s) are referred to as the
predictions that are conditional on a realization of ω∗(s). Replacing ω(s) in model (6)
with ω̃(s), we obtain the predictive process model

Y (s) = xT (s)β + ω̃(s) + ε(s), (8)

where ω̃(s) is defined as a spatially varying linear transformation of ω∗. The dimension
reduction is reduced from the original n to n∗; thus, the spatial interpolation process
involves only n∗ × n∗ matrices.

It is important to select an appropriate number of knots as well as their spatial
locations. This is related to the problem of spatial design. There are two popular knots
selection strategies. One is to draw a uniform grid to cover the study region and each
grid is considered as a knot. Another is to place knots such that each covers a local
domain and the regions with dense data have more knots. In practice, it is feasible to
validate models by using different numbers of knots and different choices of knots to
obtain a reliable and robust configuration.

3.3. Approximate Bayesian Inference Using INLA

The INLA [Rue et al. 2009] is a computational approach that is proposed as an alter-
native of the time-consuming MCMC method. It approximates the marginal posteriors
of latent variables

π (vi|Y ) =
∫

π (vi|θ, Y )π (θ |Y )dθ. (9)

This approximation is an efficient combination of LAs to the full conditionals π (θ |Y )
and π (vi|θ, Y ), and finally executes numerical integration routines by integrating out
the parameter θ .

The INLA approach consists of three main approximations to obtain the marginal
posterior for each latent variable. The first step is to approximate the full posterior
π (θ |Y ), which is executed using the LA

π̃ (θ |Y ) ∝ π (v, θ, Y )
π̃G(v|θ, Y )

∣∣
v=v∗(θ). (10)

As shown above, we need to approximate the full conditional distribution of π (v|Y, θ ),
which can be achieved by a multivariate Gaussian density π̃G(v|Y, θ ) [Rue and Held
2005]. v∗(θ ) is the mode of the full conditional distribution of v for a given θ and can be
estimated using π̃G(v|Y, θ ). The posterior π̃ (θ |Y ) will be used later to integrate out the
uncertainty with respect to θ when approximating π (vi|Y ).
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The second step executes the LA of the full conditionals π (vi|θ, Y ) for specified θ
values. The density π (vi|θ, Y ) is approximated using the LA defined by

π̃LA(vi|θ, Y ) ∝ π (v, θ, Y )
π̃G(v−i|vi, θ, Y )

∣∣
v−i=v∗(vi ,θ), (11)

where π̃G(v−i|vi, θ, Y ) refers to the Gaussian approximation of π (v−i|vi, θ, Y ) that takes
vi as a fixed value. v∗(vi, θ ) is the mode of π (v−i|vi, θ, Y ).

Finally, we can approximate the marginal posterior density of vi by combining the
full posteriors obtained in the previous steps. The approximation expression is shown
as follows:

π (vi|Y ) ≈
∑

k

π̃ (vi|θk, Y )π̃(θk|Y )�k. (12)

It is a numerical summation on a representative set of θk, with the area weight, �k for
k = 1, . . . , K. Note that a good choice of the set of θk is crucial to the accuracy of the
above numerical integration.

4. SPATIAL MULTIVARIATE NON-GAUSSIAN MODEL

This section presents a spatial process model for random variables that is capable
of dealing with Gaussian and non-Gaussian variables. The new multivariate model
proposed here is designed based on a Bayesian hierarchical framework that allows
any number of mixed-type response variables (Challenges 1 and 2). The computational
burden of modeling large mixed-type spatial datasets is addressed by integrating the
knot-based predictive process (Challenge 3). Table I summarizes the key notations used
in this article.

4.1. Model Formulation

The spatial multivariate predictive model is specifically designed to deal with responses
of different types, which are assumed to follow an exponential family distribution. Here,
we consider two different types: Gaussian and non-Gaussian variables (e.g., Poisson).

Let s1, . . . , sn be the n sampled locations, Y (si) be the Gaussian variable at location
si, and Z(si) be the non-Gaussian variable, such as the Poisson variable. Let Y =
(Y (s1), . . . , Y (sn))′ and Z = (Z(s1), . . . , Z(sn))′. Geostatistics typically assumes that the
Gaussian response variable Y (s) is modeled as a spatial regression model with a p × 1
vector of spatially referenced predictors, x(s), such as

Y (s) = x(s)T βy + ω(s) + ε(s). (13)

The residual includes the spatial random effect, ω(s), and the independent process
ε(s), known as the measurement error. Usually, ε(s) ∼ N (0, τ 2). ω(s) provides a local
adjustment to the mean, interpreted as the effect of unmeasured covariates on the
spatial pattern.

Let the first stage of Z be the non-GP. Essentially, we assume that the function of
the expected value of Z(si) is linear on a transformed scale, such as

ηz(s) ≡ g(E[Z(s)|θZ]) = x(s)T βz + γ (s), (14)

where g(·) is a suitable link function, and θZ is the parameter set of process Z(s).
The Gaussian variable Y (si) and the non-Gaussian variable Z(si) depend on the

latent variables ω(si) and γ (si), respectively, which together are responsible for the
spatial dependences. Given ω(si) and γ (si), the variables Y (si) and Z(si) are conditionally
independent. The customary process specification for (ω′, γ ′)′ is a mean zero GP with
covariance function C, denoted as GP(0, C). The most obvious specification of a valid
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Table I. Description of Major Symbols

Symbol Description
S S = {s1, . . ., sn}, a set of n training locations, where si ∈ R

2;
S∗ S∗ = {s∗

1, . . ., s∗
m}, a set of m knot locations, where s∗

i ∈ R
2;

Y A given set of observations with a numerical attribute that follows a Gaussian distribution.
Y = {Y (si)}n

i=1;
Z A given set of observations with a discrete attribute. If a count dataset (Zc), it follows

a Poisson distribution; if a binary dataset (Zb), it follows a Binomial distribution. Z =
{Z(si)}n

i=1;
X A set of explanation variables. {X(si)}n

i=1 is a p × 1 vector at location si . X = {X(si)}n
i=1;

ω, γ Spatial random effects of the observations, which provide local adjustments to the means,
and is interpreted as the effects of unmeasured covariates with spatial patterns. ω =
{ω(si)}n

i=1,γ = {γ (si)}n
i=1;

ω∗, γ ∗ Spatial random effects of the knots. ω∗ = {ω∗(si)}m
i=1, γ ∗ = {γ ∗(si)}m

i=1;
ω̃, γ̃ The predicted values of ω, γ by ω∗, γ ∗. ω̃ = {ω̃(si)}n

i=1,γ̃ = {γ̃ (si)}n
i=1;

εy The estimation bias values for ω̃. εy(s) = {εy(si)}n
i=1 , {ω̃ε (si) = ω̃(si) + εy(si)}n

i=1
ε {ε(si)}n

i=1 is the measurement error for {Y (si)}n
i=1. ε = {ε(si)}n

i=1;
v∗ v∗ = ((ω∗′

, γ ∗′
), (β ′

y, β
′
z))

′, it is a (2m + 2p) × 1 vector comprising the realizations of the
spatial multivariate predictive process and the regression parameters;

φ The decay and smoothness parameter;
F(φ) A transformation matrix that defines {ω̃, γ̃ } as a spatially varying linear transformation

of {ω∗, γ ∗}.
ηz The expected value of Z which is linear on a transformed scale. ηz = {ηz(si)}n

i=1. ηz = H∗
z v∗.

