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Deep learning’s performance has been extensively recognized recently. Graph neural networks (GNNs) are

designed to deal with graph-structural data that classical deep learning does not easily manage. Since most

GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily

concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The

purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and

approximation theory. The framework incorporates a strong integration between spatial- and spectral-based

GNNs while tightly associating approaches that exist within each respective domain.

1 INTRODUCTION
Deep learning’s performance in various machine learning tasks [96, 120, 145, 168, 170, 203] has

been extensively recognized in recent decades, with amazing success on Euclidean data. In recent

decades, a slew of new applications have emerged in which effective information analysis boils

down to the non-Euclidean geometry of data represented by a graph, such as social networks

[119], transportation networks [21], spread of epidemic disease [156], brain’s neuronal networks

[148], gene data on biological regulatory networks [58], telecommunication networks [66], and

knowledge graph [137]. Previous deep learning algorithms, such as convolutional and recurrent

neural networks, couldn’t handle such non-Euclidean problems on graph-structured data. Modeling

data using a graph is difficult because graph data is irregular, i.e., each graph has a different number

of nodes and each node in a graph has a varied number of neighbors, making some operations like

convolutions inapplicable to the network structure.

There has recently been a surge growing interest in applying deep learning to graph data.

Inspired by deep learning’s success, principles from deep learning models are used to handle the

graph’s inherent complexity. This growing trend has piqued the interest of the machine learning

community, and a huge number of graph neural networks (GNN) models have been proposed based

on diverse theories [14, 38, 62, 87, 114, 188] and grouped into coarse-grained groupings like the

spectral [88, 155, 204, 230, 234] and spatial [14, 87, 188] domains. GNNs have seen rising popularity

recently for learning graph representations and quickly spread out to many application domains,

such as physics [7, 113], chemistry [35, 57], knowledge graph [13, 211, 220, 229], recommender

systems [49, 70, 193, 202], computer vision [78, 104, 131], natural language processing [20, 182, 200],

combinatorial optimization [41, 80, 174], traffic network [39, 45, 103, 219], program representation

[64, 198, 236], social network [24, 163, 202]. However, current research in methodology has not

translated into a clear understanding of the mechanisms involved, nor has it given us insight into

GNNs’ effectiveness or physical meaning. As a result, several consequences will occur: (1) There is
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no underlying principle that connects all GNNs, which also limits their growth. (2) In high-stakes

applications such as drug development, GNN models may carry potentially hazardous unknowns

since they are black boxes. Consequently, the necessity of dissecting GNNs is highlighted, thereby

driving academics to hunt for a more universal framework. The main problem is that existing GNN

models use a variety of techniques, including randomwalks [71, 85, 164], PageRank [30, 54, 115, 116],

attention models [112, 118, 188], low-pass filters [29, 158], and message forwarding [81, 82]. Some

preliminary research can only explain a few GNNs methods [82, 209, 222], leaving the majority of

GNN unaccounted for. Previous GNNs surveys have dealt mostly with classifying several existing

models into multiple categories and expanding on each category individually, with no regard to

the interrelationships between them [88, 155, 204, 230, 234].

This research
1
aims to provide a coherent framework for generalizing GNNs by bridging the

divide between seemingly unrelated works in the spatial and spectral domains, as well as by linking

methods within each domain. The study will build a unified theoretical framework that encompasses

diverse GNNs. Our research is novel in that it connects disparate GNN models, allowing for direct

rethinking and comparison of all GNN models.

1.1 Graph Neural Networks in Spatial and Spectral Domain
Over the past several years, GNNs have gained a lot of attention. However, the existence of

numerous GNNs complicates model selection because they are not easily understood within the

same framework. Specifically, one uses spectral theory to implement early GNNs [62, 89], whereas

spatial theory is used to propose others [46, 87]. The mismatch inherent to spectral and spatial

approaches means that direct comparisons are difficult. Even in each area, there are numerous

models, which makes it difficult to examine their strengths and weaknesses.

To untangle the mess, we present a unified framework that connects the spatial and spectral

domains and reveals their intricate relationship. Furthermore, both domains’ subcategories are

proven to have a hierarchical link. The focus on a unified framework adds to the knowledge of

how GNNs operate. The goal of this research is to use a combination of spectral graph theory and

approximation theory to investigate the relationship between important categories, such as spatial

and spectral-based approaches.We give a detailed analysis of GNNs’ current research findings in this

paper, as well as a discussion of trending topics such as over-smoothing. Many well-known GNNs

will be used to demonstrate the universality of our architecture. This article’s main motivation is

twofold: (1) Connecting the spectral and spatial domains. The fundamental concepts, principles,

and physical implications of spectral- and spatial-based GNNs are significantly different due to

their distinct features. As a result, we present an overview of the fundamental principles and

properties of spectral- and spatial-based GNNs in order to help people better grasp the problems,

potential, and necessity of GNNs. Formally, a rigorous equivalence is established, indicating that

spatial connection function is comparable to spectral filtering; (2) Dissecting spectral and spatial
domains, respectively. In spectral techniques, filtering functions on eigenvalues are examined,

and the filtering function choice can be matched with various tactics in approximation theory.

While spatial methodologies are used to explore attribute aggregation, which may be understood

from the size and direction within a predetermined region.

The structure of the article is summarized as follows: Basic concepts, distinctive principles,

and properties of graph neural networks are covered in Section 2, as well as ways for encoding

the graph, spectral-based GNNs, spatial-based GNNs, and essential fundamentals. The proposed

framework is summarized in Section 3, which emphasizes the relevance of hierarchy. From Section

4 through Section 5, we explore exemplary GNN models in each domain using our proposed

1
A short version is available at [52]
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taxonomy structure. In Section 6, we go over the advantages and disadvantages of each domain in

detail, as well as practical guidance on GNN model selection. Section 7 also includes a case study of

our techniques, demonstrating our proposed framework with current and relevant GNNs concerns.

1.2 Related Surveys and Our Contributions
Existing works can be divided into three groups: Existing Works Group 1 (Comprehensive
Collection): Recently, many extensive surveys on graph neural networks have been compiled

[37, 88, 204, 230, 234, 241]. Instead of studying their hierarchical and underlying mechanisms, most

existing surveys focus on gathering newly published works and categorizing them into separate

categories. A detailed survey, in particular, provides an overview of many examples of graph

neural networks, classifying them as spatial or spectral-based techniques [37]. A taxonomy of

graph types, training methods, and propagation processes was recently published in [234]. Another

survey [230] categorized graph neural network advances as semi-supervised (graph convolution),

unsupervised (graph auto-encoder), and latest advancements (graph recurrent neural network and

graph reinforcement learning). Graph convolution, graph auto-encoder, graph recurrent neural

network, and spatial-temporal graph neural networks are all included in [204]. These existing

surveys, on the other hand, fail to integrate their categories into a cohesive framework. Existing
Works Group 2 (Particular Perspectives): The second thread of surveys for graph neural

networks is from diverse theoretical perspectives. For example, in the field of graph neural networks

with an attention mechanism, a comprehensive and concentrated survey was undertaken [121].

Another example demonstrated how many graph neural networks with negative sampling might

be merged into an analytical matrix factorization framework [167]. One similar study offered a

general view proving that network embedding techniques and matrix factorization are equal in

terms of two objectives: one for similar nodes and the other for distant nodes [139]. One specific

survey created four benchmark datasets with diverse features and user-friendly interfaces for 10

common algorithms, providing a unified paradigm for systematic categorization and analysis on

several existing heterogeneous network embeddings approaches [213]. A recent work analyzed

anonymous and degree-aware message-passing to study the distinguishing power of different

classes [81]. However, this research is limited to a subset of the GNNs family and lacks a global

perspective. Existing Works Group 3 (Post-Hoc Explanation): Building post-hoc models and

then identifying the underlying patterns from a statistical standpoint is another technique to analyze

GNNs [18, 122, 136, 224]. Because neural networks are employed without any theories or domain

expertise, this methodology is referred to as "black box". For this reason, post-hoc models have the

potential to be biased, subject to adversarial attacks, and difficult to verify. Our research focuses on

interpretable graph neural networks, which have a strong theoretical foundation. Previous surveys

Existing Works 1 Existing Works 2 Existing Works 3 This Survey

Theoretical Support   
Comprehensiveness    

Table 1. Comparing this study with previous studies

either categorize several disparate groups or only address a few GNNs using a certain methodology.

Following the overall goals of our framework, we want to create one framework that unifies GNNs

across the spatial and spectral domains as well as within each domain via theoretical support. It

should be noted that the majority of the work presented is related to Graph Convolution Networks

(GCN) [114], which is the most common type of GNNs, and that many other varieties of GNNs are

still based on GCN. As a result, we do not differentiate between GNNs and GCN in this context and

refer to GNNs in the following sections.
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2 PROBLEM SETUP AND PRELIMINARY
In this section, we outline basic concepts, necessary preliminary, and problem setup of learning

node-level representation which is the major task in the GNN literature. A simple graph is defined

as G = (V, E), where V is a set of n nodes and E represents edges. An entry 𝑣𝑖 ∈ V denotes

a node, and 𝑒𝑖, 𝑗 = {𝑣𝑖 , 𝑣 𝑗 } ∈ E indicates an edge between nodes 𝑖 and 𝑗 . The adjacency matrix

A ∈ R𝑁×𝑁
is defined by if there is a link between node 𝑖 and 𝑗 , A𝑖, 𝑗 = 1, and else 0. Node features

X ∈ R𝑁×𝐹
is a matrix with each entry 𝑥𝑖 ∈ X representing the feature vector on node 𝑖 . Another

popular graph matrix is the graph Laplacian which is defined as L = D−A ∈ R𝑁×𝑁
where D is the

degree matrix. Due to its generalization ability [32] , the symmetric normalized Laplacian is often

used, which is defined as L̃ = D− 1

2 L D− 1

2 . Another option is random walk normalization: L̃ = D−1 L.
Note that normalization could also be applied to the adjacency matrix, and their relationship is

L̃ = I− Ã. Most GNNs focus on node-level embeddings, learning how a graph signal is modified by

Table 2. Commonly used notations.

Notations Descriptions

G A graph.

V The set of nodes in a graph.

E The set of edges in a graph.

A, Ã The adjacency matrix and its normalization.

L, L̃ The graph Laplacian matrix and its normalization.

𝑣 A node 𝑣 ∈ V .
𝑒𝑖 𝑗 An edge 𝑒𝑖 𝑗 ∈ E .
𝜆𝑖 ∈ Λ Eigenvalue(s).

U,U⊺
Eigenvector matrix and its transpose.

U𝑖 ∈ U, u⊺
𝑖 ∈ U⊺

Single eigenvector and its transpose.

D The degree matrix of A and D𝑖𝑖 =
∑𝑛
𝑗=1 A𝑖 𝑗 .

X ∈ R𝑁×𝑑
The feature matrix of a graph.

Z ∈ R𝑁×𝑏
New node feature matrix.

H ∈ R𝑁×𝑏
The node hidden feature matrix.

h𝑣 ∈ R𝑏 The hidden feature vector of node 𝑣 .

𝑁 node number

𝑏 dimension size of hidden feature

⊙ Element-wise product.

Θ, 𝜃 Learnable model parameters.

P(·),Q(·) Polynomial function.

N(𝑣) Directed neighbors of node 𝑣

a graph topology, and outputting a filtered feature as:

𝑓 : 𝐺,X → Z, (1)

where we aim to find a mapping which can integrate graph structure and original node features,

generating a update node representation Z.𝐺 represents the graph connectivity, and many options

are available as listed in Table 3, and most popular are symmetric normalized graph matrices.

