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ABSTRACT
Few-shot text classification has extensive application where the
sample collection is expensive or complicated. When the penalty
for classification errors is high, such as early threat event detection
with scarce data, we expect to know “whether we should trust the
classification results or reexamine them.” This paper investigates the
Uncertainty Estimation for Few-shot Text Classification (UEFTC),
an unexplored research area. Given limited samples, a UEFTCmodel
predicts an uncertainty score for a classification result, which is
the likelihood that the classification result is false. However, many
traditional uncertainty estimation models in text classification are
unsuitable for implementing a UEFTC model. These models require
numerous training samples, whereas the few-shot setting in UEFTC
only provides a few or just one support sample for each class in
an episode. We propose Contrastive Learning from Uncertainty
Relations (CLUR) to address UEFTC. CLUR can be trained with
only one support sample for each class with the help of pseudo
uncertainty scores. Unlike previous works that manually set the
pseudo uncertainty scores, CLUR self-adaptively learns them using
our proposed uncertainty relations. Specifically, we explore four
model structures in CLUR to investigate the performance of three
common-used contrastive learning components in UEFTC and find
that two of the components are effective. Experiment results prove
that CLUR outperforms six baselines on four datasets, including
an improvement of 4.52% AUPR on an RCV1 dataset in a 5-way
1-shot setting. Our code and data split for UEFTC are in https:
//github.com/he159ok/CLUR_UncertaintyEst_FewShot_TextCls.
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1 INTRODUCTION
Few-shot text classification learns a classifier using limited training
texts [2, 48]. Few-shot scenarios often involve a crucial decision
on whether or not to trust a model’s results. For example, a state-
of-the-art (SOTA) model diagnosing a new disease demands high
accuracy but initially has access only to a few descriptions of the
condition. One approach to achieve a higher classification accuracy
is to recheck the most uncertain results by the experts [25, 68]. Ex-
perts are expensive and scarce. Therefore, uncertainty estimation is
pivotal in optimizing decision-making and saving expert resources
in many few-shot applications. Here, we improve the accuracy of
Uncertainty Estimation for Few-shot Text Classification (UEFTC).
Specifically, UEFTC quantifies the likelihood of misclassification
in scenarios with few samples 1. UEFTC models should yield high
uncertainty scores for misclassified predictions and low uncertainty
scores for correct predictions.

However, the few-shot setting in UEFTC makes many uncer-
tainty estimation methods difficult to use. Concretely, compared
to traditional uncertainty estimation tasks, the few-shot setting in
UEFTC provides only a few support samples or even one support
sample (1-shot) per class in each episode 2. Below, we describe how
the current methods in uncertainty estimation cannot tackle UEFTC
given the few-shot limitation and how our approach improves it.

1We detail the UEFTC task setting in Sec. 3.1
2The term "support" is explained in Sec. 3.1
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The current uncertainty estimation methods are mainly of three
kinds. First, Bayesian Neural Networks (BNN)-based methods learn
a distribution over the model parameters [44, 49], or learn a distri-
bution for each semantic class [4, 5, 55]. Due to the few-support-
sample limitation in UEFTC, it is difficult to learn a distribution by
a few or just one support sample per class. As a result, BNN-based
methods are not suitable for addressing UEFTC. The second method
is ensemble-based, which trains an uncertainty estimation model
with augmentations of data (i.e., Gaussian noise [31], adversarial
augmentation [52]) or structures (i.e., depth-based ensemble [1]
and structure search [66]). The third method is pseudo-label-based,
which uses the pseudo uncertainty scores as ground truth to learn
an uncertainty model [25]. Since ensemble-based and pseudo-label-
based methods do not require numerous support samples, we adopt
these two methods to tackle UEFTC.

Though pseudo-label-based methods have growing application
in recent years [6, 60], their current usage in uncertainty estima-
tion [25] has a drawback of manually setting pseudo uncertainty
scores as the ground truth. Concretely, He et al. [25] proposes MSD1
for uncertainty estimation of text classification, which manually
sets coefficients of mix-up [67] as the pseudo uncertainty scores
for an uncertainty model training (explained in Sec. A.1.1). How-
ever, the manual-set pseudo uncertainty scores can be inaccurate
because we do not know a training sample’s ground-truth uncer-
tainty score given a model structure. Due to the few-shot setting,
the inaccurate pseudo uncertainty scores impact UEFTC more than
tasks using numerous samples because each sample weighs more
in UEFTC. In a one-shot setting, an inaccurate pseudo uncertainty
score means the unique support sample uses an inaccurate ground
truth of uncertainty scores, leading to obvious training bias.

We propose Contrastive Learning from Uncertainty Relations
(CLUR) to improve the accuracy of pseudo uncertainty scores. In-
stead of manually setting pseudo uncertainty scores, CLUR self-
adaptively learns them by our proposed uncertainty relations. The
uncertainty relations are either equal or unequal relations (i.e., >,
<) between the uncertainty of a pair of augmented samples. The
uncertainty relations are obtained from data augmentation. Since
the usage of data augmentation is continuously optimized in con-
trastive learning, we design CLUR based on contrastive learning
to better use the data augmentation. This is the first time that con-
trastive learning has been applied in UEFTC. Therefore, we also
investigate whether the three commonly used model structures
(detach, predictor, and intersection comparison that are introduced
in Sec. 3.3) in contrastive learning are effective in UEFTC. Finally,
we show that CLUR exceeds six baselines on four datasets. Our
contributions are summarized below.
Improving uncertainty estimation by a few or just one sup-
port sample per class. To our knowledge, we are the first to
solve UEFTC under its few-support-sample limitation. Our pro-
posed CLUR can be trained with one support sample per class in
each episode because it takes advantage of ensemble and pseudo-
label-based methods. Our solution in UEFTC can also motivate
uncertainty estimation in other few-shot applications.
Proposing and using uncertainty relations to self-adaptively
learn pseudo uncertainty scores as the ground truth uncer-
tainty. To address the issue of manually setting pseudo uncertainty
scores, we generate augmented sample pairs to self-adaptively learn

