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Environmental sensors are essential for tracking weather conditions and

changing trends, thus preventing adverse effects on species and

environment. Missing values are inevitable in sensor recordings due to

equipment malfunctions and measurement errors. Recent representation

learning methods attempt to reconstruct missing values by capturing the

temporal dependencies of sensor signals as handling time series data.

However, existing approaches fall short of simultaneously capturing spatio-

temporal dependencies in the network and fail to explicitly model sensor

relations in a data-driven manner. In this work, we propose a novel Adaptive

Graph Convolutional Imputation Network for missing value imputation in

environmental sensor networks. A bidirectional graph convolutional gated

recurrent unit module is introduced to extract spatio-temporal features

which takes full advantage of the available observations from the target

sensor and its neighboring sensors to recover the missing values. In

addition, we design an adaptive graph learning layer that learns a sensor

network topology in an end-to-end framework, in which no prior network

information is needed for capturing spatial dependencies. Extensive

experiments on three real-world environmental sensor datasets (solar

radiation, air quality, relative humidity) in both in-sample and out-of-sample

settings demonstrate the superior performance of the proposed framework for

completing missing values in the environmental sensor network, which could

potentially support environmental monitoring and assessment.
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1 Introduction

Environmental monitoring is essential for understanding our

ecosystem and further preventing adverse effects on species and

environment (Lanzolla and Spadavecchia, 2021). Wireless sensor

networks (WSNs) facilitate innovative and pervasive environ-

mental monitoring by providing a lot of significant benefits such

as access to real time weather data, long-term monitoring, and

broad area coverage (Ibrahim et al., 2021). Environmental sensor

networks usually consist of a great number of distributed devices

in different domains, and their usage has allowed for a variety of

applications, such as urban noise control (Luo et al., 2020), plant

health status monitoring (Di Nisio et al., 2020), coastal dune

system study (Domínguez-Brito et al., 2020), and so forth.

Missing values widely exist in environmental sensor

recordings due to many reasons, such as the malfunction of

the devices, errors in signal transmission, power run out, and

accidental manual system closure (Choi et al., 2021). These

missing values in sensor signals can lead to several problems

in the data processing and have a negative impact on sensor data

analysis and data mining if they are not handled properly

(Gruenwald et al., 2007). To deal with missing values, the

most intuitive way is to remove all incomplete data samples

and continue the analysis merely with the complete ones.

Although this strategy efficiently simplifies the problem, lower

sample size potentially leads to biased results and reduced study

power, especially when the missing ratio of the dataset is large. In

this context, developing more advanced methods to accurately

impute the missing values is of great need and significance.

During the last decade, a series of deep learning techniques

(LeCun et al., 2015; Schmidhuber, 2015; Goodfellow et al., 2016)

have been explored in the imputation problem (Yoon et al.,

2018b; Cao et al., 2018; Liu et al., 2019). The majority of this line

of research adopts temporal imputation approaches which

merely rely on temporal relations to complete the missing

values of the time series. Specifically, the researchers leveraged

past and future values near a missing point or block to

reconstruct the missing parts in a dataset. As limited

modifications on standard sequence models, these methods

completely ignore valuable relational information between

time series sequences (Chung et al., 2014; Vaswani et al.,

2017; Bai et al., 2018).

More recently, a few approaches (Spinelli et al., 2020; Cini

et al., 2021) incorporated graph structure to capture the spatial

dependencies between signal sequences and leveraged the

observations of neighboring sequences for missing value

completion. These methods achieved considerable

improvement on the imputation accuracy. The existing

models completely rely on a predefined graph to capture

shared patterns between signal sequences. However, the static

graphs obtained in the heuristics manner are inherently

corrupted, incomplete, and not adaptable to different sensor

networks. Hence, how to generate a graph that fully captures

the relation information and adaptively adjust to different

environmental sensor networks is the research problem we are

exploring in this work.

The limitations of existing methods dealing with missing

value imputation can be summarized as follows. 1) Insufficient

consideration of spatial dependencies. Most of the existing

approaches built imputation models operating independently

on the available data of each individual sensor, while the

relation information and available observations of neighboring

sensors are not fully leveraged. 2) Noisy and incomplete graph in

the initialization. Themajority of existing approaches generated a

static graph based on a predefined distance operator. Graphs

constructed using geographic distances can not fully capture the

accurate relations thus hinder the model performance. 3) Fail to

adaptively learn the graph structure. Few approaches that model

spatial dependencies via graphs are primarily based on a

predefined static graph, which can neither capture the

dynamics nor generalize well to different sensor networks.

Motivated by these limitations, we propose a novel deep

learning framework, called Adaptive Graph Convolutional

Imputation Network (AGCIN), to simultaneously model the

spatial and temporal dependencies for accurate and efficient

missing value imputation in environmental sensor networks.

To obtain a good initialization of the graph adjacency matrix,

Canberra similarity function is performed on the incomplete

dataset to capture the generic functional dependency between

sensors in the latent space. The learned node embeddings

obtained from the adaptive graph learning layer are

incorporated with a global graph learning layer to generate

the graph that captures the spatial dependencies between the

environmental sensors in the network. Furthermore, we combine

adaptive graph convolution with bidirectional recurrent

networks and propose a new imputation framework, AGCIN,

to model spatio-temporal dependencies in the sensor data

recovery task. The major contributions of this work are as

follows:

• Propose a novel and practical framework that exploits

graph structure learning to solve the sensor data

recovery problem. The proposed framework integrates

adaptive graph convolution with bidirectional gated

recurrent unit (GRU) network to capture spatio-

temporal dependencies for imputing missing values.

