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Predicting the Hydrogen Release Ability of LiBH4-based Mixtures by
Ensemble Machine Learning

Abstract

The prediction of hydrogen release ability is indispensable to evaluating hydrogen storage performance

of LiBH4-based mixtures before experimentation. To achieve this goal, ensemble machine learning is em-

ployed to automatically infer the relationship between factors (i.e., sample preparation, mixing conditions

and operational variables) and target (H2 release amount), providing exceptional insight into hydrogen

release ability. Specifically, the importance ranking of major variables for the hydrogen release of LiBH4

has been proposed for the first time based on the constructed uni-component catalysts database. We

train our developed EoE model on 2,071 uni-component catalysts data and attempt to predict the hy-

drogen release amounts of LiBH4 doping with the unseen bi-component catalysts. The appealing results

demonstrate the effectiveness and robustness of EoE. The procedure established in this study presents a

novel approach for accelerating the research and development of hydrogen storage materials over various

catalysts.
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1. Introduction

The growing concern with the traditional energy crisis and pollution has gradually led to the replace-

ment of the conventional fossil fuel-based energy structure by renewable energy based structure. Over the

last two decades, studies on the renewable hydrogen fuel source, which has also been termed as “Ultimate

Power Source” in the 21st century, are rising like mushrooms [1, 2, 3, 4, 5, 6, 7, 8]. Just under this back-5

ground, tremendous efforts have been devoted to tuning the stable thermodynamics and sluggish kinetics

of LiBH4, which has the greatest chance to serve as on-board hydrogen storage alternative, because of

its high gravimetric and volumetric hydrogen densities of 18.5 wt.% and 121 kg H2/m3, respectively [9].

LiBH4 + MgH2 as a promising hydrogen storage system, has the ability to reversibly release and

uptake ∼ 5.0 wt.% H2 at 265 ◦C, which is the highest reversible H2 storage capacity ever reported for the10

LiBH4 + MgH2 system in solid-state [10]. This superior hydrogen storage capacity is achieved through

high-energy ball milling of MgH2 at ambient temperature along with aerosol spraying of LiBH4 dissolved

in tetrahydrofuran solution [11]. LiBH4 + NH2NH2 as another encouraging hydrogen storage materials,

is capable to release ∼ 13.0 wt.% H2 at temperature as low as 140 ◦C [12]. However, its application is

limited by the tough and complex re-hydrogration, due to the final dehydrogantion product of Li3BN215

and BN [13]. LiBH4 + Li2NH has been shown to hydrogenate at 37 ◦C under 50 bar of H2, which has

been attribute to the formation of a new phase between Li2NH and LiBH4 after ball milling for more than

24 h or heating to 147 ◦C [14]. It should be noted that 37 ◦C is the lowest operating temperature for

lithium amide/imide systems to date [14]. Another latest effort is through nanoconfinement of the CO2-

activated carbon aerogel; the dehydrogenation temperature from LiBH4 + Ca(BH4)2 has been reduced by20
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93 ◦C when compared with that of bulk LiBH4 + Ca(BH4)2 [15]. Furthermore, the apparent activation

energies has been decreased from 204 kJ/mol for the bulk to 130 kJ/mol for the nanoconfined mixtures

[15]. However, none of the hydrogen storage materials studied so far has met the performance targets

for on-board hydrogen storage system for light-duty fuel cell vehicles established by U.S. Department of

Energy, which demands the storage materials release ∼ 0.0065 kg H2/kg system with ∼1500 operation25

cycles life at the temperature of 45 ∼ 85 ◦C [16]. In order to hit the target, researchers [17, 18, 19]

have spent much time developing and synthesizing various catalysts to improve the hydrogen release

performance of LiBH4. However, whether the novel catalysts are worthy of in-depth investigation and

whether it is possible to meet the researchers’ expectation are difficult to predict. Therefore, effective

and efficient prediction on the hydrogen release ability before the experimentation is very necessary for30

boosting research of hydrogen storage materials.

As the data accumulates, many patterns are hidden in massive variables, and human can hardly han-

dle such a large amount of data. The modern machine learning tool allows the properties of materials

to be pre-estimated before evaluation in an actual laboratory experiment. High-throughput computa-

tional pre-estimation has become prevalent, enabling researchers to compute the properties of tens of35

thousands of materials. There is an increasing infrastructure of machine learning algorithms for tun-

ing computational models. Machine learning techniques are widely-recognized for handling complicated

problems of large combinatorial spaces or non-linearity, while conventional methods cannot solve within

a reasonable computational cost. Recently, machine learning is reported to have powerfulness and po-

tential in molecule and material modelling, such as searching for superior lithium ion conducting solids40

[20], predicting atomic-scale properties [21], rational computation-guided co-design [22], high-throughput

synthesis [23], and addressing challenges in molecular and materials research [24].

However, predicting the hydrogen release ability is still non-trivial due to several facts: (I) No clear

patterns have been discovered between material properties and its hydrogen release ability.

