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Semantic Inpainting on Segmentation Map (SISM) aims to manipulate segmentation maps by semantics.
Recent works show SISM provides semantic-aware auxiliary information for better style or structure
manipulations. Providing structural assistance, segmentation maps have been broadly used as an inter-
mediate interface to achieve better image manipulation. Mainstream solutions of image manipulation
use Generative Adversarial Net (GAN) globally, locally or jointly. It is also applicable to SISM. However,
the discriminator of global GAN is easier fooled, because the majority of its input is the same as the
ground-truth, which is hard to fully mitigate the inconsistency between inpainted areas and the context.
The inconsistency is more difficult for local GAN to address, due to the lack of context in its input. To mit-
igate the inconsistency, we propose a novel Multi-Expansion (MEx) loss. It is implemented by the adver-
sarial loss on MEx areas. Each MEx area has the inpainted area as dominance and keeps knowledge of the
scene context, so the consistency of the SISM results can be boosted. We propose an approximation of
MEx loss, i.e., A-MEx loss, to further enhance the stability and usability. Besides performing well on
SISM tasks, MEx loss also performs impressively on natural image inpainting. Extensive experiments
on the two tasks demonstrate the advantages of our model over existing methods on four challenging
datasets, such as a 2.59% increase in Hamm on SISM in Cityscape and a decrease of 5.00% FID on natural
image inpainting in CMP Facade. The code of our work is available at: https://github.com/he159ok/AMEx-
MEx-Loss.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Image manipulation, transforming or editing images, is a popu-
lar topic with many applications [3–6]. Though its final outputs are
manipulated natural images, many works have shown segmenta-
tion maps provide auxiliary information for better style [7,8,5] or
structure [6,3,9] manipulation. Since manual editing on segmenta-
tion maps is time-consuming, and the pre-existing segmentation
maps are not always adapted to the context, we focus on Semantic
Inpainting on Segmentation Map (SISM) [3], which automatically
manipulates segmentation maps given a semantic (e.g. name of
an object to be inpainted) and a mask area. Fig. 1 shows SISM
and its applications. Via SISM, users manipulate segmentation
maps by desired semantics and locations. Many recent works show
segmentation maps provide auxiliary information for better style
or structure manipulation. Segmentation maps provide spatial
instructions for style manipulation in image translation [7,10,11].
They also benefit the semantic image manipulation since the users
can edit objects by semantics directly on the segmentation maps
[3,9,12,13]. Therefore, SISM has many applications for various
downstream tasks, such as image translation(e.g. generating more
diverse natural images in terms of image textures and additional
layouts, shown in the top row in Fig. 1) and semantic inpainting
(e.g. inpainting part of an image for certain semantics, shown in
the second row in Fig. 1). This work focuses on improving SISM,
rather than improving its downstream tasks. The inpainted area
in a SISM output should not only be consistent with its context,
but also reflect the given semantics (shown in the left-most of
Fig. 1). The dual goals make SISM unique in comparison to the tra-
ditional image inpainting [14,15]. Because the dual goals achieve
both context consistency and the given semantics on segmentation
maps, we call our task SISM.

Little has been done on improving the performance of SISM.
Previous works on image inpainting [16–18] applied global and
local GAN, which has broad applications [19–25], to synthesize a
more detailed appearance. Specifically, the global discriminator
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Fig. 1. Examples of SISM model and its applications on Cityscape [1]. The three columns in orange rectangle show SISM task: given a mask area (red rectangle) defined by a
bounding box with a target label (leftmost vertical text), a SISM model outputs an inpainted segmentation map. The inpainted segmentation map is then inputted to a
downstreammodel to generate manipulated natural images. For example, the top row uses image translation [2] (translating from the whole inpainted segmentation map) as
a downstream task, where ‘‘-” means unnecessary in the input. For the downstream application in the top row, its goal is not to preserve the appearance of the non-inpainted
area, but to translate the manipulated SISM into a new natural image. The bottom row uses semantic inpainting [3] (first concatenating the whole inpainted segmentation
map and incomplete image, then the concatenated result is translated into the manipulated natural image) as a downstream task. Different from the downstream application
in the first row, the downstream application in the second row preserves the non-inpainted area (context in the original natural image). This paper focuses on improving
SISM, instead of improving its do.wnstream tasks.
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takes a whole image as input to penalize inconsistency of the
scene, while the local discriminator focuses on an inpainted area
to judge its detailed appearance. Thus, we further improve the
inpainted results by analyzing the drawbacks of global GAN and
local GAN separately, and proposing Multi-Expansion (MEx) loss
to boost the performance of SISM, which is also effective on natural
image inpainting. We hypothesize that the problem with global
GAN is inadequate learning of image consistency. The reason is
that most of its input (which is the whole image) is the same as
the ground-truth, easier fooling the discriminator compared with
local GAN. Fig. 2 shows the training losses for image inpainting
on the CMP Facade dataset [26] 1. The left panel in Fig. 2 shows that
the discriminator loss of global GAN converges earlier than that of
local GAN, especially after 400 epochs. The earlier convergence
shows the discriminator of global GAN can be easier fooled than that
of local GAN. The right panel shows that the generator loss of global
GAN cannot decrease as much as that of the local GAN. Since the
losses for global and local GANs both come from the same mask
areas computed with regard to the same ground truths, we expect
the training losses converge to the same level. Thus, the global
GAN cannot adequately learn the image consistency in the genera-
tion. The image consistency is also difficult for local GAN, due to lack
of context 2 in its input. Thus, even we apply the global and local
GAN, the texture and layout consistency between an inpainted area
and its context (abbreviated as image consistency) cannot be fully
achieved, due to the inadequate learning of global GAN and no con-
text information to the local GAN.