• Design a strategy to generate an initial graph and learn a

global adjacency matrix of the sensor network. This

technique relies on node feature similarity and

efficiently infers the posterior of the graph structure,

even the geographic location information of the sensors

is not available. The global adjacency matrix is obtained by

masking the initialized graph with a learned matrix.

• Adaptively construct the graph that captures the spatial

relations in the sensor network. We infer the underlying

spatial dependencies that best fit the sensor data via
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learning node embeddings instead of conducting

imputation with a predefined static graph in the

imputation task. The corresponding edge weights in the

adjacency matrix are optimized in the proposed end-to-

end framework.

• Conduct extensive experiments on three real-world

environmental sensor datasets. The proposed framework

is evaluated on three environmental sensor networks with

different data missing ratios. The proposed AGCIN

outperforms state-of-the-art models in both in-sample

and out-of-sample settings. Ablation study further

demonstrates the effectiveness of different designed

modules on improving imputation performance.

The remainder of the paper is organized as follows. Section 2

reviews the literature on missing value imputation, especially in

the context of deep learning techniques and the emergence of

graph neural networks. Section 3 describes the preliminary

concept and problem formulation, and is followed by a

detailed introduction of AGCIN in Section 4. The empirical

evaluations are presented in Section 5. Finally, Section 6

concludes the work.

2 Related work

A large literature exists on the topic of missing value

imputation, and most of the approaches are based on

standard time series forecasting methods and similarity

operators. A basic method is the mean approach which

intuitively replaces the missing points with the average of the

observed values. K-nearest neighbors (KNN) has also been

widely implemented to impute missing values in a sensor

network (Troyanskaya et al., 2001; Beretta and Santaniello,

2016), in which the missing parts of a certain sensor is filled

by averaging or weighting the values of its closest k neighbors.

Other popular alternatives include the expectation-maximization

(EM) algorithm (Ghahramani and Jordan, 1993; Nelwamondo

et al., 2007), linear methods (Yi et al., 2016), state-space models

(Durbin and Koopman, 2012; Walter et al., 2013), ensemble

learning methods (Stekhoven and Bühlmann, 2012; Ding et al.,

2019), and low-rank approximation methods (Cichocki and

Phan, 2009; Cai et al., 2010; Rao et al., 2015; Yu et al., 2016;

Mei et al., 2017).

Recently, deep learning techniques have dominated a

relevant task, time series forecasting, due to its superior power

to learn complex dependencies in an end-to-end manner. More

deep neural networks emerge in the topic of time series

imputation. Among them, deep autoregressive methods and

recurrent neural networks (RNNs) achieve success in regards

to its exceptional power to model sequential data (Lipton et al.,

2016; Yoon et al., 2018b; Cao et al., 2018; Che et al., 2018; Luo

et al., 2018). Che et al. (2018) proposed GRU-D which designed a

decay mechanism of the hidden states of GRU to process

sequences with missing data. BRITS (Cao et al., 2018), similar

to a bidirectional structure of GRU-D, was designed for

multivariate time series imputation, in which the correlation

among different channels was taken into consideration. Inspired

by the idea that missing parts can be imputed by sampling from

the distribution of available data, deep latent variable approaches

are explored in the imputation task (Rezende et al., 2014; Ma

et al., 2018a; Ma et al., 2018b; Mattei and Frellsen, 2018; Mattei

and Frellsen, 2019; Nazabal et al., 2020). Specifically, Rezende

et al. (2014) estimated the conditional distribution of missing

values based on the observed distribution. Then, sampling is

conducted by a Markov chain to perform data denoising and

imputation. Mattei and Frellsen (2018) extended the approach by

improving the sampling strategy with Metropolis-within-Gibbs

sampling. The weaknesses of these methods are that the

researchers assume missing data patterns are missing-at-

random (MAR) and the entire dataset is available (Rubin,

1976). To handle the presence of missing values, other deep

latent variable models are proposed, including p-VAE (Ma et al.,

2018a; Ma et al., 2018b) that incorporated a permutation

invariant encoder and VAE lower bound, MIWAE (Mattei

and Frellsen, 2019) that extended the importance-weighted

autoencoder lower bound (Burda et al., 2015), and HI-VAE

(Nazabal et al., 2020) that leveraged an extension of the

variational autoencoder lower bound. Above deep latent

variable models are based on strong assumptions of certain

data missingness patterns. However, the assumptions are too

strong to be fitted in real-world scenarios.

More recently, adversarial training strategy has been

incorporated to generate realistic reconstructed times series

(Yoon et al., 2018a; Luo et al., 2018; Luo et al., 2019; Richardson

et al., 2020;Miao et al., 2021; Qin et al., 2021). Specifically, Yoon et al.

(2018a) proposed GAIN to performmissing value imputation in the

i.i.d. settings under a generative adversarial network (GAN)

(Goodfellow et al., 2014). Different from the prior research, Luo

et al. (2018), (2019) designed deep generative models to generate

realistic synthetic sequences to replace the missing values. Along the

same line of research, Richardson et al. (2020) developed a training

strategy to train a normalizing flow and a deterministic inference

network simultaneously formissing data completion. Although such

an inference network can generate deterministic inferences along

with the distributions learned by a normalizing flow, it fails to

stochastically sample from the conditional distributions given by the

flow. Miao et al. (2021) proposed a conditional generator on

predicted labels for the target time series. These aforementioned

methods primarily rely on modifications of standard neural

architectures tailored for modeling temporal dependencies, while

relational information between time series has not been explored. To

capture the complex spatio-temporal patterns in traffic data

imputation, Qin et al. (2021) designed a temporal graph

convolutional variational autoencoder, which introduced a self-

interested coalitional learning (SCL) strategy by leveraging the
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cooperation and competition with an additional discriminator. Due

to its strong dependence on the temporal characteristics of the

dataset, this approach is merely designed for the data imputation

under intermittent missing pattern setting but not for the persistent

missing pattern setting.