their pseudo uncertainty scores by our proposed uncertainty rela-
tions. Unlike current contrastive learning models that only have
equal relations (i.e., having the same (=) or different (≠) classes)
between the augmented samples, our uncertainty relations include
additional unequal relations, that are larger (>) or smaller (<) un-
certainty relations among the augmented sample uncertainty.
Investigating the performance of the three common-used
contrastive learning components in UEFTC. As the first study
to apply contrastive learning in UEFTC, we also design four model
structures in CLUR to investigate the performance of three common-
used contrastive learning components in UEFTC. We find that two
of them are effective in UEFTC, enabling us to optimize CLUR. Fu-
ture UEFTC models can benefit from our findings.
Conducting extensive experiments and benchmarking the
UEFTC. We demonstrate that CLUR effectively outperforms six
baselines on four datasets (20News, RCV1, Amazon, and HuffPost),
including an improvement of 4.52% AUPR on an RCV1 dataset in a
5-way 1-shot setting. We release our code as UEFTC benchmark.

2 RELATEDWORK
General methods for uncertainty estimation. There are mainly
three uncertainty estimation methods: Bayesian Neural Network
(BNN)-based [36], deep-ensemble-based [66], and pseudo-label-
based [25]. BNN is a neural network with a prior distribution on
model weights or dataset category distributions. As an approxi-
mation of BNN, Monte Carlo dropout [14, 34] uses dropout in the
model in an ensemble way. Building on BNN, a recent study uses in-
ducing matrices to assist in approximating posterior inference [53].
BNN can handle node classification as well [55]. Based on BNN, Evi-
dential Neural Networks (ENN) [30, 39] calculate Dirichlet distribu-
tions, which also need numerous training samples to learn accurate
distributions. The deep-ensemble-based method trains a fixed ar-
chitecture with augmentations of data [31, 52] or structures [1, 66].
In addition, Gales and Malinin [15] scale seq2seq tasks by BNN
and deep ensembles. As for the pseudo-label-based method [25],
it generates the pseudo uncertainty scores for a training sample
given a model. Since BNN-based methods usually require numerous
samples, our CLUR is a combination of the deep-ensemble-based
and the pseudo-label-based methods, where we use contrastive
learning to connect these two methods.
Uncertainty estimation for text classification. It focuses either
on the training or the testing data. For example, Wang et al. [59]
annotate unlabeled samples with higher uncertainty for training.
For testing, it mainly has two tasks: OOD detection [13, 24, 38] for
predictions, such as Hu and Khan [29]; and misclassified result de-
tection, where testing samples are in-domain, such as Zhang et al.
[68] and He et al. [25]. Zhang et al. [68] use dropout sampling for
uncertainty scores. Three modules are proposed in He et al. [25],
where MSD3 calculates the sample distributions and is not applica-
ble to UTFTC. Compared to them, UEFTC addresses misclassified
result detection. Different from models requiring many training
samples [25, 68], CLUR is trainable with one support sample per
class in each episode. To our knowledge, we are the first to estimate
uncertainty for few-shot text misclassification detection.
Few-shot text classification. Few-shot text classification has re-
ceived increasing attention in recent years [40]. The few-shot text
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Figure 1: Diagram of UEFTC in sample splits, where 𝑘 = 3, 𝑝 = 1, and𝑚 = 2. Each tag in the diagram represents a text sample
with a respective class. During the meta-training (training) process, a UEFTC model learns via the loss over the query samples
in each training episode. The loss functions expect both accurate classification results and uncertainty scores. During the
meta-testing (testing) process, the UEFTC model predicts a classification result and an uncertainty score for each query sample
from each testing episode. We evaluate UEFTC by the performance of uncertainty scores of query sample classification results
from each testing episode. The episodes drawn in this diagram are also applied to few-shot text classification. Compared to
few-shot text classification, a UEFTC model additionally targets accurate uncertainty scores besides classification results.

classificationmodels aremainly in two categories: transfer-learning-
based and meta-learning-based methods. The transfer-learning-
based methods transfer well-learned knowledge to a new task, such
as fine-tuning a pretrained model by samples from a new task [21].
The meta-learning-based methods learn meta-knowledge of how
to learn from a new task by meta-training episodes. Then the well-
trained meta-knowledge is applied to a new task in meta-testing
episodes for evaluation. UEFTC focuses on meta-learning-based
methods. As a representative SOTA meta-learning-based method,
FTC-DS [2] learns token embedding with the assistance of distribu-
tional signatures. Also mining assisted information, Geng et al. [17]
dynamically update knowledge from base classes by amemorymod-
ule. Meta-level attention is learned in LEA [28] based on pre-trained
language models. In addition, MLADA [23] uses a generator and
a discriminator to conduct adversarial learning for domain adap-
tion in few-shot text classification. Since FTC-DS is a frequently
used baseline and its attention-based token embedding is common
among few-shot text classification, we use FTC-DS to study UEFTC.
Contrastive learning. Contrastive learning has been broadly ap-
plied in unsupervised representation learning [3, 7, 8, 19] by reduc-
ing the distance between positive pairs and enlarging the distance
between negative pairs. Recently, contrastive learning has also been
applied in supervised learning [35, 61] by positive and optional neg-
ative pairs, such as fine-tuning pre-trained language models [12, 20].
Many contrastive learning models use the detach, predictor, or in-
tersection comparison components [3, 9, 19, 20, 42, 43, 54, 62]. How
contrastive learning is used in supervised learning can be further
divided into two categories: using negative samples and using no
negative samples. For instance, Yeh et al. [65] propose decoupled
contrastive loss and Wang and Qi [58] minimize the divergence
between the weak and the strong augmented samples, they both
need negative samples in the model training. As an example of
using no negative samples, SimSiam [9] finds that using a Siamese