All the related material properties, such as its intrinsic nature and experimental environment configura-45

tion, are indispensable to determine the hydrogen release ability. Therefore, it is impossible to identify a

simple or analytical form between these properties and hydrogen release amount. (II) Manual selec-

tion among models and parameters is inevitable and tedious. To achieve the best performance

for the practical application of machine learning on predicting hydrogen release ability, one needs to fully

understand the characteristics of different models, and make a reasonable decision on parameters, accord-50

ing to different data scenarios, which is a time-consuming process. (III) Optimization on different

datasets for a single model is challenging. Each single machine learning model has its pros and

cons, depending on the data. Therefore, a single model can hardly handle all possible cases, even with

carefully parameter tuning.

In this paper, we study ensemble learning methodology for predicting the hydrogen release abil-55

ity, which integrates multiple machine learning models into one model to boost predictive performance,

markedly improving the error level and stability without manually tuning. Inspired by ensemble method-

ology, we ensemble a set of ensemble machine learning models, namely EoE (ensemble of an ensemble), to

further improve and robustify prediction performance. The contributions of this paper are summarized

as follows:60
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• The importance analysis is performed on the hydrogen storage properties of LiBH4 based on the

constructed uni-component catalysts database.

• The accuracy of prediction on the hydrogen release ability via EoE is compared with the main-

stream machine learning techniques.

• EoE is attempted to evaluate the hydrogen ability of LiBH4 doping with bi-component catalysts65

which are not included in the uni-component catalysts database.

2. Database Construction

H2 release data from light metal hydrides and complex hydrides published from 2003 to 2018 are

collected to establish the database. In the beginning, all the possible features that may be critical to

determine the desorption performance are obtained after reviewing more than 100 publications. During70

the re-examination, only the papers about the catalytic effects of different catalysts, which includes

graphene [25], Mg3La and TiCl3 [26], La2Mg17 [27], Ce2S3 [28], SrH2 [29], SrF2 [30], CaF2 [31], metal

oxides (V2O3, SnO2 or ZrO2) [32, 33], metal halides (TiCl3, TiF3, ZnF2, MgF2, MgCl2, CaCl2, SrCl2

or FeCl3) [34], carbon nanotubes [35], AlF3 [36], MnF2 and MnCl2 [37], SiO2 or TiF3 [38], MoS2 [39],

TiF3 [40], TiO2 [41], NbF5 [42], various oxides (Fe2O3, V2O5, Nb2O5, TiO2, SiO2) [43], metal (Mg,75

Al, Ti, V, Cr, or Sc) or metal hydride (MgH2, TiH2 or CaH2) [44], different types of carbon (graphite,

purified single-walled carbon nanotubes and activated carbon composites) [45], on the hydrogen release

from LiBH4 are selected.

In order to ensure the applicability of the model, we have already ruled out the rare catalysts with

special requirements, such as carbon-supported Pd nanoparticles [46], carbon-supported Pt nanoparticles,80

[47] graphene supported Pt nanoparticles [48] and Ru nanoparticles supported on multiwalled carbon

nanotubes [49], while constructing the database, even doping these unique catalysts would result in

promising results. It is also worth noting that, we only consider uni-component catalysts at first, the

composite catalysts (binary or ternary component catalysts) are susceptible to considerable uncertainties

because of unavoidable and/or unaccounted reactions between the catalysts themselves usually have a85

powerful impact on the catalytic effects of hydrogen release ability, which could jeopardize the accuracy of

the prediction. Therefore, our database is made up of the 2071 data points extracted from 32 publications,

the schematic diagram of the uni-component catalysts database for the hydrogen storage properties of

LiBH4 is shown in Figure 1.

The database is generated on the basis of 14 input variables, all of which are regarded as being90

either continuous (such as dehydrogenation temperature) or categorical (such as catalysts) according to

their characteristics. We have divided these data into three groups, sample preparation (catalysts, molar

ratio of LiBH4 to catalyst), mixing conditions (hand milling time, ball milling time, ball-to-materials

ratio, ball milling atmosphere) and operational variables (dehydrogenation temperature, heating rate,

dehydrogenation atmosphere, holding time, re-hydrogenation temperature, re-hydrogenation time, re-95

hydrogenation atmosphere and the corresponding cycles). The ranges of the corresponding input variables

are summarized in Table 1. Here, we should note that, the hydrogen release amount, m% H2
, serves as

the sole output (performance) variable in the modelling.
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3. Model

This section firstly introduces the basic process of machine learning and then presents the limitation100

of prevail linear models. Finally, details of ensemble learning are elaborated for predicting the hydrogen

release ability.

