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ABSTRACT
One can infer from the broken window theory that the perception
of a city street’s safety level relies signi�cantly on the visual appear-
ance of the street. Previous works have addressed the feasibility of
using computer vision algorithms to classify urban scenes. Most
of the existing urban perception predictions focus on binary out-
comes such as safe or dangerous, wealthy or poor. However, binary
predictions are not representative and cannot provide informative
inferences such as the potential crime types in certain areas. In
this paper, we explore the connection between urban perception
and crime inferences. We propose a convolutional neural network
(CNN) - StreetNet to learn crime rankings from street view images.
The learning process is formulated on the basis of preference learn-
ing and label ranking settings. We design a street view images
retrieval algorithm to improve the representation of urban percep-
tion. A data-driven, spatiotemporal algorithm is proposed to �nd
unbiased label mappings between the street view images and the
crime ranking records. Extensive evaluations conducted on images
from di�erent cities and comparisons with baselines demonstrate
the e�ectiveness of our proposed method.
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1 INTRODUCTION
The broken window theory is a criminological theory of the norm-
setting and signaling e�ect of urban disorder and vandalism on
additional crime and anti-social behavior. The theory was �rst pro-
posed by James Wilson and George Kelling in The Atlantic Monthly
in March 1982 [42]; quotes: Consider a building with a few broken
windows. If the windows are not repaired, the tendency is for van-
dals to break a few more windows. Eventually, they may even break
into the building, and if it’s unoccupied, perhaps become squatters
or light �res inside. Similar to the rapid development of the idea
that social network’s justify the six degrees of separation theory
in sociology, the broken window theory in criminology may �nd
its endorsement in our era of big data. Previous studies on urban
crime analysis [22, 36, 37] have addressed signi�cant associations
between the locations of crime o�enses and the categories of the
o�enses. However, all those works neglect the impact of street view
images on urban safety perception problems.
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Figure 1: Spatial Distributions of Di�erent Categories of
Crime

With the advent of image-based crowdsourcing services such as
Flickr and Instagram, users can easily generate image data. Panoramic



image services such as Google Street View are also ubiquitously ac-
cessible from the Internet. Previous studies have presented spatial
correlations between crime levels and residences of o�enders due to
the fact that most o�enders prefer to commit illegal activities close
by, and o�enders will follow the same criminal patterns while they
are committing illegal activities. For example, a person with bur-
glary records is likely to commit burglary in the future [3]. Further
assumptions are made for our exploration that di�erent types of
crimes will a�ect the urban visual appearance in a variety of ways.
For instance, convenience stores located in suburban areas with
high robbery rates will be equipped with substantial barriers or
even bulletproof armor; a lot of gra�ti will be witnessed in places
with inadequate law enforcement. Figure 1 illustrates crime rate
heat maps for di�erent o�ense categories for both Washington D.
C. and New York City. Figure 1 also shows that di�erent areas of
the cities are represented by di�erent urban perceptions, and such
distinctions can be utilized to infer hidden crime rankings. This is
the main focus of our paper.

Learning crime rankings from urban perception or street view
images can be challenging. This poses the following three issues:
1) Features of images for crime ranking are not explicit. Rep-
resentations of urban appearances from street view images vary
substantially due to changes in camera direction and imaging and
lighting conditions. Previous studies [11, 43] in image classi�cation
extract features from clustered bag-of-visual-words (BOVW) meth-
ods, but the extracted features are not interpretable. 2) Prior ge-
ographical knowledge should be considered for street view
images retrieval. Learning hidden knowledge from street view
image datasets is di�erent from traditional image classi�cation
problems. The selection of camera directions signi�cantly a�ects
the prediction results. Optimal camera directions are ones that are
perpendicular to the streets’ direction because this direction can
minimize the noise introduced by recorded vehicles or pedestri-
ans. 3) Lack of labeled datasets. To learn crime rankings from
street view images, reasonable and unbiasedly labeled training
data is required. However, there are no existing labeled street
view image data available for crime ranking tasks. In addition,
the techniques of feature engineering request tedious labor, and
the human-annotated corpora are insu�cient for training practi-
cable models to identify crime rankings. 4) Insu�cient urban
perception study on multi-label analysis. Previous studies on
urban perceptions only focus on binary classi�cations of income
and safety levels for neighborhoods [16, 32, 33], which provide less
informative inspections than the multi-label learning for residents
and law enforcement agencies.