net with detach operation achieves similar results by only a single
sample in each update. Due to the few-support-sample limitation
in UEFTC, contrastive learning using no negative samples [9] is
more suitable, which further reduces the burden of the required
sample size. Besides, unlike previous contrastive learning mod-
els [7, 9, 19, 58, 65], which only have equal relations between the
augmented samples, our proposed uncertainty relations have addi-
tional unequal relations. Their equal relations are samples having
the same (=) or different (≠) classes, but our unequal relations are
larger (>) or smaller (<) uncertainty relations between the sample
uncertainty.

3 PRELIMINARY KNOWLEDGE
3.1 UEFTC Task Settings
Problem Statement. As shown in Fig. 1, besides classifying texts
like a few-shot text classification model, UEFTC additionally esti-
mates the uncertainty scores for the classification results so that we
can decide whether to trust the model prediction or not. A UEFTC
model aims to learn how to acquire knowledge from training sam-
ples among training classes 𝐿𝑇𝑟 during the meta-training. Then,
given new classes 𝐿𝑇𝑒 during meta-testing, which are disjoint from
𝐿𝑇𝑟 , a well-trained UEFTC model can quickly learn how to predict
classes of testing samples among 𝐿𝑇𝑒 and their uncertainty scores.
A better UEFTC model not only achieves higher classification per-
formance but also gives higher uncertainty scores for misclassified
results and lower uncertainty scores for correct results.
Meta-training. To meta-train a few-shot text classification model
or a UEFTC model Θ, we create training episodes, shown as Fig. 1.
Among a 𝑝-shot 𝑘-way setting, each training episode is built by
randomly sampling 𝑘 classes from 𝐿𝑇𝑟 . From each of these 𝑘 classes,
we randomly sample 𝑝 samples as a training set and𝑚 samples as
a testing set. We update Θ based on loss over these testing samples
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in each training episode. We also repeat this model update among
other 𝑝-shot 𝑘-way training episodes. In [2, 57], the training set
of a training/testing episode is known as the support set, and its
testing set is called the query set. Given the support set, we call
Θ as a 𝑝-shot 𝑘-way few-shot model. According to different tasks,
Θ can be a 𝑝-shot 𝑘-way few-shot text classification model or a
𝑝-shot 𝑘-way UEFTC model.
Meta-testing. To meta-test Θ, we use the same 𝑝-shot 𝑘-way set-
ting to extract testing episodes from 𝐿𝑇𝑒 , shown as Fig. 1. For each
testing episode, we use 𝑝 × 𝑘 support samples to update the model,
which is further evaluated by the𝑚 × 𝑘 query samples. A few-shot
text classification model is evaluated by the classification accuracy
on testing query sets. Besides the classification performance, we
further evaluate a UEFTC model by the accuracy of estimated un-
certainty scores of classification results on testing query sets. We
aim to learn a UEFTC model predicting more accurate uncertainty
scores for the classification results of testing query samples.

3.2 Few-Shot Text Classification Model
A few-shot text classification model aims at predicting unseen
classes of query samples in testing episodes. Each episode 3 samples
a support set and a query set randomly. We build CLUR on a SOTA
model called FTC-DS [2], which uses attention-based tokens that
are common-used in few-shot text classification [16, 18, 32, 56]. In
each episode, FTC-DS first gets token sequences in discrete numbers
for both support and query samples. It then applies a frozen pre-
trained token embedding to represent the support and query texts.
Thus, a sequence of vectors Z = [z1, z2, ..., z𝑛] for a text is obtained
by the embedding, where z𝑖 is the embedding of the 𝑖-th word. For
a text embedding x, FTC-DS sums each token embedding z as,

x =
∑︁
𝑖

𝛼𝑖 · z𝑖 , (1)

where 𝛼 = [𝛼0, 𝛼1, ..., 𝛼𝑛] is the attention to learn. Then, FTC-DS
gets a projection matrix W, which is the solution of a regression
loss 𝐿 = | |X𝑆W − Y𝑆 | |2𝐹 + _ | |W| |2

𝐹
. To solve it, we have W =

X𝑇
𝑆
(X𝑆X𝑇

𝑆
+ _I)−1Y𝑆 , where X𝑆 and Y𝑆 are the text embeddings

and labels of all support samples in an episode, I is an identity
matrix, while _ is a scalar to be learned. Finally, FTC-DS predicts
semantic vectors for a query set by a projector 𝑔 as,

Ỹ𝑄 = 𝑔(X𝑄 ) = 𝑎X𝑄W + 𝑏 (2)

where {·}𝑄 has similar mean to {·}𝑆 , but {·}𝑄 refers to query sam-
ples. The model output Ỹ𝑄 ∈ R𝑚×𝑘 is a sequence of semantic
vectors in an episode. The 𝑎 and 𝑏 in Eq. 2 are learnable scalars. In
each training episode, FTC-DS updates 𝛼 , _, 𝑎, 𝑏 by cross-entropy
loss 𝐿𝐶𝐸 between model output Ỹ𝑄 and query set labels Y𝑄 . In each
testing episode, FTC-DS uses Eq. 2 to get Ỹ𝑄 for model evaluation.