With their advantages to model spatial dependencies, graph

neural networks (GNNs) have achieved great success in spatio-

temporal forecasting (Li et al., 2017; Yu et al., 2017; Seo et al.,

2018; Zhang et al., 2018; Cai et al., 2020). Most of the methods

modified standard RNNs by incorporating graph convolutional

layers. Seo et al. (2018) proposed a type of GRU cell, in which

both update and reset gates are updated by GNNs in the spectral

domain (Defferrard et al., 2016). Li et al. (2017) developed a

similar framework which utilized a diffusion convolution

operator (Atwood and Towsley, 2016) instead of spectral

GNNs. Some other approaches (Yu et al., 2017; Wu et al.,

2019, 2020) explored the switching convolutions on spatial

and temporal dimensions. Attention-based spatio-temporal

prediction methods (Vaswani et al., 2017; Zhang et al., 2018;

Cai et al., 2020) enabled the models to automatically focus on the

most relevant parts in the sequence data thus enhancing the

predictive performance. Recently, graph structure learning

models (Kipf et al., 2018; Wu et al., 2020; Shang et al., 2021)

that attract the research attention in spatio-temporal forecasting

problems, along with the relevant problem of evolving graph

topology (Zambon et al., 2019; Paassen et al., 2020), provide a

data-driven approach to improve the quality of graph and learn

informative node representations.

Surprisingly, GNNs are not fully explored in the missing

value imputation problem. Among the few that use graphs to

capture the spatial dependencies, Spinelli et al. (2020) proposed

an adversarial approach to train GNNs for imputing missing

data, and You et al. (2020) developed a bipartite graph

representation learning network for node feature completion.

Kuppannagari et al. (2021) proposed a graph-based denoising

autoencoder for spatio-temporal data coming from smart grids

with known topology. With the consideration of relational

aspects in the imputation task, Cini et al. (2021) designed a

graph recurrent imputation network for reconstructing missing

values in generic multivariate time series. However, we argue that

none of the aforementioned approaches take full advantage of

flexible graph structure learning since they merely rely on a

predefined graph to model the spatial dependencies. The primary

goal of this work is to explore the feasibility of an adaptive graph

learning strategy that generalizes to varied sensor networks to

enhance missing data inference and imputation.

3 Problem formulation

This paper aims to propose a framework to reconstruct missing

values in the environmental sensor networks. The related concept

and problem formulation are presented in this section.

3.1 Sensor network

The topological structure of a sensor network is modeled as a

weighted, undirected graph Gt with the fixed number of N nodes

at each time step t. A graph is composed of node features Xt and

adjacency matrix At, where Xt ∈ RN×d presents the node feature

matrix, and entry ai,jt of the adjacency matrix At ∈ RN×N denotes

the scalar weight of the edge between a pair of nodes i and j. As we

focus on graph structure learning in this work, we assume the

topology of the graph is refined by time step during model

training, i.e., at each time step, At ≠ At−1.

3.2 Sensor data recovery

To model the data missing patterns, we define a binary mask

Mt ∈ {0,1}N×c where each row mi
t denotes the missingness

condition of node features of xit in Xt. Specifically, m
i,j
t � 0

implies the features are missing, while mi,j
t � 1 indicates that

xi,jt is available, then the actual value of sensor recording is stored

in xi,jt .

The sensor data recovery problem can be formally defined as:

given a sensor network with signal time series G[t,t+T] of a window
size of T, we can define the missing data completion error as:

L X̂ t,t+T[ ],X t,t+T[ ], �M t,t+T[ ]( )
� ∑t+T

h�t
∑N
i�1

�mi
h · ℓ x̂ih, x

i
h( )

�mi
h · �mi

h

,
(1)

where X̂t and Xt denote the node feature matrix after imputation

and ground truth node feature matrix without any missing data,

respectively. x̂ih is the reconstructed xih; �M[t,t+T] and �mi
h are the

logical binary complement ofM[t,t+T] andmi
h, respectively. ℓ(·, ·)

denotes the element-wise error function.

To design a parametric and trainable imputation model, two

different operational settings are discussed. In the in-sample

imputation setting, the model is trained to complete missing

values in an input sequence X[t,t+T] of a given fixed length T. To

be specific, all the available data can be used to train the model

except missing values and those that have been removed from the

sequence for failure check. In the second setting, the model is

trained and evaluated on disjoint sequences under the out-of-

sample case. It is worth mentioning that the model has no access

to the ground truth data removed out from the original data for

the final evaluation in both settings.

4 Methodology

The overall framework of the proposed AGCIN is presented

in Figure 1. The graph structure learning module incorporates

the initial graph and node embeddings to reconstruct the

adjacency matrix, which is then used as an input to all graph

convolution layers. To simultaneously model spatial and
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temporal dependencies, graph convolution layers are

incorporated with bidirectional GRU. In more detail, the core

components of our framework are detailed in the following.

4.1 Graph structure learning

As the node embeddings are computed by recursively

aggregating information from neighboring nodes, the

adjacency matrix is important to GNNs. Different from prior

approaches in the imputation task, we construct the adjacency

matrix based on two learners, one for global adjacency matrix,

and the other for adaptive adjacency matrix. The motivation of

designing these two learners is that the first learner introduces

prior pair-wise similarity relations of the sensors, making the

training start from a good initialization; the second learner is

intended to refine the graph structure based on the node

embeddings learned during the training process.