The methods proposed in this paper e�ectively address the above-
mentioned issues. The proposed convolutional neural network ex-
tracts hidden features from street view images, and we formulate
the crime rank learning problem under the preference learning
framework. Improving upon previous works on safety level predic-
tion [32], we demonstrate the feasibility of inferring crime ranking
knowledge from cities’ visual appearances.According to the pre-
vious assumption, we utilize spatiotemporal correlations between
street view images and criminal o�enses to construct crime ranking
labels. The major contributions of this paper can be summarized as
follows:

•Propose a convolutional neural network (CNN) based pref-
erence learning approach for crime ranking inference from
street view images: A convolutional neural network is proposed
and trained on street view images labeled with crime rankings from
multiple cities. We formulate the problem under the settings of
preference learning and label ranking.

•Develop a street view image retrieval algorithm with im-
proved abilities in representing actual urbanperceptions: An
e�cient street view image retrieval algorithm is designed and imple-
mented while generating the image datasets. The retrieved image
datasets provide better urban perception representations than the
previous datasets for those places. Such improvement assists our
model in achieving a better prediction performance.

•Design a data-driven spatiotemporal street view image
and crime ranking labeling strategy: A spatiotemporal based
street view images and criminal o�ense record mapping algorithm
is designed for labeling the images. The proposed labeling scheme
is more representative and e�cient than previous methods because
the process is unbiased and systematic.

•Extensive experiments andmake comparisons to validate
the e�ectiveness and e�ciency of the proposed techniques:
We compare our proposed convolutional neural network with var-
ious methods. Conventional methods for learning label rankings
are selected for comparisons. Evaluations of various metrics and
detailed case study analysis are presented illustrating the e�ective-
ness of the proposed method. Interesting discoveries for street view
images’ perception radius (in feet) are also presented and discussed.

The rest of our paper is structured as follows. Related works
are reviewed in section 2. In section 3, we describe the problem
setup of our work. In section 4, we present a detailed discussion of
our proposed methods for predicting potential crime rankings from
street view images. In section 5, extensive experiment evaluations
and comparisons are presented. In the last section, we discuss our
conclusion and directions for future work.

2 RELATEDWORKS
In this section, we provide a detailed review of the current state
of research for urban crime perception problem. There are sev-
eral threads of related work of this paper: urban perception from
street view imagery data, scene recognition and classi�cation, and
preference learning on multi-label learning.

Urban Perception. The earliest studies on urban perception [3,
4] indicate strong spatial coherence between the locations of illegal
o�enses and the residences of the o�enders; these studies con�rm
that o�enders who commit robberies, residential burglaries, thefts
from vehicles, and assaults are more likely to target their current
and former residential area than similar areas they never lived
in. Previous works [10, 13, 20, 40] addressed problems of regional
public safety and urban appearance perception. For example, corre-
lations between a high initial level of homicide and losses in total
population are observed [30] in suburban areas adjacent to a large
city like Chicago. However, without street view images under a city-
wide coverage, these previous works drew conclusions based on
experiments with small datasets (160 manually taken photographs),
which is insu�cient for mining latent patterns for the majority
of the urban appearances. In contrast, the method proposed in



this paper is trained on 44,694 street view images from two cities:
Washington, D.C., and New York City.

Recent branches of works in urban perception applied computer
vision and deep learning techniques to improve the resolution,
precision, and scale. Ordonez et al. [34] proposed a regression
model to predict the perceptual characteristics of places for wealth,
uniqueness, and safety. The proposed model utilized features such
as Gist, SIFT and Fisher Vectors. Such hand-craft features were
not representative enough for large street view datasets and were
outperformed by deep learning-based algorithms. Dubey et al. [12]
proposed a convolutional neural network to quantify the urban per-
ception along six perceptual attributes: safe, lively, boring, wealthy,
depressing and beautiful. Andersson et al. [1] proposed a novel
4-Cardinal Siamese convolutional neural network to predict urban
crime rates. However, this model applied four pre-trained VGG-16
architecture, which is not representative of the urban perception
tasks. Liu et al. [26] also proposed a convolutional neural network
for urban safety perception based on the crime dataset. Most of the
deep learning based urban perception methods for safety inference
focus on crime rate prediction and safety level comparison. Sub-
jective labels are inevitably introduced in the previous works as
most of the evaluations of the studies are performed by humans.
In this paper, we inspirationally address the correlations between
the urban appearance and the crime types. We also objectively
labeled and evaluated based on o�cial crime records as the golden
standard.

Scene Recognition and Classi�cation. Previous works have
demonstrated the feasibility of considering images of the appear-
ance of city streets as an indicator of hidden urban inferences such
as safety, wealth, and aesthetics [2, 14, 49]. Several previous works
have proposed computer vision techniques based on supervised
classi�cation algorithms such as SVM or convolutional neural net-
works (CNN) for predicting the safety level of a speci�c urban area.
Although the question, “Does this place look safe?" has been re-
solved, previously proposed works only consider binary classes of
safety levels or solving the safety index regression problem. Var-
ious research ideas on street view images have been proposed in
recent years. Zamir et al. [45, 46] proposed a street view image loca-
tion retrieval approach with SIFT vocabulary trees and generalized
minimum clique graphs. Similar research problems of recognizing
objects such as street numbers [17], storefronts [31], and other
object recognition [15, 44, 48] also were addressed recently. Other
works focusing on 3-D reconstruction and city modeling based on
street level imagery have been proposed [7, 29].