3.3 SimSiam
SimSiam [9] is a SOTA contrastive learning model that only uses
positive pairs for representation learning. The other SOTA con-
trastive learning models additionally require numerous negative

3An “episode” without defining a training or testing episode applies to both training
and testing episodes. And a “sample” without defining a support or query sample is
also applicable to both.

pairs or large batch sizes, while SimSiam does not. Therefore, Sim-
Siam is more suitable for UEFTC than other SOTA models as it
requires fewer training samples. Plus, SimSiam also uses the three
common-used contrastive learning components. As a result, our
usage of data augmentation in CLUR is motivated by SimSiam. We
briefly introduce SimSiam and the three components.

Given a sample t, SimSiam augments it twice. The augmented
samples t1 and t2 from t are input to a projector, which outputs
projections ỹ1 ∈ R𝑘 and ỹ2 ∈ R𝑘 respectively, where 𝑘 is class
number. Finally, the projections ỹ1 and ỹ2 are input to a predictor,
which outputs predictions ŷ1 ∈ R𝑘 and ŷ2 ∈ R𝑘 respectively. Its
loss function is,

𝐿𝑆𝑖𝑚𝑆𝑖𝑎𝑚 = 𝐷 [ŷ1, 𝑜 (ỹ2)] + 𝐷 [ŷ2, 𝑜 (ỹ1)] (3)

where 𝐷 is cosine similarity and 𝑜 is the detach (DT) operation to
stop the gradient [9, 19, 54, 62]. 𝐷 scales between ỹ and ŷ, which
is an intersection comparison (IT) [9, 19, 42, 43]. Projections ỹ can
be used for model inference, but many contrastive learning models
extra design the predictor (PD) [3, 8, 19, 20] and use its predictions ŷ
for inference. Since DT, IT, and PD are common in contrastive learn-
ing, we investigate whether they improve CLUR. Our findings can
benefit the design of future UEFTCmodels with data augmentation.

4 OUR MODEL: CLUR
4.1 Overview Of CLUR
The upper panel of Fig. 2(L) shows the training process of our
UEFTC model, Contrastive Learning from Uncertainty Relations
(CLUR). CLUR is a pseudo-Siamese net [63], having two identical
submodels with the same structure but different weights. In the
first row (first submodel) of the upper panel, we augment the texts
from a support set and a query set in each training episode. We
then get the text embeddings for the support and query sets by the
“embedding1” module. The query text embeddings are input to a
projector 𝑔1 to get their projections. These query text projections
are further input to a predictor 𝑓1 for their predictions. Similarly,
the other projections and predictions for the same query set are
obtained by the second submodel, shown in the second row with
blue arrows in Fig. 2(L). Moreover, we design four choices of loss
modules to train CLUR, shown in the bottom panel of Fig. 2(L). The
four choices of loss modules verify whether DT, IT, and PD (defined
in Sec. 3.3) help improve UEFTC. During the testing process, CLUR
only uses the first submodel and skips the “augmentation1” module
to get query text classification and uncertainty estimation results.

4.2 CLUR Training: Uncertainty Relations
As we don’t know the true pseudo uncertainty scores, manually
setting them can be inaccurate. Instead, CLUR self-adaptively learns
the pseudo uncertainty scores via our uncertainty relations. Below,
we introduce the augmentation module, which generates the un-
certainty relations.
Augmentation module. Our data augmentation method is token-
mask [64], which randomly masks the tokens in a text. We choose
this data augmentation method, as it only needs one original sam-
ple, satisfying UEFTC’s few-support-sample limitation.
Uncertainty Relations. Given an 𝑛-word text from either a sup-
port set or a query set, we have its token vector t ∈ R𝑛 in discrete
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Figure 2: The left diagram (Fig. 2(L)) shows the training process of CLUR. The right diagram (Fig. 2(R)) shows three cases of
uncertainty relations. Red and blue represent the data related to the first and second submodels respectively. The bottom dotted
rectangle in Fig. 2(L) details four choices of loss modules and their comparison table, where "✓" ("×") means the design is used
(unused) in the respective loss module. Fig. 2(R) illustrates our three cases of uncertainty relations by an example, where the
example has Φ1 = 𝜏 = Φ2 =

2
𝑛 . Case 1 claims t̃1 and t̃2 have the same uncertainty; case 2 and case 3 both claim that t̃1 has smaller

uncertainty than t̃2, where we verify the case 3 has more accurate pseudo uncertainty relations due to 𝜏 by our results in Sec. 5.2
and analysis in Sec. A.2.1. During the testing process, we only use the first submodel and skip the “augmentation1” module to
get the classification results and their uncertainty scores.

numbers. We randomly mask t twice and obtain two different aug-
mented token vectors t̃1 ∈ R𝑛 and t̃2 ∈ R𝑛 as below,

t̃1 = t ·m𝜙1

t̃2 = t ·m𝜙2

(4)

wherem𝜙1 andm𝜙2 are binary vectors to randomly mask t by ratios
of𝜙1 and𝜙2, respectively. The ratios𝜙1 and𝜙2 are random numbers
between 0 and 1 for each sample in each epoch. The different cases
of 𝜙1 and 𝜙2 generate various uncertainty relations. We list three
cases below, where their examples are shown in Fig. 2(R).
Case 1: Equal uncertainty relation. 𝜙1 ∈ [0,Φ1] and 𝜙1 = 𝜙2,
where Φ1 is a boundary of 𝜙1. In case 1, binary-mask vectors m𝜙1
and m𝜙2 have the same numbers of 0s and 1s but in random order.
Since 𝜙1 = 𝜙2 in case 1, a pair of augmented samples from a text
has the same numbers of the masked tokens. Due to their same
numbers of masked tokens, case 1 assumes t̃1 and t̃2 have the same
uncertainty. Thus, data augmentation in case 1 generates equal
uncertainty relations.
Case 2: Unequal uncertainty relation without a margin. In
case 2, 𝜙1 ∈ [0,Φ1], 𝜙2 ∈ [0,Φ1], 𝜙1 and 𝜙2 are independent. Then,
the number and order of 0s and 1s in m𝜙1 and m𝜙2 can both be
different. Since a text with more masked tokens is harder for a
model to predict, the model prediction is more uncertain. For a pair
of augmented texts, case 2 regards an augmented text with more
masked tokens as more uncertain than the other augmented text
with fewer masked tokens. Compared to case 1, case 2 has more
data diversity to provide more information. This is because case
1 limits 𝜙1 = 𝜙2, but 𝜙1 and 𝜙2 in case 2 are independent, with 1