In this survey, we use the graph Laplacian, adjacency matrix, and their modifications described

in Table 3 to represent a graph. So yet, no experimental or theoretical evidence has been shown

that any filter has a consistent advantage [195]. This survey is investigating two specific groups of

GNNs, namely spectral- and spatial-based GNNs, which are defined as below:

Definition 2.1 (Spatial Method). By integrating graph connectivity 𝐺 and node features X, the

updated node representations (Z) are defined as:

Z = 𝑓 (𝐺) · X, (2)
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Table 3. Representations for graph topology

Notations Descriptions

A Adjacency matrix

L Graph Laplacian

Ã = A+ I Adjacency with self loop

D−1 A Random walk row normalized adjacency

A D−1
Random walk column normalized adjacency

D−1/2 A D−1/2
Symmetric normalized adjacency

D̃
−1

Ã Left renormalized adjacency, D̃𝑖𝑖 =
∑
𝑗 Ã𝑖 𝑗

ÃD̃
−1

Right renormalized

D̃
−1/2

ÃD̃
−1/2

Symmetric renormalized

(D̃−1
Ã)𝑘 Powers of left renormalized adjacency

(ÃD̃
−1)𝑘 Powers of right renormalized adjacency

where 𝐺 is often implemented with A or L in existing works. Therefore, spatial methods focus on

finding a node aggregation function 𝑓 (·) that learns a proper aggregation with node features X
to obtain a updated node embedding Z.

Before introducing another definition, the necessary preliminary background is offered: (1)
graph Fourier transform: The graph Laplacian L can be diagonalized [180, 244] as L̃ = U Λ U⊺

,

where Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues (i.e.,

Λ𝑖𝑖 = 𝜆𝑖 ), and U represents eigenvectors. Further, the graph Fourier transform of a signal X is

defined as X̂ = U⊺ X ∈ R𝑁×𝑁
and its inverse as X = U X̂. (2) spectral convolution: According to

the Convolution Theorem (i.e., Fourier transform of a convolution of two signals is the element-wise

product of their Fourier transforms) [161], the convolution is defined in the Fourier domain such

that

𝑓1 ∗ 𝑓2 = U [(U⊺ 𝑓1) ⊙ (U⊺ 𝑓2)] ,
where ⊙ is the element-wise product, and 𝑓1/𝑓2 are two signals defined on the time or spatial

domain.

Definition 2.2 (Spectral Method). A node signal 𝑓2 = X is filtered by spectral function g = U⊺ 𝑓1 as:

g ∗X = U
[
g(Λ) ⊙

(
U⊺ X

) ]
= U diag(g(Λ)) U⊺ X, (3)

where g is known as frequency response function. If g is polynomial, rational or exponential

function, then we can reduce the equation above to:

g ∗X = g(L̃) X . (4)

In short, the objective of spectral methods is to learn a frequency response function g(·).

The goal of both methods is to learn how to approximate node aggregation or a frequency

response function using the data. A great deal of approximation techniques are utilized, and thus

𝑓 or 𝑔 can be efficiently estimated. Approximation theory is a branch of mathematics dedicated

to discovering and quantifying the errors caused when functions are approximated using smaller

functions. Despite the fact that polynomials have a more convenient form than rational functions

and are more popular due to its efficiency, rational functions are better at approximating functions at

singularities and on unbounded domains. The basic characteristics of rational functions are outlined

in complex analytic literature [4, 6, 34, 56, 149, 162, 165, 166, 169, 186, 246]. As an important poly-

nomial approximation, Chebyshev approximation is first introduced as spectral filtering for graph

convolution: A real symmetric graph Laplacian L can be decomposed as L = U Λ U−1 = U Λ U⊺
.
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Chebyshev approximation on spectral filter g is applied [62, 89] so that is can be approximated

with a polynomials with order k:

g ∗X =U g(Λ) U⊺ X

≈U
∑︁
𝑘

𝜃𝑘𝑇𝑘 (Λ̃) U⊺ X (Λ̃ =
2

𝜆𝑚𝑎𝑥
Λ− IN)

=
∑︁
𝑘

𝜃𝑘𝑇𝑘 (L̃)𝑥 (U Λ𝑘 U⊺ = (U Λ U⊺)𝑘 )

Amost popular graph convolutional network [114] further simplifies this approximation by reducing

the order to 1:

g ∗X ≈𝜃0 IN 𝑥 + 𝜃1L̃ X (expand to 1st order)

=𝜃0 IN 𝑥 + 𝜃1 (
2

𝜆𝑚𝑎𝑥
L− IN)) X (L̃= 2

𝜆𝑚𝑎𝑥
L − IN ) )

=𝜃0 IN 𝑥 + 𝜃1 (L− IN)) X (𝜆𝑚𝑎𝑥=2)

=𝜃0 IN 𝑥 − 𝜃1 D̃ A D̃ X (L=IN − D̃ A D̃)

=𝜃0 (IN + D̃ A D̃) X (𝜃0=−𝜃1 )

=𝜃0 (D̃
− 1

2 ÃD̃
− 1

2 )𝑥 (Ã=A+ IN ,D̃𝑖𝑖=
∑

𝑗 A𝑖 𝑗 ) .

As a result, 𝜃0 is the only parameter to learn. The learnable parameters in many different GNNs

can vary based on the model design.

3 FRAMEWORK OVERVIEW
The development of GNNs is briefly discussed belowwith representative studies before we introduce

our proposed theoretical framework. Table 4 depicts many sample models that focus on node-level

graph convolution. The spectral perspective was previously explored (SGWT [89]), and it serves as

the technical foundation for all subsequent spectral methods, including spectral convolution and

approximation. Researchers continue to add to this thread, demonstrating that spectral methods

have the ability to handle graphs (SGNN [38], ISGNN [94], ChebNet [62]). Furthermore, GCN [114],

and GraphSAGE [87] create effective training methodologies, gaining considerable attention from

various communities. After that, spectral techniques development stagnated, with the exception of

a few publications on rational filtering (RationalNet [51], AR [129], ARMA [25]). Meanwhile, focus

shifts to the spatial domain, which has dominated GNNs to this point. Random walks (ParWalk

[201], DeepWalk [164], LINE [184]) and CNN (DCNN [14]) were used in early spatial approaches.

Following that, MPNN [82] solidified the message-passing mechanism in spatial techniques. High-

order polynomial approximation has been studied [117, 173, 199, 209], but only within the context

of ChebNet or DCNN. It’s worth noting that while numerous publications described their suggested

methods from both spatial and spectral perspectives, only a few GNNs are covered [117, 155]. Until

recently, spectral research has demonstrated a resurgence.

In this survey, we provide a framework to fully comprehend spectral methods from a spatial

perspective and vice versa. A cross-domain perspective is used to integrate spatial and spectral

techniques into a coherent framework. As shown in Figure 1, the proposed framework divides

GNNs into two domains: spatial (A-0) and spectral (B-0), each of which is further separated into

three subcategories (A-1/A-2/A-3 and B-1/B-2/B-3). A-0 is separated into linear (A-1), polynomial

(A-2) and rational (A-3) aggregations based on the types of neighbor aggregation (i.e., 𝑓 in Def. 2.1).
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Table 4. Chronological list of notable GNNs in spatial and spectral domains

Spatial Spectral

Before 2015 ParWalk [201], DeepWalk [164], LINE

[184]

Spectral GNN [38], ISGNN [94], Neu-

ral graph fingerprints [67]

2016 DCNN [14], Molecular Graph Convo-

lutions [109], PATCHY-SAN [157]

GCN [114], ChebNet [62]

2017 MPNN [82], PGCN [74], GraphSAGE

[87]

MoNet [155]

2018 GIN [209], Adapative GCN [100], Fast

GCN [47] JKNet [210], Large Scale

GCN [76]

RationalNet[51], AR [129], Cay-

leyNet [124]

2019 SGCN [199], DeepGCN [126], Mix-

Hop [3], PPAP [115]

ARMA [25], GDC [117], Eigen-

Pool [146], GWNN [207], Stable

GCNN[191]

2020 SIGN [173], Spline GNN [242],

UaGGP [141], GraLSP [106], Graph-

SAINT [227], DropEdge [172],

BGNN[237], ALaGNN[206] Continu-

ous GNN [205], GCNII [50], PPRGo

[31], DAGNN [138], H2GCN [239]

GraphZoom [63]

2021 ADC [231], UGCN [105], DGC [196],

E(n)GNN [175], GRAND [42], C&S

[97], LGNN [140]

Interpretable Spectral Filter [110], Ex-

pressive Spectral Perspective [17],

S2GC [238], BernNet [93]

2022 GINR[84], Adaptive SGC [43], PG-

GNN [101], DIMP [215]

AGWN [150], ChebNetII [92], Jaco-

biConv [194], SpecGNN [216], G
2
CN

[128], PGNN [75], ChebGibbsNet [9],

SpecFormer[11], SIGN [10], Spectral

Density [197]

Operations on first-order neighbors only are considered in linear aggregation (A-1), whereas high-

order neighbors are incorporated in polynomial aggregation (A-2). In addition, rational aggregation

(A-3) includes self-aggregation. According to the types of approximation techniques, the spectral

methods are divided into linear (B-1), polynomial (B-2), and rational (B-3) approximation depending

on the types of frequency filtering (i.e., g in Def. 2.2). In Section 4 and 5, each category and

subcategory will be explained in detail with examples.

3.1 Inside the Spatial and Spectral Domain
The hierarchical link between the spatial and spectral domains is depicted in this subsection.

Spatial-based techniques can be divided into three types, with specialization and generalization

relationships existing:

(A-1) Linear Aggregation ⇄ (A-2) Polynomial Aggregation ⇄ (A-3) Rational Aggregation,

where it is a generalization from left to right, and specialization from right to left. Specifically,

Linear Aggregation (A-1) comprises all algorithms for learning a linear function among neighbors

in the first-order. Higher-order neighbors are included in Polynomial Aggregation (A-2), and the

order number is defined by the polynomials. Additionally, Rational Aggregation (A-3) utilizes

self-aggregation. Since the inclusion of higher-order neighbors causes linear aggregation (A-1) to

transform into polynomial aggregation (A-2), and polynomial aggregation (A-2) to transform into

rational aggregation (A-3) if self-aggregation is added. The approaches falling under the general

category of spectral analysis can be grouped into three distinct groups:

(B-1) Linear Approximation ⇄ (B-2) Polynomial Approximation ⇄ (B-3) Rational Approximation,

7
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1
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2
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Fig. 1. Illustration of major graph neural operations and their relationship. Spatial and spectral methods are
divided into three groups, respectively. Groups A-1, A-2, and A-3 are strongly-correlated by generalization
and specialization, so are groups B-1, B-3, and B-3. The equivalence among them is marked in the same color.

which includes left-to-right generalization and right-to-left specialization. Concretely, (B-1) outlines

all models that aggregate frequency components using a linear function, while (B-2) uses polynomial

approximation, and (B-3) applies rational approximation. Therefore, (B-1) can be generalized as

(B-2) if replacing linear approximation with polynomial approximation, (B-2) is generalized as (B-3)

if replacing polynomial approximation with rational approximation.

3.2 Between the Spatial and Spectral Domain
In this section, we go through the link between the spatial and spectral domains over the border.

There is also equivalency by modifying the analytical form of these subcategories, as shown below.

Linear Aggregation (A-1) and Linear Approximation (B-1) are the initial equivalences:

(A-1) Linear Aggregation ⇔ (B-1) Linear Approximation,

which means that adjusting weights on neighbors in linear aggregation equates to adjusting weights

on frequency components in linear approximation using a linear function. Linear Aggregation (A-1)

and Linear Approximation (B-1) have the same linear function and can seamlessly convert to each

other in closed form. The main difference between them is that Linear Aggregation (A-1) recovers

the signal as a linear function of the frequency component, whereas Linear Approximation (B-1)

models the target signal as a linear function of neighbor nodes. Both Linear Aggregation (A-1) and

Linear Approximation (B-1) aggregate the representations of neighbors by tweaking the weights

of each neighbor, or uses a linear filter on eigenvalues with a negative slope, i.e., g(Λ) = −Λ+𝑎.
Because the low-frequency components are given a higher weight by 𝑔 than their original values,

this is referred to as low-pass filtering (i.e., eigenvalues). This group’s main advantages are (1) its

low computational cost and (2) the large number of real-world scenarios that are subject to the

homophily assumption (i.e., neighbors are similar). The fundamental disadvantage is that not every

network guarantees homophily.

Polynomial Aggregation (A-2) and Polynomial Approximation (B-2) are identical in terms of

actual operation, i.e.,

(A-2) Polynomial Aggregation ⇔ (B-2) Polynomial Approximation.