To address this issue, we propose a novel Multi-Expansion
(MEx) loss to boost the learning of image consistency while keep-
ing the advantages of global and local GAN. Specifically, we con-
struct MEx areas by expanding the inpainted areas multiple
times, similar to a cascade of crops. Due to the expansion opera-
tions, each MEx area has the inpainted area as a principal compo-
nent and the partial original context as an assisting component.
We show that MEx loss is not only effective on SISM, but can also
improve natural image inpainting. Our main contributions are
summarized below.

Analyzing the drawbacks of global and local GAN. We per-
form experimental analysis to illustrate the drawback of global
and local GAN, which does not adequately learn the image consis-
tency between an inpainted area and its context.

Proposing MEx loss. We propose MEx loss to boost image con-
sistency. MEx loss is the adversarial loss on MEx areas. Each MEx
1 Please refer to experiment section for more experimental settings.
2 The context refers to the originally unmasked part in the image inpainting input
.
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area has the inpainted area as the majority and its context as the
minority.

Proposing A-MEx loss. A-MEx Loss is proposed to boost the
convenience and stability of MEx loss. A-MEx loss is effective on
SISM and natural image inpainting.

Improving performance of SISM and natural image inpaint-
ing. Our proposed MEx loss and A-MEx loss achieve significant
improvements on both SISM and natural image inpainting on four
datasets, such as a 2.59% increase in Hamm in Cityscape[1] by MEx
loss on SISM, and a further decrease of 5.00% FID on natural image
inpainting by A-MEx loss.
2. Related work

Image manipulation has tremendous progress through the
rapid development of GAN [27]. Previous works mainly manipulate
image attributes (e.g. styles [28,2,7,8,10,29]), structures (e.g.
shapes [4]), or attributes and structures together (e.g. semantics
[3,30,12], image inpainting [31], object removal [32]). Besides
direct manipulation on natural images [31,33,34], it is a new trend
to manipulate images with auxiliary information from other
domains, such as sketches [35,29,36,37], segmentation maps
[38,39,7,40,2,11,41–43], scene graphs [44–46] and other natural
images [47–50,10].

Since the datasets for segmentation maps are abundant and the
segmentation accuracy has been continuously increasing, it is pop-
ular to use segmentation maps as an intermediate step in image
manipulation [51–54]. In addition to providing spatial instructions
for style manipulation in image translation [7,8,5], segmentation
maps are also beneficial on semantic manipulation, where objects
can be added or revised based on semantics. For example, [55,6,3]
generate the segmentation maps of target objects, which are later
translated into natural images for semantic image manipulation.
Similar to the frameworks used in the above studies, [9,13] focus
on image inpainting. Considering better-manipulated segmenta-
tion maps lead to better-manipulated natural images, we focus
on improving the manipulation on segmentation maps. Like [3],
we set mask areas and semantics as guides for the manipulation
as it is easy for a user to choose a mask area and input a semantic
ID.

The difference between MEx Loss and other common tech-
niques is obvious. Generally, an attention mechanism learns
weighted scores at either pixel-level [56] or feature-level [57] for
the inputs. Partial convolution [58] filters the information from
mask areas in convolution operations to reduce noisy impact from
mask areas. Multi-scale resizes a complete image into various



Fig. 2. Diagram of training loss in training the global GAN and the local GAN separately.

3 More details about Lother for each baseline are shown in Section 4.1.3.
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scales for boosting feature representation [59,60] or high-
resolution [61]. In contrast, MEx loss focuses on boosting the image
consistency by adversarial loss on MEx areas, which is a different
goal from that of multi-scale. To achieve the different goals, MEx
loss applies only parts of an image, while multi-scale uses a com-
plete image. PatchGAN [39] designs a patch-based discriminator
to penalize realism at the patch-level, and Pix2PixHD [2] further
improves the discriminator of PatchGAN by adding multi-scale into
the patch-based discriminator. But the two discriminators take the
whole images as the input, where the image consistency is still not
adequately learned, because most of the input is the same as
ground-truth in the image inpainting. Plus, unlike the static meth-
ods of the conventional attention mechanism and partial convolu-
tion, MEx loss is dynamic, changing the radius for each expansion.
This provides MEx loss with multiple mid-level views.