𝑛

probability that 𝜙1 = 𝜙2 and 𝑛−1
𝑛 probability that 𝜙1 ≠ 𝜙2.

Case 3: Unequal uncertainty relation with a margin. Case 3
is designed to solve the issues in cases 1 and 2. Specifically, case 1

assumes a pair of texts with the same number of masked tokens
has equal uncertainty. But each token has a different contribution
to the text classification. Second, even though we have 𝜙1 < 𝜙2 or
𝜙1 > 𝜙2 in case 2, the divergence between the numbers of masked
tokens might be too small to crucially impact the uncertainty rela-
tions. Though each token contributes differently to text semantics,
a larger difference in the masked token numbers leads to a more
accurate pseudo uncertainty relation 4. Thus, case 3 sets a margin
𝜏 to enlarge the divergence in the masked token numbers among a
pair of augmented samples. Specifically, case 3 has a 50% chance
that 𝜙1 (𝜙2) ∈ [0,Φ1] and 𝜙2 (𝜙1) ∈ [Φ1 + 𝜏,Φ2], where Φ2 is a
boundary and the other 50% chance is shown in the brackets. In
case 3, one augmented sample has at most Φ1 × 𝑛 masked tokens,
and the other one has at least (Φ1 + 𝜏) × 𝑛 masked tokens.

In the three cases, we set Φ1 ∈ (0, 0.5] and Φ2 ∈ (0, 0.5] to avoid
losing much text context. Any above uncertainty relations are then
used to learn pseudo uncertainty scores described in Sec. 4.4.
Advantage of uncertainty relations. In short, it is easier to man-
ually set pseudo uncertainty relations than to manually set pseudo
uncertainty scores. Concretely, the uncertainty relations have only
three possible values (=, >, <), but the uncertainty scores have
countless possible values (any number>0). Further, when the diver-
gence of a pair of augmented samples is enlarged (such as enlarged
by 𝜏 in case 3), the uncertainty relations are more explicit to us, but
the knowledge about pseudo uncertainty scores does not increase.
Thus, the much fewer possible values and more observable change
in setting uncertainty relations make it easier than setting pseudo
uncertainty scores.

4Detailed analysis is in Sec. A.2.1
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4.3 CLUR Training: General Modules
Embedding module. As shown in the upper panel of Fig. 2(L),
after getting a pair of augmented token vectors t̃1 and t̃2 by a
chosen case for either a support or query text in training episodes,
we use the frozen pre-trained word embedding to get their token
embeddings Z̃1 ∈ R𝑛×𝑢 and Z̃2 ∈ R𝑛×𝑢 , where 𝑢 is the dimension
of word embedding. Similar to Eq. 1, we then accumulate each token
embedding in Z̃1 by learnable attentions 𝛼1 = [𝛼11, 𝛼12, ..., 𝛼1𝑛] to
get the text embedding x̃1 ∈ R𝑢 , where x̃1 =

∑𝑛
𝑖=1 𝛼1𝑖 · z̃1𝑖 . Similarly,

we get another text embedding x̃2 ∈ R𝑢 from Z̃2.
Projector module.We then use a projector 𝑔1 like Eq. 2 to get our
projection ỹ𝑄1 ∈ R𝑘 for a query sample, by

ỹ𝑄1 = 𝑔1 (x̃1𝑄 ) = 𝑎1x̃1𝑄W1 + 𝑏1 (5)

where x̃1𝑄 is an augmented query text embedding vector from the
first submodel, 𝑎1 and 𝑏1 are the learnable parameters. ForW1, it
is calculated as,

W1 = X̃𝑇
1𝑆 (X̃1𝑆 X̃𝑇

1𝑆 + _1I)−1Y𝑆 (6)

where X̃1𝑆 is the augmented support texts’ embedding tensor from
the first submodel. _1 is a learnable parameter. The W1 in Eq. 6 is
the solution of a regression loss, 𝐿1 = | |X̃1𝑆W1 − Y𝑆 | |2𝐹 + _ | |W1 | |2𝐹 .
Similar to Eq. 5 and Eq. 6, we get ỹ𝑄2 ∈ R𝑘 by 𝑔2, which has the
same structure as 𝑔1 but with different parameters.