This means that in polynomial aggregation, aggregating higher orders of neighbors can be expressed

as the sum of different orders of frequency components in polynomial approximation. Both use

higher-order neighbors in addition to first-order neighbors, increasing the capacity to simulate a

more complex relationship among the neighbors. It is theoretically more powerful than (A-1)/(B-1)

8



A1 A2 A3

B1 B2 B3

Computational Efficiency

Linear Approximation Polynomial Approximation Rational Approximation

Linear Aggregation Polynomial Aggregation Rational Aggregation

Spatial Domain

Spectral Domain

A0

B0

Generalization Power

Fig. 2. Category and subcategory comparison.

from a spectral standpoint, because (A-2)/(B-2) is a polynomial approximation as a spectral filter,

whereas (A-1)/(B-1) is linear regression. As a result, one flaw is the cost of border neighborhood,

which leads to higher computational complexity than (A-1)/ (B-1). Another flaw of them is that if

the order is set too large, it will over-smooth (i.e., all nodes will look the same), and there is no

golden rule for order size because it is based on data. Note that K-layer (A-1) or (B-1) is equivalent

to K-order of (A-2)/(B-2), hence stacking K-layer (A-1) or (B-1) causes over-smoothing (B-1).

Similarly, the last equivalence relationship is

(A-3) Rational Aggregation ⇔ (B-3) Rational Approximation,

in which rational aggregation defines a label aggregation with self-aggregation, while rational ap-

proximation adjusts filter function with rational approximation. Both alleviate the over-smoothing

issue by introducing self-aggregation, which limits the intensity of uni-directional aggregation in

the spatial domain. From a spectral perspective, this advantage can be interpreted as the superiority

of rational approximation (A-3/B-3) over polynomial approximation (A-2/B-2). In particular, the

rational approximation is more powerful and precise, particularly when estimating some abrupt

signals like discontinuity. [4, 34, 56, 149, 165, 166, 186]

As a result, we may summarize the advantages and disadvantages of each combination as

illustrated in Figure 2. The category selection is based on the data complexity and the efficiency

required, as there is a trade-off between computational efficiency and generalization capability.

Table 5 shows the structure of sections 4 and 5, where we will discuss details of these two threads

respectively and exemplify using several representative graph neural networks. The second column

denotes spatial perspective (section 4, A-0), which can treat popular GNNs as learning a function

of adjacency matrix, or node aggregation function. Similarly, the third column means spectral

view (section 5, B-0), which sees GNN as learning a function of eigenvalues or frequency response

functions. The cell at the intersection of the second row and second columnmeans that this category

of GNNs can be treated as a linear function of adjacency matrix, or say, its node aggregation function

is linear. The other intersection cells follow a similar schema. Note that categories within the same

row have the same format and function. For instance, in the second row, A-1 and B-1 share the

format of a linear function, but their parameters need not be identical.

4 SPATIAL-BASED GNNS (A-0)
In the current literature, spatial approaches such as self-loop, normalization, high-order neighbors,

aggregation, and node combination are often explored. We established a new taxonomy for spatial-

based GNNs based on these operations, dividing them into three separate groupings as below.

4.1 Linear Aggregation (A-1)
A lot of research has gone into understanding the aggregation among first order neighbors (i.e.,

direct neighbors) [82, 87, 164, 188, 208, 209]. The supervisory signal patterns are revealed by altering

the weights for the node and its first order neighbors. The revised node embeddings, Z(𝑣𝑖 ), can be

9



Table 5. Structure of section 4 and 5.

Section 4 (A-0)
Spatial: function of adjacency matrix

Section 5 (B-0)
Spectral: function of eigenvalues

Linear 𝑙 (·)
sub-section 4.1 (A-1)

𝑙 (𝐴) = 𝑎1𝐴 + 𝑎0𝐴0 = 𝑎1𝐴 + 𝑎0𝐼
sub-section 5.1 (B-1)

𝑙 (Λ) = 𝑎1Λ + 𝑎0Λ0 = 𝑎1Λ + 𝑎0

Polynomial P(·)
sub-section 4.2 (A-2)

P(𝐴) = 𝑎𝑚𝐴𝑚 + . . . + 𝑎𝑘𝐴𝑘 + . . . + 𝑎0𝐴0

sub-section 5.2 (B-2)
P(Λ) = 𝑎𝑚Λ𝑚 + . . . + 𝑎𝑘Λ𝑘 + . . . + 𝑎0Λ0

Rational
P( ·)
Q( ·)

sub-section 4.3 (A-3)
P(𝐴)
Q(𝐴) =

𝑎𝑚𝐴
𝑚+...+𝑎𝑘𝐴𝑘+...+𝑎0𝐴0

𝑎𝑚𝐴
𝑚+...+𝑎𝑘𝐴𝑘+...+𝑎0𝐴0

sub-section 5.3 (B-3)
P(Λ)
Q(Λ) =

𝑎𝑚Λ𝑚+...+𝑎𝑘Λ𝑘+...+𝑎0Λ0

𝑎𝑚Λ𝑚+...+𝑎𝑘Λ𝑘+...+𝑎0Λ0

represented in the following way:

Z(𝑣𝑖 ) =

self node︷       ︸︸       ︷
Φ(𝑣𝑖 ) h(𝑣𝑖 ) +

neighbors’ aggregation︷                     ︸︸                     ︷∑︁
𝑢 𝑗 ∈N(𝑣𝑖 )

Ψ(𝑢 𝑗 ) h(𝑢 𝑗 ), (5)

where 𝑢 𝑗 denotes a neighbor of node 𝑣𝑖 , h(·) is their representations, and Φ/Ψ indicate the weight

functions. The first item on the right hand side denotes the weighted representation of node 𝑣𝑖 ,

while the second represents the update from its neighbors. By applying random walk normalization

(i.e., dividing neighbors by degree of the current node), Equation 5 and its symmetric normalization

can be written as:

Z(𝑣𝑖 ) = Φ(𝑣𝑖 ) h(𝑣𝑖 ) +
∑︁

𝑢 𝑗 ∈N(𝑣𝑖 )
Ψ(𝑢 𝑗 )

h(𝑢 𝑗 )
𝑑𝑖

, Z̃(𝑣𝑖 ) = Φ(𝑣𝑖 ) h(𝑣𝑖 ) +
∑︁

𝑢 𝑗 ∈N(𝑣𝑖 )
Ψ(𝑢 𝑗 )

h(𝑢 𝑗 )√︁
𝑑𝑖𝑑 𝑗

, (6)

where 𝑑𝑖 represents the degree of node 𝑣𝑖 . Normalization has better generalization capacity, which

is not only due to some implicit evidence but also because of a theoretical proof on performance

improvement [107]. In a simplified configuration, weights for all the neighbors are the same and is

a scalar value𝜓 , while the weight for self node 𝜙 is another scalar value. Therefore, they can be

rewritten in matrix form as:

Z = 𝜙 X+𝜓 D−1 A X = (𝜙 I+𝜓 D−1 A) X, Z̃ = 𝜙 X+𝜓 D-
1

2 A D-
1

2 X = (𝜙 I+𝜓 D-
1

2 A D-
1

2 ) X . (7)

Equations 7 can be generalized as an identical form:

Z = (𝜙 I+𝜓 Ã) X, (8)

where Ã denotes normalized A, which could be implemented by random walk or symmetric

normalization. As shown in Figure 3, the new representation of the current node (in red) is updated

as the sum of the previous representations of itself and its neighbors. (A-1) may adjust the weights of

the neighbors. The following are a few state-of-the-art approaches that were chosen to demonstrate

this schema:

4.1.1 Graph Convolutional Network (GCN). As the one state of the art, GCN [114] adds a self-

loop to nodes, and applies a renormalization trick which changes degree matrix from D𝑖𝑖 =
∑
𝑗 A𝑖 𝑗

to D̂𝑖𝑖 =
∑
𝑗 (A+ I)𝑖 𝑗 . Specifically, GCN can be written as:

Z = D̂− 1

2 ÂD̂− 1

2 X = D̂− 1

2 (I+A)D̂− 1

2 X = (I+ Ã) X, (9)

where Â = A+ I, and Ã is normalized adjacency matrix with self-loop. Therefore, Equation 9 is

equivalent to Equation 8 when setting 𝜙 = 0 and 𝜓 = 1 with the renormalization trick. Besides,
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Fig. 3. Illustration of A-1: the current node (red) updates itself with its original representation plus neighbors.

GCN takes the sum of each node and average of its neighbors as new node embeddings. Note that

the normalization of GCN is different from the others, but the physical meaning is the same.

4.1.2 GraphSAGE. Computing intermediate representations of each node and its neighbors,

GraphSAGE [87] applies an aggregation among its neighbors. Take mean aggregator as example, it

averages a node with its neighbors, i.e.,

Z(𝑣𝑖 ) = MEAN

(
{h(𝑣𝑖 )} ∪

{
h(𝑢 𝑗 ),∀𝑢 𝑗 ∈ N (𝑣𝑖 )

})
, (10)

where h indicates the intermediate representation, andN denotes the neighbor nodes. Equation 10

can be written in matrix form after implementing MEAN using symmetric normalization:

Z = D-
1

2 (I+A) D-
1

2 X = (I+ Ã) X, (11)

which is equivalent to Equation 8 with 𝜙 = 1 and 𝜓 = 1. Note that the key difference between

GCN and GraphSAGE is the normalization strategy: the former is symmetric normalization with

renormalization trick, and the latter is random walk normalization.

4.1.3 Graph Isomorphism Network (GIN). Inspired by the Weisfeiler-Lehman (WL) test, GIN

[209] developes conditions to maximize the power of GNNs, proposing a simple architecture, Graph

Isomorphism Network (GIN). With strong theoretical support, GIN generalizes the WL test and

updates node representations as:

Z = (1 + 𝜖) · h(𝑣) +
∑︁
𝑢 𝑗

∈ N (𝑣𝑖 ) h(𝑢 𝑗 ) = [(1 + 𝜖) I+A] X, (12)

which is equivalent to Equation 8 with 𝜙 = 1 + 𝜖 and𝜓 = 1. Note that GIN does not perform any

normalization.

4.1.4 Graph Attention Model (GAT). GAT [188] applies attention mechanism by adjusting

neighbors’ weights, instead of using uniform weights in many related works:

Z = (𝑊𝑎𝑡𝑡 ⊗ A) X, (13)

where𝑊𝑎𝑡𝑡 ∈ R𝑁×𝑁
is a matrix, ⊗ denote element-wise multiplication, and calculated by a forward

neural network𝑊𝑎𝑡𝑡 (𝑖, 𝑗) = 𝑓 (h𝑖 , h𝑗 ) with a pair of node representations as input. GAT can be

treated as learning dynamic weight on the neighbors since their weights are not uniform. MoNet

[155] is similar to GAT, since its update follows:

Z(𝑣) =
∑︁

𝑢∈N(𝑣)
𝑤 𝑗 (u(h𝑖 , h𝑗 )) h𝑗 , (14)

where u is a d-dimensional vector of pseudo-coordinates u(𝑥,𝑦), and

𝑤 𝑗 (u) = exp

(
−1

2

(
u − 𝝁 𝑗

)⊤
𝚺
−1
𝑗

(
u − 𝝁 𝑗

))
, (15)
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Fig. 4. Illustration of A-2: This current node (red) is using its original representation plus its first and second-
order neighbors to update itself.

where 𝜇 𝑗 are learnable d × d and d × 1 covariance matrix and mean vector of a Gaussian ker-

nel, respectively. Let𝑊𝑀𝑜𝑛𝑒𝑡 = 𝑤 (𝑢 (·)) as a weight function of a pair of node representations

representation, then it is also a attention model:

Z = (𝑊𝑀𝑜𝑁𝑒𝑡 ⊗ A) X, (16)

These works do not consider updating nodes with their original representations, i.e., 𝜙 = 0 and𝜓 is

replaced with matrix parameter𝑊 in Equation 8. However, it is easy to extend them with self node.

4.2 Polynomial Aggregation (A-2)
Several research use higher orders of neighbors to integrate deeper structural information [14, 62,

85, 184, 199]. Because direct neighbors aren’t always enough to describe a node’s surroundings.

Excessive order, on the other hand, generally averages all node representations, resulting in over-

smoothing and a loss of emphasis on the immediate neighborhood [129]. Manymodels aremotivated

by this to fine-tune the aggregation strategy based on different orders of neighbors. As a result,

adequate constraint and order flexibility are essential for node representation. Challenging signals,

such as Gabor-like filters, have been shown to have a high order of neighbors [3].

