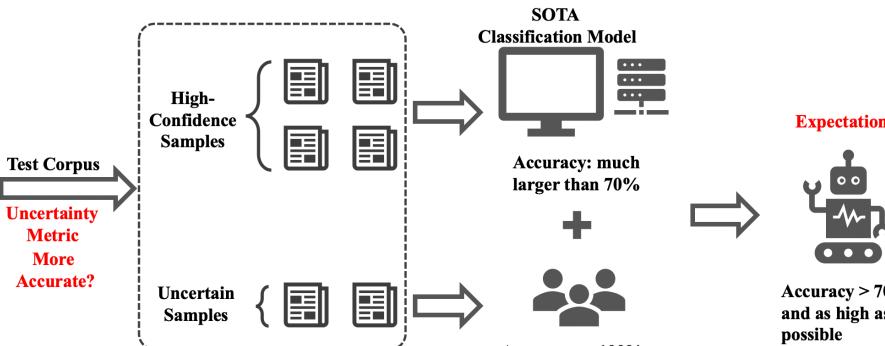
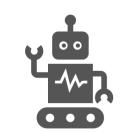
Wirginia Tech

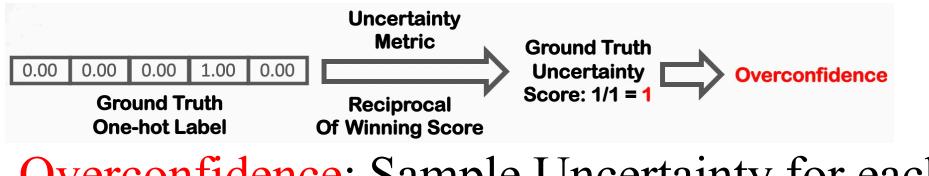

Towards More Accurate Uncertainty Estimation in Text Classification


Jianfeng He, Xuchao Zhang, Shuo Lei, Zhiqian Chen, Fanglan Chen, Abdulaziz Alhamadani, Bei Xiao, Chang-Tien Lu

Background & Problem Setting

-SOTA text-classification model does not meet higher expectation.

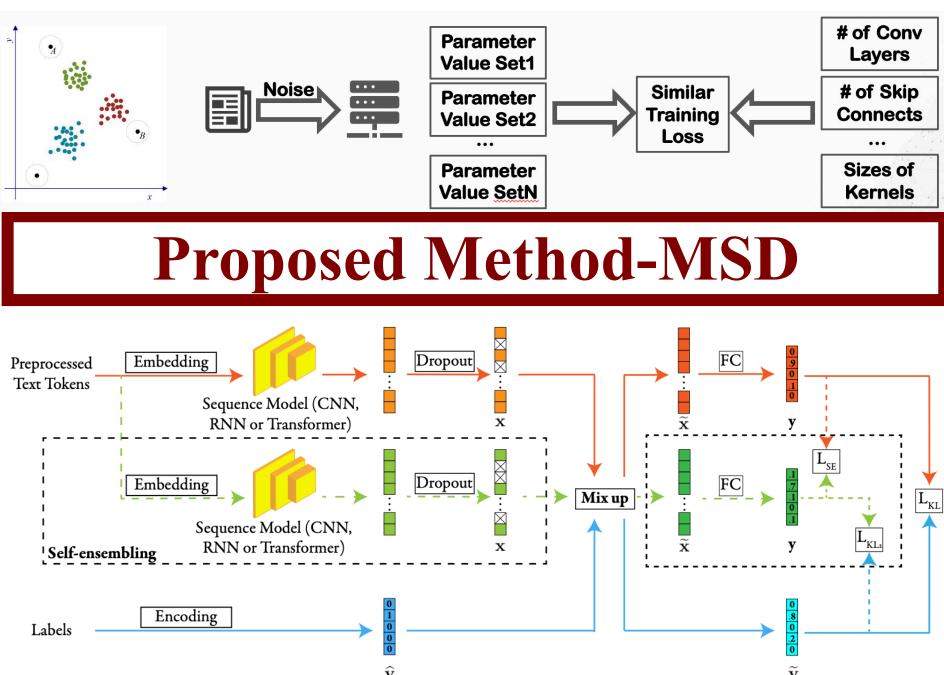
-We aim to measure uncertain scores and give the most uncertain samples to human experts.