4.4 CLUR Training: Explored Structures
Predictor module. The uncertainty relations are obtained from
data augmentation. CLUR adopts contrastive learning in which the
usage of data augmentation has been continuously optimized. Like
the contrastive learning methods commonly do, the projection ỹ𝑄1
is then input to a predictor 𝑓1. The output of 𝑓1 is the prediction of
CLUR, ŷ𝑄1 ∈ R𝑘 . Similarly, we get ŷ𝑄2 ∈ R𝑘 by 𝑓2.
Loss Modules. To investigate the effects of three common-used
contrastive learning modules (detach, intersection comparison, and
predictor introduced in Sec. 3.3) in CLUR, we design four loss mod-
ules based on the projections ỹ𝑄1 , ỹ𝑄2 and predictions ŷ𝑄1 , ŷ𝑄2 .
The bottom panel in Fig. 2(L) shows the designed loss module
choices. Only contrastive loss 𝐿𝐶𝑇𝑎 (case 1 in Sec. 4.2, Eq. 8) in
loss choice (a) is similar to SimSiam. All the other loss choices are
our original designs. Loss (b) has the best performance among the
four loss module choices in UEFTC by removing the component
“intersection comparison”. (c) shows the performance of “detach”.
And (d) verifies the effectiveness of the “predictor”.
Loss module (a). We first design a revised cross-entropy loss 𝐿𝑅𝐶
to keep classification performance and calibrate the prediction ŷ𝑄
for uncertainty estimation. In a training episode, a query text with
one-hot label y𝑄 ∈ R𝑘 has its 𝐿𝑅𝐶 as,

𝐿𝑅𝐶 =max{𝐿𝐶𝐸 (ŷ𝑄1 , y𝑄 ) + log(𝛽), 0}+
max{𝐿𝐶𝐸 (ŷ𝑄2 , y𝑄 ) + log(𝛽), 0} (7)

where 𝐿𝐶𝐸 is the traditional cross-entropy loss between the pre-
diction ŷ𝑄 and one-hot label y𝑄 . We add log(𝛽), 𝛽 ∈ [0.5, 1) to
each 𝐿𝐶𝐸 , which has a penalty of 0 for 𝐿𝑅𝐶 once the probability for
the correct class is above 𝛽 . With our 𝐿𝑅𝐶 , the probability for the
correct class in ŷ𝑄 is not always close to 1, but has feasible solutions
in a larger range [𝛽, 1), this is further explained in Sec. A.2.2. With a

larger feasible solution range [𝛽, 1), CLUR can learn different uncer-
tainty scores for different samples. This is because if all predictions
ŷ𝑄 are always close to one-hot labels, the uncertainty scores (e.g.,
reciprocal of winning scores in Sec. 4.5) of the predictions are al-
most the same. Second, we design a contrastive loss 𝐿𝐶𝑇𝑎 for a pair
of augmented samples with an equal uncertainty relation,

𝐿𝐶𝑇𝑎 = 𝐷 [ŷ𝑄1 , 𝑜 (ỹ𝑄2 )] + 𝐷 [ŷ𝑄2 , 𝑜 (ỹ𝑄1 )] (8)

where 𝐷 is cosine similarity and 𝑜 is the detach operation to stop
the gradient, similar to Eq. 3 in SimSiam. Eq. 8 scales between ỹ
and ŷ, an intersection comparison. The total loss of module (a) is
𝐿𝑆𝑈𝑀𝑎

= 𝐿𝑅𝐶 + 𝛾𝐿𝐶𝑇𝑎 , where 𝛾 is a constant.
Loss module (b). This performs best among the four loss choices in
UEFTC by 𝜙1 and 𝜙2 in case 3. It also has two components, the same
𝐿𝑅𝐶 as Eq. 7, and its contrastive loss 𝐿𝐶𝑇𝑏 . Though the 𝐿𝐶𝑇𝑎 has
the interaction comparison between projection ỹ𝑄1 and prediction
ŷ𝑄1 , it is hard to explain why we should compare these two, and its
effect is shown to be inconsistent by our experiments (Sec. 5.2.2).
As a result, we only compare the uncertainty relations among the
predictions ŷ𝑄 in (b). For a pair of augmented samples with an
equal uncertainty relation (case 1), we have its 𝐿𝐶𝑇𝑏 as,

𝐿𝐶𝑇𝑏 = 𝐷 [ŷ𝑄1 , 𝑜 (ŷ𝑄2 )] + 𝐷 [ŷ𝑄2 , 𝑜 (ŷ𝑄1 )] (9)

For the augmentations with an unequal uncertainty relation (case
2 or 3), different from Eq. 3 in SimSiam, we propose its 𝐿𝐶𝑇𝑏 as,

L𝐶𝑇𝑏 =𝑚𝑎𝑥{[𝐻 (ŷ𝑄1 ) − 𝐻 (𝑜 (ŷ𝑄2 ))] × (𝜙2 − 𝜙1), 0}
+𝑚𝑎𝑥{[𝐻 (ŷ𝑄2 ) − 𝐻 (𝑜 (ŷ𝑄1 ))] × (𝜙1 − 𝜙2), 0}

(10)

where 𝐻 (ŷ) = −∑
𝑦𝑖 log(𝑦𝑖 ) calculates entropy. A larger entropy

means more uncertainty. In the first item of Eq. 10, the (𝜙2 − 𝜙1)
calculates our pseudo unequal relations (>, <). The [𝐻 (ŷ𝑄1 ) −
𝐻 (𝑜 (ỹ𝑄2 )))] calculates the model predicted unequal relations. If
the predicted unequal relations and our pseudo unequal relations
were the same, the predicted uncertainty scores from CLUR would
be adaptive to our pseudo unequal relations, and the loss would be
a constant 0 with no penalty. But if the predicted unequal relations
and our pseudo unequal relations were different, the predicted
uncertainty scores from CLUR would not be adaptive to our pseudo
unequal relations, and there would be a positive loss as a penalty.
The total loss is 𝐿𝑆𝑈𝑀𝑏

= 𝐿𝑅𝐶 + 𝛾𝐿𝐶𝑇𝑏 .
Lossmodules (c) & (d).Comparedwith (b), (c) shows the effectiveness
of detach in CLUR, where 𝐿𝐶𝑇𝑐 only removes detach operation 𝑜 ;
(d) shows the performance of predictors in CLUR by removing the
predictors and learning via projections. Their loss functions are
shown in the Sec. A.2.2.