As expressed in Figure 2, our dataset is randomly divided into two sets, i.e., the training set and

testing set, with the ratio of 7:3. This random split is repeated 10 times, and we calculate the mean and

variance of the performance metrics, which is equivalent to cross-validation or N-fold split. Performance105

under 10-fold split has been listed in Figure S1. Noted the related metric definition will be introduced

at section 4.1. The testing set is for evaluating how precise the model can predict the hydrogen release

ability given properties, and therefore, the testing set is assumed to be invisible during the training

process [50, 51]. The machine learning model will run on the training dataset to derive latent patterns

between all the input variables and hydrogen release amount, and then the model will be evaluated on110

testing dataset. If the performance on the testing dataset is good enough, then we assume that it will

also have a good performance on any other unseen dataset.

Linear Models are widely recognized that they suffer from several shortcomings: (i) limited to linear

relationships between variable and target, (ii) only focus on the mean of the dependent variable about

the target, (iii) sensitive to outliers. Therefore, applying linear models on a non-linear dataset is insuffi-115

cient. To circumvent these issues and reveal non-linear patterns between variables and hydrogen release

ability, we propose to employ ensemble learning, which significantly outperforms traditional approaches

by integrating multiple machine learning models. Ensemble methods utilize multiple machine learning

algorithms to obtain better predictive performance than that of any of single algorithm. Ensemble learn-

ing consists of a set of learning models, and automatically learn the weights of each model to construct a120

robust ensemble. In practice, ensemble machine learning will have better predictive performance, espe-

cially when there is diversity among the models [52]. Figure 3 shows the schematic of ensemble machine

learning. Specifically, we apply several state-of-the-art models implemented by scikit-learn [53]:

• Decision Tree [54] is a decision-making tool that uses a binary tree and its possible combinatorial

results.125

• Random Forest [55] is a typical ensemble learning model that operates by building a set of decision

trees and yielding average prediction of a separate tree. Random decision forests is superior to

decision trees since it can solve the over-fitting issue, since random forests contain a number of

trees.

• AdaBoost [56] is an estimator that fits on the dataset and then fits extra copies of the regressor on the130

same data, but the weights of instances are adjusted according to current prediction performance.

As such, subsequent regressors focus more on tough cases.

• Bagging [57] is an ensemble fitting on random subsets of the original dataset, and then make a final

decision based on aggregated prediction. Bagging method is to used to robustify the original set of

models, by introducing randomness during the training process and then ensemble their predictions.135

• Extra Trees [58] implements a meta estimator that fits several random decision trees on different
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sub-samples of the dataset and utilizes the mean of trees to boost the predictive performance and

reduce the variance.

• Gradient Boosting Regression Tree (GBRT) considers extra models:

F (x) =
M∑

m=1

γmhm(x),

where hm(x) is the function called weak models, and γm is corresponding weight. GBRT also a

decision trees based method, which can handle data of mixed and complex patterns.140

• Histogram-based Gradient Boosting Regression Tree (Hist) [59] is much faster than Gradient Boost-

ing Regressor for big datasets. The input data is pre-processed into integer-valued bins, which

dramatically reduces the number of splitting points.

Inspired by ensemble learning, we ensemble the ensemble models above as 2-layer ensemble (i.e., an

ensemble of ensemble, or EoE model) to further improve the accuracy of the predictive model. With145

integrating a set of different machine learning models and obtaining the average predicted values, EoE

has been proved to be capable of automatically selecting the best constitute model and robustifying the

performance. In order to balance out their variances and therefore robustify the performance, various

ensemble models are employed to build the home-developed EoE learning (See Figure 3).

4. Results and Discussion150

4.1. Feature Dependence Analysis

Feature analysis is an important step in machine learning. In many applications, researchers hope to

gain insight by analyzing how a model can predict a target and what features it uses. Therefore, before

designing a predictive model, we perform importance analysis to obtain insight of contribution for each

variable. Generally, importance rating is a normalized score indicating how critical a feature is for the155

building of the model. A higher score for an attribute means higher relative importance. Specifically, the

state of the art tree-based models, i.e., Gradient-Boosted Regression Trees (GBRT), Decision tree, Ada

Decision Tree and Random Forest are all employed to extract the importance scores. When a variable

splits a node, the Gini impurity of the two descendent child nodes decreases compared with the parent

node. The total Gini decreases of all variables equal to the importance. Gini importance calculates each160

variable importance as the sum of the splits, proportional to the number of samples it splits. The partial

dependence plot shows if there exist a linear relationship between the target and a variable, allowing

variables to be compared in terms of importance. Based on the above-mentioned models, the importance

ranking of the top eight features are plotted in Figure 4.