Preference Learning. Preference learning algorithm for rank-
ing was previously proposed in [19] for multi-label learning prob-
lems. Previous researchers utilized constraints derived from multi-
label instances to enforce that the ranking of relevant classes is
higher than the irrelevant ones. Based on the proposed preference
learning structure, further applications of multiple-object detection
and image tag ranking problems [23, 24] have been studied under
such a problem setting. Most of the previous works in multi-label
ranking applied the pairwise model [6]. However, the pairwise
model for learning label preferences often su�ers from the expen-
sive computation. We formulate crime preference learning using a
convolutional neural network. Such a design exploits convolutional

layer’s advantages for image feature extraction and deep neural
network’s learning ability for multi-label tasks.

3 PROBLEM STATEMENT
With machine learning algorithms on a huge street view image
dataset, it may be feasible for a human to perceive or inference the
types of criminal acts that are mostly likely to be committed to him
in a certain area.

Consider a setting where potential crime rankings are inferred
based on the given street view image in a certain area. We name
this procedure a perceptional crime rank inference.

In the problem setting, we are given a street view image space I
and a �nite set of crime labels C = {c1, c2, ..., ck }. The assumption
has been made that there is a hidden correlation between the phys-
ical appearances of the city areas and the crime rankings in those
areas. We denote the training dataset ofn inferences asDn ⊆ I×C.

The general goal is to learn a “crime ranker” in the form of a
I → SC mapping, where the output space SC is given by the set of
all permutations of the set of crimes C. Thus, label ranking can be
seen as a generalization of conventional classi�cation, a complete
ranking is associated with a street view image I :

cπ −1I (1)
�I cπ −1I (2)

�I ...�I cπ −1I (k )
(1)

where πI is a permutation of {c1, c2, ..., ck } such that π−1I (i) is
the position of crime ci i in the ranking associated with the given
street view I .

We formulate the problem of crime ranking from street view
images as a pointwise preference learning problem on di�erent
crime types. The goal is to learn a relevance score fi (I ) = reli
prediction function for each crime type ci from the street view
images, and a set of pairwise preferences of the form ci�I c j from
the training data Dn . Such an outcome suggests that for street
view image I , ci is preferred to c j . For each rank judgment on crime
pairs ci and c j , the goal is to estimate a function f ∈ I → R and
F = { f | fi (I ) > fj (I ) ⇔ ci�I c j ; (i , j)}, where fi represents a
prediction function for crime type i . To generalize the proposed
problem, we present the following:

f ∗ ∈ argmin
f ∈F

∑
Dn

R∗ (f ) + Ω (f ) (2)

where R∗(f ) corresponds to the empirical risk whose perfor-
mance is controlled by the selection of the loss function. A general
representation of the empirical loss is given by:

R∗(f ) =
1
|Dn |

∑
(I ,C)∈Dn

L(y, f (I )) (3)

To compare with the baseline algorithms, we discuss loss func-
tion selections for the conventional rank learning settings. The loss
function L(y, f (I )) in the empirical risk determines the descending
direction of the learning process. Note that y is the true relevance
score of an image I for a given crime type. Under the pairwise pref-
erence learning setting, various loss functions can be chosen. In this
paper, two loss functions are considered: 1) the logistic loss/cross
entropy loss and 2) the squared Hinge loss for the SVMs. Both loss
functions are smooth and convex. Consequentially, squared hinge
loss and logistic loss are formed respectively:



Lhinдe2 =
∑
Dn

max2(1 − ϕ(wT FI + b), 0) (4)

Ωl2 (f ) = λ‖w‖
2 (5)

In Equation 5, Ω(f ) is the regularization term for controlling
the complicity of the model. For the SVM classi�ers, only l2 norm
regularization is utilized, shown in Equation 5, where λ is the trade-
o� parameter controlling the complexity of the model.

4 METHODOLOGY
In this section, we discuss the design of the proposed convolutional
neural network and its training and solution processes. We also
provide detailed discussions of the direction-based, street view
image retrieval algorithm.