3. Model

3.1. A basic SISM framework

Given a complete segmentation map Sc 2 RH�W�1 and its color-
ful version Yc 2 RH�W�3 (where S;Y;H and W represent the single-
channel segmentation map, RGB-channel segmentation map,
height and width, respectively), our goal is to synthesize the

inpainted segmentation map bY 2 RH�W�3 reflecting a semantic
defined by a target label lt .

We choose an object bounding box B, which guides us to gener-
ate Au by the area of B on Ac , where A can be S or Y. Specifically, we

define an object bounding box B ¼ b; lt
n o

, as a combination of box

corner b 2 R4 and a target label lt . A user can semantically manip-
ulate a segmentation map by setting an arbitrary bounding box
with a target label. Fig. 3 shows the overall pipeline of SISM, where

the output is an inpainted segmentation map bY. First, we construct
an incomplete segmentation map Su 2 RH�W�1 by copying Sc and
masking all pixels in the bounding box B as lt , which informs the
model of the location and semantics to generate. We apply the glo-
bal observation of Sc , while [3] only applies a local squared obser-
vation of Sc , omitting much of the original context that belongs to
the same image. Its omitting partial context reduces the quality of
the manipulated results (verified in Table 2).

Then, a learnable basic structure generator GY generates an ini-

tial segmentation map eY by eY ¼ GY Su;B
� �

. After eY , we construct

the inpainted segmentation map bY by fusing eY and Yu. This is given
by,

bY ¼ eY �Mþ Yu � 1�Mð Þ ð1Þ
where � is element-wise multiplication,M 2 RH�W is a binary matrix
specified by B, with all elements inside the bounding box B as 1; and

1 2 RH�W is a matrix with all elements as 1. Based on Eq. 1, bY not

only has the inpainted area from eY, but also keeps the rest the same

as Yu. As the final output of SISM, bY should reflect the class-specific
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structure of the object defined by lt and should have high image
consistency between the inpainted area and its surrounding con-
text. Considering the two requirements, the loss function LB to
train a basic GY and its respective discriminators is given by,

LB ¼ LadvG þLadvL þ k1Lother ð2Þ
where LadvG and LadvL are the conditional global and local adver-
sarial losses defined on Su and Yc for ensuring the perceptual quality
of predicted segmentation maps, which are,

LadvG ¼ E Yc ;Suð Þ�pr1
log DG Yc; Su

� �� �h i
þ

E bY ;Su� �
�pg1

1� log DG bY; Su� �� �h i ð3Þ

and

LadvL ¼ E Yc �M;Suð Þ�pr2
log DL Yc �M; Su

� �� �h i
þ

E bY �M;Su
� �

�pg2
1� log DL bY �M; Su

� �� �h i ð4Þ

where the complete segmentation map Yc is the ground-truth, and
DG and DL are learnable discriminators for the global GAN and the
local GAN respectively. The pr and pg are distributions of real and
generated data respectively. The Lother in Eq. 2 refers to the
weighted sum of other losses 3, such as perception loss [62] applied

in [2,7]. After getting bY , we classify it into bS 2 RH�W�1, which is the
input of the downstreammodel for natural images. The classification

uses the smallest distance between a pixel value in bY and RGB values
of all semantic IDs.

3.2. Multi-expansion (MEx) loss

As discussed in Section 1, even though the global and local GAN
learns more details, the image consistency is still not fully achieved
due to the insufficient learning of global GAN and no context to
local GAN. Based on Eq. 1, we know that the inconsistency exists

between the inpainted area in eY and its context provided by Yu,
which is the same as the ground truth.

To improve the image consistency, we propose MEx loss. It cal-
culates the adversarial losses by qþ 1ð Þ MEx discriminators, DE

0;D
E
1,

. . ., DE
q for respective MEx areas. The key idea of the MEx loss is

building MEx areas Z, as shown in Fig. 4. Recall that M is con-
structed by box corners b ¼ b1; b2; b3; b4½ � from B, where b1; b2ð Þ
and b3; b4ð Þ are the coordinates of the top-left corner and the
bottom-right corner for B. Then, at the j-th level expansion, we
have the j-level masked area ME

j 2 RH�W constructed by

bE
j ¼ b1 � j� a; b2 � j� b; b3 þ j� a; b4 þ j� b½ �, where a and b are

step lengths in the vertical and horizontal directions respectively.