H∗
y H∗

y = [Fy(φ), [X 0n×p]]. Fy(φ) consists of the first n rows of matrix F(φ);
H∗

z H∗
z = [Fz(φ), [0n×p X]]. Fz(φ) consists of the last n rows of matrix F(φ);

Sθ The set of sample locations of θ based on the mode and Hessian at it of π̂(θ |Y, Z). Sθ =
{θk}K

k=1;
w The set of weighted values of sample θ , which are computed by their corresponding

posterior distributions. w = {wθk}K
k=1;

cross-covariance function C for (ω′, γ ′)′ is to let ρ be a valid correlation function for a
univariate spatial process. Let T be a d × d (here d = 2 refers to the dimension of the

dataset) positive definite matrix T = (
σ 2

y σ 2
yz

σ 2
yz σ 2

z
), which is interpreted as the covariance

matrix associated with (ω′, γ ′)′. T follows an Inverse Wishart distribution, denoted as
T ∼ W−1(, m), and ρ(si, sj ; φ) attenuates the association as si and sj become farther
apart. The covariance matrix for (ω′, γ ′)′ can be easily shown to be

�(ω′,γ ′)′ = T ⊗ R(φ), (15)

where R(φ)i, j = ρ(si, sj ; φ) is a correlation function, like Exponential, Gaussian and
Spherical, and so on. φ includes both decay and smoothness parameters, yielding con-
stant process variances, and ⊗ denotes the Kronecker product.

The prior distributions of the remaining parameters construct the third level of the
hierarchical model. Customarily, the regression parameters βy and βz are assigned
multivariate Gaussian priors, i.e., βy ∼ N (μβy, �βy), βz ∼ N (μβz, �βz), while the latent
variance components σy, σz, and σyz are assigned W−1 as described above. The measure-
ment error variance τ 2 is assigned an G−1(aτ , bτ ) prior (Inverse Gamma). The process
correlation parameter φ is usually assigned an informative prior (e.g., uniform over a
finite range) based on the underlying spatial domain.

Let Y and Z be two n × 1 vectors of observed responses. The mixed data likelihood
can be obtained by combining their hierarchical specifications, as shown in Figure 1,
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Fig. 1. Graphical model representation.

to derive a posterior distribution π (βy, βz, ω, γ, T , τ 2, φ|Y, Z) that is proportional to

π (φ) × G−1(τ 2|aτ , bτ ) × W−1(T |, m) × N
((

ω
γ

)
|0, �(ω′,γ ′)′

)

×N (βy|μβy, �βy) ×
n∏

i=1

N (Y (si)|x(si)T βy + ω(si), τ 2)

×N (βz|μβz, �βz) ×
n∏

i=1

π (Z(si)|x(si)T βz + γ (si))). (16)

4.2. Reduced-Rank Spatial Multivariate Non-Gaussian Process

For the spatial multivariate non-GP model, both the estimation and prediction steps
require the (d ∗ n) × (d ∗ n) covariance matrix to be evaluated for the d dependent
response variables. Unfortunately, fitting hierarchical mixed models often involves ex-
pensive matrix decompositions whose computational cost is O((d∗ n)3), thus rendering
such models not scalable for large spatial datasets. To facilitate the spatial process, a
knot-based technique [Banerjee et al. 2008] can be utilized to reduce the computational
cost by lowering dimensional process, as this only requires a fixed set of “knots” over
which spatial estimation is operated to be considered. In this section, the spatial mul-
tivariate predictive model, referred to here as the reduced-rank spatial multivariate
non-GP, is constructed by projecting the full process into a subspace generated by a
specified set of representative locations. To generate the knots, a uniform grid is plotted
across the whole study region. Each grid is considered as a knot.

Consider a set of “knots,” S∗ = {s∗
1, . . . , s∗

m}, representing the vector of corresponding
centroids of the m spatial clusters generated by the spatial attributes of the dataset.
The latent variables (ω∗′

, γ ∗′
)′ follow a mean zero Gaussian distribution with the co-

variance function C∗, denoted as GP(0, C∗). The covariance matrix for (ω∗′
, γ ∗′

)′ is
�(ω∗′

,γ ∗′ )′ = T ⊗ R∗(φ). R∗(φ) is the corresponding m × m covariance matrix, where
R∗(φ)i, j = ρ(s∗

i , s∗
j ; φ)i, j=1,...,m. The spatial interpolant at a site s0 is estimated by(
ω̃(s0)
γ̃ (s0)

)
= E

{(
ω(s0)
γ (s0)

)∣∣∣∣
(

ω∗
γ ∗

)}
= ϒ(s0)�−1

(ω∗′
,γ ∗′ )′

(
ω∗
γ ∗

)

=
(

f ω
ω (s0) f γ

ω (s0)
f ω
γ (s0) f γ

γ (s0)

)(
ω∗
γ ∗

)
. (17)

Here, ϒ(s0) = T ⊗ r(s0; φ)′, and r(s0; φ) is an m× 1 vector whose jth element is given
by ρ(s0, s∗

j ; φ). The f series represent four 1 × m matrices. This yields a spatial GP
(ω̃′, γ̃ ′)′ ∼ N (0, T ⊗ ρ̃), where ρ̃(si, sj ; φ) =ϒ(si)�−1

(ω∗′
,γ ∗′ )′ϒ

′(sj), and (ω̃′, γ̃ ′)′ is referred
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to as the predictive process derived from the parent process (ω′, γ ′)′. As shown in
Equation (17), (ω̃(s)′, γ̃ (s)′)′ is a spatially adaptive linear transformation of the
realizations of (ω(s)′, γ (s)′)′ over S∗ with ϒ(s0)�−1

(ω∗′
,γ ∗′ )′ comprising the coefficients of

the transformation.
Replacing ω(s) and γ (s) in Equations (13) and (14) with ω̃ and γ̃ , we obtain the

reduced-rank predictive model,

Y (s) = x(s)T βy + ω̃(s) + ε(s), (18)

ηz(s) ≡ g(E[Z(s)|θZ]) = x(s)T βz + γ̃ (s). (19)

Using Equations (38) and (39) as the likelihood, we derive a posterior distribution
π (βy, βz, ω

∗, γ ∗, T , τ 2, φ|Y, Z) that is proportional to

π (φ) × G−1(τ 2|aτ , bτ ) × W−1(T |, m) × N (βy|μβy, �βy) × N (βz|μβz, �βz)

× N
((

ω∗
γ ∗

)
|0, �(ω∗′

,γ ∗′ )′

)
×

n∏
i=1

N (Y (si)|x(si)T βy + ω̃(si), τ 2)

×
n∏

i=1

π (Z(si)|x(si)T βz + γ̃ (si))). (20)

The reduced variability in ω̃ often incurs an overestimation of the measurement er-
ror variance τ 2. Banerjee et al. [2008] explained these biases. The predictive pro-
cess systematically underestimates the variance of (ω′, γ ′)′ at any location s. It has
0 ≤ var((ω′(s), γ (s)′)′|(ω∗′

(s), γ (s)∗
′
)′) = T −ϒ(s)�−1

(ω∗′
,γ ∗′ )′ϒ

′(s), which denotes the bias un-
derestimation over the observed locations. With regard to this issue, Finley et al. [2009]
proposed replacing ω̃(s) and γ̃ (s) in Equations (38) and (39) with ω̃ε(s) = ω̃(s)+ ε̃y(s) and
γ̃ε(s) = γ̃ (s) + ε̃z(s). ( ε̃y