4.1.1 Global adjacency matrix
To capture the underlying relations of the sensors, instead of

the geographic locations, we generate the initial graph from node

features. As a classical numerical measure of the distance between

pairs of points in the vector space, Canberra distance

(Androutsos et al., 1998) is adopted as the similarity function

to build the initial graph adjacency matrix. The Canberra

distance between signal sequences of a sensor pair i and j is

defined as follows:

Cdist xi, xj( ) � ∑
n

xin − xjn
∣∣∣∣ ∣∣∣∣
xin
∣∣∣∣ ∣∣∣∣ + xjn

∣∣∣∣ ∣∣∣∣, (2)

where xi � (xi1, xi2, . . . , xin) and xj � (xj1, xj2, . . . , xjn) are node

feature vectors. We normalize Canberra distance by the length

of non-missing part of the signal sequence pair, and obtain each

element in the initial adjacency matrix Ainit as follows:

ai,jinit � 1 − Cdist xi, xj( )
n

n> 0

0 otherwise,

⎧⎪⎪⎨⎪⎪⎩ (3)

where n is the sequence length observed for both of the sensor

pair. The range of the weight in the generated initial adjacency

matrix is between 0 and 1, where 1 means the two vectors are

exactly the same, and 0 indicates the maximum dissimilarity or

the vector pair has no overlapping signal sequence available.

The global adjacency matrix learner utilizes the masking

method to generate the new adjacency matrix by

Amt � Apart ⊙ Ainit, where Apart ∈ RN×N is a trainable parameter

matrix, ⊙ is the Hadamard product. An issue would occur to Amt

that the weights in the position of zero values in theAinit are omitted.

A scaled 1-hop residual is designed to address this issue. The global

adjacency matrix is generated as follows:

Dmt
ii � ∑

j

Amt
ij, i, j � 1, . . . , N

Dmt � diag 1/ Dmt
ii + 0.0001( )( ), i � 1, . . . , N

Agt � DmtAmt,

where Dmt
ii denotes the degree of node i, and Dmt is the

inverse matrix of degree matrix with a plus of 0.0001 to deal

with the NaN problem, and Agt is the learned global

adjacency matrix.

4.1.2 Adaptive adjacency matrix
To construct the adaptive adjacency matrix, we introduce an

embedding vector for each sensor. Those embeddings are

initialized randomly and then updated along with the other

parameters during training, which are used for graph

FIGURE 1
Model architecture of the proposed Adaptive Graph Convolutional Imputation Network (AGCIN). The initial adjacency matrix is obtained by
computing the pair-wise Canberra similarity of the sensor sequences. The graph structure learning module refines the learned graph topology by
combining global and adaptive adjacency matrices. Each of the forward and backward imputation modules is composed of an encoder and a
decoder. The encoder sequentially processes the input sequences with missing values to obtain the hidden node representations. In the
decoder, the first-stage imputation is performed through a linear readout function, and the spatial decoder refines imputed values in the second
stage. The final imputations are obtained through an MLP aggregating the forward and backward learned node representations.
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structure learning to capture the relations of sensors in the latent

space. The reconstructed graph is obtained by the inner product

of node embeddings as follows:

Azt � σ ZtZ
⊤
t( ), (4)

where Zt ∈ RN×d denotes node embeddings, and σ is the

activation function, and the Relu function is adopted here.

We aim to reconstruct the normalized adjacency matrix

instead of the raw one, and this strategy can save considerate

computational cost.

The final learned adjacency matrix is a weighted sum of

the global and adaptive adjacency matrices. Motivated by the

observation that real-world graphs have noisy, task-irrelevant

edges, we usually enforce a sparsity constraint on the

adjacency matrix. Instead of directly panelizing the non-

zero entries, we implicitly sparsify the adjacency matrix by

filtering out the smaller weights. In the module design, we use

0.75 quantile of the learned weights as a threshold. The graph

obtained in the graph structure learning module is presented

as follows:

At � ø λAzt + 1 − λ( )Agt( ), (5)

where ø is the quantile filtering operator. This adaptive

adjacency matrix is learned end-to-end through stochastic

gradient descent.

4.2 Imputation module

The imputation module that replaces the missing values

with estimated ones is composed of encoding and decoding

stages.

4.2.1 Encoder
In the encoding stage, the input signal sequence X[t,t+T] and

maskM[t,t+T] are handled sequentially by a GRU neural network

with the gates updated by graph convolution layers. In principle,

any graph convolution operator could be used. For the

computational benefits, we adopt diffusion convolution

(Atwood and Towsley, 2016) as the implementation of graph

convolution layer in this work.

In particular, given the node feature vectors Xt with K orders

of a predefined adjacency matrix, the graph convolution operator

is described as:

Z � ∑K
K�0

PkXWk, (6)

where Pk denotes the power series of the transition matrix. In the

case of an undirected graph, P = A/rowsumA. In this work, we

propose an adaptive adjacency matrix At generated in Eq. 5. The

adaptive graph convolution used for updating GRU gates is

defined as follows:

GC Xt,At( ) � ∑K
K�0

Ak
tXtWk. (7)

Note that several definitions of neighborhood are possible, e.g.,

one might consider nodes connected by paths up to a certain length

l. For the sake of simplicity, from now on we use GC(Xt,At) to
represent the forward pass of a K-layer graph convolutional neural

network. Graph convolution is then utilized as the building blocks to

extract spatio-temporal features. As implemented in previous

approaches (Li et al., 2017; Seo et al., 2018), we adopt a GCGRU

architecutre of incorporating the graph convolution layer defined

above into GRU gates. The gate updating of GCGRU can be

presented as:

rt � σ GC x̂t″,mt, ht−1[ ],At( )( ),
ut � σ GC x̂t″,mt, ht−1[ ],At( )( ),
ct � tanh GC x̂t″,mt, rt ⊙ ht−1[ ],At( )( ),
ht � ut ⊙ ht−1 + 1 − ut( ) ⊙ ct,

where rt, ut are respectively the reset and update gates, ht denotes the

hidden node representations at time t, and the decoding block at the

previous time step obtains the output x̂t″, which is discussed in the

Decoder subsection. It is worthy of mentioning that for the time

steps where input sequences contain missing values, predictions

obtained from the decoder block is fed to the encoder. The output of

the encoder module is the encoded sensor signal sequence H[t,t+T].