Not surprisingly, dehydrogentaion temperature is the most important variable for the H2 desorption165

from LiBH4. As generally accepted, there are several elementary steps for the complete hydrogen release

of LiBH4 through the reaction 2LiBH4 2LiH + 2B + 3H2 [60]. Dehydrogenation mechanism differs

from different temperature range, together with different amounts of hydrogen release. Heating bulk

LiBH4 to 105 ∼ 112 ◦C, the structure would transform from orthorhombic, which is more stable at room

temperature, to hexagonal, accompanying with ∼ 0.1 wt.% H2 release at its first desorption peak. The170

following 0.5 ∼ 1.0 wt.% H2 release occurs with the melting of LiBH4 (275 ∼ 278 ◦C). The largest
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desorption with more than 9.0 wt.% H2 release happens at temperature ranges from 400 to 680 ◦C. The

last hydrogen desorption is the decomposition of LiH, requires temperature as high as ∼ 827 ◦C, and

thus is barely mentioned at all. Moreover, LiH cannot be rehydrided into LiBH4 until the temperature

is higher than 600 ◦C under 35 MPa of hydrogen. Therefore, LiBH4 would have become a qualified on-175

board storage alternative for hydrogen vehicles if the largest hydrogen desorption could happen at a lower

temperature, the very problem we need to face before the application of LiBH4, is the high-temperature

stability.

The thermal stability of LiBH4 is dependent to a considerable degree on the electronegativity of

the central Li atom [61]. Because of this, various catalysts have been tried to lower the dehydriding180

temperature by substituting Li atoms with the other metal atoms with higher electronegativity. Typically,

with doping TiCl3, the cation exchange reaction 3 LiBH4 + TiCl3 3 LiCl + Ti(BH4)3 has already

taken place during ball milling, and thus the Ti(BH4)3 product starts the hydrogen release at room

temperature through reaction Ti(BH4)3 TiH2 + 2.5B + 0.25B2H6 + 4.25H2 [34]. Similarly, the ball-

milled LiBH4 + TiF3 mixture has the ability to release 5.0 wt.% and 6.4 wt.% hydrogen at the temperature185

of 250 ◦C and 500 ◦C, respectively, according to the reaction 3LiBH4 + TiF3 3LiF + TiB2 + B +

6 H2 [40]. Metal oxides (MOx) have also been proved to be effective to reduce the dehydrogenation

temperature of LiBH4, as a result of the representative redox reaction such as LiBH4 + MOx

LiMOx + B + 2 H2 [43]. For example, the ball-milled LiBH4 + Fe2O3 mixture is shown to release 6.0

wt.% hydrogen at temperature ≤ 200◦C, and the onset temperature of dehydrogenation is ∼ 100 ◦C [43].190

According to the above mentioned discussions, it is reasonable to obtain the catalyst as the secondary

important factor for hydrogen release ability. Noted that this ranking is aggregated by summing effects

of all the uni-component catalysts over our database.

It is discovered that the initial dehydrogenation temperature of LiBH4 has reduced from ∼100 ◦C for

LiBH4 + 0.1 TiX3 (X=Cl or F) to room temperature (∼ 25 ◦C) for LiBH4 + 0.5 TiX3 [34], which means195

the amounts of the catalyst would definitely influence the hydrogen release ability. However, it should

also note that the decay of the hydrogen storage capacity of LiBH4 + 0.5 TiX3 mixtures during cycles

of dehydrogenation and re-hydrogenation are more serious than that of LiBH4 + 0.1 TiX3, because the

boron loss along with diborane emission is unrecoverable [34]. Furthermore, due to the higher hydrogen

density of LiBH4 when compared to the catalyst, the mass fraction of hydrogen release would be lower200

with doping more catalysts. Therefore, as an important factor, it is very essential to test out the optimum

doping amount of the corresponding catalyst, which could balance the reaction temperature and storage

reversibility.

Detailed studies [62, 63, 64, 65] on LiBH4-based reactive hydride composites have shown that the

hydrogen release reaction mechanism depends not only on temperature, but also on the dehydrogenation205

atmosphere. Taking the LiBH4 + YH3 composite for instance [65], the incubation period of dehydriding

reaction would be obviously shortened with the increasing hydrogen or argon back pressure from 0.4 to

0.7 MPa, which shows a great accelerating effect on hydrogen release rate. Only negligible amount of

hydrogen can be released under hydrogen pressure of 1.0 MPa but the hydrogen release amount under

argon pressure of 1.0 MPa, remains much the same [65]. The analyses of the dehydrogenation behaviors210

of the LiBH4 + MgH2 mixtures by in-situ XRD combined with pressure observation [62], indicates that

hydrogen release from LiBH4 would be suppressed at the beginning under hydrogen pressure of 5 bar,
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while simultaneous decomposition of LiBH4 and MgH2 could be observed under hydrogen pressure ≤ 3

bar. In addition, it is believed that the formation of Li2B12H12, which has been regarded as a “dead

end” of the dehydriding reaction of LiBH4, could be efficiently suppressed by increasing the gas back215

pressure [63]. Therefore, other than temperature, the dehydrogenation atmosphere (Ar and/or H2 gas

back pressure) also plays a decisive role for the decomposition pathways of LiBH4. According to Figure

4, the absolute scores of dehydrogenation atmosphere and molar ratio of LiBH4 to catalyst obtained from

different models are very close, as a result, they are tied as the third important variables for the hydrogen

release ability.220

The other two important variables are ball milling time and ball-to-materials ratio. The rate-limiting

step for reactions between solid reactants is very likely to be nucleation and growth of the products. For

example, the solid-state dehydrogenation of LiBH4 + MgH2 mixture at 265 ◦C is proved to be controlled

by the nucleation/growth of the LiH and MgB2 at the interfacial area between MgH2 and LiBH4 [66, 67].