ε̃z
) represents a process involving independent variables with spa-

tially adaptive variances. Using ω̃ε(s) and γ̃ε(s) in place of ω̃(s) and γ̃ (s) for the spatial
process yields

π (φ) × G−1(τ 2|aτ , bτ ) × W−1(T |, m) × N (βy|μβy, �βy) × N (βz|μβz, �βz)

×N
((

ω∗
γ ∗

)
|0, �(ω∗′

,γ ∗′ )′

)
× N

((
ω̃ε

γ̃ε

)∣∣∣∣F(φ)
(

ω∗
γ ∗

)
, �(ε̃′

y,ε̃
′
z)′

)

×
n∏

i=1

N (Y (si)|x(si)T βy + ω̃ε(si), τ 2) ×
n∏

i=1

π (Z(si)|x(si)T βz + γ̃ε(si))). (21)

F(φ) is a transformation matrix that defines {ω̃, γ̃ } as a spatially varying linear
transformation of {ω∗, γ ∗}. According to Equation (17), ( ω̃(s0)

γ̃ (s0) ) = ϒ(s0)�−1
(ω∗′

,γ ∗′ )′(
ω∗
γ ∗ ) and

ϒ(s0) = T ⊗ r(s0; φ)′, and r(s0; φ) is an m × 1 vector whose jth element is given by
ρ(s0, s∗

j ; φ). Therefore, F(φ) = (T ⊗R(φ)′)�−1
(ω∗′

,γ ∗′ )′ , where R(φ)′ is an n×mmatrix whose
ith row is given by r(si; φ)′, and r(si; φ) is an m× 1 vector whose jth element is given
by ρ(si, s∗

j ; φ), for i = 1, . . . , n, j = 1, . . . , m. ( ε̃y
ε̃z

) ∼ N (0, �(ε̃′
y,ε̃

′
z)′ ) and �(ε̃′

y,ε̃
′
z)′ is a 2n × 2n

matrix that consists of four diagonal matrices (n × n) in which the following four spec-
ified diagonal elements ( (i, i)th (i + n, i)th

(i, i + n)th (i + n, i + n)th ) are computed as T − ϒ(si)�−1
(ω∗′

,γ ∗′ )′ϒ
′(si),

where ϒ(si) = T ⊗ r(si; φ)′. Finley et al. [2009] detailed the estimation of the modified
predictive process.
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Let v∗ = ((ω∗′
, γ ∗′

), (β ′
y, β

′
z))

′ be a (2m + 2p) × 1 vector comprising the realizations
of the spatial multivariate predictive process and the regression parameters. Since Z
is related to the discrete variables, we assume there is no estimation bias [Rue et al.
2009]. The posterior π (v∗, T , φ, τ 2|Y, Z) is proportional to

π (φ) × G−1(τ 2|aτ , bτ ) × W−1(T |, m) × N (v∗|μv∗ , �v∗ )

×
n∏

i=1

N (Y (si)|x(si)T βy + f ω
ω (s)ω∗ + f γ

ω (s)γ ∗ + εy(s), τ 2)

×
n∏

i=1

π (Z(si)|x(si)T βz + f ω
γ (s)ω∗ + f γ

γ (s)γ ∗), (22)

where μv∗ = (01×2m, μ′
βy

, μ′
βz

)′ and the (2m+ 2p) × (2m+ 2p) covariance matrix is

�v∗ =
⎡
⎣ �(ω∗′

,γ ∗′ )′ 02m×p 02m×p

0p×2m �βy 0p×p

0p×2m 0p×p �βz

⎤
⎦. (23)

Under Gaussian likelihood assumptions,

N (Y |H∗
y v∗, τ 2

y In + εy In), H∗
y = [Fy(φ), [ X 0n×p ]]. (24)

The generalized linear model (GLM) likelihood model of Z can thus be defined by

ηz = H∗
z v∗, H∗

z = [Fz(φ), [ 0n×p X ]]. (25)

Here, Fy(φ) consists of the first n rows of matrix F(φ), and Fz(φ) consists of the last n
rows of the matrix.

5. APPROXIMATE BAYESIAN INFERENCE

Since the likelihood model of the spatial multivariate observations is non-Gaussian,
this renders the predictive process no longer analytically available (Challenge 4). To
address this issue, we can formalize the multivariate predictive process by applying
approximate Bayesian inference methods.

5.1. Gaussian Approximation to the Posterior Distribution of v∗

First, we need to approximate π (υ∗|Y, Z, θ ). For the predictive process model, the covari-
ance parameters would be θ = (T , φ, τ 2). The simplest approximation to π (υ∗|Y, Z, θ )
is the Gaussian approximation. We have

π (υ∗|Y, Z, θ ) ∝ π (Y |υ∗, θ )π (Z|υ∗, θ )π (υ∗|θ ), (26)

where π (Y, Z|υ∗, θ ) = π (Y |υ∗, θ )π (Z|υ∗, θ ) is derived based on the D-separation rules
in the graphic model theory (see Figure 1). As discussed in Section (3.2), π (Y |υ∗, θ )
follows a Gaussian distribution, but π (Z|υ∗, θ ) does not. We therefore need to conduct a
Gaussian approximation on π (Z|υ∗, θ ), and then on π (Y, Z|υ∗, θ ). Under the Gaussian
distribution assumption N (Y |H∗

y v∗, ε̃y In + τ 2 In) and the prior v∗ ∼ N (μ∗, �∗), the full
conditional distribution of υ∗ conditional to {Y, θ} is thus

π (v∗|Y, θ ) ∝ N (Y |H∗
y v∗,U )N (μ∗

v, �
∗
v )

∝ exp
{ [

−1
2

(Y − H∗
y v∗)′U−1(Y − H∗

y v∗)
]

(27)

− 1
2

(v∗ − μ∗
v)′�∗−1

v (v∗ − μ∗
v)

}
∝ exp

(
−1

2
v∗′

Qyv
∗ + v∗′

by

)
,
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where U = ε̃y In + τ 2 In, the full conditional precision matrix Qy = H∗′
y U−1 H∗

y + �∗−1
v ,

and the canonical parameter by = H∗′
y U−1Y + �∗−1

v μ∗
v.

The likelihood model of Z is non-Gaussian, so we need to expand the likelihood in
a quadratic form utilizing the Gaussian approximation. The GLM likelihood of Z is∏

i π (Z(si)|ηz(si)), where the GLM parameter ηz = H∗
z v∗ = [F(φz), [0n×pX]]v∗.

The distributions in a natural exponential family take the form

π (Z|ηz) = exp{ηzZ − f (ηz)}h(Z). (28)

For example, for a binomial distribution, Binomial(1, π ), ηz = log( π
1−π

), f (ηz) = log(1 +
exp(ηz)), and h(Z) = 1, while for the Poisson case, Poisson(λ), ηz = log(λ), f (ηz) = exp(ηz),
and h(Z) = 1

Z! .
By performing a Taylor expansion of f (ηz) = f (H∗

z v∗) to the second order, we obtain
the quadratic form of v∗,

π (Z|ηz) ∝ exp
{
−1

2
v∗′

Qzv
∗ + v∗′

bz

}
, (29)

Qz = H∗′
z ∇2 f (H∗

z v̂∗)H∗
z ,

bz = H∗′
z (Z − ∇ f (H∗

z v̂∗) + ∇2 f (H∗
z v̂∗)H∗

z v̂∗).