4.2.2 Decoder
In the decoding stage, we first obtain one-step-ahead

predictions via the hidden node representations of the

GCGRU through a linear readout function as:

Ŷt′ � Ht−1Vh + bh, (8)

where Vh ∈ Rl×d is a learnable adjacency matrix and bh ∈ Rd is a

learnable vector on bias. The imputation operator is defined as

follows:

Ψ Yt( ) � Mt ⊙ Xt + �Mt ⊙ Yt, (9)

where Ψ denotes the imputation function. The missing data in

input Xt is imputed with the values in Yt at the same position.

Through filling Ŷt′ to the imputation function, the read-out

imputation X̂t′ is obtained and the output is Xt with missing

data filled up by the one-step-ahead predictive values Ŷt′.
Then, we concatenate the predictions, the mask Mt, and the

hidden representation Ht−1, along with the adaptive graph At

at time t, then process them with a diffusion convolution

operator which obtains the imputation representation gt as

follows:

gt � GC Ψ x̂t′( ),mt, ht−1[ ],At( ). (10)

As mentioned before, a node imputation representation

merely depends on graph convolution calculated based on

neighboring nodes and the representation at the previous step. As the
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next steps, we concatenate imputation representationGt with hidden

representation Ht−1, generate imputations for one more time via a

linear readout function, and apply the imputation operator as:

Ŷt″ � Gt,Ht−1[ ]Vg + bg, (11)
X̂t″ � Ψ Ŷt″( ). (12)

Finally, we feed X̂t″ as input to the GCGRU to update the

hidden representations and proceed to process the next input

sequences and learned adjacency matrix.

4.3 Bidirectional gated recurrent unit

Extending the imputation module to model forward and

backward dynamics simultaneously can be achieved by

duplicating the architecture described in Section 4.1 and

Section 4.2. The first paralleled module processes the input

sequence in the forward direction (from the beginning of the

sequence towards its end), while the second one in the other

way around. The final imputation of each node is obtained

with an MLP aggregating representations extracted from the

two directions as:

ŷt � MLP gfwdt , hfwd
t−1 , g

bwd
t , hbwd

t+1[ ]( ). (13)
Then we can obtain the final imputations in the sensor

network as:

X̂ t,t+T[ ] � Ψ Ŷ, t,t+T[ ]( ). (14)

4.4 Loss function

It is important to realize that our model does not merely

reconstruct the input as an autoencoder, but it is specifically

tailored for the imputation task due to its inductive biases. The

model is trained by minimizing the reconstruction error of all

imputation stages in both directions. The objective of the

proposed AGCIN is to learn the parameters by minimizing

the error between the ground truth and imputed values. The

loss function is defined as:

L � L X̂ t,t+T[ ],X t,t+T[ ], �M t,t+T[ ]( )
+ L X̂′fwd

t,t+T[ ],X t,t+T[ ], �M t,t+T[ ]( )
+ L X̂′bwd

t,t+T[ ],X t,t+T[ ], �M t,t+T[ ]( )
+ L X̂″fwd

t,t+T[ ],X t,t+T[ ], �M t,t+T[ ]( )
+ L X̂″bwd

t,t+T[ ],X t,t+T[ ], �M t,t+T[ ]( ),
(15)

where each L(·, ·, ·) can be obtained via Eq. 1 and we choose

mean absolute error as the error function.

5 Experiments

The proposed framework is evaluated on three real-world

environmental sensor datasets. Followed by the experimental

setup in Section 5.1, a comparison of the imputation

performance of AGCIN with state-of-the-art models and an

analysis of the varied choices of embedding dimensions to

construct the adaptive graph are conducted in Section 5.2 and

Section 5.3, respectively. The results of an ablation study of the

important modules in AGCIN are discussed in Section 5.4. To

study the robustness of the proposed framework, Section 5.5

performs an assessment of model performance degradation

under varied data missingness ratios. Section 5.6 presents a

case study on the learned adjacency matrix with the

visualization of imputation results from three environmental

sensors with high weights in the learned adaptive adjacency

matrix.

5.1 Experiment settings

5.1.1 Datasets
Three sensor networks that measure the air quality and other

environmental conditions are used to empirically evaluate the

proposed AGCIN.

• Radiation: a dataset that we aggregated on the recordings of

561 solar radiation sensors across the five regions (South,

Southeast, North, Northeast, Central-West) of Brazil for the

year of 2019. The sensing unit is Watt-hours per square meter

(Wh/m2).

• PM2.5: a dataset on the PM2.5 pollutants (μg/m3) of air

quality indices recorded by 437 monitoring stations across

43 cities in China from 2014/5/1 to 2015/4/30.

• Humidity: a dataset that we combined the signals of

580 humidity sensors throughout Brazil that report

relative humidity in % from 2018/1/1 to 2018/12/31.

All the datasets have more than 10% data missing, among

which the imputation on air quality sensors is the most

TABLE 1 Description of three datasets.

Dataset %Missing #Sensors Max Min Mean

Radiation 12.64 561 2006 0 224

PM2.5 25.67 437 1463 1 69

Humidity 12.00 580 100 6 72
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challenging with 25.67% recordings of PM2.5 pollutants missing.

The summary statistics of three datasets are provided in Table 1.