In this case, longer ball milling time and greater ball-to-materials ratio could offer larger interfacial areas225

between the solid reactants by producing particles with finer size, which would expedite the hydrogen

release. Moreover, this would also help generate a finer and more uniform particle size system, which

should be very effective to avoid/reduce the gradual decay in the reversible hydrogen storage capacity

during cycles of dehydrogenation and re-hydrogenation, by reducing the tendency for a particular particle

to grow at the expense of other particles [68]. Therefore, it is safe to conclude that both ball milling time230

and ball-to-materials ratio contribute to the reactions kinetics of hydrogen release.

Heating rate, as the joint-last important feature, is used as a common input variable in related fields,

which has important effects on the hydrogen release temperature. The most notorious example is, the

slower heating rate, the lower hydrogen desorption peak temperature would be observed during DSC

measurements of LiBH4 + MgH2 mixture [67]. Thus, the optimum heating rate should be the fastest235

rate that within the instrumental sensitivity, which would also ensure enough time to complete the

reaction [69].

We have further evaluated correlations among all variables and found that there is little linearity

between any pair of variables. The relationship among the top 1-4 and top 5-8 important features (in

Figure 4) are illustrated respectively in Figure 5 and Figure 6 with 4 × 4 sub-figures respectively.240

Figure 5 and 6 are the kernel pairplots of variables based on training dataset, predicting the distribu-

tion of unseen data. The diagonal sub-figures show the distribution of variables where the x-axis defines

the range of the specific variable as indicated, while the y-axis reflects the distribution density of the

variable. Data points and lines with red, green and blue indicate high, middle and low levels of hydro-

gen release amount respectively. For instance, the first sub-figure in the first row of Figure 5 shows the245

distribution of dehydrogenation temperature, which can distinguish different hydrogen release amounts.

However, different levels of hydrogen release amount are almost overlapped for regarding any of the other

variables shown in the diagonal sub-figures of Figure 5 and 6, which means that they are not as significant

as dehydrogenation temperature in estimating hydrogen release amount. The second to fourth sub-figures

in first row of Figure 5 show dehydrogenation temperature (y-axis) as a function of dehydrogenation H2250

pressure, dehydrogenation air pressure, and heating rate (x-axis) respectively. Similarly, the y-axis and

x-axis of the sub-figures in other rows are marked clearly. For each non-diagonal sub-figure, we have

performed a linear model that is shown as lines throughout the data points. The shadowed areas indicate
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the locations with the highest probability for unseen data. As shown in Figure 5 and 6, linear model

does not fit the patterns properly in all non-diagonal sub-figures due to the non-linearity in the pair-wise255

relationship. Therefore, it is safe to conclude that, the relationship among the most important features

are beyond linearity and thereby, an accurate non-linear model is required. We have marked points red,

green and blue, which are employed to represent low, middle and high level of hydrogen release amounts,

respectively. Furthermore, in order to make this more persuasive, the complete relationship among top

1-8 important features is also attached in Figure S2 in the Supplementary Materials.260

4.2. Model Accuracy

To demonstrate the effectiveness of the proposed EoE, several competitive linear predictive models are

compared: Linear Regression, Ridge Regression and Lasso Regression. Multi-layer Perceptron (MLP)

regressor, as a typical neural networks, is also used as a strong baseline. In the experiments, we use

several metrics to evaluate error and correlation w.r.t. experimental data. Specifically, Mean Squared265

Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are used to calculate

errors, while R2 Explained Variance (EV), Spearman (SM) and Pearson (PS) are employed to measure

correlation level. Generally speaking, high error or low correlation means inferior performance. Detailed

interpretation of the metric can be found in the Supplementary Materials.

In the evaluation, MSE is selected as the major error metric, and R2 as major correlation metric. As270

shown in Table 2, LASSO models performed the worst, which has MSE of 6.158 and R2 score is 0.403.

MLP and the other linear models (Linear and Ridge) also achieve relatively high MSE (beyond 3) and

low R2 (below 0.7). While the ensemble models (i.e., Gradient Boosting, Decision Tree, Ada Decision

Tree, Bagging, Extra Tree, Random Forest and Histogram based Gradient Boosting) improve both MSE

and R2 of linear models significantly, achieving MSE of below 2 and R2 of beyond 0.8. These results275

imply that ensemble models generally accurately characterize the pattern between variables and target,

compared with MLP and linear models. EoE methods outperformed all the other baselines, and have

robust performance since it integrates all ensemble model. Specifically, EoE achieves the highest R2

score (0.888) and lowest MSE (1.144). This shows that EoE successfully integrates all sub-models and

implicitly selects the best model, yielding outstanding and robust prediction performance. Other error280