Combining Equations (26), (27), and (29) gives

π (υ∗|Y, Z, θ ) ∝ exp
[
−1

2
υ∗′

(Qy + Qz)υ∗ + υ∗′
(by + bz)

]
. (30)

Finally, the full conditional precision matrix Q = Qy + Qz, and the canonical parameter
b = by + bz. Thus, the full conditional distribution is π (υ∗|Y, Z, θ ) ∼ N (Q−1b, Q−1). We
can compute the required inverse and determinant of the size (2m+ 2p) × (2m+ 2p)
matrix Qby utilizing the structure of H∗

z , H∗
y , and �∗

v . Assuming m � p, the main cost of
the matrix inversion is thus O(m3), since the number of knots is m. The supplementary
material provides further details of the Taylor expansion for the Binomial and Poisson
distributions.

5.2. Laplace Approximation for the Posterior Distribution of θ

Unlike π (υ∗|Y, Z), the posterior π (θ |Y, Z) is usually highly skewed, and its approxima-
tion as a Gaussian distribution is thus inappropriate [Rue et al. 2009]. The posterior
π (θ |Y, Z) plays an important role in the inference of the marginal posterior of latent
variables. Taking υ∗ as an example, we can estimate the marginal posterior π (υ∗|Y, Z),
which takes the form of

π (υ∗|Y, Z) =
∫

π (v∗|Y, Z, θ )π (θ |Y, Z)dθ. (31)

It is possible to obtain a sample set {θ1, . . . , θK} from the input space of θ that rep-
resents an approximate discrete form of the posterior p(θ |Y, Z). We can estimate the
approximate p̂(v∗|Y, Z) by

π̂ (v∗|Y, Z) =
K∑

k=1

π (v∗|Y, Z, θk)π (θk|Y, Z)wθk, (32)

where wθk is the weight of the sample point θk that can be measured by its normalized
probability density. The critical step is to efficiently identify a representative sample
set {θ1, . . . , θK}, as well as the corresponding set of weights {wθ1, . . . , wθK}.
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Fig. 2. Laplace approximation to posterior distribution.

The posterior π (θ∗|Y, Z) can be re-formalized, and the LA can be applied to approxi-
mate the denominator π (υ∗|Y, Z, θ ) as a Gaussian distribution. The LA method uses a
similar approach to that utilized for Bayesian spatial inference:

π̂ (θ |Y, Z) ∝ π (Y, Z|υ∗, θ )π (υ∗|θ )π (θ )
π̂ (υ∗|Y, Z, θ )

∣∣∣∣
υ∗=υ̂∗

, (33)

where π̂ (υ∗|Y, Z, θ ) is a Gaussian approximation.
Utilizing the above approximation yields the mode υ̂∗ and the curvature at the mode

of this full conditional expression. In our framework, we apply the GLM to capture the
distributions of non-Gaussian variables. The preceding Gaussian approximation can
be efficiently conducted using the popular Iterated Re-weighted Least Squares (IRLS)
algorithm. The detailed procedures are presented in Algorithm 1.

ALGORITHM 1: Exploring the Posterior Distribution of π (θ |Y, Z)

Input: S, S∗, S0, Y, Z, X
Output: θ̂

1: Choose an initial value θ = {τ 2, T , φ};
2: repeat
3: Construct μv∗ , �v∗ with θ (see Equation (23)).
4: Calculate the transformation matrix F(φ).
5: Calculate the likelihood of Y for Gaussian variables (see Equation (24)) and the GLM

likelihoodof Z for exponential variables (see Equation (25)).
6: Apply IRLS to find the mode υ̂∗ and Hessian matrix at the modeof π̂ (υ∗|Y, Z, θ ), then

make a Gaussian approximation by applying Equation (30).
7: Compute the gradient and Hessian matrix of π̂ (θ∗|Y, Z) andapply one Newton step to

update θ as θ̂ .
8: until Convergence
9: Output optimal θ̂ .

As shown in Figure 2, Algorithm 1 describes the steps of exploring the posterior
distribution of θ in terms of the following steps.

—Step 1 (line: 1) Initialize θ . An initial value θ randomly is chose.
—Step 2 (lines: 2–5) Gaussian approximate the posterior distribution of v∗. A Gaussian

approximation on π (Z|v∗, θ ) is conducted by expanding its likelihood in a quadratic
form and further on π (v∗|Y, Z, θ ).
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—Step 3 (line: 6) Update π (θ |Y, Z). The mode of v∗ as v̂∗ is calculated and π (θ |Y, Z) is
updated by replacing v∗ with v̂∗ as π̂ (θ |Y, Z) ∝ π(Y,Z|υ̂∗,θ)π(υ̂∗|θ)π(θ)

π̂(υ̂∗|Y,Z,θ) .
—Step 4 (line: 7) Update π̂ (θ |Y, Z). The gradient and Hessian matrix of π̂ (θ |Y, Z) are

computed and π̂ (θ̂ |Y, Z) ∝ π(Y,Z|υ̂∗,θ̂ )π(υ̂∗|θ̂)π(θ̂ )
π̂ (υ̂∗|Y,Z,θ̂)

is updated.
—Step 5 (lines: 8–9) Output optimal θ . Steps 2–5 are repeated till the value of θ

converges. Finally, θ is output.

Among these steps, Step 3 has the highest time cost. Because the solution is analytically
intractable, numerical optimization techniques need to be applied (see Appendix).

Computational Complexity: In Algorithm 1, suppose that l2 iterations are required to
find the mode v̂∗ and the Hessian matrix at the mode of π̂ (υ∗|Y, Z, θ ), and the time cost
of Step 6 is O(l2 ∗ (n∗m2 +m3)). For Step 5, the Gaussian approximation of π̂ (υ∗|Y, Z, θ )
takes O(n ∗ m). Overall, Steps 2–8, which generate the converged gradient and the
Hessian matrix of π (θ |v∗), take O(l1 ∗ l2 ∗ (n ∗ m2 + m3) + l1 ∗ n ∗ m). Finally, sampling
the θ set and computing their corresponding weighted values take O(K). The overall
framework is designed based on Newton’s method, whose convergence is generally
rapid. The performance on problems in R10,000 is thus similar to that on problems in
R10, and the required number of Newton steps (l1) only increases modestly [Boyd and
Vandenberghe 2004]. Step 6 applies IRLS to capture the mode of π̂ (υ∗|Y, Z, θ ), and in
practice five iterations (l2 = 5) are sufficient. Assuming m � K, m � l1, and m � l2,
the total computational complexity of parameter estimation is therefore O(n ∗ m2).

5.3. Spatial Prediction via Laplace Approximation

Given a set of unsampled locations {s0
1 , . . . , s0

Nte
}, we are interested in predicting the Y

and Z attribute values at these locations, denoted as Y 0 = (Y (s0
1 ), . . . , Y (s0

Nte
))′ and Z0 =

(Z(s0
1 ), . . . , Z(s0

Nte
))′. The first step is to estimate the posterior distributions of the corre-

sponding latent variables π (ω0|Y, Z) and π (γ 0|Y, Z), where ω0 = (ω(s0
1 ), . . . , ω(s0

Nte
))′ and

γ 0 = (γ (s0
1 ), . . . , γ (s0

Nte
))′. The posterior distributions of Y 0 and Z0 can then be obtained

as

π (Y 0|Y, Z) =
∫

π (Y 0|ω0)π (ω0|Y, Z)dω0, (34)

π (Z0|Y, Z) =
∫

π (Z0|γ 0)π (γ 0|Y, Z)dγ 0. (35)

We denote v0 = (ω0′
, γ 0′)′. Given the approximated π̂ (v∗|Y, Z, θ ) and π̂ (θ |Y, Z) obtained

in Sections 4.1 and 4.2, the posterior distribution π (v0|Y, Z) can be estimated at each
θ sample by

π̃ (v0|Y, Z, θ ) ≈ π (Y, Z|v0, v∗)π (v0, v∗|θ )
π̂ (v∗|v0, Y, Z, θ )

∣∣∣∣
υ∗=υ̂∗

. (36)

Furthermore, it can be computed as

π (v0|Y, Z) ≈
K∑

k=1

π̂ (v0|Y, Z, θk)π̂ (θk|Y, Z)wθk. (37)

Based on the above theoretical analysis, the main procedures involved in predicting
multivariate non-Gaussian variables are described by Algorithm 2. As shown in Fig-
ure 3, Algorithm 2 introduces spatial prediction of multivariate non-Gaussian variables
via LA as the following steps.
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Fig. 3. Spatial prediction via Laplace approximation.