4.1 StreetNet
In conventional image classi�cation tasks, performance is greatly
dependent on feature selection. However, information loss is in-
evitably introduced to the classi�er with such feature extraction
mechanisms. In contrast, convolutional neural networks signi�-
cantly keep complete image information. We propose an convo-
lutional neural network - StreetNet for crime type inference from
street view images. The structure of the proposed network is pre-
sented in Figure 2. The �rst several layers of the neural network are
convolutional layers, and they can be considered as feature extrac-
tion operators on the images globally. The di�erence between our
convolutional neural network based rank learning and other point-
wise rank learning algorithms is that we can learn the relevance
score simultaneously for di�erent crime types. This advantage
is introduced by the structures of the fully connected layers and
output layer of our convolutional neural network.

4.1.1 Latent Features Extraction. Convolutional layers are im-
plemented for extracting latent features of street view images. A
Convolutional layer performs a convolution operation with a �lter
size of k × k on the output of its previous layer. The convolutional
layer is represented:

Inj = f
©«
Ln−1∑
i=1

In−1i ∗Wn
i j + b

n
j
ª®¬ (6)

where I is the image feature matrix, n represents the nth layer of
the convolutional neural network; W is the �attened �lter with a
size of k × k ; bnj is the bias of the feature �lter W; f is the speci�ed
activation function; and ∗ is the 2D convolution operation. The
max-pooling layer calculates the maximum activation on the areas
that are not overlapping with the �lter W. The max-pooling layer
down- samples the street view images by the size of the �lter.

4.1.2 Hidden Features Classification. Fully connected layers are
utilized for inferring relevance scores from the extracted latent
features. For each crime type, our goal is to learn a regression
of the relevance score for the given street view image. A linear
operation with weight matrix w and bias b is performed on the
output features of the last convolutional layer. The result of this
linear operation is fed into a recti�ed linear unit (ReLU ) activation
function. For each hidden node in the fully connected layer, ReLU

outputs an activation. In the last output layer, we sum the acti-
vations and multiply the sum of the activations by a vector of 1s.
While training, the root-means- squared-error (RMSE) is selected
as the loss function for the fully connected layers. The design of
our convolutional neural network is shown in Figure 2.

4.1.3 Parameter Optimization. Various selections of optimiza-
tion methods are available to optimize the empirical risk minimiza-
tion problem in convolutional neural networks. In our experiment,
we use AdaDelta [47], a variation of gradient descent, for optimizing
the neural network.

The AdaDelta on the other hand restricts the window of accu-
mulated past gradients to some �xed size w. This method reduces
the aggressively decreasing learning rate compared to the previous
methods. For representation simplicity, we de�ne: дt = ∇wR∗(w).
The updating expectation E[д2]t at time t depends on the previous
expectation and the current gradient:

E[д2]t = γE[д
2]t−1 + (1 − γ )дt 2 (7)

where γ is similar to the momentum term. In our settings, we
set γ to 0.9, and we set the learning rate η to 0.05. We can rewrite
the parameter update vector term:

∆wt = −
η√

E[д2]t + ϵ
дt (8)

where ϵ is a smoothing term that avoids division by zero. As the
denominator is just the root mean squared error criterion of the
gradient.

The RMS[∆w]t is approximated with the root mean squared
error of parameter updates until the previous time step. Then the
�nal AdaDelta updated rule is:

∆wt = −
RMS[∆w]t−1
RMS[д]t

дt (9)

wt+1 = wt + ∆wt (10)
By using the AdaDelta method, our model is less dependent on

the learning rate determination, since it is diminished from the
update rule.

4.2 Direction based Street View Retrieval
To reduce street view image noise introduced by recorded vehicles
or pedestrians, we select camera directions perpendicular to the
streets’ directions. The street view image retrieval process con-
siders urban roadway structures as geographical prior knowledge.
Under such consideration, the camera directions for the retrieved
street view images are always perpendicular to the direction of the
roadway. Compared to existing street view image datasets with
�xed compass directions (UCF Google Street View Dataset [46],
SUN dataset [35]), our dataset preserves a better representation of
the real urban perception. Such improvement can be quanti�ed
explicitly from the experiment results in the following section of
this paper.

Details of direction based street view retrieval are presented in
Figure 3, the red dots represent the crime point locations reported
from the crime record datasets; the arrows represent the directions;
and the dashed blue lines represent the roadway networks. This
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algorithm preserves the urban surroundings with better represen-
tations; most of the previous works did not consider the directions
of the street view images [38]. Directions that are perpendicular
to the roadway are calculated based on the topological structure
information of the target city. CycloMedia GlobalSpotter API1 takes
the directions as queries retrieving the street view images.

Based on the given topological structures of the target cities’
roadways, the structure can be represented by a shape�le2 or a
spatial database: Shp = {r1, r2, r3, ..., rn } where ri represents one
road in the target city. The procedure of identifying the directions
perpendicular to the roads is presented in Algorithm 1, where the
operations <Ps , ri>, proj(ri , Ps ), and perp(Pv , ri ) are spatial func-
tions. <Ps , ri> calculates the spatial distance between the sample
point Ps and the road ri ; the function proj(ri , Ps ) �nds the projec-
tion point of Ps on the road ri ; the function perp(Pv , ri ) returns the
directions that are perpendicular to the tangent line of the road ri
at the tangency location Pv [25].