4.5 CLUR Inference: Uncertainty Score
During the testing process, its support and query samples from
a testing episode all go through the first submodel by skipping
the augmentation. Thus, our testing process is not affected by the
augmentation, but only uses the knowledge of learning text classi-
fication and uncertainty estimation that is learned in the training
process. Then, like [25, 50], we calculate uncertainty score Γ by the
reciprocal of maximum probability in ŷ𝑄1 , that is Γ = 1

max(ŷ𝑄1 )
.

Generalization of CLUR.When applying uncertainty relations
to other few-shot models, the two modules introduced in Sec. 4.3
are replaceable by other few-shot models to get their respective
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sample embeddings X̃ and query sample projects Ỹ𝑄 . Then, the
data augmentation for uncertainty relations (Sec. 4.2) and their
respective loss functions (Sec. 4.4) are still applicable. We verify its
generalization in Sec. A.3.2.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We use four real-world datasets: (1) 20 Newsgroups
(20News) [37] includes 20 news categories with 18,828 documents
in it. (2) Amazon Reviews (Amazon) [46] is a set of reviews [26].
We use its subset provided by [2], which has 1000 reviews from
each category. (3) HuffPost headlines (HuffPost) provides news
headlines from HuffPost between 2012 and 2018 [47]. It has 36900
headlines with 41 classes. They are shorter and less grammatical
than formal sentences. (4) RCV1 collects Reuters articles from 1996
to 1997 [41]. We use its 71 second-level topics as labels, and discard
its multi-label articles. Each dataset is split in the same way as [2].
Metrics. To evaluate the performance of UEFTC, we use three
metrics. The first two are the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-
recall curve (AUPR), which are broadly applied in uncertainty
estimation [27, 29, 45, 69]. Higher AUROC and AUPR both mean a
higher probability that a true prediction has a lower uncertainty
score than a false prediction. Besides, to simulate the performance
improvement of uncertainty scores with human involvement, we
scale classification accuracy in different eliminated ratios [25, 68].
Concretely, for a testing episode with 𝑁 query samples and elimi-
nated ratio 𝑟 , the most uncertain predictions in size of 𝑁 × 𝑟 are set
as true. The more accurate the uncertainty scores we obtain, the
more misclassified predictions will be set as true predictions under
the same 𝑟 , resulting in a larger F1 score. The F1 score under 0%
eliminated ratio is the model classification performance.
Baselines and Ablation Settings. We use six baselines. FTC-
DS [2] is the SOTA few-shot text classification model described in
Sec. 3.2. To ensure fairness, all other baselines are also built on FTC-
DS, like CLUR. [25, 68] have the same tasks as ours, but they use
numerous training samples. Zhang et al. [68] propose two methods:
Dropout-Entropy (DE) is a dropout-based model. DE+Metric addi-
tionally uses metric learning. There are two other methods in He
et al. [25] applicable to UEFTC: MSD1 uses mix-up to manually
set pseudo uncertainty scores; MSD2 adds self-ensembling compo-
nents to MSD1. We refer to our CLUR with loss module (a) using
equal uncertainty relation as SimSiam [9], since it uses similar key
structures and key loss L𝐶𝑇𝑎 (Eq. 8) as SimSiam (Eq. 3).

For the ablation studies, we design five comparisons listed in
Tab. 4. They are in different cases and structures to compare dif-
ferent designs: detach (DT), predictor (PD), and intersection com-
parison (IT) between the projection and prediction (described in
Sec. 3.3). We use CLUR-{·}-{★} to represent a CLUR using the loss
module {·} in case {★} described in Sec. 4.4 and 4.2 respectively.
Implementation Details.We use fastText [33] as the word em-
bedding for our experiments by default. Besides fastText, we also
test BERT [11] word embedding for 5-way 1-shot on 20News. Our
parameter settings are listed in Sec. A.3.1 and Tab. 7.

5.2 Experimental Results
5.2.1 Comparison With Baselines. Tab. 1 and 3 report the CLUR
improvement in UEFTC using fastText in the 5-way 1-shot and
5-way 5-shot settings respectively. We repeat the testing process
30 times with the same dropout rate. And we calculate the mean
and standard deviation for each metric, which are reported in the
tables. From the two tables, we discuss below questions:
1. Are the learned pseudo uncertainty scores from uncer-
tainty relations better than manual setting ones? Yes, CLUR-b
in case 3 performs better than MSD1 and MSD2, which both manu-
ally set pseudo uncertainty scores, such as 4.52% AUPR improve-
ment than MSD1 in the 5-way 1-shot setting on RCV1 in Tab. 1,
and 1.97% AUROC improvement than MSD2 in the 5-way 5-shot
setting on 20News in Tab. 3. Concretely, MSD1 and MSD2 both
use the mix-up to augment the texts and then manually set the
mix-up coefficient as pseudo uncertainty scores. Compared with
them, CLUR learns the pseudo uncertainty scores by Eq. 10, instead
of the manual setting. Though MSD1 has higher F1 scores in the
eliminated ratios (0%-30%) than CLUR in 5-way 5-shot on HuffPost,
CLUR surpasses MSD1 in AUROC and AUPR in the same setting.
It means that CLUR predicts more accurate uncertainty scores in
total. Thus, learned pseudo uncertainty scores from uncertainty
relations are more accurate than manual setting ones.
2. Is CLUR better than traditional uncertainty estimation
methods (dropout,metric learning, self-ensemble, and pseudo-
label-based methods) applicable to a few training samples?
Yes, they are. In detail, DE uses dropout, and DE+Metrics addition-
ally uses metric learning to reduce uncertainty. MSD1 manually
sets pseudo uncertainty scores; MSD2 extra uses self-ensemble [51]
to reduce uncertainty. In the two tables, CLUR beats them by its
uncertainty relations and structure design in vast comparisons. For
example, CLUR improves 4.39% and 4.08% F1 scores with a 10%
eliminated ratio than DE and DE+Metric, respectively, in the 5-way
1-shot setting on 20News (Tab. 1). Therefore, CLUR beats traditional
uncertainty estimation methods applicable to few-shot settings.