ALGORITHM 2: Spatial Multivariate Non-Gaussian Prediction

Input: S, S∗, S0, Y, Z, X, X0, θ̂
Output: Y 0, Z0

1: Explore the contour of π̂(θ |Y, Z) based on its mode and Hessian matrix at the mode, obtain
K sample locations, Sθ = {θ1, . . ., θK}.

2: Compute and normalize {π̂(θ1|Y, Z), . . ., π̂ (θK|Y, Z)} to obtain the set of weights
w = {wθ1 , . . ., wθK } as wθk = π̂k(θk|Y,Z)∑K

k=1 π̂k(θk|Y,Z)
.

3: for k = 1 to K do
4: Construct μv∗ , �v∗ with θk and S∗ (see Equation (23)).
5: Calculate the transformation matrix F(φ) with θk, S∗, S, X.
6: Calculate the likelihood of Y for Gaussian variables (see Equation (24)) and the GLM

likelihoodof Z for exponential ones (see Equation (25)).
7: Calculate the mode, the Hessian matrix at the mode of π̂ (υ∗|Y, Z, θk), and its Gaussian

approximation (see Equation (30)).
8: Predict Y 0

k , Z0
k for new locations S0. (see Equations (34) and (35))

9: end for
10: Calculate the final Y 0, Z0 values as Y 0 = ∑K

k=1 Y 0
k × wθk , Z0 = ∑K

k=1 Z0
k × wθk

—Step 1 (line: 1) Generate sample set of Sθ . First, the contour of π̂ (θ |Y, Z) is explored
based on its mode and Hessian matrix at the mode, and then its K sample values are
generated.

—Step 2 (line: 2) Compute the weighted set of ωθK . The weighted values of θ samples
are computed as wθk = π̂k(θk|Y,Z)∑K

k=1 π̂k(θk|Y,Z)
.

—Step 3 (lines: 3–9) Predict Y k
0 and Zk

0 at each sample θk. Each θk(k = 1, . . . , K) is utilized
to perform a Gaussian approximation on the posterior distribution of v∗ and then
the mode of π̂ (υ∗|Y, Z, θ ) is calculated, which contributes to predict the multivariate
observations Y 0

k and Z0
k .

—Step 4 (line: 10) Obtain the final predicted Y 0 and Z0. Finally, the predicted Y and Z
are calculated as Y 0 = ∑K

k=1 Y 0
k × wθk, Z0 = ∑K

k=1 Z0
k × wθk.

Computational complexity: Step 6 dominates the computational costs here, because
it is analytically intractable. With the numerical optimization discussed in Sections 4.1
and 4.2, it takes O(n∗m) to operate a Gaussian approximation of π̂ (υ∗|Y, Z, θk) for each
sample θk. Computing the mode and Hessian matrix for π̂ (v∗|Y, Z, θk) costs O(l2∗(m3+n∗
m2)). Repeating Steps 1–7 for K sample θs therefore takes O(K∗(n∗m+l2∗(m3+n∗m2))).
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Table II. Parameter Settings in Simulations

Variable Setting description
Data type Gaussian(Y)+Binomial(Z), Gaussian(Y)+Poisson(Z), Binomial(Y)+Poisson(Z)
Ntr, Nte Ntr = 1, 000, Nte = 400, 500. Training data were randomly generated at Ntr spatial

locations {si}Ntr
i=1 for the range [0,50]×[0,50] units. Test data were generated at Nte

spatial locations {si}Nte
i=1 over the same range.

βy, βz The regression coefficient βy = [2, 2]′, βz = [2, 1]′ in G+P; βy = [0.5, 0.5]′, βz =
[0.1, 0.1]′ in G+B; βy = [0.1, 0.1]′, βz = [2, 1]′ in B+G.

σy, σz, σyz σ 2
y = 4, σ 2

z = 3.24, σ 2
yz = 2.52 in all types of simulations.

φ φ = 25 in all types of simulations.
τ The measurement error variance, τ2, was set to 1 in both G+B and G+P simulations.
Correlation
model

An exponential spatial correlation function C(h, φ) = σ 2exp(− h
φ

) was used in all types
of simulations.

Fig. 4. Density maps of a typical G+B simulation.

The total computational complexity of the Spatial Multivariate Non-Gaussian Predic-
tion algorithm is thus O(n ∗ m2), assuming m � K and m � l2.

6. EXPERIMENTAL RESULTS AND ANALYSIS

This section evaluates the effectiveness and efficiency of our proposed framework based
on experiments on simulations and four real-life datasets. We focus on three bivariate
scenarios: (1) the response variables consist of one Gaussian and one binomial, G+B; (2)
the response variables consist of one Gaussian and one Poisson, G+P; (3) the response
variables consist of one binomial and one Poisson, B+P. All the experiments were
conducted on a PC with Intel(R) Core(TM) I5-2400, CPU 3.1GHz, and 8.00GB memory.
The development tool was MATLAB 2011.

6.1. Simulation Study

6.1.1. Simulation Settings.
Dataset: We utilized a similar simulation model in Chagneau et al. [2011]. The pa-

rameter settings used in our experiments are shown in Table II. We also evaluated
different combinations of parameters and observed similar patterns. Figure 4 depicts
density maps of the numerical(Y) and binary(Z) responses from a typical G+B simu-
lation, revealing the complicated distributions involved and clearly illustrating why a
higher processing ability is required for the predictive models.
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Seven state-of-the-art competing methods: Based on our literature survey, there only
exist two methods proposed for predicting multivariate non-Gaussian spatial data.
One is the BME method by Wibrin et al. [2006] that only supports the mixture of
one numerical and one categorical value. Another method is the MCMC designed by
Chagneau et al. [2011] that is based on the Gibb sampler with M-H steps. We observed
that the BME method is only restricted to bivariate data with one Gaussian and one
Categorical, and MCMC method is flexible for a variety of mixture types. Hence, we
implemented the MCMC method using the same framework (Gibbs sampler with M-H
steps) and denoted this method as Spa-Multi-MCMC.

We also implemented an R toolbox function named “MCMCglmm” using the same
MCMC framework, denoted as Multi-MCMC. Spa-Multi-MCMC and Multi-MCMC do
not scale well to large datasets. Therefore, we designed two approximate versions of
them, namely, Spa-Multi-MCMC-K and Multi-MCMC-K. CART (Classification and Re-
gression Trees) [Breiman et al. 1984], MARS (Mulivariate Adaptive Regression Splines)
[Friedman 1991], and Treenet (also known as MART, Multiple Additive Regression
Trees) [Friedman 2000] are popular techniques for non-spatial predictive modeling.
They have been implemented into the Salford Systems [2017]. We used them to make
predictions for Y and Z separately. The model proposed in this article is identified as
Spa-Multi-INLA.