If any coordinate in bE
j is smaller than 0 or greater than H � 1 or

W � 1, it is set to 0 or H � 1 or W � 1 respectively. Based on ME
j ,



Fig. 3. Diagram of the our framework for SISM. With complete segmentation map Sc , we mask all pixels in an object bounding box B ¼ b; lt
n o

as lt to build an incomplete
segmentation map Su . Conditioned on (Su;B) and supervised by the complete segmentation map Yc in color, the basic structure generator GY outputs the initial segmentation
map eY, which is fused with Yu to obtain the inpainted segmentation map bY. Finally, the bY is transferred to a one-channel segmentation map bS, followed by a downstream task
(e.g. image translation) model. To boost image consistency, we apply MEx loss (shown as Fig. 4)) or A-MEx loss to GY . The Yc ; eY;Yu and bS are not draw.n in the figure.

Table 2
The tIOU and Hamm on the Cityscape for SISM results.

Methods Cityscape

tIOU" Hamm"
Pix2PixHD [2] 0.7350 0.7483
Pix2PixHD + MEx 0.7493 0.7677
Pix2PixHD + A-MEx 0.7652 0.7734

SPADE [7] 0.7670 0.7721
SPADE + MEx 0.7699 0.7769
SPADE + A-MEx 0.7744 0.7820

TwoSM (local observation) [3] 0.7064 0.7443

TwoSM 0.7793 0.7855
TwoSM + MEx 0.7885 0.7977
TwoSM + A-MEx 0.8072 0.8245
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we have the j-level MEx area Zc
j for the ground-truth and bZj for the

inpainted segmentation map as,

Zc
j ¼ Crop Yc �ME

j

� �
; bZj ¼ Crop bY �ME

j

� �
ð5Þ

where Crop is an operator to crop the input and keep only the area
with non-zero elements, as we want to avoid the impact from all-
zero areas.

From Fig. 4 and Eq. 5, we see that the j-level MEx area bZj con-
sists of two parts: the inpainted area from the inpainted segmen-

tation map bY and its context from the ground-truth. Unlike the
input from global GAN, the MEx loss takes MEx areas as input, such
that the discriminators DE are not so easily fooled. Since the
inpainted area in each MEx area is dominated by setting a and b
as smaller values than H and W, it differs from global GAN, where
the original context is dominant. Moreover, though the inpainted
area is dominated, DE has knowledge from the context of Yu by set-
ting q greater than 0 (when q ¼ 0, MEx loss is equivalent to the
local adversarial loss), which solves the problems of the local
GAN. Thus, with the MEx areas sent to DE in MEx loss, the DE is less
likely fooled by the context and more likely to penalize inconsis-

tency of the inpainted area of bY. In this way, the image consistency
is improved. The MEx loss function is formulated as,
Fig. 4. Diagram of MEx areas for MEx loss. Given a complete colorful segmentation map Y
the q-th level. Given an inpainted segmentation map bY, the red dotted arrow represents
border and red border show the ground-truth and the inpainted area respectively. The
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LMEx ¼
Xq

j¼0

EZc log DE
j Zc

j ;Crop Su �ME
j

� �� �� �h i
þ

Pq
j¼0EbZ 1� log DE

j
bZj;Crop Su �ME

j

� �� �� �h i ð6Þ

where the condition Su �ME
j

� �
is also cropped.

We design MEx areas rather than only one expansion area for
two reasons. First, we do not know which size of the MEx area is
optimal beforehand, thus, we explore MEx areas with different
sizes. Second, the MEx areas provide multiple extra mid-level
views (1-th level to the q-th level), which are similar to the ensem-
ble learning [63], MEx loss can improve the inpainted results via
multiple mid-level views [64], besides global view and local view.
We have our final objective function with MEx loss as,

LFinal ¼ LadvG þ k1Lother þ k2LMEx ð7Þ
where LadvL is included in LMEx, when q P 0 in Eq. 6.

3.3. Approximated MEx (A-MEx) loss

We further boost the convenience and stability of MEx loss by
proposing an approximation, A-MEx loss, which uses same-sized
inputs and only one DE. Initially, we find that the Crop operation
leads to inputs in various sizes, which might require a special
design of the DE. Thus, in A-MEx loss, we assume the impact of
all-zero areas is negligible, and remove all Crop in Eq. 5 and Eq.
6, which keeps all-zero areas like [16]. Then, all MEx Areas sent
to DE are the same size as H �W � Cf g, where Cf g is their original
channel numbers. The stability of the MEx loss improves as a result
of using same-sized inputs. However, removing the Crop operation
enlarges input sizes. Thus, for less memory consumption, in A-MEx
loss, we do not apply qþ 1ð Þ MEx discriminators DE, by applying
only one DE to save memory. Specifically, the A-MEx loss function
can be formulated as,

LA�MEx ¼
Xq

j¼0

EZc log DE Zc
j ; Su �ME

j

� �� �� �h i
þ

Pq
j¼0EbZ 1� log DE bZj; Su �ME

j

� �� �� �h i ð8Þ
c , the green dotted arrow shows MEx areas Zc for the ground-truth from the 0-th to
the process to obtain MEx areas bZ for the inpainted segmentation map. The green

pairs of MEx areas are inputted into respective discriminators for the MEx loss.
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where the bZj and the Zc
j are calculated by Eq. 5 without Crop.