Define the shortest distance between node 𝑖 and 𝑗 as 𝑑𝐺 (𝑖, 𝑗), and 𝜕N(𝑖, 𝜏) to be the set of nodes

𝑗 that satisfies 𝑑𝐺 (𝑖, 𝑗) = 𝜏 , i.e., 𝜏-order neighbors. Formally, this type of work can be written as:

Z(𝑣𝑖 ) = Φ(𝑣𝑖 ) h(𝑣𝑖 )+

1st-order neighbor︷                           ︸︸                           ︷∑︁
𝑢 𝑗 ∈N(𝑣𝑖 ,𝜏=1)

Ψ(𝜏=1) h(𝑢 𝑗 ) +

2nd-order neighbor︷                           ︸︸                           ︷∑︁
𝑢 𝑗 ∈N(𝑣𝑖 ,𝜏=2)

Ψ(𝜏=1) h(𝑢 𝑗 ) +...+

k-th order neighbor︷                            ︸︸                            ︷∑︁
𝑢 𝑗 ∈N(𝑣𝑖 ,𝜏=𝑘 )

Ψ(𝜏=𝑘 ) h(𝑢 𝑗 ) +...,

(17)

where Ψ (𝜏 )
indicates a scalar parameter for all 𝜏-order neighbors. Setting the same order neighbors

to share the same weights, Equation 17 can be rewritten in matrix form:

Z = (𝜙 I+
𝑘∑︁
𝑗=1

𝜓 𝑗 A𝑗 ) X = P𝑘 (A) X, (18)

where P𝑘 (·) is a polynomial function with order number k. Applying symmetric normalization,

Equation 18 can be rewritten in matrix form as:

Z = (𝜙 I+
𝑘∑︁
𝑗=1

𝜓𝑖 (D-
1

2 A D-
1

2 ) 𝑗 ) X = (𝜙 I+
𝑘∑︁
𝑖=1

𝜓𝑖 Ã
𝑖 ) X = (

∑︁
𝑖=0

𝜓𝑖 Ã
𝑖 ) X = P𝑘 (Ã) X, (19)

where 𝜙 = 𝜓0, and A could also be normalized by random walk normalization: Ã = D−1 A. As
shown in Figure 4, the new representation of the current node (in red) is updated as the sum of

the previous representations of itself, its first and second-order neighbors. Note that the weights
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among those representations are learnable. Several existing works are analyzed below, showing

that they are variants of Equation 18 or 19.

4.2.1 ChebNet. To bridge the gap, spectral convolutional operation is generalized, which requires

expensive steps of spectral decomposition and matrix multiplication [69, 94]. Introducing truncated

Chebyshev polynomial for estimating wavelet in graph signal processing, ChebNet [62] embeds a

novel neural network layer for the convolution operator. Specifically, ChebNet can be written as:

𝐾−1∑︁
𝑘=0

𝜃𝑘𝑇𝑘 (L̃) X = ( ˜𝜃0 I+ ˜𝜃1L̃ + ˜𝜃2L̃2 + ...) X, (20)

where 𝑇𝑘 (·) denotes the Chebyshev polynomial and 𝜃𝑘 is the Chebyshev coefficient.
˜𝜃 is the

coefficient after expansion and reorganization. Since L̃ = I− Ã, we have:

𝐾−1∑︁
𝑘=0

𝜃𝑘𝑇𝑘 (L̃) X = [ ˜𝜃0 I+ ˜𝜃1 (I− Ã) + ˜𝜃2 (I− Ã)2 + ...] X = (𝜙 I+
𝑘∑︁
𝑖=1

𝜓𝑖 Ã
𝑖 ) X = P𝑘 (Ã) X, (21)

which is exactly Equation 19. The predefined 𝐾 is the order number of Chebyshev polynomial, and

a larger K mean higher approximation accuracy in estimating the function of eigenvalues. Equation

21 shows that K also can be explained as the highest order of the neighbors.

4.2.2 DeepWalk . Applying random walk, DeepWalk [164] first draws a group of random paths

from a graph and applies a skip-gram algorithm to extract node features. Assuming the number

of random walk is large enough, the transition probability of random walk on a graph can be

represented as:

Ã = D−1 A . (22)

Let the window size of skip-gram be 2𝑡 + 1 and the current node is the (t+1)-th one along each

sampled random walk path, so the farthest neighbor current node can reach is the first one and

the last one. A node and its neighbors are likely to appear in the same random walk path, and the

neighbors follow the transition probability (Equation 22) to appear in the same path. Therefore, the

updated representation is as follows:

Z =
1

𝑡 + 1

(I+ Ã+ Ã2 +... + Ã𝑡 ) X =
1

𝑡 + 1

P𝑘 (Ã) X, (23)

where I means that DeepWalk always considers previous representation of the current node as

one element, Ã represents the direct neighbors’ transition probability, and Ã
2

denotes that of the

second-order neighbors. It will have at most 𝑡-order neighbors depending on the predefined length

of the random walk (i.e., 2𝑡 + 1).

4.2.3 Diffusion convolutional neural networks (DCNN). DCNN [14] uses a degree-normalized

transition matrix (i.e., renormalized adjacency matrix: Ã = D̃ A) as graph representation, and

performs node embedding update as:

Z =𝑊 ⊙ Ã∗ X = [𝑤1,𝑤2,𝑤3, ...,𝑤𝑘 ]⊺ ⊙ [Ã, Ã2

, Ã3

..., Ã𝑘 ]⊺ X, (24)

where Ã
∗
denotes a tensor containing the power series of Ã, and the ⊙ operator represents element-

wise multiplication. It can be transformed as:

Z = (𝑤1 Ã+𝑤2 Ã
2 +𝑤3 Ã

3 +...𝑤𝑘 Ã
𝑘 ) X = P𝑘 (Ã) X . (25)
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4.2.4 Scalable InceptionGraphNeuralNetworks (SIGN). By generalizingGCN [114], GAT [188]

and SGC [199], SIGN [173] constructs a block linear diffusion operators along with non-linearity.

For node-wise classification tasks, SIGN has the form:

Z = 𝜎 ( [XΘ0,A1XΘ1, . . . ,A𝑟XΘ𝑟 ]) ,
Y = 𝜉 (ZΩ), (26)

where [·, ·, . . . , ] is concatenation, and 𝑟 denotes the power number. Then, SIGN can be rewritten

as:

Z = [XΘ0,A1XΘ1, . . . ,A𝑟XΘ𝑟 ] Ω = 𝜔0𝜎 (XΘ0) + 𝜔1𝜎 (A1XΘ1), . . . , 𝜔𝑟𝜎 (A𝑟XΘ𝑟 ), (27)

where 𝜎 (A𝑟XΘ𝑟 ) could be treated as refined representation of each order of label aggregation

by non-linear function 𝜎 and fully-connected layer Ω, i.e., �A𝑟 X. Replacing 𝐴 with normalized

adjacency matrix, it can be rewritten as:

Ẑ = 𝜔0

�̃
A0 X + 𝜔1

�̃
A1 X, . . . , 𝜔𝑟

�̃A𝑟 X =
∑︁
𝑟

𝜔𝑟
�̃A𝑟 X =

�P(Ã) X. (28)

4.2.5 Graph diffusion convolution (GDC). GDC [117] defines a generalized graph diffusion

via the diffusion matrix:

Z =

∞∑︁
𝑘=0

𝜃𝑘𝑻
𝑘 , (29)

where 𝜃𝑘 are the weighting coefficients with

∑∞
𝑘=0

𝜃𝑘 = 1, 𝜃𝑘 ∈ [0, 1], 𝑇 is a generalized undirected

transitionmatrix which includes the randomwalk transitionmatrix𝑇𝑟𝑤 = A D−1
, and the symmetric

transition matrix 𝑇𝑠𝑦𝑚 = D-
1

2 A D-
1

2 . In the general case, it can be written as :

Z =

∞∑︁
𝑘=0

𝜃𝑘 Ã𝑘 = P(Ã) . (30)

4.2.6 Node2Vec. Node2Vec [85] defines a second-order random walk to control the balance

between BFS (breath-first search) and DFS (depth-first search). Consider a random walk that

traversed an edge between node 𝑡 and 𝑣 , denoted as (𝑡 , 𝑣), and now it resides at node 𝑣 . Then, the

transition probabilities to next stop 𝑥 from node 𝑡 is defined as:

𝑃 (𝑡 → 𝑥) =


1

𝑝 if 𝑑 (𝑡, 𝑥) = 0, return to the source

1 if 𝑑 (𝑡, 𝑥) = 1, BSF
1

𝑞 if 𝑑 (𝑡, 𝑥) = 2, DFS,

(31)

where 𝑑 (𝑡, 𝑥) denotes the shortest path between nodes 𝑡 and 𝑥 . 𝑑 (𝑡, 𝑥)=0 indicates a second-order
random walk returns to its source node, (i.e., 𝑡 → 𝑣 → 𝑡 ), while 𝑑 (𝑡, 𝑥)=1 means that this walk

goes to a BFS node, and 𝑑 (𝑡, 𝑥)=2 to a DFS node. The parameters 𝑝 and 𝑞 control the distribution of

the three cases. Assuming the random walk is sufficiently sampled, Node2Vec can be rewritten in

matrix form:

Z = ( 1
𝑝
·

source︷︸︸︷
I +

BFS︷︸︸︷
Ã + 1

𝑞

DFS︷    ︸︸    ︷
(Ã2 − Ã)) X, (32)

which can be transformed and reorganized as:

Z = [ 1
𝑝

I+(1 − 1

𝑞
) Ã+ 1

𝑞
Ã2] X = P𝑘=2 (Ã) X, (33)

where transition probabilities Ã = D-1 A is random walk normalized adjacency matrix.
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4.2.7 LINE[137] / SDNE[192] . These two models consider first order and second-order neigh-

bors as the constraints for learning node embeddings. first order: the nodes representation is forced

to be similar to its neighbors, which is equivalent to:

Z = Ã X . (34)

Second-order: the pair of nodes are forced to be similar if their neighbors are similar, which

is equivalent to make second-order neighbors similar, therefore we can get the second-order

connectivity by taking the power of the original adjacency:

Z = Ã2 X . (35)

Then the final learned node embeddings are formulated as:

Z = Ã X+𝛼 Ã2 X = P𝑘=2 (Ã) X . (36)

Since LINE uses concatenation between the representations constrained by first and second-order,

𝛼 = 1; For SDNE, 𝛼 is pre-defined.

4.2.8 Simple Graph Convolution (SGC). To reduce the computational overhead, SGC [199]

removes non-linear function between neighboring graph convolution layers, and combines graph

aggregation in one single layer:

Z = Ã𝑘 X (37)

where Ã is renormalized adjacency matrix, i.e., Ã = D̃-
1

2 A D̃-
1

2 , where D̃-
1

2 is degree matrix with

self loop. Therefore, it can be easily rewritten as:

Z = (0 · I+0 · Ã+0 · Ã2 +... + 1 · Ã𝑘 ) X = P𝑘 (Ã) X, (38)

which only has the highest order term.

4.3 Rational Aggregation (A-3)
Most works merely consider label propagation from the node to its neighbors (i.e., gathering

information from its neighbors) but ignore self-aggregation. Self-aggregation means that labels or

attributes can be propagated back to themselves or restart propagating with a certain probability.

This reverse behavior can avoid over-smoothing issue [115]. Note that Polynomial Aggregation

(A-2) may manually change the order number to relieve the over-smoothing issue, but Rational

Aggregation (A-3) can do so automatically. Theoretically, rational function approximation is more

effective than polynomial and has been researched in machine learning problems [33, 165, 185].

Several works use a rational function on the adjacency matrix to perform self-aggregation, either

explicitly or implicitly [25, 51, 102, 115, 124, 130, 143, 187].

Because generic label propagation is achieved bymultiplying the graph Laplacian, self-aggregation

may be achieved by multiplying the inverse graph Laplacian as follows:

Z = P𝑚 (Ã) Q𝑛 (Ã)−1 X =
P𝑚 (Ã)
Q𝑛 (Ã)

X, (39)

where P and Q are two different polynomial functions, and the bias of Q is often set to 1 to normalize

the coefficients. As shown in Figure 5, the new representations of the current node (in red) are

updated as the previous one with probability P, and as that of neighbors with probability (1-P).