Performance metric: We ran the experiments with 20 realizations of each parameter
combination and then calculated the mean and standard deviation of every parameter
combination in the multivariate process model. For each observation, we computed
the Mean Absolute Error (MAE) for numerical and count observations, and the predic-
tion error for binary ones based on their corresponding predicted and true values. To
validate the new model’s effectiveness and efficiency, we compared the results of es-
timations, predictions, and response times for the Spa-Multi-INLA and MCMC-based
approaches, as well as CART, MARS, and Treenet. All parameters used in CART, MARS,
and Treenet were tuned using cross-validation (10-folder), like the MinLeafSize, Tree-
Size, and NumofTrees, and so on. For both simulation and real datasets, the corre-
sponding parameters were selected by the optimal points given a visual representation
of the cross-validation results in CART, MARS, and Treenet models. Finally, we utilized
Moran’s I-statistic to capture the spatial dependency of the numerical observations.

6.1.2. Simulation Results.
Model parameter estimates: Tables III, IV, and V show the estimation results for the

model parameters for datasets of size 1,000 for the G+B, G+P, and B+P simulations,
respectively. “Spa-Multi-INLA(64)” refers to our approach with a knot size equal to 64.
No results are shown for Multi-MCMC and Spa-Multi-MCMC because they became
very slow when the data size exceeded 1,000. The iterations of Spa-Multi-MCMC-K
and Multi-MCMC-K were set to 3,000 iterations, and K equal to 170 blocks (clusters).
Also, there are no results for CART, MARS, and Treenet in these tables. This is
because these models do not include these parameters. Instead, these ran on the
Salford tool, which is a powerful well-developed and optimized tool, and it was not
considered reasonable to directly compare their running times with those of the LA
and MCMC-based approaches, both of which ran on Matlab. However, we did compare
the prediction performances of Y and Z among all of these approaches and the results
are shown in Figure 5. By comparing the estimated parameters with true values, we
observed our method was able to accurately estimate most of the model parameters
with only small deviations compared to the other two MCMC-based methods for all
simulations. The true range parameter φ is 25, but both the LA- and MCMC-based
approaches underestimated the range parameter at around 11. This indicates the
difficulty of capturing the degree of spatial autocorrelation over the spatial distance.
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Table III. Comparisons of the Parameter Estimation and Computational Cost in G+B.(Spa-Multi-MCMC and
Multi-MCMC are Unable to Process Datasets with Data Sizes Greater than 1,000)

Approach βy βz φ σ 2
y σ 2

z σ 2
yz τ2 Time(m)

True values

[
0.50
0.50

] [
0.10
0.10

]
25 4 3.24 2.52 1.00 —

Spa-Multi-INLA(64)

[
0.60(0.05)
0.63(0.05)

] [
0.18(0.07)
0.15(0.07)

]
11.44
(2.64)

5.65
(1.86)

3.20
(1.02)

2.47
(0.12)

1.31
(0.06)

1.3

Spa-Multi-INLA(256)

[
0.60(0.03)
0.63(0.03)

] [
0.21(0.07)
0.19(0.07)

]
10.64
(2.25)

4.73
(1.21)

3.02
(0.86)

2.40
(0.19)

1.12
(0.06)

1.5

Spa-Multi-MCMC-K

[
0.18(6.89)

−0.13(6.77)

] [
0.22(0.47)

−0.09(0.43)

]
12

(1.05)
22.48

(24.39)
51.41

(58.19)
4578

(1054)
0.12

(0.15)
171.93

Multi-MCMC-K

[
0.29(7.11)
0.06(7.29)

] [
−2.84(0.48)
0.28(1.11)

]
−− −− −− −− 0.13

(0.16)
234.27

Table IV. Comparisons of the Parameter Estimation and Computational Cost in G+P
��������Approach

Para
βy βz φ σ 2

y σ 2
z σ 2

yz τ2 Time(m)

True values

[
2.00
2.00

] [
2.00
1.00

]
25 4 3.24 2.52 1.00 –

Spa-Multi-INLA(64)

[
2.51(0.22)
2.01(0.02)

] [
1.38(0.17)
1.03(0.01)

]
13.87
(3.29)

4.90
(1.27)

3.02
(0.77)

3.31
(0.67)

1.28
(0.06)

1.83

Spa-Multi-INLA(256)

[
0.92(0.15)
1.94(0.01)

] [
0.44(0.12)
0.94(0.01)

]
9.42

(2.29)
3.37

(0.94)
2.08

(0.48)
2.03

(0.35)
1.07

(0.05)
3.20

Spa-Multi-MCMC-K

[
−0.07(7.01)
0.13(6.94)

] [
0.94(0.05)
0.89(0.10)

]
2.97

(1.75)
36.31

(35.36)
2.82

(2.64)
1.84

(0.48)
0.26

(0.29)
72

Multi-MCMC-K

[
0.39(6.95)

−0.03(7.12)

] [
1.39(0.05)
0.99(0.07)

]
−− −− −− −− 0.14

(0.15)
27

Table V. Comparisons of the Parameter Estimation and Computational Cost in B+P
���������Approach

Para
βy βz φ σ 2

y σ 2
z σ 2

yz Time(m)

True values

[
0.10
0.10

] [
2.00
1.00

]
25 4 3.24 2.52 –

Spa-Multi-INLA(64)

[
0.16(0.03)
0.23(0.03)

] [
2.09(0.01)
1.04(0.01)

]
20.05
(3.58)

2.38
(0.87)

2.89
(0.54)

1.47
(0.03)

0.95

Spa-Multi-INLA(256)

[
0.12(0.03)
0.35(0.03)

] [
1.97(0.01)
1.08(0.01)

]
20.05
(3.58)

3.56
(1.21)

3.87
(0.88)

2.60
(0.32)

9.17

Spa-Multi-MCMC-K

[
0.17(0.10)
0.26(0.10)

] [
1.91(0.03)
1.01(0.03)

]
6.37

(0.61)
1.34

(0.06)
1.51

(0.09)
1.04

(0.06)
101

Multi-MCMC-K

[
0.15(0.08)
0.20(0.08)

] [
3.15(0.02)
1.36(0.02)

]
−− −− −− −− 95
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Fig. 5. Comparison of the performances for six approaches on simulation datasets.

In addition, we found it was more hard to estimate βz than βy in G+B and G+P, and
βy than βz in B+P. This is reasonable, since it is usually more difficult to estimate the
corresponding β for binary data than for count and numerical data. Compared with
numerical data, count data are more difficult to model.

Prediction error: Figure 5 provides the prediction results of different approaches
for the G+B, G+P, and B+P simulations. Applying Moran’s I-statistic, we computed
the spatial dependencies for Y numerical attributes in G+B and G+P, as 0.7006 and
0.7222, which indicates that the existing high spatial auto-correlation needs to be con-
sidered during the estimation and prediction processes. As we can see in Figure 5, for
the case of G+B, Spa-Multi-INLA(256) has the lowest MAE(0.89) for Y and the lowest
error (0.25) for Z. In contrast, CART, MARS, and Treenet have higher MAEs (1.60,
1.61, and 1.58) and higher errors (0.27, 0.26, and 0.25) since they are unable to cap-
ture the spatial dependencies. Spa-Multi-MCMC-K has the worse performance (MAE:
4.23, Error: 0.25) at the cost of large computational iterations. The Multi-MCMC-K
approach failed to accurately execute spatial predictions since it was unable to learn
the spatial dependency and operated without sufficient iterations. Spa-Multi-MCMC
and Multi-MCMC cannot process mixed type datasets whose data sizes are greater
than 1,000 because in MCMC-based approaches the un-marginalized models used to
fit the Binomial+Poisson outcome data required more MCMC iterations.