Because the current inputs to DE still have the inpainted areas as
the majority and their context as the minority, A-MEx loss also
boosts the image consistency. We can therefore replace LMEx by
LA�MEx in Eq. 7.
3.4. Choices of MEx loss or A-MEx loss

The difference between the two losses is that MEx loss has less
memory consumption in sample size due to cropped operation in
Eq. 5 and Eq. 6, but more memory consumption in model parame-
ters due to multiple discriminators. And A-MEx loss has more
memory consumption in sample size but less memory consump-
tion in model parameters. Based on the difference, we can choose
either MEx loss or A-MEx loss based on the two factors: data size
and GPU memory.

In terms of data size, if we have a large data set, such as COCO
[65], we use MEx loss because it has more parameters for sufficient
learning; otherwise, we should use A-MEx loss for a small dataset,
such as Cityscape, to avoid over-fitting, because A-MEx loss has
fewer parameters. In terms of GPU memory, if we are limited by
GPU resources, we should choose the method that has less GPU
consumption. Concretely, if the GPU memory consumption of the
total image size of a batch is larger than the GPU memory con-
sumption of model parameters, we should use MEx loss, which
has less GPU memory consumption in sample size; otherwise, we
should use A-MEx loss, which has less GPU memory consumption
in model parameters.
4. Experiments

Our experiments are majorly conducted on the SISM task and
minorly conducted on the image inpainting. The reasons for the
settings are that, our focused task is SISMwith segmentation maps,
and image inpainting with natural images is a popular task as our
additionally minor task. Therefore, we first show the experiment
settings for the two tasks at first. Then the quantity analysis (in-
cluding parameter sensitivity analysis), followed by the quality
analysis (including human evaluation) and the SISM applications
are given.
4.1. Experiment setup

4.1.1. Datasets
Datasets for SISM. We conduct SISM experiments on three

datasets: street scenes using Cityscape [1], indoor scenes using
NYU V2 (NYU) [66], and face images using rectified Helen Face
[26,67]. Specifically, we apply 2975 training images and 500 test-
ing images for Cityscape; 1200 training images and 249 testing
images for NYU; and 1800 training images and 299 testing images
for Helen Face. We choose 8 categories of objects (‘person’, ‘rider’,
‘car’, ‘truck’, ‘bus’, ‘train’, ‘motorcycle’, and ‘bicycle’) to inpaint on
Cityscape from 35 available object categories. For NYU, which
has 895 semantic labels, we choose 7 categories (‘cabinet’, ‘chair’,
‘floor’, ‘table’, ‘wall’, ‘window’, ‘picture’). Helen Face has 11 cate-
gories, from which, we choose 8 categories(‘left brow’, ‘right brow’,
‘left eye’, ‘right eye’, ‘nose’, ‘upper lip’, ‘inner mouth’, ‘lower lip’).

Datasets for natural image inpainting. To demonstrate the
generality of MEx loss in natural images, we also conduct image
inpainting on architecture images from CMP Facade [68], from
which 598 images are used for training and 8 images are applied
for testing. During testing, each natural image is randomly masked
20 times.
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4.1.2. Evaluation metrics
Metrics for SISM. We use three metrics for SISM results, the

inpainted segmentation maps: (1) Target Intersection-Over-
Union (tIOU) [69], which is the ratio of overlapped area for target
objects to their union area; (2) Hamming Distance (Hamm) [70],
which is the ratio of the number of pixels that have the same val-
ues as the ground-truth, to the number of total pixels; (3) Human
Evaluation (HuEv), which is the result of a two-alternative forced-
choice experiment, where users compare two inpainted segmenta-
tion maps (ours and a baseline’s) and choose the better one with
reference to the ground-truth. We report the mean percentage of
the times that a model was chosen, averaged over all observers.
We also apply (4) Frechet Inception Distance (FID) [71] for the real-
ity of the translated natural images from the inpainted segmenta-
tion maps by pretrained models [2].

Metrics for natural image inpainting. For natural image
inpainting, we apply two commonly-used metrics in addition to
FID and HuEv: (5) Structural Similarity Index (SSIM) [72], (6) L1
reconstruction loss (L1).
4.1.3. Baselines and ablation setting
Baselines for SISM. We compare our model with three baseli-

nes on SISM: (1) Pix2PixHD [2], outputting RGB-channel segmenta-
tion maps, withLother as the feature match loss and perception loss
[62]; (2) SPADE [7], which outputs RGB-channel segmentation
maps, has spatially-adaptive normalization layers with the same
Lother to Pix2PixHD; (3) We refer the SISM model in [3] with global
observation as Two-Stream Model (TwoSM), which outputs one-
hot segmentation maps from its context stream, its Lother is the
reconstruction loss.