4.3 Crime Rank Labeling
While calibrating ground truth street view images dataset with
crime rankings, we build spatiotemporal associations between o�-
cial crime records datasets of two cities and the street view images.
We utilize crime records datasets of Washington D. C. and New
York City. In the o�cial crime records datasets, key information
of a crime record such as reported time, o�ense type, and geolo-
cation speci�ed by latitude and longitude is provided. Street view
images with timestamps and geolocations are labeled with a lo-
calized crime density ranking. For a given street view image I tisi
with a timestamp ti and geolocation pair si = {lat, lon}, we de�ne

1https://globespotter.cyclomedia.com/us/
2http://doc.arcgis.com/en/arcgis-online/reference

Algorithm 1: Direction based Street View Retrieval

Rc : Crime Records;
Shp : Topological Structure of the Roadways;
Ps : Location of a Sampled Point;
Function Directions(shp, Ps )

for Ps ∈ Crime Ranдe : Rc do
Closest Distance : Dc ←∞;
for all ri ∈ Shp do

if <Ps , ri> < Dc then
Dc ← <Ps , ri> ; // update closest road

end
end
Pv ← proj(ri , Ps ) ; // project direction to road

end
direct ion1, direct ion2← perp(Pv , ri );
return direct ion1, direct ion2

for Ci ∈ Crime Records : Rc do
{Ps1 , Ps2 , ..., Psn } ← Gaussian(Ci .дeom, Std );
for Psi ∈ {Ps1 , Ps2 , ..., Psn } do

direct ion1, direct ion2← Directions(Shp, Psi );
Imд_Retr (direct ion1, direct ion2)

end
end

a time window τ and a radius r . The local crime set is de�ned:
C = {Ctc

sc |ti − τ < tc ≤ ti + τ and dist(Sc , Si ) ≤ r }, where Ctc
sc rep-

resents the crime record with a report time at tc and a location at sc ;
the function dist() returns the distance between two points. Then
the crime types are ranked based on the local crime density with
a descending order. The density for crime type k is calculated by:
Dk = |Ck |/|C|. The labeling process is presented in Figure 4. We
manipulate the radius parameter r and generate street view crime
ranking datasets under multiple levels of resolutions. The radius
selected are 1 thousand feet and 2 thousand feet, which generates
four datasets for two cities: DC-1k, DC-2k, NYC-1k, and NYC-2k.

5 EXPERIMENT
In this section, we present the experiment environment, dataset in-
troduction, evaluation metrics and comparison methods, extensive
experimental analysis, and discussions of case studies.

5.1 Experimental Environment and Datasets
The convolutional neural network model is implemented utilizing
both Ca�e and Keras frameworks respectively. All convolutional
neural network experiments were proceeded on a NVIDIA Tesla



Dataset Method nDCG@3 nDCG@5 nDCG@7 P@3 P@5 P@7 MAP

DC-1k

rSVM-HOG 0.6026 0.5620 0.6951 0.3421 0.6058 0.8549 0.4433
rSVM-SIFT 0.5882 0.6465 0.7098 0.3084 0.6752 0.9433 0.4880
RLS-HOG 0.5154 0.5312 0.6178 0.2865 0.5475 0.8322 0.4672
RLS-SIFT 0.6052 0.7054 0.7984 0.3612 0.7097 0.8579 0.5896
AlexNet 0.5598 0.5713 0.7823 0.4476 0.6884 0.8831 0.4568
VGGNet 0.6119 0.6546 0.6802 0.3782 0.6790 0.9217 0.5337

PlacesNet 0.6251 0.6619 0.7682 0.4146 0.6853 0.8964 0.6209
StreetNet 0.6809 0.7530 0.8210 0.4353 0.7079 0.9393 0.6340

NYC-1k

rSVM-HOG 0.6286 0.7051 0.8105 0.3315 0.6049 0.9213 0.4684
rSVM-SIFT 0.6569 0.8177 0.7290 0.3086 0.6639 0.8775 0.5181
RLS-HOG 0.4691 0.5138 0.6271 0.3822 0.6050 0.7849 0.4650
RLS-SIFT 0.6333 0.7114 0.7522 0.4071 0.6781 0.8797 0.5388
AlexNet 0.5092 0.6389 0.7256 0.4133 0.7233 0.8673 0.5376
VGGNet 0.6007 0.5873 0.7145 0.3997 0.6980 0.9103 0.6231