Figure 5(b) and (c) also provides the prediction comparisons of Spa-Multi-INLA mod-
els with 64 and 256 knots against other approaches for the G+P and B+P simulations.
These exhibit the same estimation patterns as those in G+B. By comparing different
knot intensities, we see the predictive process with 64 knots has quite a close perfor-
mance to that with 256 that indicates that the parameter effects can be accurately
estimated with the proper knot selections.

Evaluation between approximating and true posterior distribution: Spa-Multi-INLA
predictive model integrates reduced-rank methodology with iterative LA to achieve
accurate and much faster inference. Iterative LA (including the Gaussian approxi-
mation involved) is utilized to solve analytically intractable issues when modeling
non-Gaussian response variables and capturing correlations among them, while the
reduced-rank technology helps improve the scalability and availability when large
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Table VI. Comparisons of Approximated and True Posterior Distribution in G+B
��������Approach

Para
βy βz φ σ 2

y σ 2
z σ 2

yz τ 2 Time(s) MAEy Accz

True values

[
0.60
0.60

] [
0.15
0.15

]
25 5.76 3.24 3.02 1.00 – – –

Spa-Multi-INLA(64)

[
0.40(0.06)
0.50(0.06)

] [
−0.49(0.07)
−0.07(0.01)

]
8.38

(2.42)
7.65

(3.87)
2.60

(0.79)
1.56

(1.10)
1.49

(0.06)
38.62 1.2495 0.7525

Spa-Multi-INLA-Full

[
−2.13(0.15)
−0.70(0.14)

] [
−1.41(0.14)
−4.38(0.13)

]
19.59
(4.20)

6.17
(1.65)

4.81
(1.67)

1.91
(0.55)

0.99
(0.07)

7082.41 1.1765 0.77

Spa-Multi-MCMC-Knots

[
0.04(6.98)

−0.08(7.02)

] [
−0.44(0.13)
−0.19(0.13)

]
18.73
(3.04)

9.71
(4.69)

0.01
(0.29)

0.90
(0.12)

0.11
(0.14)

321.39 1.584 0.6375

amounts of data are being collected. Table VI evaluates the performances for param-
eter estimation and prediction error of the Spa-Multi-INLA-Full (LA-based spatial
multivariate predictive model with full dataset), Spa-Multi-INLA(64) (LA-based
spatial multivariate predictive model with 64 knots) and Spa-Mulit-MCMC-Knots
(MCMC-based spatial multivariate predictive model with 64 knots) models for one
Gaussion+Binary simulation.

The best prediction results were generated by Spa-Multi-INLA-Full, which achieved
performances around 5% and 25% better than those of Spa-Multi-INLA(64) and Spa-
Multi-MCMC-Knots(64), respectively. When estimating parameters, Spa-Multi-INLA-
Full was able to capture spatial random effects across different locations more ac-
curately. This can be verified by comparing the estimated values of σy, σz, and σyz,
which exhibited improvements of 25% and more better than the knot-based approaches.
Meanwhile, the Spa-Multi-INLA(64) was better modeling relationships between depen-
dent and explanatory variables; its estimated values of βy and βz were around 20%–50%
better than those generated by Spa-Multi-INLA-Full and Spa-Multi-MCMC-Knots.
Theoretically, Spa-Multi-INLA-Full should have the best performance for spatial pre-
dictive inference, because it models the predictive process with a far larger training
dataset (1,000), while the knot-based approaches (Spa-Multi-INLA(64) and Spa-Multi-
MCMC-knots) use only a relatively small number of points (64 of 1,000). However, in
practice this is not always the case. Since Spa-Multi-INLA is a complex model where
many parameters are involved, the existence of outliers or noises requires the inference
process to incorporate these into the model, which on occasion can mean that the spa-
tial statistical model describes the random error as an underlying relationship. This
overfitting issue can adversely affect the estimation accuracy of several parameters.

Spa-Multi-INLA(64) has a similar parameter estimation and predictive capability to
that of the full predictive process. But there was a clear reduction in the computation
cost when using the reduced-rank technique with the time required for the prediction
process dropping from 7082.41 s (full process) to 38.62 s (knot-based process). If
there is an appropriate selection of knots that covers most of the domain knowledge,
Gaussian and LA techniques can clearly provide accurate parameter estimation much
faster. This approach has the added advantage of avoiding mistaking random errors
as underlying relationships, the well-known overfitting issue described above. As
shown in Table VI, when estimating βy and βz, Spa-Multi-INLA(64) better captures
the relationship between the observed responses (Y and Z) and spatially referenced
predictors (X).

In order to measure the closeness of the approximated posterior distribution achieved
by the new approach proposed here to the true posterior distribution, we calculated
the root mean squared error (RMSE) values between the MAP estimation of model

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 36, Publication date: March 2017.



Spatial Prediction for Multivariate Non-Gaussian Data 36:21

Table VII. Comparison of RMSE on Estimated Parameters of Spa-Multi-INLA Among Different Data Sizes in G+B
��������Size

Para.
βy βz φ σ 2

y σ 2
z σ 2

yz τ2 Avg

200
[
0.27; 0.25

] [
0.54; 0.57

]
17.6 11.82 1.57 1.31 0.26 3.8

400
[
0.21; 0.18

] [
0.35; 0.35

]
17.66 9.73 1.29 1.25 0.36 3.48

600
[
0.14; 0.14

] [
0.29; 0.3

]
16.98 6.24 1.25 1.43 0.39 3.02

800
[
0.12; 0.12

] [
0.22; 0.23

]
16.83 4.4 1.27 1.54 0.41 2.79

1,000
[
0.11; 0.1

] [
0.22; 0.2

]
15.55 4.47 1.26 1.59 0.43 2.66

Table VIII. Settings in the Four Real Datasets

Dataset Size Ntr Nte Y Z Spatial dependence on Y
BEF spBayes
[2012]

437 337 100 BE basal area EH basal area 0.1672

Lake Varin
et al. [2005]

371 271 100 Trout
abundance

Lake acidity 0.0072

MLST Dubin
[1992]

211 150 61 House price If located in county 0.1753

House Pace and
Barry [1997]

20,640
2,000
5,000

200
500

House price House age 0.2529

parameters based on our approximated posterior and the true posterior. Because the
true posterior is analytically intractable and it is difficult to evaluate the closeness
to our approximated posterior at different sample sizes, we approximated the MAP
estimation of the true posterior distribution by adjusting the parameters used to gen-
erate the simulations. The comparison results shown in Table VII indicate that as the
sample size increases, the MAP estimation of model parameters obtained using our
new approach becomes closer to the true model parameters.

Computational Cost: The last column in Tables III, IV, and V shows the comput-
ing times required to deliver the estimation and prediction results for each of the
simulations. For the MCMC-based approaches, the main evaluation cost is the ma-
trix inversion at O((2 ∗ 1000)3). For the Spa-Multi-INLA model, the main cost is
O(2 ∗ n ∗ (2 ∗ m)2)(m = 64 or 256), which is the cost of building the required inverse
and determinant of the size (2m+ 2p) × (2m+ 2p) matrix Q as shown in Equation (30),
which assumes m � p. As shown in Tables III, IV and V, there is a clear reduction
in the computational cost when using the Spa-Multi-INLA approach and the predic-
tive process with 64 knots has a similar prediction capability but lower computational
burden compared to that 256 knots. Integrating the LA into the spatial multivariate
predictive model clearly helps achieve sufficiently five results in a moderate time.