Baselines for natural image inpainting. The four additional
baselines on natural image inpainting are: (4) Global and Local
GAN (GL) [16], which applies global and local GAN; (5) Partial-
Convolution (PC) [58], which designs a novel convolution to
decrease the impact of all-zero areas; (6) Gated-Convolution (GC)
[73], which has a learnable dynamic feature selection mechanism;
(7) External-Internal Learning (EIL) [74], which externally recon-
structs the grey images in the first stage, and propagates colors
within the single image via internal learning in the second stage.
We use GC as its first stage (EIL-S1), and represent its second stage
as EIL-S2.

Ablation setting for two tasks. Different from ‘‘TwoSM”, which
applies global observation, we apply ‘‘TwoSM (local observation)”
to represent the originally local observation in [3], which omits
much of the context. To show the effect of MEx loss, our experi-
ments are designed by ablation settings on two tasks: we apply
{a baseline name + MEx (or A-MEx)} to represent a method com-
bined by a baseline and MEx (or A-MEx) loss.
4.1.4. Implementation details
Parameter setting for two tasks. We set k1 ¼ k2 ¼ 1 for all

experiments. We apply MEx (A-MEx) loss on baselines using
q ¼ 4 on both Pix2PixHD and SPADE, and q ¼ 2 on TwoSM. We
set a ¼ b ¼ 5 by default on all other SISM models, except
a ¼ b ¼ 20 on SPADE. Follow [3], the bounding box is randomly
selected for each image at each epoch in the training, while in
the testing, we compare the two methods by choosing the same
bounding box for each image. We set q ¼ a ¼ b ¼ 4 for all natural
image inpainting. We apply Adam [75] as our optimizer with an
initial learning rate of 0.0002, decaying the learning rate from
the 100-th epoch to the last epoch (200-th epoch) ending with a
learning rate of 0.

Image sizes for two tasks. The training and generated image
resolutions are 256� 128;192� 144 and 256� 256 respectively
for Cityscape, NYU and Helen Face. As for the natural image



Fig. 5. Parameter sensitivity analysis on MEx times q on Cityscape.
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inpainting task, we set 248� 242 as the training and generated
image resolutions.

4.2. Quantitative analysis

4.2.1. Quantitative results
Table 1, Table 2 show results for SISM. And Table 3 shows

results of natural image inpainting. These allow us to conclude
the following.

(1) MEx loss is effective on the SISM model outputting RGB-
channel segmentation maps. From Table 1, MEx loss improves
results in each metric. For the inpainted segmentation map,
the Hamm has improved 24.45% in NYU with MEx loss, and
the tIOU has improved 32.61% in Helen Face by MEx loss. For
the translated natural image, we also see a slight improvement
in FID, which shows that our inpainted segmentation maps are
closer to the ground-truth. Table 2 shows MEx loss and A-Mex
loss are also effective on Pix2PixHD and SPADE, such as 1.28%
improvement in Hamm on SPADE.
(2) MEx loss is also effective on the SISMmodel outputting one-
hot segmentation maps. For example, TwoSM + A-MEx
improves 4.96% in Hamm in Table 2.
(3) A-MEx loss performs better than MEx loss in our cases, such
as 3.36% improvement in Hamm by TwoSM + A-MEx and 4.11%
improvement in tIOU by Pix2PixHD + A-MEx, compared with
that of using MEx loss in Table 2.
(4) A-MEx loss also improves natural image inpainting. Table 3
shows improvements in SSIM, L1 and FID on CMP Facade. In
particular, the FID of generated images decreases by 13.13%,
which is a great improvement in image quality. Moreover, the
MEx loss is complementary to SOTA image inpainting methods,
by further decreasing 6.55% and 5.00% FID applied to GL + PC
and GL + GC respectively. Plus, A-MEx further decreases 5.00%
and 5.09% in FID for stage 1 and stage 2 of EIL respectively.
(5) Our improvement, replacing local observation with global
observation, is effective. Table 2 shows that TwoSM + MEx
has an obvious improvement over TwoSM (local observation).
Table 1
The tIOU, Hamm, and FID on three datasets, as well as HuEv on Cityscape.

Methods tIOU"
Pix2PixHD [2] (Cityscape) 0.7350

Pix2PixHD + MEx(Cityscape) 0.7493

Pix2PixHD (NYU) 0.4222
Pix2PixHD + MEx(NYU) 0.4851

Pix2PixHD (Helen Face) 0.2806
Pix2PixHD + MEx(Helen Face) 0.3721

Table 3
The statistics on the CMP Facade for natural image inpainting.

Methods

SSIM"
GL [16] 0.3827
GL + A-MEx 0.3912

GL + PC [58] 0.4194
GL + PC + A-MEx 0.4248

GL + GC [73] 0.4098
GL + GC + A-MEx 0.4195

EIL [74]-S1 0.4223
EIL [74]-S1 + A-MEx 0.4376

EIL [74]-S2 0.5751
EIL [74]-S2 + A-MEx 0.5864
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For example, the tIOU improves 11.62% and Hamm improves
10.32%. These demonstrate that the removed context, which
is kept in the global observation, is important in improving
the performance of SISM.