5.1.2 Comparison methods
The following methods are included in the performance

comparison: 1) MEAN, a basic imputation approach based on

the node-level average. 2) KNN, k-nearest neighbors algorithm

that averages features of the k neighboring nodes with the

highest weights in the adjacency matrix; 3) MF (Candès and

Recht, 2009), matrix factorization method for completing

missing values in a matrix assumed to contain redundancies

and correlations. 4) MICE (White et al., 2011), a multiple

imputation method used to impute missing values in a

dataset under certain assumptions about the data

missingness patterns. 5) MissForest (Stekhoven and

Bühlmann, 2012), an ensemble imputation method based on

random forests which averages over multiple unpruned

regression trees. 6) MIWAE (Mattei and Frellsen, 2019), a

deep latent variable model based on the importance-

weighted autoencoder to handle missing values by

maximizing a potentially tighter lower bound of the log-

likelihood. 7) VAR (Lütkepohl, 2013), vector autoregressive

is a statistical model used to capture the relationship between

multiple quantities as they change over time. 8) GAIN, a revised

version of missing data imputation (Yoon et al., 2018a) with

bidirectional recurrent encoder and decoder, also can be seen as

an unsupervised version of SSGAN (Miao et al., 2021). 9) BRITS

(Cao et al., 2018), a bidirectional GRU model with decay

mechanism of the hidden states of gated recurrent unit to

process sequences with missing values. 10) GRIN (Cini et al.,

2021), a graph neural network architecture that leverages

message passing to learn spatio-temporal representations.

5.1.3 Settings and evaluation metrics
For the three datasets, we adopted the same evaluation

protocol of previous works (Cao et al., 2018; Cini et al., 2021)

and presented results for both the in-sample and out-of-sample

settings (except for MF which only works in-sample). The

diffusion convolution (Atwood and Towsley, 2016) was

adopted for all the experiments. The window size T = 24 was

set for all the datasets in line with (Cao et al., 2018; Cini et al.,

2021). We separated the datasets to 7:2:1 for training, testing,

validation, respectively. The hyperparameter λ in Eq. 5 was

studied in the range of 0.1 to 0.9 with an interval of 0.1, and

0.7 was set for running AGCIN on all three datasets. We

conducted all the experiments on a single 24 GB NVIDIA

3090 GPU.

For baseline models that leverages a predefined graph, we

used the adjacency matrix obtained by thresholded Gaussian

kernel (Shuman et al., 2013) computed from pair-wise

geographic distance. The edge weight of a node pair i and j is

defined as:

ai,j � exp −d i, j( )2
γ

( ) d i, j( )≤ δ
0 otherwise ,

⎧⎪⎪⎨⎪⎪⎩
where d (·, ·) is the distance operator, γ controls the width of the

kernel, and δ denotes the threshold. γ is set to the standard

deviation of geographic distance.

We evaluated the sensor data imputation performance in terms

of three metrics: mean absolute error (MAE), mean relative error

(MRE) (Cao et al., 2018), and mean squared error (MSE).

5.2 Performance

The imputation results of the proposed AGCIN and baseline

methods across the three datasets are tabulated in Table 2. In the

in-sample setting, the metrics are computed on imputations

obtained by averaging predictions over all the overlapping

windows, while in the out-of-sample setting, the results of

averaging the error over window length are reported. A

comparative assessment of the results in both the in-sample

and out-of-sample settings leads to the following observations:

1) The majority of the traditional methods (i.e., Mean, KNN, MF,

and MICE) fail to achieve good imputation performance on the

three datasets. MissForest achieves more accurate predictive

results compared to the other methods, especially in the

humidity dataset. 2) Deep learning models including MIWAE,

VAR, GAIN, BRITS, generally achieve competitive performance,

which emphasizes the importance of the temporal features in

environmental sensor network imputation. Across the three

datasets, BRITS achieves better imputation performance

compared to VAR and GAIN models. The results obtained by

BRITS in the humidity dataset are very competitive, which benefit

from the modeling of underlying nonlinear dynamics via

bidirectional LSTM with the temporal decay mechanism.

Comparatively, MIWAE achieves low imputation accuracy,

perhaps due to not all the assumptions fitted in the data

missing scenarios. 3) The GNN-based models GRIN and

AGCIN achieve large improvements in the imputation

performance by incorporating the graph convolution operator

to model the spatial dependencies. Capturing the spatial

dependencies via graph convolution layers can greatly enhance

the imputation accuracy. 4) Overall, the proposed AGCIN

achieves the best performance across the evaluation metrics for

all three datasets. The results demonstrate that the proposed

framework to learn graph structure from data can more

accurately model the spatial and temporal dependencies in the

environmental sensor networks and achieve promising imputation

results. The performance enhancements from AGCIN that

adaptively generates graph over state-of-the-art method GRIN

which uses a fixed predefined graph are 4.4%, 5.6%, and 9.77% on

radiation, PM2.5, humidity datasets, respectively.
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TABLE 2 Imputation performance comparison of the proposed AGCIN and baseline methods.