The difference of A-3 beyond A-2 is that A-3 can avoid over-smoothing issue in an automatic

manner [129, 232]. Over-smoothing issue happens when GNNs go deep, which would drive node

features to a stationary point and average all the information from raw node representations. Graph

15



=

=Z(     )
h(     )

h(     )1

Attribute Aggregation

Self-Aggregation (Restart)

2

1

1

2

2

1
+ +1 1 1

P

1-P

P

1-P

Fig. 5. Illustration of A-3: These current nodes (red) are using the representation that predates this iteration
and the surrounding nodes to compute the total. In A-3, the ratio of the original representation remains
stable, whereas A-1 dose not control the ratio.

convolution can be described as an optimization problem [130, 158, 232, 241], e.g., (1) minimizing

the supervised loss and (2) keeping the local neighborhood similar:

Z = argmin

Z
{ ∥ Z−𝑌 ∥2

2︸    ︷︷    ︸
(1) supervised loss

+ 𝛼 Tr
(
Z⊤ L Z

)︸          ︷︷          ︸
(2) neighborhood regularization

}, (40)

where 𝛼 is the controlling weight between the two constraints. The problem has analytical solution:

Z = (I+𝛼 L̃)−1𝑌 = ((1 + 𝛼) I− Ã)𝑌 . (41)

However, because 𝑎𝑙𝑝ℎ𝑎 increases with the number of times graph convolution is done, it is

prone to over-smoothing. Over-smoothing is addressed in a variety of ways [50, 98, 172, 173,

210], including Rational Aggregation (A-3), which does so by retaining a portion of the original

representation no matter how many iterations it does, greatly reducing over-smoothing.

4.3.1 Auto-Regressive. Label propagation (LP) [22, 233, 243] is a widely used methodology for

graph-based learning. The objective of LP is two-fold: one is to extract embeddings that match

with the node label, the other is to become similar to neighboring vertices. The label can be treated

as part of node attributes, so we have:

Z = (I+𝛼 L̃)−1 X =
I

I+𝛼 (I− Ã)
X =

I
(1 + 𝛼) I−𝛼 Ã

X, (42)

which is the closed-form solution and also equivalent to the form of Equation 39, i.e., P = I and
Q = (1 + 𝛼) I−𝛼 Ã.

4.3.2 Personalized PageRank (PPNP). Obtaining node’s representation via teleport (restart),

PPNP [30, 115, 223] keeps the original representation (self-aggregation) X with probability 𝛼 .

Therefore, 1-𝛼 is the probability of performing the normal label propagation:

Z = 𝛼

(
I−(1 − 𝛼) Ã

)−1
X =

𝛼

I−(1 − 𝛼) Ã
X, (43)

where Ã = D-1 A is random walk normalized adjacency matrix with self-loop. Equation 43 is with

a rational function whose numerator is a constant.

4.3.3 ARMA filter. ARMA [25] filter approximates any desired filter response function with

updates as:

Z =
𝑏

I−𝑎 Ã
X . (44)

Note that ARMA filter is an unnormalized version of PPNP. When a+b=1, ARMA becomes PPNP.
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4.3.4 ParWalks. A partially absorbing random walk is a second-order Markov chain with partial

absorption at each state. [201] shows that with proper absorption, the absorption probabilities can

well capture the global graph structure. Note that the concept "absorption" in [201] is similar to

"teleport" or "restart" in PPNP [115]. ParWalks defines the aggregation as:

𝑝𝑖 𝑗 =


𝛼𝑖

𝛼𝑖+𝑑𝑖 , 𝑖 = 𝑗

𝑤𝑖 𝑗

𝛼𝑖+𝑑𝑖 , 𝑖 ≠ 𝑗,

(45)

where 𝛼 is defined as a variable to control the level of absorption,𝑤𝑖 𝑗 and 𝑑𝑖 indicate non-negative

matrix of pairwise affinities between vertex 𝑖 and 𝑗 , and degree of vertex 𝑖 , respectively.

Z =
𝛼 I
𝛼 + L̃

X =
𝛼

𝛼 I+ I− Ã
X, (46)

where 𝛼 is redefined as a regularizer in the original paper [201]. When 𝛼 = 1, all nodes follow

the same absorbing behavior. Otherwise, each node has an independent absorbing policy. Also,

ParWalks model is equivelent to ARMA filter (𝑎 = 𝑏 = 1

2
) when 𝛼 = 1 and with normalized

Laplacian:

Z =
I

I+ L̃
X =

I
I+(I− Ã)

X =

1

2
I

I− 1

2
Ã

X . (47)

The author also discussed the over-smoothing issue: when Λ = I and as 𝛼 → 0, a ParWalk would

converge to the constant distribution 1/𝑛, regardless of the starting vertex.

4.3.5 RationalNet. To leverage higher order of neighbors, RationalNet [51] proposes a general

rational function with a predefined order number, and it is optimized by Remez algorithm. The

analytic form is exactly Equation 39. The major difference beyond PPNP or ARMA filter is that

RationalNet generalized them, and the order can be any number.

Remark: The optimization towards rational aggregation (A-3) is exactly the same as the residual
learning that was first and widely used in image recognition [91]. As shown in the work PPAP

[164], the author proposed an iterative algorithm called APPAP, which is

Z(𝑘+1) = (1 − 𝛼)�̃�Z(𝑘 ) +𝛼 Z0 =

𝐹 (𝑥 ) where 𝑥=Z(0)︷                    ︸︸                    ︷
𝑘∑︁
𝑖

𝛼 (1 − 𝛼)𝑖�̃�𝑖 Z(0) +

identity 𝑥︷︸︸︷
𝛼 Z0

(48)

where Z𝑘 means the intermediate representations at 𝑘-th layer. This format is exactly the same as

residual learning as illustrated in Figure 6: sum of multiple graph convolutions serve as 𝐹 (𝑥), and
each time identify input will be added. The slight difference is that Equation 48 has normalized

the weights, i.e., (1 − 𝛼) + 𝛼 = 1. Because Rational Aggregation (A-3) includes the inverse of

a matrix, it has a high computational cost. Iterative methods are commonly used to efficiently

determine the inverse of a matrix [25, 115, 124]. In this subsection, we only demonstrate one layer
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or iteration of Auto-Regression, PPNP, ARMA, and ParWalks. Multiple iterations will result in a

more sophisticated rational function. Higher orders are achieved by several iterations or layers. The

main distinction between rational and polynomial aggregation is whether or not the inverse graph

Laplacian polynomial exists. In each cycle of rational aggregation, a fixed ratio for the original

representation is always reserved, whereas polynomial aggregation does not. On the other hand,

calculating the inverse of the graph Laplacian is expensive, making iterative fashion a key object

in online learning algorithms [95]. By leveraging the concept of conductance, with 𝑓 as a heat

distribution over the vertexes, L(𝑓 ) indicates the flux induced by 𝑓 over the graph. Then based

on the representer theorem [12, 176], 𝑓 (V𝑖 ) = L−1 (L(𝑓 )) could be interpreted as the heat at each

vertex been expressed concerning or derived from the flux through every vertex. Thus, when L
sends a heat distribution f over each node to flux through each vertex, L−1

sends some of the fluxes

over the graph back to the original heat distribution (i.e., keep part of fluxes itself). Going back to

the graph learning application, we first translate our updated “heat distribution” to flux through

all of those nodes by calculating P(L(𝑓 )). M-th degree of P(·) means that each vertex can update

M-th neighbors at most. Then using another updated flux in the reverse direction, Q(L(𝑓 ))−1 will
adjust or reduce flux within N-th neighbors. Polynomial aggregation with more layers or a higher

degree tends to involve more neighbors, increasing capacity. When utilizing too many layers or

degrees, over-smoothing is almost always unavoidable (e.g., all nodes are similar). However, unless

all of the layers or degrees are tried, determining the appropriate number of layers or degrees is

difficult. The over-smoothing problem is largely overcome by the “sending back” (i.e., teleport)

behavior of rational aggregation, in which the out-degree flux is restrained even if excesses of

graph convolutional layers or approximation degrees are added.[115].

Three groups of spatial methods introduced above (i.e., A-1, A-2, A-3) are strongly connected

under generalization and specialization relationship, as shown in Figure 1. Generalization: By
adding more neighbors of higher rank, Linear Aggregation (A-1) can be expanded to Polynomial

Aggregation (A-2). By adding reverse aggregation, Polynomial Aggregation (A-2) can be advanced

to Rational Aggregation (A-3); Specialization: Linear Aggregation (A-1) is a special case of Poly-

nomial Aggregation where the order is set to 1. (A-2). Rational Aggregation (A-3) degenerates into

Polynomial Aggregation when reverse aggregation is removed (A-2).

5 SPECTRAL-BASED GNNS (B-0)
The use of eigen-decomposition and analysis of the weight-adjusting function (i.e., frequency

filter function or frequency response function) on eigenvalues of graph matrices are both parts of

graph spectral theory. In spectral-based GNNs (B-0), weights are applied to frequency components

(eigenvectors) in order to recover the target signal using the filter’s output. Accordingly, we

propose a new taxonomy for graph neural networks, dividing spectral-based GNNs into three

subgroups depending on the types of response filtering functions. In addition, the same set of

representative models discussed in Section 4 will be analyzed under spectral view. To facilitate

comprehension of the analysis, their spatial and spectral analytical forms are listed in Table 6. The

detailed transformation of equations in category B-0 is deferred to the appendix.

5.1 Linear Approximation (B-1)
Changing the weights of frequency components in the spectrum domain has been the subject

of several research. The filter function’s objective is to suit the intended output by adjusting

eigenvalues. Many of them have been shown to be low-pass filters [130], which implies that only

low-frequency components are highlighted, i.e., the first few eigenvalues are increased, while

the rest are decreased. There are several studies that may be understood as changing frequency
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Table 6. Summary of Representative GNNs

(A-1) linear function of A (B-1) linear function of Λ
GCN I+ Ã 2 − Λ
GraphSAGE D̂

−1 + Ã 2 − Λ
GIN (1 + 𝜖) I+A 2 + 𝜖 − Λ

(A-2) polynomial function of A (B-2) polynomial function of Λ
ChebNet 𝜙I + ∑𝑘

𝑖=1𝜓𝑖Ã
𝑖 ˜𝜃0 · 1 + ˜𝜃1Λ + ˜𝜃2Λ2 + . . .

DeepWalk 1

𝑡+1

(
I + Ã + Ã2 + . . . + Ã𝑡

)
1

𝑡+1 [. . . +
(
(−1)𝑡−1 +

(
1

𝑡

)
(−1)𝑡−1

)
+ . . .]

DCNN 𝜓1Ã +𝜓2Ã2 +𝜓3Ã3 + . . . 𝜃1Λ + 𝜃2Λ2 + 𝜃3Λ3 + . . .
GDC 𝜓1Ã +𝜓2Ã2 +𝜓3Ã3 + . . . 𝜃1Λ + 𝜃2Λ2 + 𝜃3Λ3 + . . .
Node2Vec 1

𝑝
I +

(
1 − 1

𝑞

)
Ã + 1

𝑞
Ã2

(
1 + 1

𝑝

)
−

(
1 + 1

𝑞

)
Λ + 1

𝑞
Λ2

LINE/SDNE 𝜓1Ã +𝜓2Ã2 𝜃1Λ + 𝜃2Λ2

SGC 0 · I + 0 · Ã + 0 · Ã2 + . . . + 1 · Ã𝐾

(
𝐾

0

)
+

(
𝐾

1

)
Λ1 +

(
𝐾

2

)
Λ2 + · · · + Λ𝑛

(A-3) rational function of A (B-3) rational function of Λ
Auto-Regress I

(1+𝛼 ) I −𝛼 Ã
1

1+𝛼 (1−Λ)
PPNP 𝛼

I −(1−𝛼 ) Ã
𝛼

𝛼I+(1−𝛼 )Λ
ARMA 𝑏

(I −𝑎 Ã)
𝑏

(1−𝑎+𝑎Λ)

ParWalk 𝛼

𝛼 I+ I − Ã
𝛽

𝛽+Λ

Fig. 7. Illustration of B-1: A linear function 𝑔 maps the eigenvalues to new values.

component weights during aggregation. A linear g function is used in particular:

Z = (
𝑙∑︁
𝑖=0

𝜃𝑖𝜆𝑖 u𝑖 u⊺𝑖 ) X = U g𝜃 (Λ) U⊺ X, (49)

where u𝑖 is the i-th eigenvector, and g is frequency filter function or frequency response function
controlled by parameters 𝜃 , with selected 𝑙 lowest frequency components. The goal of g is to change

the weights of eigenvalues to fit the target output. As shown in Figure 7, B-1 updates the weights

of eigenvectors (u1, u2, u2 . . .) as g𝜃 (𝜆) which is a linear function. Several state-of-the-art methods

introduced in Section 4 are analyzed to provide a better understanding of this scheme.