PlacesNet 0.6182 0.7378 0.7953 0.4586 0.7360 0.9353 0.6315
StreetNet 0.6793 0.7512 0.8226 0.4297 0.7438 0.9206 0.6245

DC-2k

rSVM-HOG 0.5469 0.5972 0.7356 0.3724 0.6294 0.7136 0.5006
rSVM-SIFT 0.3777 0.6093 0.6694 0.3469 0.5778 0.8483 0.5062
RLS-HOG 0.3940 0.4644 0.6376 0.3730 0.4956 0.7185 0.3624
RLS-SIFT 0.5511 0.6372 0.6856 0.3992 0.6730 0.8612 0.5493
AlexNet 0.5440 0.5891 0.6936 0.3522 0.6358 0.7983 0.498
VGGNet 0.5880 0.6780 0.7008 0.3208 0.5984 0.8439 0.5594

PlacesNet 0.6081 0.6300 0.7149 0.3722 0.7123 0.8280 0.5368
StreetNet 0.6116 0.6769 0.7583 0.3695 0.6728 0.9124 0.5637

NYC-2k

rSVM-HOG 0.6313 0.4937 0.7659 0.2797 0.4386 0.8337 0.4538
rSVM-SIFT 0.4390 0.5397 0.6922 0.2729 0.5947 0.7587 0.5195
RLS-HOG 0.4364 0.4139 0.6261 0.3359 0.5371 0.6932 0.4166
RLS-SIFT 0.5698 0.5725 0.6987 0.2745 0.6569 0.8947 0.5277
AlexNet 0.4793 0.5839 0.6704 0.3792 0.6002 0.8576 0.4796
VGGNet 0.5338 0.6193 0.7423 0.2860 0.5784 0.8233 0.5207

PlacesNet 0.6100 0.6455 0.7804 0.3557 0.6507 0.9204 0.5781
StreetNet 0.6139 0.6771 0.7602 0.3645 0.6718 0.9120 0.5516

Table 1: Crime Ranking Performance

Figure 4: Image Label Strategies

K20 GPU. For support vector machine and regression models, we
run the experiments on an Intel Core i7-4790 3.60GHz CPU with
32 GB memory. Standard libraries such as LibSVM and LibLINEAR
are utilized as baseline methods.

The experiments are conducted on street view datasets of two ma-
jor locations: Washington, D.C., and New York City. We trained our
proposed models on a set of 44,694 images for the physical appear-
ances for the street view, which is signi�cantly more images than

in previous works [18, 39]. The street view images for the Wash-
ington, D.C., area are obtained from the CycloMedia GlobalSpotter
API. The CycloMedia GlobalSpotter is an interactive web-based
application that provides access to CycloMedia’ s panoramic street
level images. The Atlas PanoramaRendering Service of the Cyclo-
Media GlobalSpotter API provides a controllable RESTful API for
requesting street view images. The retrieved street view images are
directed horizontally and vertically after being given geo-location
and a spatial reference index.

Street view images for New York City were extracted from the
Google Street View data set [46]. Total of 23,764 images are pro-
vided by the New York City Google Street View data set. There
are 5,941 unique location points contained in this data set, each
location consists of 4 directions, and each direction represents one
view. Each image from the data set is geo-tagged with latitude and
longitude. Note that the image quality of the New York City Google
Street View data set is lower than the Cyclomedia GlobalSpotter
generated street view data set, and the camera view compass direc-
tions for the New York City Street View dataset are �xed to 0◦, 90◦,
180◦, and 270◦. As we will show in the later sections, this camera
direction mismatch to the street direction shows its insu�ciency
in representing the actual street view.



Crime record datasets for Washington, D.C.,3 and New York
City4 are utilized for extracting the spatiotemporal correlations
between the street view images and the crime types. Nine types of
common crimes are considered as ranking labels: theft, theft from
auto, robbery, motor vehicle theft, burglary, assault with dangerous
weapon, sex abuse, homicide, and arson5. 36,484 cases of criminal
o�enses in Washington, D.C., and 102,327 cases in New York City
are collected.

5.2 Baseline Methods
We compare the proposed method to the two major branches of
methods in urban perception and scene recognition areas. Firstly,
we implement hand-craft feature extraction methods on traditional
supervised learning methods. These methods include ranking-SVM
with HOG features (rSVM-HOG), ranking-SVM with SIFT features
(rSVM-SIFT ), regularized least squares with HOG features (RLS-
HOG), and regularized least squares with SIFT features (RLS-SIFT ).
Note that we utilize RBF kernel while solving the ranking-SVM.
HOG [9] is a popular feature descriptor used in computer vision
and image processing for multiple purposes of learning tasks. In
our experiments, descriptor blocks with a size of 8 by 8 are utilized
for HOG feature generation. Using scale invariant feature trans-
form (SIFT) [27] as a key point extraction mechanism has become
increasingly popular in recent years. variousus previous works
have justi�ed its e�ectiveness [5, 28]. In this paper, SIFT key points
are extracted for each street view image to construct a bag of key
points; this method is referred to as the bag of words paradigm [8].
The other branch of baseline methods is deep regression networks
for urban perception problems. Baseline method of this branch
includes AlexNet [21], VGGNet [41], and the PlacesNet [49]. We
used the pre-trained models of the deep regression networks and
�ne-tuned all these baseline methods on our street view image
dataset separately.