In-sample Out-of-sample

Data Model MAE MRE (%) MSE MAE MRE (%) MSE

Radiation MEAN 274.82 ± 0.00 86.33 ± 0.00 121710 ± 0.00 274.82 ± 0.00 86.33 ± 0.00 121710 ± 0.00

KNN 128.19 ± 0.00 40.27 ± 0.00 37405 ± 0.00 128.19 ± 0.00 40.27 ± 0.00 37405 ± 0.00

MF 125.67 ± 0.38 39.48 ± 0.12 31464 ± 113.72 - - -

MICE 101.17 ± 0.00 31.78 ± 0.00 22715 ± 0.00 126.02 ± 0.00 39.59 ± 0.00 37156 ± 0.00

MissForest 84.99 ± 0.17 26.70 ± 0.06 20024 ± 56.64 92.48 ± 0.55 29.05 ± 0.17 22617 ± 199.89

MIWAE 89.67 ± 0.82 33.93 ± 0.31 24210 ± 176.75 97.09 ± 0.70 36.74 ± 0.26 26443 ± 303.63

VAR 92.22 ± 0.60 34.90 ± 0.23 19947 ± 396.19 99.46 ± 0.77 37.64 ± 0.29 22599 ± 417.20

GAIN 73.78 ± 0.61 27.92 ± 0.23 14732 ± 137.26 77.15 ± 0.34 29.19 ± 0.13 16483 ± 204.89

BRITS 66.45 ± 0.22 25.14 ± 0.08 16001 ± 167.34 70.70 ± 0.34 26.76 ± 0.13 17318 ± 179.58

GRIN 61.27 ± 0.69 23.19 ± 0.26 13850 ± 201.53 65.83 ± 0.30 25.10 ± 0.11 15643 ± 107.21

AGCIN 58.47 ± 0.24 22.13 ± 0.09 13233 ± 231.37 62.64 ± 0.88 23.70 ± 0.33 15153 ± 276.30

PM2.5 MEAN 39.60 ± 0.00 59.25 ± 0.00 3231.04 ± 0.00 39.60 ± 0.00 59.25 ± 0.00 3231.04 ± 0.00

KNN 34.10 ± 0.00 51.02 ± 0.00 3471.14 ± 0.00 34.10 ± 0.00 51.02 ± 0.00 3471.14 ± 0.00

MF 27.22 ± 0.14 40.74 ± 0.21 1919.04 ± 13.70 - - -

MICE 30.06 ± 0.00 44.98 ± 0.00 2243.38 ± 0.00 31.01 ± 0.00 46.40 ± 0.00 2338.97 ± 0.00

MissForest 25.16 ± 0.10 37.65 ± 0.15 1914.93 ± 13.98 26.10 ± 0.09 39.05 ± 0.14 1996.98 ± 12.78

MIWAE 27.88 ± 0.21 41.72 ± 0.31 2091.26 ± 34.51 28.15 ± 0.23 42.13 ± 0.34 2091.56 ± 31.25

VAR 19.22 ± 0.48 28.76 ± 0.71 992.97 ± 42.26 21.32 ± 0.37 31.90 ± 0.55 1,180.76 ± 48.92

GAIN 17.72 ± 0.33 26.51 ± 0.50 859.29 ± 24.69 20.70 ± 0.39 30.97 ± 0.58 1,148.19 ± 58.01

BRITS 17.40 ± 0.08 26.03 ± 0.13 934.27 ± 13.98 19.89 ± 0.34 29.76 ± 0.50 1,113.04 ± 35.77

GRIN 13.59 ± 0.13 20.33 ± 0.19 661.74 ± 9.27 14.86 ± 0.24 22.24 ± 0.36 740.30 ± 20.14

AGCIN 12.83 ± 0.10 19.21 ± 0.14 591.56 ± 10.14 13.94 ± 0.18 20.86 ± 0.27 664.88 ± 9.83

Humidity MEAN 14.63 ± 0.00 19.44 ± 0.00 305.62 ± 0.00 14.63 ± 0.00 19.44 ± 0.00 305.62 ± 0.00

KNN 10.85 ± 0.00 14.41 ± 0.00 205.64 ± 0.00 10.85 ± 0.00 14.41 ± 0.00 205.64 ± 0.00

MF 7.77 ± 0.04 10.32 ± 0.06 105.60 ± 1.10 - - -

MICE 5.55 ± 0.00 7.38 ± 0.00 57.76 ± 0.00 5.71 ± 0.00 8.02 ± 0.00 67.84 ± 0.00

MissForest 5.31 ± 0.04 7.06 ± 0.06 56.59 ± 0.85 5.45 ± 0.01 7.29 ± 0.02 62.57 ± 0.32

MIWAE 7.78 ± 0.07 10.41 ± 0.09 118.74 ± 2.06 7.99 ± 0.13 10.68 ± 0.17 124.28 ± 3.60

VAR 7.80 ± 0.07 10.43 ± 0.10 108.49 ± 2.56 8.01 ± 0.17 10.71 ± 0.23 111.85 ± 4.89

GAIN 5.69 ± 0.12 7.61 ± 0.16 63.84 ± 3.28 6.30 ± 0.10 8.41 ± 0.13 74.78 ± 2.07

BRITS 5.40 ± 0.02 7.22 ± 0.03 53.28 ± 0.20 5.96 ± 0.02 7.52 ± 0.03 68.20 ± 0.45

GRIN 5.12 ± 0.06 6.84 ± 0.08 55.12 ± 1.01 5.40 ± 0.03 7.22 ± 0.05 61.03 ± 1.40

AGCIN 4.62 ± 0.04 6.17 ± 0.06 47.76 ± 1.14 4.97 ± 0.11 6.64 ± 0.15 54.71 ± 2.96

FIGURE 2
Study of varied embedding dimensions for constructing adaptive graphs on three datasets.
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5.3 Embedding dimension

The dimension of node embeddings potentially has an

impact on the quality of learned graph, and it is one of the

important hyperparameters in our framework. Figure 2 plots

the influence of choosing different embedding dimensions

for AGCIN on the three datasets. Generally, good

performance is achieved across all the tested embedding

dimensions, especially the comparative higher dimensions.