Remark: The aforementioned methods apply linear low-pass filtering, and the only difference

among them is that the bias is different (i.e., 2 for GCN, 2 for GraphSAGE, and 2+𝜖 for GIN).

Therefore, we study the influence of bias on the filter function, and define a metric:

𝑤 (𝜆𝑖 ) =
|𝑏𝑖𝑎𝑠 − 𝜆𝑖 |∑
𝑗

��𝑏𝑖𝑎𝑠 − 𝜆 𝑗 �� , (50)

which indicates the overall proportion change of each eigenvalue after applying the response func-

tion. A large adjusted value means that the filtering will enlarge the influence of the corresponding
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Fig. 8. Illustration of B-2: A polynomial function P maps the eigenvalues to new values.

eigenvector. The range of the eigenvalue is in [0, 2) for the normalized Laplacian matrix [55]. If let

𝑏𝑖𝑎𝑠 be larger than or equal to 2, we have:

𝑤 (𝜆𝑖 ) =
𝑏𝑖𝑎𝑠 − 𝜆𝑖

𝑁 · 𝑏𝑖𝑎𝑠 − ∑
𝑗 𝜆 𝑗

=

slope︷               ︸︸               ︷
−1

𝑁 · 𝑏𝑖𝑎𝑠 − ∑
𝑗 𝜆 𝑗

𝜆𝑖 +

intercept︷               ︸︸               ︷
𝑏𝑖𝑎𝑠

𝑁 · 𝑏𝑖𝑎𝑠 − ∑
𝑗 𝜆 𝑗

, (51)

when 𝑏𝑖𝑎𝑠 is larger or equal than 2, the slope is negative, which means that the filter function is

low-pass filtering: as the bias increases, the slope becomes larger, and larger weights are assigned

to low-frequency spectral components. Therefore, the bias of all studies in this subsection is larger

or equal to 2.

5.2 Order of Approximation (B-2)
Considering higher order of frequency, filter function can approximate any smooth filter function,

because it is equivalent to applying the polynomial approximation. Therefore, introducing higher-

order of frequencies boosts the representation power of filter function in simulating spectral signal.

Formally, this type of work can be written as:

Z = (
𝑙∑︁
𝑖=0

𝑘∑︁
𝑗=0

𝜃 𝑗𝜆
𝑗
𝑖

u𝑖 u⊺𝑖 ) X = U P𝜃 (Λ) U⊺ X, (52)

where g(·) = P𝜃 (·) is a polynomial function. As shown in Figure 8, B-2 updates the weights of

eigenvectors (u1, u2, . . .) as P𝜃 (𝜆) which is a polynomial function.

Remark: Polynomial approximation, in theory, gets more accurate as the order grows [6, 56, 162,

166, 186]. It’s worth noting that Linear Approximation (B-1) can be thought of as a polynomial

approximation of order 1. We look into polynomial approximation on the 𝑠𝑖𝑔𝑛(𝑥) function, com-

paring and contrasting all of the cases in Polynomial Approximation (B-2). Because it is difficult for

any straight line to suit a jump signal, as shown in Figure 9a, linear functions cannot accurately

approximate 𝑠𝑖𝑔𝑛(𝑥). The situation improves dramatically when polynomial approximation is used,

as demonstrated in Figure 9b. The variance will be greatly decreased if the order of the polynomial

function is increased (Figure 9c). To recapitulate, higher-order polynomial approximation is more

accurate than lower-order polynomial approximation, but it comes at the expense of increased

computational complexity. Node2Vec/LINE/SDNE with an order of 2 have lesser approximation

power than those with more than 2 layers/orders because the latter’s order is predefined and can

be as large as possible (e.g., ChebNet [62], DeepWalk [164], Diffusion CNN [14], Simple Graph

Convolution [199]).
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Fig. 9. Approximation for 𝑠𝑖𝑔𝑛(𝑥) (in black): (a) linear approximation (b) polynomial approximation with low
orders, (c) polynomial approximation with high orders.

Fig. 10. Illustration of B-3: A rational function maps the eigenvalues to new values.

5.3 Approximation Type (B-3)
Despite its widespread use and experimental success, polynomial approximation only works when

applied to a smooth spectral signal. Real-world signals, on the other hand, cannot be guaranteed

to be smooth. As a result, the rational approximation is employed to improve the accuracy of

non-smooth signal modeling. An example of a rational kernel-based technique is as follows:

Z = (
𝑙∑︁
𝑖

𝑘∑︁
𝑗=0

𝜃 𝑗𝜆
𝑗
𝑖

𝑛∑︁
𝑚=1

𝜙𝑚𝜆
𝑚
𝑖

+ 1

u𝑖 u⊺𝑖 ) X = U
P𝜃 (Λ)
Q𝜙 (Λ)

U⊺ X, (53)

where g(·) = P𝜃 ( ·)
Q𝜙 ( ·) is a rational function, and P,Q are independent polynomial functions. Spectral

methods process graph as a signal in the frequency domain. As shown in Figure 10, B-3 updates

the weights of eigenvectors (u1, u2, . . .) as g𝜃 (𝜆) which is a rational function.

Remark:When the function to approximate contains discontinuities, rational function has over-

whelming advantage over the polynomials or linear functions. Figure 11 illustrates the difference

between rational and polynomial approximation. Theoretically, rational approximation only needs

exponentially less orders than that of polynomial functions [51].

Fig. 11. Rational (rat) and polynomial (poly) approximation for several functions with discontinuity (func).
From left to right:

√︁
|𝑥 − 0.5|; |𝑥 − 0.5|; 𝑥

10 |𝑥−0.5 |+1 ;𝑚𝑎𝑥 (0.5, 𝑠𝑖𝑛(𝑥 + 𝑥2)) − 𝑥
20
. Figures are from [51].
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Fig. 12. Connection between the Spatial and Spectral Perspective

6 THEORETICAL ANALYSIS
In terms of volume, spatial-based approaches outnumber spectrum-based methods in the literature

[2, 37, 204, 230, 234], owing to the following reasons: (1) Spectral-based methods have a much

higher computing overhead than spatial-based methods, and spectral methods are less intuitive

than spatial methods. (2) Spatial-based approaches are convenient for model construction and

scalability. However, from a spatial and spectral perspective, there is a trade-off; neither has a major

advantage over the other. This section outlines numerous viewpoints that demonstrate the merits

and limitations of such views.

6.1 Uncertainty Principle: Global v.s. Local Perspectives
Spectral-based approaches decompose data into orthogonal frequency components and examine

graph filtering from the spectral domain with a global perspective. Each frequency indicates a

global basis: low-frequency components emphasize local weights with little variation, whereas

high-frequency components are linked to significant variance in neighborhood. In other words,

the Laplacian spectrum reflects topological properties: the first few eigenvalues are related with

substantial community structure, whilst the last few eigenvalues indicate the graph’s bipartiteness

[60, 61]. A typical low-pass filtering function for eigenvalues is shown on the left of Figure 12, which

raises small eigenvalues while decreasing adjusted values for large eigenvalues. Only low-frequency

components are maintained in this scenario, and neighbors have little variance.

Filtering patterns from the local neighborhood are characterized by spatial-based approaches.

Most GNNs assume homophily among neighbors, so signals traversing across the neighborhood

is smooth or with little variation, which is exactly the same concept as low-pass filtering. The

relationship between low-pass filtering in the spectral domain (left) and its effects in the spatial

domain (middle and right) is depicted in Figure 12 [60]. It appears at first glance that global and

local viewpoints differ greatly, but on closer inspection, they depict the same signal in very different

ways: filtering in the spectral domain that does low-pass/high-pass filtering is analogous to learning

which neighbors are similar/dissimilar. While it is true that the two types of observations yield

similar results, this does not entail that they are identical. It is impossible to know an unknown

quantity’s value with absolute confidence in quantum mechanics because of the Heisenberg’s

uncertainty principle [73]. Specifically,

Δ2

𝑡Δ
2

𝜔 ≥ 1

4

, (54)

where Δ𝑡 and Δ𝜔 denote time spread and frequency spread, respectively. Signal concentration can

also be impacted by the concentration of time and frequency. A graph representing the trade-off

between a signal’s localization on a graph and in its spectral domain is created, which is influenced

by the uncertainty principle of quantum mechanics [5]. A lower bound on the product of the two

spreads is obtained by quantifying the spreads in the vertex and the spectral domain of a graph
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signal 𝑥 . This result suggests that applying spatial-based GNNs results in accuracy loss in the

spectral domain, while using spectral-based GNNs results in accuracy loss in the spatial domain. In

sum: (1) Global and local perspectives are strong connected: Global observation is the process

of generalizing details in local settings, while localized understanding provides details of the global

picture. (2) Global and local perspectives outperform each other in their own domains: Clear
local context tends to muddy the big picture, but a focus on global context diminishes the smaller

picture. GNNs are able to expand the range of options with the addition of other preexisting works,

Table 7. Comparison between the Spatial (A-0) and Spectral (B-0) Methods

Methodology Computation Space Complexity Stability

Spectral Global One-step High Exact

Spatial Local Iterative Low Approximate

which bridge the gap between global and local views or between spectral and spatial information, to

improve the expressive potential of GNNs [29, 133, 189, 228, 240, 245]. According to the information

above, we can state that nomodel can be flawless from a global or local perspective. It is only possible

to have a proper trade-off between. As shown in Table 7, four aspects are compared:Methodology:
Spatial approaches describe local regions while working bottom-up, and identify global patterns

using a graph frequency approach. On the other hand, spectral methods work top-down, beginning

with a graph and ending with a global observation. Computation: To use spatial approaches, one

has to carry out a number of steps on their local region before convergence is achieved. With

spectral approaches, you can get a critical component with a single-step computation. Space
Complexity: The high space complexity of spectral approaches is associated with the massive

memory storage required to load the full graph. If memory is sufficient, the full graph can be

covered by using spatial methods. However, for a smaller graph, you can choose to cover it using

samplings such as sampling of regions or paths. Stability: To create accurate, consistent results,

spatial analysis methods need to apply iterative algorithms, therefore the outcomes will vary.

Eigen-decomposition is a unique feature of spectral approaches if no same eigenvalues.

Guidance of Choosing Spatial and Spectral Methods. The user can choose between spatial

or spectral GNNs depending on their previously described properties. Distributed and Online
Learning: spatial method is easily converted to distributed learning [135, 178], whereas spectral

is difficult to transfer. Even if it is possible to approximate spectrum technique using a neural

network model [177] and then use distributed learning on a neural network [190], new nodes and

edges must be retrained from scratch. Alternatively, the spatial technique can effectively manage

online learning with streaming data [79]. Global View: The spectral method may provide a global

perspective that the spatial method lacks. In situations where the group form is not spherical,

the spatial method may disregard this influence and continue to follow the circular shape as a

prospective group [15, 90]. This can be remedied by employing clustering before to the spatial

technique [179]. This also renders spatial methods more locally interpretable and obscures their

global perspective.

6.2 Comparison between Linear, Polynomial and Rational Methods
Linear methods (A-1 and B-1) have a time complexity of O(𝑁 2𝐹 ) due to the matrix multiplication

of A X. Accordingly, polynomial and rational method are analyzed in Table 8 where K is the order

number. To compare their expressive power, the convergence rate on challenging jump signal is

employed as a benchmark [51] (a smooth signal cannot distinguish them). As shown in Table 8,

rational methods (A-3 and B-3) converge exponentially faster than linear methods (A-1/B-1), and
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polynomial methods (A-2/B-2) converge linearly faster than linear methods (A-1/B-1). Therefore,

there is a trade-off between the expressive power and computational efficiency. linear methods (A-

1/B-1) have the best efficiency but only capture the linear relationship. Rational methods (A-3/B-3)

consume the most considerable overhead but could tackle more challenging signals.