5.3 Evaluation Metrics
The e�ectivenesses of the nDCG@k , Precision@k , and MAP are
analyzed for all the comparison methods and the proposed method.

5.3.1 nDCG@k. The �rst metric is normalized discounted cu-
mulative gain at top k (nDCG@k) to evaluate the accuracy of the
crime ranking produced by a given crime ranking prediction model.
nDCG@k was �rst de�ned as an information retrieval (IR) evalua-
tion metric to consider the degree of relevance in retrieved results.
The more relevant results retrieved at top positions in the rank
would accumulate higher score to the top k gain. This metric
is chosen because it is suited for crime rankings that have mul-
tiple levels of assessment. For a given ground truth crime rank
{c1, c2, ..., ck } and its prediction {ĉ1, ĉ2, ..., ˆck }, the relevance scores
{ ˆrel1, ˆrel2, ..., ˆrelk } of the prediction ranking are �rstly permutated
by the indexes of the ground truth; then nDCG@k is measured on
the permutation in the form of:

3http://data.octo.dc.gov/
4https://data.cityofnewyork.us/Public-Safety/Historical-New-York-City-Crime-
Data/hqhv-9zeg
5http://crimemap.dc.gov/CrimeDe�nitions.aspx

nDCG@k =
1
Z

k∑
i=1

2r eli − 1
loд(1 + i)

(11)

The term Z is a normalization factor derived from a perfect
ranking of top k articles so that it would yield a nDCG@k of 1.

5.3.2 Precision@k. Precision measures in (IR) consider the num-
ber of relevant documents among the top k documents. In our
evaluation, relevant crime types in the predicted crime ranking
refer to the crime types that are also presented in the ground truth
crime ranking at cutting o� point k . However, unlike nDCG@k , the
Precision@k measurement is incapable of capturing the order of in-
formation within the top k rankings. The Precision@k is measured
in the form of:

P@k =
|Predicted_Crimes@k ∩Ground_Truth_Crimes@k |

k

5.3.3 MAP. Mean average precision (MAP ) for a set of street
view images is the mean of the average precision scores for each
street view image. MAP has been shown to have especially good
discrimination and stability. The MAP of a given set of rankings is
calculated:

MAP =
1
|I |

|I |∑
j=1

1
k

k∑
i=1

Precision@i (12)

where I is the complete set of the street view images for valida-
tion.

5.4 Experimental Analysis
In this section, we demonstrate the results of the crime type predic-
tion from street view urban perceptions. Experimental evaluations
of our proposed methods and extensive comparisons to the baseline
methods are conducted.

5.4.1 Crime Ranking Prediction. As shown in Table 1, our pro-
posed StreetNet outperforms the baseline methods in general. Such
performance increase is even more signi�cant when the parameter
k is relatively small for both nDCG@k and precision@k. This result
also implies that the process of feature selection and extraction is
critical for image label ranking tasks, and the convolutional lay-
ers in the convolutional neural networks achieve better feature
extraction.

We compare the performance of our proposed convolutional
neural network and competing methods for crime ranking predic-
tion on di�erent datasets. We generate four datasets out of two
major cities, Washington, D.C., and New York City, with two levels
of street view perception radius: 1,000 feet and 2,000 feet.

Table 1 shows that crime ranking prediction performance gener-
ally decreases as the street view perception radius becomes larger.
For example, comparing theDC-1k andDC-2k datasets, the nDCG@k
score of the DC-1k is 4% greater than the score of DC-2k; for the
metric precision@k , the prediction results of the DC-1k also out-
perform the results of DC-2k by 2% in general; the MAP of the
DC-1k also exceed DC-2k by 6%. From the previous experimental
observations, we �nd that the increase of the precision@k metric
is not as signi�cant as the increase of the nDCG@k metric. This
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Figure 5: Street View Perception Radius Analysis

may be caused by the di�erent properties of the evaluation metrics:
nDCG@k considers ordering of the crime relevance scores, while
precision@k is calculated based on the number of crime intersected
with the true crime set.