Also, it is observed that high embedding dimensions

exceeding a certain value do not necessarily bring better

imputation performance. A higher node embedding

dimension increases the number of parameters updated

during training, which makes the model take more time to

optimize, and even worse, result in the over-fitting issue. A

suitable node embedding dimension is supposed to find a

balance between the ability to learn rich node representation

and the number of model parameters. Within the tested node

embedding dimensions {4, 8, 12, 16, 24, 32}, the appropriate

node embedding dimension across the datasets is 16. A

higher node embedding dimension, such as 24 or 32,

potentially results in slightly better imputation

performance but that improvement is negligible. The

highest tested embedding dimension as 32 on PM2.5

dataset results in performance degradation.

5.4 Ablation study

To evaluate the importance of the different designed modules, we

conducted an ablation study on AGCIN by selectively instantiating

varied model framework configurations on PM2.5 dataset and

reporting the performance metrics in Table 3. We compared the

performance of the originally designed version with the variants that

remove certain components in orders, including global adjacency

matrix learner introduced in Section 4.1.1, adaptive adjacency matrix

learner in Section 4.1.2, spatial decoder in Section 4.2.2, and

bidirectional architecture of GCGRU in Section 4.3, respectively.

Ablation testing results demonstrate that each of the modules has

a positive impact on the final imputations. Specifically, the imputation

accuracy can be greatly enhanced by adopting the proposed adaptive

graph learning strategy even without an initial graph fed into the

graph convolution operation. Additionally, the full version of AGCIN

improves the imputation performance of the base model by 13.3% in

MAE, 13.19% in MRE, and 22.67% in MSE.

5.5 Robustness analysis

To study the robustness of the proposed framework, we

conducted an assessment of performance degradation across

varied data missingness ratios. Specifically, we trained a model

TABLE 3 Ablation study of the variants of proposed AGCIN by removing different designed modules.

In-sample Out-of-sample

Variants MAE MRE (%) MSE MAE MRE (%) MSE

AGCIN 12.83 ± 0.10 19.21 ± 0.14 591.56 ± 10.14 13.94 ± 0.18 20.86 ± 0.27 664.88 ± 9.83

w/o Global Adj 13.16 ± 0.17 19.70 ± 0.26 609.02 ± 14.07 14.21 ± 0.18 21.27 ± 0.27 686.19 ± 31.71

w/o Adaptive Adj 13.89 ± 0.17 20.78 ± 0.26 692.78 ± 22.30 14.92 ± 0.15 22.33 ± 0.23 751.58 ± 25.24

w/o GC Decoder 14.79 ± 0.08 22.13 ± 0.12 764.98 ± 9.83 15.57 ± 0.22 23.29 ± 0.32 815.95 ± 28.20

w/o Bidirection 15.80 ± 0.15 23.65 ± 0.22 818.53 ± 23.08 17.64 ± 0.27 26.40 ± 0.40 1,013.36 ± 45.95

FIGURE 3
Imputation performance across varied data missingness ratios on the three datasets.
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for AGCIN by randomly masking out a certain proportion of

input data for each batch during training, then we ran the

model on the test set. The testing results across varied data

missingness ratios in three datasets are provided in Figure 3.

It is observed that the performance degradation of AGCIN is

negligible while the ratio is below 0.3. The imputation

accuracy would be greatly affected when over 70% of the

data are missing during training.

Also, we carried out an assessment of competitive baselines

under different amounts of data missing. A comparison of their

performance with the proposed AGCIN is presented in Figure 4.

With randomly missing ratios from 30% to 70%, AGCIN

consistently performs the best in regards to imputation

accuracy measured in MSE, and the performance degradation

is slower than that of other methods as the missing ratio

increases. GAIN fails to achieve good imputation accuracy,

especially when the missing ratio reaches 50%. As over 60%

of the data are masked out from training, the performance of

AGCIN drops, especially for the radiation data imputation. It is

worth to be noticed that, AGCIN, as well as many of the baseline

FIGURE 4
A comparison of baselines and AGCIN across varied data missingness ratios on PM2.5 and radiation datasets.

FIGURE 5
The change of adaptive adjacency matrix learned during model training.

FIGURE 6
Plot of imputations of three air quality sensors with high weights in the learned adjacency matrix.
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methods, follows the autoregressive paradigm, which suffers

from error accumulation over long time horizons.

5.6 Visualization

As the final experiment, we provide a qualitative assessment of

the learned graph. Figure 5 presents the changing patterns of a

learned adjacency matrix defined in Eq. 5 in the training epochs 0,

10, 30, and 60. It is observed that during the training of AGCIN,

the adjacency matrix is updated in each epoch and the graph

topology constructed becomes more and more clear.

To further examine the quality of the learned graph, we selected

a group of sensors (sensors 413, 414, and 416) in the air quality

sensor network with high weights (> 0.5) in the learned adjacency

matrix and plot their PM2.5 recordings and the imputed values by

the proposed AGCIN. According to Figure 6, the ground truth

sequences of the three sensors present similar changing patterns of

air pollutants and AGCIN well captures the trends, which validates

the proposed framework’s ability in modeling spatio-temporal

dependencies in the imputation task. This qualitative observation

verifies the effectiveness of the adaptive graph learning strategy in

our approach.

6 Conclusion

This paper proposes a graph structure learning-based

framework that adaptively models spatio-temporal dependencies

for environmental sensor data recovery. By leveraging the Canberra

distance to measure feature similarity, we design an initial graph

generator to obtain a good estimate of the graph structure. Also, an

adaptive graph learningmodule is incorporated to learn latent node

representations in a sensor network, and the learned node

embeddings are integrated to construct the graph topology with

the bidirectional GRU to recover the missing values via a two-stage

imputation. The experiments on three real-world datasets

demonstrate the effectiveness of AGCIN for enhancing the

imputation accuracy in environmental sensor networks.
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