Table 8. Comparison on Time Complexity and Expressive Power

Linear (A-1, B-1) Polynomial (A-2, B-2) Rational (A-3, B-3)

Time O(𝑁 2𝐹 ) O(𝑁𝐾+1𝐹 ) O(𝑁𝐾+1𝐹 + 𝑁 3)
Expressivity O(1) O(1/𝐾) O(exp−

√
𝐾 )

Experiments are undertaken to highlight our theoretical analysis of spatial and spectral ap-

proaches by comparing the differences between the three underlying groups. We chose one typical

technique for linear filter [114], polynomial filter [62], and rational filter [25]. Note that we only

distinguish them in the function of A or Λ, keeping all the other configurations the same. The

dataset includes representative homophily and heterophily datasets [43, 75, 105, 132, 144, 214]. The

evaluation code is released
2
. The implementation is based on the official Pytorch Geometric [1].

Each model on each dataset is evaluated 50 times, and the results are averaged.

As shown in Figure 13 (Left), there is no significant difference in classification accuracy in the

homophily dataset between the three models, with the exception of ChebNet, which performs

marginally better in PubMed and encounters an out-of-memory error in physics dataset. ChebNet
exhibits inferior accuracy on the Computers dataset, whereas GCN is significantly superior. Figure

13 (Right) illustrates that ARMA consistently outperforms the others when performing the same

task on the heterophily dataset, while ChebNet consistently outperforms GCN. This demonstrates

the benefits of the advanced filter function, as theoretically analyzed in Section 3.2. In terms of

runtime, as shown in Figure 14, ChebNet is often beyond log 1, while GCN never goes beyond log 1.

Rational method involve more matrix operation as ChebNet does, so rational method sometimes

goes beyond log 1, but due to optimization in implementation (iterative algorithm), which makee it

a little faster than ChebNet, but still consistently slower than GCN. In terms of runtime, as shown

in Figure 14, ChebNet frequently exceeds log 1, whereas GCN never does. Rational method involves

more matrix operations than ChebNet, so it sometimes exceeds log 1. However, due to optimization

in implementation (iterative algorithm), the rational method is slightly faster than ChebNet but

consistently slower than GCN. This verifies our analysis in Section 6.2.
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Fig. 13. Performance Comparison. Left: homophily dataset; Right: heterophily dataset

2
https://github.com/aquastar/csur_bridge_spectral_spatial_gnn_survey
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Fig. 14. Runtime Comparison. Left: homophily dataset; Right: heterophily dataset. (Y-axis is log-based)

7 EXEMPLIFY THE PROPOSED FRAMEWORK
Over-smoothing and large-scale difficulties are two of the most difficult issues for existing GNNs,

and numerous recent publications have proposed various approaches to address them. We’ll show

in this section that all of the enhancements are still covered by our framework.

7.1 Sampling Point of View
The sampling mechanism is used as a spatial method for managing large graphs. Subgraph sampling

and random walk are popular approaches.

7.1.1 Subgraph Sampling. For an early work, GraphSAGE [87] applies uniform node sampling

for each batch, which is equivalent to subgraph sampling. The likelihood of transfer therefore

follows random normalization (i.e., Ã = D−1 A), which makes it part of Linear Aggregation (A-1).

In the majority of follow-up works, the same methodology is used [227]: (1) build a local graph

convolution for the input graph. (2) sample nodes in each layer, and (3) optimize parameters in

graph convolution. Steps (2) and (3) proceed iteratively to update the weights via stochastic gradient

descent [46, 48, 77, 100, 218, 227].

To avoid the recursive neighborhood expansion, FastGCN [46] treats graph convolutions as

integral transformation of embedding functions and proposes Monte Carlo approach to estimate

the integral. FastGCN employs importance sampling independently for each layer and reduce

variance cutting down the number of sampling nodes to constant size for all layers, exponentially

shrinking the computational cost. FastGCN is proved to be importance sampling, which is better

than uniform sampling, but still suffers from unstable learning when no neighbors is selected for

one node and activation is zero. To avoid taxing calculation of activation, Stochastic GCN [48]

further uses the historical activation in the previous layer to avoid redundant re-evaluation. With

adaptive sampling, nodes on subsequent layers are sampled in order to speed up GraphSAGE

and FastGCN [100]. Learnable graph convolutional layer (LGCL) [77] selects a fixed number of

neighboring nodes for each feature based on value ranking, and transform graph into 1-D data

which is compatible with normal convolution networks. Similarly, A scalable GCN samples a fixed

number of nodes, with different sampling policy called frontier sampling (FS). FS maintains a

constant size frontier set consisting of several vertices which is randomly popped out with a degree

based probability distribution [226]. Cluster-GCN [53] samples a community of nodes determined

by a graph clustering algorithm, and compute the graph convolution within each community.

7.1.2 Random Walk. To derive node-level representations with word2vec [151–153], various ran-

dom walk algorithms are proposed [85, 164, 184, 192, 217, 227]. Paths are viewed as complete

sentences, and nodes are viewed as individual words. Transition probability among nodes approxi-

mates to a random walk normalized adjacency matrix if enough random walks or uniform sampling

have been performed on the paths.
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As analyzed in previous section, DeepWalk [164] draws a number of random paths from the

graph, which makes the transfer probability of random walk is, i.e., Ã = D−1 A. Let the window size

of skip-gram be 2𝑡 + 1 and the index of current node is 𝑡 + 1. Therefore, the updated representation

is as Z = 1

𝑡+1 P(Ã) X (Equation 23). One popular word2vec configuration, i.e., skip-gram with

Negative Sampling (SGNS), assumes a corpus of words w and their context c. Following the work

by Levy and Goldberg [125], SGNS is implicitly factorizing:

log

(
| (𝑤, 𝑐) | · |D|

|𝑤 | · |𝑐 |

)
− log𝑏 = 𝑨𝑩⊤,

where 𝑨 and 𝑩 denote matrix of current node and its neighbors, respectively. | (𝑤, 𝑐) |, |𝑤 |, |𝑐 |
and D denote the number of times word-context pair (𝑤, 𝑐), word 𝑤 , context 𝑐 and corpus size,

respectively; 𝑏 is the number of negative samples. Accordingly, [167] derived a exact format as:

log

(
P(Ã)

)
− log(𝑏) = log

(
|𝐸 |
𝑇

(
𝑇∑︁
𝑟=1

(D−1 A)𝑟
)

D−1

)
− log(𝑏),

where |𝐸 | and 𝑇 represents edge number and step size, respectively. Therefore, the target matrix to

decompose is still a polynomials of A. Node2Vec [85] defines a 2nd order random walk to control

the balance between Breath First Search (BFS) and Depth First Search (DFS). Assuming the random

walk is sufficiently sampled, Node2Vec’s second order can be rewritten to decompose matrix [167]:

log

(
P(Ã)

)
− log(𝑏) = log

©«
1

2𝑇

∑𝑇
𝑟=1

(∑
𝑢 𝑋𝑤,𝑢Ã

𝑟

𝑐,𝑤,𝑢
+ ∑

𝑢 𝑋𝑐,𝑢Ã
𝑟

𝑤,𝑐,𝑢

)(∑
𝑢 𝑋𝑤,𝑢

) (∑
𝑢 𝑋𝑐,𝑢

) ª®®¬ − log𝑏,

where Node2Vec is demonstrated to be polynomial methods. LINE [184] and SDNE [192] learn

the node representations within the first- and second-order neighbors, which can be treated as

unconstrained version of Node2Vec:

log

(
P(Ã)

)
− log(𝑏) = log

(
|𝐸 | Ã

)
− log𝑏.

GraphSAINT [227] employs multiple sampling polices but the best one is random walk. Pin-
SAGE [223] improves the efficiency of GraphSAGE [87] by taking the top several neighbors with

highest normalized visit counts.

Remark: Sampling methods, as a spatial methodology, seek both variance reduction and efficiency.

Subgraph and random walk are equal with enough samples since they traverse the entire network

with the transition probability associated with graph connection. A-3 and B-3 do not, however,

include any samplemethods, mainly due to their higher computational complexity. Space complexity

may be improved when sampling methods are used, but there is no guarantee that the time

complexity will be much reduced because of the enormous number of steps may be needed before

convergence.

7.2 Over-smoothing Point of View
We carve out two conditions under which neighborhood aggregation is not helpful: (1) when a

node’s neighbors are highly dissimilar and (2) when a node’s embedding is already similar to that

of its neighbors.

Most GNNs perform poorly when stacking many layers, which is called the over-smoothing

issue. Many related works aiming to solve the over-smoothing issue [28, 44, 50, 99, 126, 127, 138,

154, 160, 172, 210, 212, 232, 235, 240] can be reduced to one category of our proposed framework.

H2GCN [240] proposed a method that combines direct neighbors with higher-order, which is

equivalent to Polynomial Aggregation (A-2). Deep GCN [126, 127, 212] developed a model with a
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residue module, dense connection, and dilated aggregation, which learns the weights of all different

orders of neighbors. This is equivalent to Polynomial Aggregation (A-2). GPR [54] generalize

PageRank and found the equivalence of GPR and Polynomial Approximation (B-2). JKNet [210]

also follows the same residue methodology as Deep GCN. DAGNN [138] stacks multiple layers

which uses different orders of propagation with the learnable weights, which makes it belong to

Polynomial Aggregation (A-2). PairNorm [232] presents a two-step method that includes centering

and re-scaling, which mitigates the over-smoothing from graph convolution. Therefore, PairNorm

is equivalent to Rational Propagation (A-3), since re-scaling is similar to do propagation and restart

at the same time. [28] design an adaptive method to dynamically adjust the weights between

low-frequency and high-frequency components, resulting in two peaks in the spectral domain.

This could also be modeled by Rational Aggregation (A-3) with its accuracy in jump signals.

DropEdge [99, 172] randomly drops a certain number of edges to avoid over-smoothing, which can

be categorized as Rational Aggregation (A-3) since dropping edge prevents the propagation and

thereby provides a probability of keeping the original values of nodes. GCNII [50] applies initial
residual which combines the smoothed representation with an initial residual connection to the

first layer, and identity mapping, which adds an identity matrix to the weight matrix. Initial residual
is a trick that PPAP [115] uses, which enables itself to retard the over-smoothing by keeping partial

previous representations. Identity mapping further remains one original representation to slow

down the spreading of over-smoothing propagation.

Remark: A-1 lacks state-of-the-art methods, implying it is vulnerable to over-smoothing. Applying

A-1 many times with learnable weights for different ordering equates to A-2. So A-2 might balance

low (raw representations) and high orders (smoothed representations). However, too many A-1

operations may result in over-smoothing. So, for A-2, precise order configuration is required. No

matter the number of orders or layers, A-3 reserves a proportion of the final representation as raw

representation, making itself robust to over-smoothing.

8 LIMIT, OPEN CHALLENGES AND CONCLUSION
In this paper, we present a unifying paradigm for comprehending GNNs created under various

processes. Our study shows that the subcategories are closely related via generalization and

specialization links within their domains, as well as equivalence ties across domains. We show the

framework’s generalization power by reformulating existing GNNs models. As introduced in the

sections above, spatial methods are designed by various ideas, and they can be interpreted well by

the unified spectral theory. Therefore, we will discuss the potential that spectral theory, as a unfied

theoretical framework, may also extend to emerging directions.

Despite the an increasing number of emerging GNNs models [68] made in recent years, spectral

methods so far has been intensively studied in node-level graph convolution only, leaving the other

graph learning problem uncovered. In recent years, graph learning has been successfully extended

to various tasks such as (sub)graph-level tasks, combinatorial optimization, explainability, domain

application (brain, PDE solver, circuit, molecule, protein), generative graph, graph transformer,

contrast learning, heterogeneous graph [18, 86, 142, 159, 222]. However, a unified framework is

lacking, which is due to the underlying theories from spectral graph theory and graph signal

processing applied in node-level graph convolution application by the first few pioneer work

[62, 89, 114], but little attention has been paid to the theoretical study on the emerging topics rather

than node-level convolution. Therefore, most new topics in graph machine learning is based on

intuitive design or isolated theory, lacking a unified framework to compare and understand these

separate learning models. In this section, we will list the possibility that all the selected topics can

be looked at through a unified framework.
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Theoretical Understanding -The vast majority of recent research has examined spatial and

spectral approaches individually, and even from a theoretical standpoint. [111, 194, 209]. However,

it is unclear how these two distinct interpretations can be connected. This survey demonstrates

that the theoretical advantage of rational function over the others may be proved, however it is

currently unclear how the learning approach can be optimally structured to execute this advantage.