4.2.2. Parameter sensitive analysis
We conduct experiments for the MEx times q (applied in Eq. 5,

Eq. 6 and described in Fig. 4). We compare the tIOU and Hamm for
different q by Pix2PixHD + MEx on Cityscape, where the q values
are set at 0, 1, 2, 4, 8. Plus, the a and b are both fixed at 5 in the
analysis. The result of the sensitivity analysis is shown in Fig. 5.
From the figure, we conclude as below:

(1) MEx loss is effectively complementary to global and local
GAN, as tIOU and Hamm in q ¼ 0 (equivalent to the GL) are sig-
nificantly lower than those in q > 0. Since q ¼ 0 is equivalent to
the GL, this shows that our multiple mid-level views are effec-
tively complementary to global and local views.
(2) The tIOU and Hamm both fluctuated proportionally to q.
When q ¼ 2, we have the highest tIOU and Hamm, while the
tIOU and Hamm in q ¼ 4 decrease around 1% in comparison
to q ¼ 2. However, when q ¼ 8, the tIOU and Hamm increase
noticeably compared to q ¼ 4. The fluctuation shows that tIOU
and Hamm are sensitive to q.
Hamm" FID# HuEv"
0.7483 139.47 0.4704
0.7677 139.14 0.5296

0.3763 138.16 0.2511
0.4683 137.44 0.7489

0.4753 64.91 0.3980
0.5278 63.90 0.6020

CMP Facade

L1# FID# HuEv"
21.59 63.14 0.4727
20.22 54.84 0.5273

17.06 51.46 -
16.84 48.09 -

16.63 52.55 -
16.88 49.92 -

16.75 44.05 -
15.51 41.50 -

9.76 41.49 -
8.94 39.38 -



Fig. 6. Examples of results of different baselines with A-MEx loss on Cityscape. The two panels show 6 different examples and are arranged in the same way. The ground-
truth and mask areas (red rectangles) are shown in the first column. The right two columns show the inpainted segmentation maps of different baselines without/with A-MEx
loss, where the {Baseline} is Pix2PixHD, SPADE and TwoSM for the first, second, and third rows respectively. The target labels are shown on the leftmost columns next to the
images. Please zoom in for better visualization.

Fig. 7. Examples of inpainted segmentation maps of TwoSM + Full and TwoSM + Full + A-MEx on the Cityscape. The ground-truth segmentation maps, and the incomplete
color segmentation maps are shown on the left. The right two columns show the inpainted segmentation maps of TwoSM + Full and TwoSM + Full + A-MEx respectively. The
leftmost vertical texts are their target labels. Please zoom in for better visualization.
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4.3. Qualitative analysis

4.3.1. Qualitative results
From Fig. 1, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig. 12, we can

conclude as below.

(1) Fig. 6 shows the inpainted segmentation maps generated by
A-MEx loss are better consistent with both context and plausi-
bility of object shapes. For example, in the right panel of the
third row, a car is inpainted behind the pedestrians with higher
consistency, instead of cutting them through. The better consis-
tency also results in improved shapes. For example, the added
car in the first row of the left panel has a more plausible shape
when A-MEx loss is used in comparison to the baseline.
(2) Fig. 7 shows additional cases where TwoSM + A-MEx has
better qualitative performance than TwoSM in different seman-
tics. For example, its first row shows a better generation in per-
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son from TwoSM + A-MEx, because of its more pronounced
contour of the person. Its second row shows the better car,
because the car generated by TwoSM + A-MEx has more clear
tires compared with the one in TwoSM.
(3) Fig. 8 shows additional qualitative results, which demon-
strate the effectiveness of MEx loss on Pix2PixHD. For example,
its first row shows MEx loss can help generate a more compet-
itive rider. The car in the second row is generated more reason-
ably by MEx loss.
(4) From Fig. 9, we can see that the generated left eye (first row)
and rear tire (second row) by Pix2PixHD + MEx in a natural
image appear more natural than the ones generated by Pix2-
PixHD. These results show the effectiveness of MEx loss in
Pix2PixHD.
(5) Fig. 10 shows that A-MEx loss significantly boosts image
quality, especially the image consistency between the inpainted
areas and the context, in natural image inpainting on each
baseline.



Fig. 8. Examples of inpainted segmentation maps of SPADE, SPADE + MEx loss and SPADE + A-MEx loss on the Cityscape. The ground-truth segmentation maps, and the
incomplete color segmentation maps are shown on the left. The right three columns show the inpainted segmentation maps of SPADE, SPADE + MEx and SPADE + A-MEx
respectively. The leftmost vertical texts are their target labels. Please zoom in for better visualization.