(MAE, RMSE) and correlation (Explained Variance(EV), Spearman (SM) and Pearson (PS)) metrics

also justify the advantage of EoE, showing that EoE is still the best model in prediction task on uni-

component catalyst dataset. Figure 7 visualizes error of each model, where each sub-figure shows the

relationship between experimental value (y axis) and predicted value obtained via different models (x

axis) mentioned in Table 2. Errors of ensemble models (in purple) concentrate around perfect prediction285

standard (y=x), compared with linear model and MLP (in blue). EoE (in yellow) improves ensemble

methods marginally by at most 0.68. The difference between predicted values and experimental results,

namely residues, of each model is visualized in Figure 8, where each sub-figure shows the relationship

between predicted value (x axis) and residue (y axis) obtained via different models. Linear models and

MLP have larger residues around y=0 than ensemble models and EoE, particularly in the region when290

predicted hydrogen release volume is large. This trend means that residue increases for linear models

and MLP as predicted hydrogen release volume increases. On the contrary, ensemble models and EoE

do not have such behaviour, performing stably on both large or small value. Note that MAE of EoE is
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not the best, since MAE treat large and small error with the same weight, but MSE/RMSE punish more

on large error.295

4.3. Application to Bi-component Catalyst Database

One interesting question should be raised here “how well the EoE model predict the hydrogen release

ability of LiBH4 doping with bi-component catalysts that are not included in our previous database?”

As mentioned previously, the specific database is only exclusive for uni-component catalysts. It is well

accepted that the activation energy of dehydriding reaction is effectively reduced by doping the uni-300

component catalyst (metal oxides, halides and hydrides), which has been reflected by the much lower

initial hydrogen release temperature when compared to that of prime LiBH4. However, the catalytic

effect of a uni-component catalyst is limited and in most of the cases, a uni-component catalyst shows

little effect on the reversibility of hydrogen release. As a result, many researchers have tried to add

bi-component catalysts into LiBH4, expecting that the other component would either further improve305

the catalytic effect of the hydrogen desorption, or catalyze the reverse hydrogen absorption.

Assume that the trained model would be able to extrapolate the catalytic effects of bi-component

catalysts on the hydrogen release from LiBH4 into a reasonable value of hydrogen release amount from

the catalytic performance of uni-component catalysts over the database. For this test, 236 data points

on the dehydrogenation properties of LiBH4 with doping different bi-component catalysts are collected310

to construct a typical database of “bi-component catalyst”. The 236 data points are also from the cited

32 papers but they are isolated from building the “uni-component catalyst” database. After training the

twelve models listed in Table 2 on uni-component catalyst database, this time the bi-component catalysts

database is selected to be the testing set to evaluate the corresponding models by calculating error and

residue level. It is worth noting that, two typical lines are employed to enable estimating the accuracy315

of models by visual inspection, data points present on the identity line (y=x) indicating the predicted

value is exactly equal to real experimental result, while best fit line shows a linear line learned from the

predicted data. Because the distance between the identity line and best fit line is much closer than that

of the other conventional models (not shown here) in comparison, we can conclude that the prediction

via EoE is the most reliable. Specifically, Figure 9 (a) presents that the prediction error for EoE achieves320

a high R2 of 0.834 w.r.t. identity line, which means the accuracy of EoE is 83.4%. Figure 9 (b) shows

the residues in training and test data distribution with a high R2 values of 0.889 and 0.834 w.r.t. with

zero residue line (y=0), respectively, which justifies that EoE is stable and not overfitting across different

datasets. These results demonstrate the developed EoE model is effective not only for the prediction of

hydrogen release ability of LiBH4 with uni-catalyst catalysts, but also for that of bi-component catalysts,325

motivating our further prediction on multi-component catalysts.

Before concluding, several examples of its application are given in details. It has been reported that

with the addition of AlF3, hydrogen release at the temperature ∼ 100 ◦C becomes possible due to the

reaction between LiBH4 and AlF3, such as 3 LiBH4 + 2AlF3 Li3AlF6 + Al + 3B + 6H2 [36]. Then

Li3AlF6 would react with LiBH4 with a hydrogen desorption peak temperature at ∼ 300 ◦C through330

Li3AlF6 + 3 LiBH4 6 LiF + Al + 3 B + 6 H2. However, the formation of LiF and B products from

these two elementary dehydriding reactions, could be regarded as “dead end” of the hydrogen release,

because the direct rehydrogenation of LiF and B are extremely difficult or even impossible under the

9



proposed experimental conditions (450 ◦C, 9.2 MPa, 24 h), as shown in Figure 10, the hydrogen release

of 3LiBH4 + AlF3 during the 2nd dehydrogenation is ∼ 0.5 wt.%. Yuan [36] believed that adding TiF3335

would improve the hydrogen re-adsorption of dehydrided products and thus modify the reversibility of

3LiBH4 + AlF3 system, just like the catalytic effect of Ti-base compound on the hydrogen release and

uptake of NaAlH4 [70, 71]. EoE is employed to predict the hydrogen release ability of 3LiBH4 + AlF3

+ 0.2TiF3 mixtures after training on the hydrogen release properties of LiBH4 + AlF3 and LiBH4 +

TiF3 mixtures under the same experimental conditions. Green dots in Figure 10 denote the predication340

of hydrogen release amounts w.r.t. temperature during the first dehydrogenation, while the blue dots

represent the prediction of the second dehydrogenation.