6.2. Real-Life Datasets

We validated our approach using four real datasets, which are all G+B datasets.
Table VIII summarizes the main information used in our experiment. The spatial
dependencies were computed using Moran’s I-statistic function.

6.2.1. Experimental Results.
Prediction error: Figure 6 summarizes the comparisons among Spa-Multi-INLA(64),

the four MCMC-based approaches, CART, MARS, and Treenet. The data name
“Lake.271.100.1” indicates that it is the first realization generated from the original
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Fig. 6. Comparison of the performances for eight approaches on real-life datasets.

Lake data, with 271 training data and 100 test data points. By learning their spatial
dependencies, we determined that most of the real datasets have lower spatial auto-
correlations, which suggests that non-spatial attributes will contribute substantially to
the prediction of the outcome variables. For the predicted Y (numerical observations),
the MAEs were computed to demonstrate the prediction performance. Neither Multi-
MCMC nor Spa-Multi-MCMC could process the House data because of the large data
sizes (2,000 and 5,000 points) involved. The MAE values from Spa-Multi-MCMC-K and
Multi-MCMC-K were also much higher (around 10 times) than those (0.21–0.33) of the
others. When plotting the performance comparisons among Spa-Multi-INLA, CART,
MARS, and Treenet, we did not include the MCMC-based plots for House as all the
MCMC-based approaches generated poor results due to the large datasets involved
(2,000 and 5,000), which incurred excessive computation times of around 2 days. In our
experiments, the iteration values for all the datasets were set to 3,000, although this
still cost around 1–3.5 hours with Multi-MCMC-K, and 2.5–4.5 hours with Spa-Multi-
MCMC-K for the House datasets. As shown in Figure 6(a), Spa-Multi-INLA achieved an
average 10% improvement over CART, MARA, and Treenet, 40–50% over Spa-Multi-
MCMC-K and Spa-Multi-MCMC, and 60–70% over Multi-MCMC-K and Multi-MCMC.
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Fig. 7. Total response time by varying data size.

For the predicted Z(binary observations), the accuracies were computed and are
shown in Figure 6(b). Spa-Multi-INLA achieved average improvements of 10% over
CART, MARS, and Treenet, 40–50% over Spa-Multi-MCMC-K and Spa-Multi-MCMC,
and 60–70% over Multi-MCMC-K and Multi-MCMC.

It is worth noting that CART, MARS and Treenet all generated impressive prediction
result, and their overall performance was much better than those of the MCMC-based
approaches. This is because the degrees of spatial auto-correlations of the four real
datasets are not obvious. The predictions of outcome variables are mainly controlled by
the non-spatial predictors, and these have less relationship with the spatial distances
among the objects. For Lake, which has the lowest spatial dependency (0.0072), their
performance is close to that of the LA-based approach. For MLST and BEF, the spatial
dependencies increase a little but are still lower and the performances of CART, MARS,
and Treenet are all a little worse than that of the LA-based approach. For House, the
degree of spatial auto-correlation is more obvious and clearly demonstrates the effec-
tiveness of the LA-based approach, since it takes spatial dependency into consideration
during the predictive process. The MCMC-based approaches have similar estimation
patterns to these in simulations and cannot perform well.

Computational cost: The real datasets used in these experiments showcase the speed
and associated scalability achieved by the approaches that we evaluated. Figure 7
compares the runtime performance of these algorithms in the various datasets for
varying numbers of training and testing points. For example, for BEF.337.100.2, Spa-
Multi-INLA completed its run in around 0.63 min, while Spa-Multi-MCMC-K took
around 15.19 min and Multi-MCMC-K, Spa-Multi-MCMC, and Multi-MCMC took from
11.43 to 32.64 min. In particular, for House.2000.200.2, our methods finished running
in 10 min, while Spa-Multi-MCMC-K and Multi-MCMC-K took several hours and the
other two approaches were not able to execute this dataset since it exceeds 2,000 points.
As noted above, the main cost incurred in the Spa-Multi-INLA model is that needed to
build the required inverse and determinant of the size (2m+ 2p) × (2m+ 2p) matrix.
When m � n, the main cost O(nm2) can be approximated as O(n). As shown by the bold
red curve in Figure 7, the Spa-Multi-INLA model clearly reduced the computational
burden, which makes the predictive process nearly linear in complexity.

6.3. Analysis of the Results

The above experimental results demonstrate that Spa-Multi-INLA is both effective and
efficient in estimating the parameters and predicting different types of variables. Its
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Fig. 8. Prediction Performance of Spa-Multi-MCMC-K by varying iterations.

identification quality is clearly superior to that of existing techniques, achieving around
10–30% improvement over CART, MARs, and Treetnet, and 40–50% over MCMC-based
approaches. The experimental results verified three observations. (1) Appropriate Knot
Selection. If there is an appropriate selection of knots that covers most of the domain of
interest, the cost of the predictive process will be significantly reduced to a linear order.
For the Spa-Multi-INLA model, the main cost is to compute the mode and Hessian ma-
trix of the posterior distribution of latent variables, which costs O(n∗m2). When m � n,
the predictive process becomes linear in complexity. (2) Efficient Approximation Pro-
cess. When combined with numerical routines, Gaussian and LA techniques can provide
much faster and more accurate parameter estimation than MCMC-based algorithms
for spatial multivariate non-Gaussian prediction. (3) Effectiveness for Large Spatial
Data Analysis. When processing more complicated datasets, such as the simulation
data shown in Figure 4, MCMC-based approaches need a very high number of iter-
ations to achieve acceptable results, thus incurring unacceptably high computational
costs, and CART MARS and Treenet cannot handle data with high spatial dependen-
cies, but the new approach proposed here can complete the prediction computation in
moderate times with no loss of accuracy.

Finally, there was an interesting result for the MCMC-based methods. MCMC ap-
proaches are sampling-based, and require sufficient iterations provided. They depend
on the sample selections of the latent variables. In some cases, they performed well,
as in the B+P simulation, where both Spa-Multi-MCMC-K and Multi-MCMC-K did
approximately estimate βy and βz. However, they sometimes failed to make good esti-
mations, as in the G+P and G+B simulations, where all of the estimated parameters
deviated substantially from their true values. Executing MCMC approaches with ap-
propriate iterations provided comparable results but were very time iterations. To make
sure MCMC-based approaches performed with sufficient iterations, we evaluated the
prediction errors of MCMC-based methods by varying iteration numbers in both sim-
ulation and real-life datasets. Figure 8 depicts such analysis on Spa-Multi-MCMC-K
approach. And we can determined 2,000–3,000 is the optimal range of the iterations.

7. CONCLUSIONS

This article proposes a novel framework for estimating multivariate predictive pro-
cess models that is designed to take into account mixed type response variables. It
integrates multivariate predictive process models with approximate Bayesian infer-
ence using iterative LA. The predictive model consists of a representative selection of
knot locations that projects the spatial process to a lower dimensional subspace. The
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approximation process provides more accurate and much faster inference for spatial
multivariate predictive models. Experimental results for synthetic and real datasets
conclusively demonstrated that our proposed non-Gaussian prediction model is capable
of achieving a much higher processing capability in terms of prediction accuracy and
computation time.
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