Using the partial differential equation [183], in which the diffusion equation and wave equation are

analogous to polynomial and rational filters, provides an alternate viewpoint to integrate spatial

and spectral views.

Directed Graph - Most contemporary work, especially spectral methods, only handle undirected

graphs, due to symmetric graph matrix is readily available with off-the-shelf techniques. Many

related works integrate or sum up asymmetric adjacency matrices from bi-direction into symmetric

matrix, which avoids decomposing asymmetric matrix directly. It is possible to decompose asym-

metric matrix by some techniques such as the Jordan norm [108], asymmetric matrices can be used

to express properties such as graph and filter complexity. Directed graphs and their decomposition

can also be achievable in a certain type of geometric space called a graph manifold. As shown in

section 2.4 of [123], spectral filters can be defined on directed graphs represented by non-symmetric

adjacency matrices with Hermitian transpose.

Dynamic Graph - Existing work model with GNNs and RNNs is built using graph convolutional

networks and recurrent neural networks, which lack transparency. Due to the limited expressive

power of RNNs, the task is constrained to prediction, and it is unable to perform long-term sequence

processingwell. Graph dynamics has a large number of valuable tasks, such as inferring the structure

of a graph, constructing a joint dynamic of structure and attributes, and exploring the connection

between structure and mass flow. It is possible to use graph spectra to detect the patterns in

dynamics of graph [36, 147, 181]. Due to the challenge of the long-dependency of a path, the

spectral method can also provide a potential way to model trajectory prediction, as the spectra of

trajectory implicitly reveal the relationship with the whole graph [40].

Higher-Order Interaction and Combinatorial Optimization -Most current work falls into first-

order relationship at node-level. For example, the most spatial method is to learn the relationship

between the current node and neighbors, but higher-order interaction is either ignored or implicitly

included. Existing explainable learning also focuses on the neighbors’ identification [225]. Also,

the existing work pays the most attention to neighbors, but remote connection or higher-order

relationship with the other nodes receives little attention. Hypergraphs provide a possibility to

model the combinatorial effect [16, 72, 221] Hodge Laplacian [134, 171] and simplicial complex

[19, 23, 27] provide more theoretical tools for modeling this combinatorial effect.

Multilayer Network - In numerous realistic biological and engineering systems, however, the

units can be interconnected and interdependent via multiple interdependent and heterogeneous

networks. Failure of interdependent nodes between linked networks may result in cascading failures

inside and across the networks. Similar interactions exist in many cyber-physical systems, where the

spread of misinformation about infectious diseases via social media can result in risky daily plans at

the group level, resulting in an epidemic outbreak. Such interconnected networks can be represented

by multilayer networks that produce new degrees of freedom via coupling interactions. Such “new

physics” is prevalent in multilayer systems, but they are still poorly understood [8, 26, 59, 65]. Graph

neural network research on this crucial area is scarce [83]. One popular technique to generalize

principles from monolayer networks to multilayer networks is to “flatten” adjacency tensors into

matrices (called “supra-adjacency matrice”), and spectral theory is available and worth researching.
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A B-1
A.0.1 Graph Convolutional Network (GCN). Rewriting GCN [114] in spectral domain, we

have:

Z = Ã X = D-
1

2 (A+ I) D-
1

2 X = D-
1

2 (D− L+ I) D-
1

2 X = (I−D-
1

2 L D-
1

2 + I) X = U(2 − Λ) U⊺ X, (55)

where Ã = D− 1

2 (A+ I)D− 1

2 is renormalization of Ã. Therefore, the frequency response function is

g(Λ) = 1−Λ which is a low-pass filter, i.e., smaller eigenvalues which correspond to low frequency

components are assigned with a larger value.

A.0.2 GraphSAGE. Considering the MEAN aggregation as example, we can rewrite GraphSAGE

[87] in matrix form:

Z = D-
1

2 (I+A) D-
1

2 X = (I+ Ã) X = (2 I− L̃) X = U(2 − Λ) U⊺ X . (56)

Hence, the frequency response function is g(Λ) = 2 − Λ which is a low-pass filtering. Note that

GraphSAGE’s normalization is different from GCN, which utilizes the renormalization trick.

(𝐼 + 𝐷−1𝐴) X (57) U
(
1 + Λ𝑃

)
U⊺ X (58)

where 𝑃 = 𝐷−1𝐴

A.0.3 Graph Isomorphism Network (GIN). Multi-Layer neural network is capable of fit the

scale (i.e., normalization) [114], so GIN [209] can be rewritten as:

Z = D-
1

2 [(1 + 𝜖) I+A] D-
1

2 X = D-
1

2 [(2 + 𝜖) I− L̃] D-
1

2 X = U(2 + 𝜖 − Λ) U⊺ X . (59)

GIN can be seen as a generalization of GCN or GraphSAGE without normalized adjacency matrix

A. The frequency response function is g(Λ) = 2 + 𝜖 − Λ which is low-pass.

B B-2
B.0.1 ChebNet. As analyzed in Equation 21, ChebNet [89] can be written as:

𝐾−1∑︁
𝑘=0

𝜃𝑘𝑇𝑘 (L̃) X = ( ˜𝜃0 I+ ˜𝜃1L̃ + ˜𝜃2L̃2 + ...) X, (60)

where 𝑇𝑘 (·) is the Chebyshev polynomial and 𝜃𝑘 is the Chebyshev coefficient.
˜𝜃 is the coefficient

after expansion and reorganization. Therefore, we can rewrite it as:

𝐾−1∑︁
𝑘=0

𝜃𝑘𝑇𝑘 (L̃) X = U( ˜𝜃0 · 1 + ˜𝜃1 Λ+ ˜𝜃2Λ2 + ...) U⊺ X, (61)

where spectral response function is g(Λ) = ˜𝜃0 · 1 + ˜𝜃1 Λ+ ˜𝜃2Λ2 + ... = P(Λ).
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B.0.2 DeepWalk. Starting from Equation 23, DeepWalk [164] can be rewritten as:

Z =
1

𝑡 + 1

(I+ Ã+ Ã2 +... + Ã𝑡 ) X

=
1

𝑡 + 1

(I+(I− L̃) + (I− L̃)2 + ... + (I− L̃)𝑡 ) X

=
1

𝑡 + 1

(2 I+(−1 − 2 − 3 − ...) L̃+(1 + 3 + 6 + ...) L̃2 +...((−1)𝑡−1 +
(
1

𝑡

)
(−1)𝑡−1) L̃𝑡−1 +(−1)𝑡 L̃𝑡 ) X

= (𝜃0 I+𝜃1 L̃+𝜃2 L̃2 +... + 𝜃𝑡 L̃𝑡 ) X

= U(𝜃0 + 𝜃1 Λ+𝜃2 Λ2 +... + 𝜃𝑡 Λ𝑡 ) U⊺ X

= U P𝑘=𝑟 (Λ) U⊺ X,

where g(Λ) = 𝜃0 + 𝜃1 Λ+𝜃2 Λ2 +... + 𝜃𝑡 Λ𝑡 , and all parameters 𝜃𝑖 are determined by the predefined

step size t.

B.0.3 Scalable Inception Graph Neural Networks (SIGN). Substituting Ã = I− L̃ in Equation

28, it can be rewritten as:

Ẑ =
∑︁
𝑟

𝜔𝑟
�(I− L̃)𝑟 X = U �P𝑘=𝑟 (Λ) X U⊺ . (62)

B.0.4 Graph diffusion convolution (GDC). Substituting Ã = I− L̃, general case in Equation 30

can be written as:

Z =

∞∑︁
𝑘=0

𝜃𝑘 (I− L̃) = U
∞∑︁
𝑘=0

𝜃𝑘 (1 − Λ)𝑘 U⊺ = U P(Λ) X U⊺ . (63)

B.0.5 Diffusion convolutional neural networks (DCNN). As analyzed in Equation 24, DCNN

[14] can be transformed with Ã = I− L̃ as:

Z = P(I− L̃) X = U P(Λ) X U⊺, (64)

which is equivalent to ChebNet, and parameters 𝜃𝑖 are learnable.

B.0.6 Node2Vec. Node2Vec [85] can be rewritten in matrix form as Equation 32. Then it can be

transformed and reorganized after substituting Ã = I− L̃:

Z = [(1 + 1

𝑝
) I−(1 + 1

𝑞
) L̃+1

𝑞
L̃
2] X = U[(1 + 1

𝑝
) − (1 + 1

𝑞
) Λ+1

𝑞
Λ2] U⊺ X . (65)

Therefore, Node2Vec’s frequency response function is:

g(Λ) = (1 + 1

𝑝
) − (1 + 1

𝑞
) Λ+ 1

𝑞
Λ2, (66)

which integrates a second order function of Λ with predefined parameters, i.e., 𝑝 and 𝑞.

B.0.7 LINE/SDNE . As described in Equation 36, LINE [137] and SDNE [192] can be rewritten as:

Z = Ã X+𝛼 Ã2 X = (I− L̃) X+𝛼 (I− L̃)2 X = U[(I−Λ) + 𝛼 (1 − Λ)2] X U⊺ = U P𝑘=2 (Λ) U⊺ X, (67)

where response function g(Λ) = Λ+𝛼 Λ2
is a polynomial function with order 2.

B.0.8 Simple Graph Convolution (SGC). As analyzed in Equation 38, SGC can be transformed

as:

Z = (I− L̃)𝑘 X = [
(
𝑘

0

)
I+

(
𝑘

1

)
L̃
1 +

(
𝑘

2

)
L̃
2 + · · · + L̃

𝑘 ] X

= U[
(
𝑘

0

)
+

(
𝑘

1

)
Λ1 +

(
𝑘

2

)
Λ2 + · · · + Λ𝑘 ] U⊺ X,
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where spectral response function is a polynomial function of order k:

g(Λ) =
(
𝑘

0

)
+

(
𝑘

1

)
Λ1 +

(
𝑘

2

)
Λ2 + · · · + Λ𝑘 .

B.0.9 Improved GCN (IGCN). By stacking multiple layers IGCN [130] is proposed as:

Z = L̃𝑘 X = U Λ𝑘 U⊺ X, (68)

where the spectral response function is a polynomial function with order k.

C B-3
C.0.1 Auto-Regressive filter. Label propagation (LP) [22, 233, 243] is a prevail methodology for

graph-based learning. The objective of LP is two-fold: one is to extract embeddings that matches

with the label, the other is to be similar with neighboring vertices. Label can be treated as part of

node attributes, so we can have:

Z = (I+𝛼 L̃)−1 X = U
1

1 + 𝛼 (1 − Λ) U⊺ X . (69)

C.0.2 PPNP. Personalized PageRank (PPNP) [115] can obtain node’s representation via teleport

(restart) probability 𝛼 which indicates the ratio of keeping the original representation:

Z =
𝛼

I−(1 − 𝛼) (I− L̃)
X = U

𝛼

𝛼 + (1 − 𝛼) Λ
U⊺ X, (70)

where Ã = D-1 A is random-walk normalized adjacency matrix with self-loop. Equation 70 is with

a rational function whose numerator is a constant.

C.0.3 ARMA filter. Substituting Ã = I− L̃, Equation 44 can be rewritten as:

Z =
𝑏

I−𝑎(I− L̃)
X = U

𝑏

(1 − 𝑎) + 𝑎 Λ
U⊺ X . (71)

Note that ARMA filter is an unnormalized version of PPNP. When a+b=1, ARMA filter becomes

PPNP. Therefore, ARMA filter is more generalized than PPNP due to its unnormalization.

C.0.4 ParWalks. [129, 201] Decomposing graph Lapacian, ParWalks can be written as:

Z = U
𝛽

𝛽 + Λ
X U⊺, (72)

when setting 𝛽 = 𝛼
1−𝛼 , it becomes PPNP:

Z = U
𝛼

1−𝛼
𝛼

1−𝛼 + Λ
X U⊺ = U

𝛼

𝛼 + (1 − 𝛼) Λ
X U⊺ . (73)

C.0.5 RationalNet. Substituting Ã = I− L̃, Equation 39 can be transform to Equation 53. The

frequency response function is a generalized rational function.
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