The Li2S + CeH3 mixtures is also included in the bi-component catalysts database. The existence of

Li2S is able to facilitate the cleavage of the ionic bond between B and H, and thus efficiently decrease the

required energy for the decomposition of LiBH4 [39]. Inspired by Shim’s research [63], Wang [28] tried to345

add CeH3 into LiBH4 + Li2S, anticipating that, CeH3 could serve as heterogeneous nucleation mediums

during dehydrogenation, just like CeB6, and thereby would definitely further prompt the dehydrogenation

kinetic of LiBH4. Similarly, the hydrogen release ability of LiBH4 + 10 wt.% Li2S + 10 wt.% CeH3

mixtures is also predicted via EoE, and the training set includes the hydrogen release performance of

LiBH4 + Li2S and LiBH4 + CeH3 mixtures. Blue dots in Figure 11 stand for the prediction of the350

hydrogen release amounts w.r.t. dehydrogenation time at 350 ◦C.

The lines connecting all these predicted dots are drawn by interpolation algorithm. As shown in Figure

10, with temperature increasing, the predicted amounts of hydrogen release (green line) and experiment

results (yellow triangles) during the first dehydrogenation show a similar tendency, while the predicted

values during the second dehydrogenation (blue line) is almost overlapped with experiment data (yellow355

rectangles). The results indicate that even though the dehydrogenation kinetics of 3LiBH4 + AlF3 has

been ameliorated by the addition of TiF3, the expected effect on the reversibility is limited, only ∼ 0.1

wt.% more hydrogen is released from 3LiBH4 + AlF3 + 0.2TiF3 mixtures than that from 3LiBH4 +

AlF3 mixtures during the second dehydrogenation [36]. Figure 11 exhibits that the foreseen hydrogen

release performance is almost exactly what happened in the experiment, confirming that, hydrogen release360

becomes faster with the introduction of CeH3 into LiBH4 + Li2S mixtures [28].

The results are attractive, which corroborates the practical application of our EoE for the main tar-

get of this study: accelerating the research and development of hydrogen storage materials over various

catalysts. Based on the analysis above, the developed EoE is able to make relatively accurate predictions

of the hydrogen release ability from LiBH4 doping with uni- and/or bi-component catalysts at a dis-365

cretionary ratio over the database within seconds. Theoretically, the prediction are more accurate with

more and more perfect relevant catalysts database. In fact, as the pre-experimental guide, the overall

relative residue for the prediction via EoE is completely acceptable. However, EoE is still a black-box

model which lacks of interpretability, and always predict with implicit reasons. We plan to design an

interpretable model that can extract meaningful and explicit rules for explaining the prediction behavior,370

in order to make the whole process more persuasive.

10



5. Conclusion

In this study, we have demonstrated, for the first time, the importance ranking of major variables in

the hydrogen release ability from LiBH4 is temperature > catalyst > atmosphere ≈ catalysts amount >

holding time > ball-milling time > heating rate ≈ ball to materials ratio via training Gradient Boosting375

Regression Trees, Random Forest, Ada Decision Tree and Decision Tree on the uni-component catalysts

database. We have developed a novel model termed as ensemble of ensemble machine learning (EoE)

to make a prediction of hydrogen release of LiBH4 over various catalysts before experimentation. For

the prediction on the uni-component catalysts doping, the home-developed EoE has achieved the low-

est error (MSE: 1.144) and highest correlation (R2: 0.888) among the main-stream machine learning380

models. We also illustrate the application of EoE by testing the model on 236 unseen data points of

the hydrogen release performance from LiBH4 doping with bi-component catalysts, after training on the

uni-component catalysts with 2,071 data points. The deviation between the predicted and experimental

results is reasonable, and does not entirely discount the study. Therefore, we consider the prediction

qualified for the pre-experimental guide. Furthermore, the prediction would be more accurate, with the385

growth of data in volume and dimensionality. To the best of our knowledge, this is the first time the

ensemble machine learning has been employed to predict the hydrogen release ability of LiBH4-based

hydrogen storage materials.

Moreover, the developed procedure is easily adaptable to predicting the hydrogen release ability of

other hydrogen storage materials. This will greatly accelerate the accelerating the research and devel-390

opment of hydrogen storage materials, achieve earlier and better the requirement for on-board hydrogen

storage system for light-duty fuel cell.
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Figure 1: The schematic diagram of uni-component catalysts database for the hydrogen release properties of LiBH4.

Figure 2: The operation flow-chart of normal machine learning.
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Figure 3: The schematic of home-developed ensemble of ensemble machine learning.