From the crime type ranking prediction results, interesting per-
formance patterns can be observed. Firstly, for metrics nDCG@k
and Precision@k, when the ranking parameter k is relatively small
(k = 3 or k = 5), some of the hand-craft features based methods
can outperform the deep neural networks (AlexNet, VGG-16, and
PlacesNet) . On the other hand, when the ranking parameter k is
set to be relatively large (k = 7), the deep neural networks can
outperform the hand-craft features based methods. Secondly, the
PlacesNet achieves better performance than other baseline methods
when trained on the NYC-1k and NYC-2k datasets. This is because
the pre-trained PlacesNet model was trained on an imagery dataset
with higher diversity. While handling street view images on urban
perception task, the PlacesNet will converge faster.

5.4.2 Street View Perception Radius Analysis. Further analysis
of the correlations between the selection of the radius and the
evaluation metrics are studied. The results help us to learn, in an
empirical way, the best crime rank representation area (resolution)
of a given street view image. Such a �nding is highly practical in
the study of urban perception. For example, given a street view
image with geo-location, one is always interested in questions such
as: Can the street view represent the crime rank for the whole

city? Or can the street view only represent the crime rank for a
small neighborhood? What is the resolution? Figure 5 shows the
evaluation metrics results by varying the selections of the street
view perception radius. We �nd that for di�erent learning methods,
the optimal radius varies. For nDCG@5, our proposed convolutional
neural network outperforms other comparison methods, and the
optimal radius for our method locates at 1,200 feet; ranking-SVM
with SIFT features locates its optimal selection of radius at 900 feet
for the same metric. In order to achieve the best of precision@5,
our method locates the optimal radius selection at 1,500 feet; and
ranking-SVM at 1,000 feet.

5.4.3 Direction-based Street View Image Retrieval Analysis. As
proposed in the methodology section, the direction-based street
view image retrieval algorithm is applied for retrieving the street
views with higher- quality urban representation. The street view
image datasets DC-1k and DC-2k are retrieved by our algorithm;
on the other hand, the other two street view image datasets are
retrieved with �xed compass directions of 0◦, 90◦, 180◦, and 270◦.
As in Table 1, we �nd that the performances of our method on
the NYC-1k and NYC-2k datasets is not as stable. This result is
intuitive, because a tremendous amount of noise can be introduced
to street view images with camera directions not perpendicular
to the streets. For example, if the camera direction is always the
same as the street’s direction, the retrieved street view image will
always present the street surface or the sky. In other words, the
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Figure 6: Crime Type Inferences from Street Views

resulting street view images will not be representative enough for
the real street view; image content like the front of a store or the
appearance of a building will be neglected.

5.5 Case Studies Discussions
In this section, a number of interesting crime ranking prediction
patterns are observed discovered by the proposed convolutional
neural network. The top 5 crime types with the highest relevance
scores learned are listed for each input street view image in Fig-
ure 6. The corresponding relevance scores are also presented. From
Figure 6, we can �nd interesting correlations between urban ap-
pearance and the predicted crime rankings. For example, crime
types such as robbery and motor vehicle theft are more likely to be
inferred from the street views of downtown areas. Such �ndings
are presented in Figures 6(a), 6(b), and 6(f). On the other hand, from
the street view images of residential areas or suburbs, crime types
such as burglary and theft are more likely to be predicted by our
approach; the results are shown in Figures 6(c), 6(g), and 6(h). As
presented in Figure 1, the predicted crime ranking results for both
downtown areas and the suburbs �t the crime distributions in those
places. The consistency with o�cial crime records indicates the
feasibility of inferring crime rankings or other safety information
from street view images or other forms of urban perception.

In order to test the performance of our model, we manually
extract street view images from Google Maps, and selected areas

with no public crime records accessible. The results are shown in
Figures 6(d), 6(e), 6(i), and 6(j). Similar crime ranking prediction
patterns can be witnessed from these results. From these tests, we
show that our model is highly practical for application scenarios
such as 1) areas and cities with no easy access to public crime
records data and 2) end users traveling to an unfamiliar area with
no idea how safe it is.

6 CONCLUSION
This paper presents a novel convolutional neural network solu-
tion to the problem of inferring crime rankings from street view
images of an area. The convolutional neural network model is
designed based on the settings of a preference learning framework.
By taking road structure data as prior knowledge, the proposed
direction-based street view image retrieval method presents better
preservation of urban perceptions. By exploiting the spatiotempo-
ral correlations between the street view images and o�cial crime
records datasets, we generate labeled training data in a data-driven
way, which greatly reduces bias. Comparisons with previous im-
age feature extraction and ranking learning algorithms show that
the proposed convolutional neural network approach outperforms
the baseline methods in learning crime rankings from street view
images. Extensive experiments based on multiple street view im-
age datasets and crime records con�rm the feasibility of inferring



hidden knowledge such as crime ranking from urban perception
data.
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