Fig. 9. Examples of results of Pix2PixHD and Pix2PixHD + MEx on the Helen Face and Cityscape. The ground truths and mask areas are shown on the left. The right two panels
show the inpainted segmentation maps (SISM results) and their respective translated images. Please zoom in for better visualization..
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4.3.2. Human evaluations
We conduct user evaluation by recruiting naive observers from

other organizations to complete the two-alternative forced choices
experiments. The observers are provided with a web-based inter-
face for each experiment. A screenshot of the experiment website
is shown as Fig. 11, where the observers are shown the ground-
truth, and incomplete segmentation map, which shows the object
bounding box in certain color respecting to the target label. On the
right side of the interface, the randomly arranged image results
(choices A and B) from the models are displayed for comparison.
The users are asked to choose which image (choice A or B) that best
inpaints the mask area in consideration of the ground-truth and
the incomplete map shown on the left. At each trial, the choices
A and B randomly represent different model results.

As discussed in Section 4.1.2., HuEv calculates the mean per-
centage of the times that a model output was preferred, averaged
over all observers. We use HuEv to represent user preference. In
terms of SISM (Table 1), the HuEv results (from 11 users on each
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dataset) show that Pix2PixHD + MEx generates better inpainted
segmentation maps for all three datasets. In Cityscape, the HuEv
results show a 52.96% user preference for Pix2PixHD + MEx and
a 47.04% for Pix2PixHD, respectively. In NYU, HuEv results show
Pix2PixHD + MEx generates better inpainted segmentation maps
by having significantly higher user preference for the MEx result,
which is 74.89% user preference for Pix2PixHD + MEx and only
25.11% for Pix2PixHD, respectively. Also in Helen Face, HuEv
results show 60.20% user preference for Pix2PixHD + MEx and
39.80% for the baseline, which shows Pix2PixHD + MEx improves
the SISM results. In terms of natural image inpainting (Table 3),
HuEV results (from 12 users) also show A-MEx loss improves nat-
ural image inpainting with a 52.73% user preference for GL + A
+MEx.

4.4. Applications of SISM

Each row in Fig. 1 and Fig. 12 shows a different SISM applica-
tion. In their first rows, given a semantic, SISM provides diverse



Fig. 10. Examples of natural image inpainting results on CMP Facade. The leftmost lists the ground truths for both RGB images and grey images (only compared to EIL [74]-
S1). The right three panels show the generated results without A-MEx loss (w/o A-MEx) or with A-MEx loss (w/i A-MEx). The five comparison groups are: (a):GL [16], (b):
GL + PC [58], (c):GL + GC [73], (d):EIL [74]-S1, and (e):EIL [74]-S2. Please zoom in for better .visualization..

Fig. 11. A screenshot for the website used for user evaluation. In the top, we show
the task question as ‘‘Task: Which synthetic image (A or B) matches the ground-
truth better in terms of filling the missing region?” In the left part, the complete
segmentation map, and incomplete segmentation map with an object bounding box
in certain color respecting to the target label are shown. For each turn, we provide
randomly arranged results by choices A and B in the right part.
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structures for image translation. In their second rows, we inpaint
natural images by semantics, where SISM manipulates structures
before style translation. We apply Pix2PixHD + A-MEx for the first
application, and TwoSM + A-MEx for the second. The downstream
model for the image translation is from [2] and the downstream
model for the semantic image inpainting is from [3].
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5. Conclusion

In this paper, we first analyze the drawback of global and local
GAN and find that global GAN is hard to fully learn the image con-
sistency between the inpainted areas and the context. We then
propose a novel loss function, MEx loss, to further improve the
image consistency in image manipulation. MEx loss is imple-
mented by adversarial losses on MEx areas, which have the
inpainted areas as the majority and their context as the minority.
To enhance stability and usability, we further propose A-MEx loss.
Experimental results on four datasets demonstrate that MEx loss
and A-MEx loss have achieved superior performances on the SISM
models with various output representations and natural image
inpainting.
CRediT authorship contribution statement

Jianfeng He: Conceptualization, Investigation, Methodology,
Formal analysis, Software, Validation, Writing – original draft,
Visualization. Xuchao Zhang: Conceptualization, Resources,
Supervision, Investigation, Writing – review & editing. Shuo Lei:
Conceptualization, Supervision, Investigation, Formal analysis,
Software, Writing – review & editing. Shuhui Wang: Conceptual-
ization, Resources, Writing – review & editing. Chang-Tien Lu:
Funding acquisition, Resources, Writing – review & editing. Bei
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Bottom panel: we inpaint a natural image by a semantic, where we use SISM to get the inpainted segmentation map; then, we concatenate the inpainted segmentation map
and the original context from the natural image (shown as ‘‘Incomplete Image”); finally, the concatenation is used for a style translation. The vertical texts on the left are their
target labels. The symbol ‘‘-” means it is not applicable to the task. Please note that since we focus on SISM here, the image translation can be improved by other SOTA
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