Figure 4: Relative importance ranking among variables with regards to the target (hydrogen release amount) obtained

from (a) Gradient Boosting Regression Trees; (b) Decision Tree; (c) Ada Decision Tree; (d) Random Forest.
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Figure 5: The correlations between top 1-4 variables. Red, green and blue dots indicate instances with low, middle and

high level of hydrogen release amount respectively. Red, green and blue lines are generated by linear regression model on

the corresponding dots with the same color.
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Figure 6: The correlations between top 5-8 variables. Red, green and blue dots indicate instances with low, middle and

high level of hydrogen release amount respectively. Red, green and blue lines are generated by linear regression model on

the corresponding dots with the same color.
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Figure 7: Error comparison of training on uni-component catalysts database for m%H2 . Each sub-figure shows the

relationship between experimental results (y axis) and predicted values obtained via the corresponding models (x axis).

Perfect prediction line (y=x) is shown for comparison.

Figure 8: Residue (difference between predicted values and experimental results) comparison of training on uni-component

catalysts database form%H2 . Each sub-figure shows the relationship between residues (y axis) and predicted values obtained

via the corresponding models (x axis). Zero residue line (y=0) is shown for comparison.
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(a)

(b)

Figure 9: The prediction Error (a) and Residuals (b) for the hydrogen release amount from LiBH4 doping with bi-

component catalysts via EoE.

23



Figure 10: Curves of the first and second dehydrogenation for the 3LiBH4 + AlF3 and 3LiBH4 + AlF3 + 0.2TiF3

composites, respectively (hydrogenation conditions: 450 ◦C, 9.2 MPa, 24 h).
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Figure 11: Hydrogen desorption curves of the pristine LiBH4, LiBH4 + 20 wt.% Li2S, LiBH4 + 10 wt.% CeH3 and LiBH4

+ 10 wt.% Li2S + 10 wt.% CeH3 mixtures at 350 ◦C.
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Tables and Figures560

Table 1: Input variables and their ranges.

Variable Range Variable Range

Catalysts
have been listed in

Dehydrogenation Atmosphere /bar
0.00001∼ 1.5 for Ar

Database Construction 0.0001∼ 1.2 for H2

Molar Ratio of LiBH4 to Catalyst 1:4 ∼ 100 : 1 Dehydrogenation Temperature /◦C 50 ∼ 600

Hand Milling Time/minutes 0 ∼ 5 Dehydrogenation Time /hours 0.014∼ 300

Ball Milling Time/hours 0 ∼ 24 Rehydrogenation Temperature /◦C 450∼ 600

Ball Milling H2 Atomosphere /bar 0 ∼ 40 Rehydrogenation H2 Pressure /bar 80∼ 100

Ball-to-Materials Ratio 0 ∼ 180 : 1 Rehydrogenation Time /hours 3 ∼ 25

Heating Rate /◦C/minute 0 ∼ 15 Cycles 1 ∼ 5

Table 2: Predictive performance comparison in terms of MSE, RMESE, EV, R2, PS and SM correlation. The best two

for each metric are marked in bold.

Linear Ridge Lasso MLP GBRT Decision Tree

MSE 3.878±0.235 3.868±0.229 6.158±0.441 3.281±0.633 1.363±0.183 1.826±0.396

RMSE 1.968±0.06 1.966±0.058 2.48±0.09 1.804±0.17 1.165±0.079 1.343±0.15

EV 0.624±0.017 0.625±0.017 0.403±0.029 0.699±0.031 0.868±0.015 0.822±0.039

MAE 1.491±0.039 1.491±0.037 1.97±0.059 1.322±0.167 0.751±0.034 0.657±0.075

R2 0.622±0.017 0.623±0.017 0.401±0.028 0.681±0.057 0.868±0.015 0.822±0.039

PS 0.791±0.01 0.792±0.01 0.636±0.023 0.838±0.019 0.934±0.009 0.91±0.02

SM 0.839±0.007 0.842±0.008 0.669±0.021 0.863±0.012 0.936±0.006 0.925±0.013

Ada Decision Bagging Extra Trees RF Hist EoE

MSE 1.568±0.312 1.302±0.211 1.24±0.221 1.161±0.171 1.174±0.127 1.144±0.188

RMSE 1.246±0.126 1.138±0.091 1.109±0.098 1.075±0.08 1.082±0.059 1.066±0.087

EV 0.847±0.032 0.873±0.023 0.88±0.021 0.887±0.018 0.886±0.013 0.889±0.019

MAE 0.629±0.049 0.611±0.038 0.535±0.032 0.576±0.028 0.675±0.029 0.601±0.032

R2 0.847±0.033 0.873±0.023 0.879±0.021 0.887±0.019 0.885±0.013 0.888±0.019

PS 0.922±0.016 0.935±0.012 0.939±0.01 0.942±0.01 0.942±0.007 0.944±0.01

SM 0.936±0.008 0.942±0.007 0.95±0.005 0.948±0.005 0.944±0.006 0.949±0.006
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