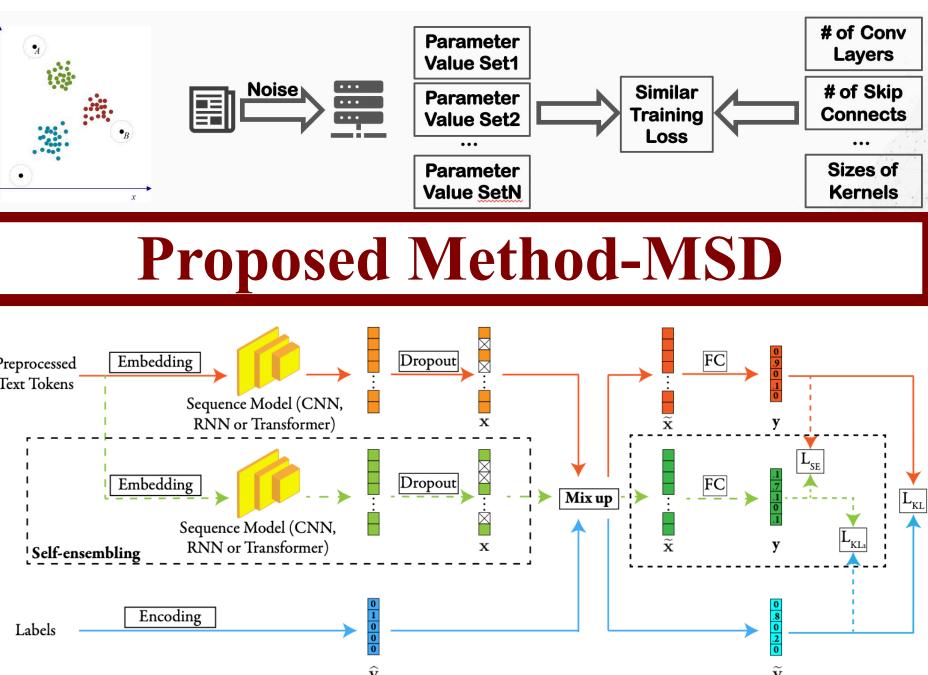


Accuracy > 70% and as high as possible

-Uncertainty Metric: Depending on the winning score directly or indirectly. -Winning score: Maximum probability in a semantic vector (softmax vector).

Motivation 1


-Reduce overconfidence in training samples



-Overconfidence: Sample Uncertainty for each training sample is same due to one-hot labels. -The negative correlation between the winning score and sample uncertainty cannot be guaranteed.

-Comprehensively estimate uncertainty

- Data Uncertainty
- > Epistemic: Lack of knowledge
- > Aleatoric: Noisy data
- Model Uncertainty
- > Parametric: Different feasible parameters Structure: Different feasible designs

-Mix-up: Different winning scores Reduce aleatoric Uncertainty & Overconfidence -<u>Self-ensembling</u>: Less feasible parameters **Reduce Parametric Uncertainty** -**Distinctive score**: A testing sample's distance to a training set's distribution Estimate Epistemic Uncertainty

Spatial Data Management Lab

SANGHANI CENTER FOR ARTIFICIAL INTELLIGENCE &

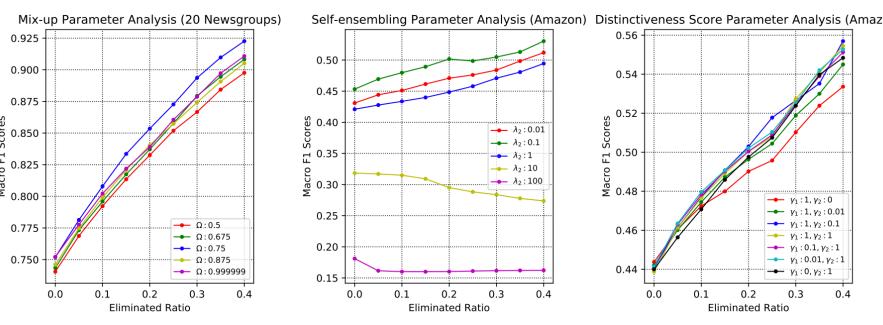

Motivation 2

Table 2: Accuracy of uncertainty scores shown by improvement of weighted F1 scores for the IMDb (CNN model)

Methods (Ω , λ_2 , γ_1 , γ_2)	Uncertainty Ratio (Weighted F1, Improved Ratio)					
	0%	10%	20%	30%	40%	
DE	0.880	0.913(3.75%)	0.939(6.70%)	0.957(8.75%)	0.970(10.22%)	
DE+Metric	0.884	0.918 (3.85%)	0.944 (6.79%)	0.961(8.71%)	0.974(10.18%)	
MSD1 (1, 0, 1, 0)	0.874	0.907(3.87%)	0.933(6.79%)	0.952(8.95%)	0.967(10.75%)	
MSD2 (1, 1, 1, 0)	0.883	0.918 (3.92%)	0.944 (6.82%)	0.961(8.85%)	0.976 (10.46%)	
MSD3 (1, 1, 1, 0.1)	0.882	0.918(4.04%)	0.943(6.88%)	0.962(9.08%)	0.974(10.49%)	

Table 6: Accuracy of uncertainty scores shown by improvement of macro F1 scores for the Amazon (XLnet)

Methods (Ω , λ_2 , γ_1 , γ_2)	Uncertainty Ratio (Macro F1, Improved Ratio)					
	0%	10%	20%	30%	40%	
DE	0.422	0.422(0.00%)	0.428(1.38%)	0.423(0.26%)	0.424(0.38%)	
DE+Metric	0.438	0.444(1.29%)	0.447(1.96%)	0.448(2.35%)	0.447(2.04%)	
MSD1 (1, 0, 1, 0)	0.426	0.442(3.85%)	0.446(4.80%)	0.452(6.14%)	0.439(3.22%)	
MSD2-a (1, 0.01, 1, 0)	0.415	0.436(5.03%)	0.440(6.06%)	0.434(4.46%)	0.422(1.56%)	
MSD2-b (1, 0, 1, 1)	0.424	0.451 (6.22%)	0.470 (10.87%)	0.486(14.89%)	0.501(17.99%)	
MSD3 (1, 0.01, 1, 1)	0.417	0.447(7.16%)	0.467(11.96%)	0.487(16.81%)	0.509(21.95%)	

Conclusions

- We propose a novel model, MSD, for more classification by boosting the correlation between winning scores and sample uncertainty and considering three kinds of uncertainty simultaneously.
- The MSD is effective in three common DNN including CNN, RNN and transformer.

EMNLP 2020

Results

accurate uncertainty score estimation of text