Below, we discuss the results using BERT embedding for 5-way
1-shot on 20News, shown in Tab. 2.
3. Is CLUR effective on BERT embeddings? Yes, our unequal
uncertainty relation in case 3 and (b) loss module in CLUR perform
better on 20News, using BERT embeddings. For example, CLUR-b-3
improves 2.42% AUPR than MSD1 in Tab. 2.

5.2.2 Ablation Study. Tab. 4 shows ablation study results. From
the results, we conclude as below.
4. Which combo choices of loss modules and uncertainty
relations perform better? CLUR using detach, predictor, no inter-
section comparison (𝐿𝐶𝑇𝑏 in Eq. 10) in an uncertainty relation with
a margin (case 3 on Sec. 4.2) performs better on almost all datasets.
For example, CLUR-b-3 improves 2.80% AUROC than CLUR-c-2 in
a 5-way 5-shot setting on Amazon (Tab. 4).
5. Among the three cases of uncertainty relations, which one
performs better? Case 3 performs the best among the three cases.
In detail, from the view of 𝐿𝐶𝑇𝑏 in Eq. 10, we compare CLUR-b-3 and
CLUR-b-2. We see that CLUR-b-3 is better than CLUR-b-2. Thus,
using a margin (case 3) performs better than without a margin
(case 2). In addition, from the view of 𝐿𝐶𝑇𝑎 , we compare CLUR-a-2
and CLUR-a-1 (SimSiam). Since CLUR-a-2 performs better than
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Table 1: Results of baselines and CLUR using fastText word embedding in 5-way 1-shot setting, where standard deviations are
behind “±”. More results are in Tab. 3.

Methods Uncertainty Ratio (F1 Score, Eliminated Ratio)↑ AUROC ↑ AUPR↑0% 10% 20% 30% 40%
20News in the 5-way 1-shot setting

FTC-DS 47.56±1.56 55.76±1.38 62.92±1.25 69.86±1.11 75.77±1.04 68.17±2.15 68.20±1.29
DE 52.32±1.70 59.45±1.59 65.71±1.47 72.12±1.32 77.57±1.27 67.69±2.44 69.38±1.57
DE+Metric 52.33±1.61 59.63±1.44 65.73±1.36 72.04±1.26 77.61±1.15 68.02±2.38 69.44±1.45
MSD1 53.11±1.60 60.47±1.47 66.61±1.36 72.87±1.26 78.38±1.09 68.40±2.35 70.01±1.36
MSD2 52.54±1.32 60.09±1.19 66.54±1.10 72.59±1.04 77.96±0.93 68.49±1.91 69.78±1.01
SimSiam(CLUR-a-1) 53.30±1.57 60.63±1.43 66.86±1.32 73.19±1.23 78.59±1.16 68.74±2.29 70.89±1.36
CLUR-b-3 54.53±1.50 62.06±1.37 68.29±1.25 74.59±1.11 80.02±0.98 70.50±2.13 73.71±1.22

RCV1 in the 5-way 1-shot setting
FTC-DS 51.32±1.64 59.71±1.49 66.16±1.33 72.83±1.23 78.65±1.12 70.48±2.32 73.99±1.22
DE 55.42±1.62 62.96±1.50 68.91±1.37 74.99±1.22 80.09±1.14 70.72±2.34 75.12±1.12
DE+Metric 54.89±1.68 62.50±1.52 68.41±1.34 74.59±1.25 79.78±1.20 70.61±2.46 74.51±1.24
MSD1 54.91±1.79 62.32±1.64 68.27±1.48 74.60±1.36 79.82±1.26 70.11±2.50 73.67±1.35
MSD2 55.54±1.65 62.96±1.50 68.91±1.39 75.18±1.30 80.39±1.17 71.12±2.37 75.34±1.23
SimSiam(CLUR-a-1) 54.12±1.97 61.66±1.79 67.98±1.67 74.47±1.49 79.71±1.38 71.10±2.73 74.24±1.56
CLUR-b-3 55.89±1.60 63.48±1.44 69.47±1.35 75.62±1.23 80.91±1.12 72.31±2.26 77.00±1.10

Amazon in the 5-way 1-shot setting
FTC-DS 59.06±1.49 66.81±1.30 72.65±1.27 78.22±1.14 82.73±1.01 70.05±1.96 79.03±0.97
DE 59.87±1.94 66.91±1.79 72.60±1.65 78.25±1.49 83.10±1.38 70.34±2.62 78.48±1.62
DE+Metric 61.36±1.65 68.39±1.51 73.83±1.37 79.13±1.27 83.55±1.15 70.66±2.37 79.63±1.15
MSD1 61.30±1.74 68.08±1.60 73.60±1.47 78.99±1.36 83.48±1.24 70.00±2.55 78.41±1.38
MSD2 61.56±1.34 68.30±1.20 73.87±1.11 79.24±1.05 83.78±1.00 70.70±1.93 80.02±0.90
SimSiam(CLUR-a-1) 61.42±1.87 68.13±1.73 73.60±1.59 78.93±1.42 83.37±1.27 69.66±2.52 78.66±1.41
CLUR-b-3 63.32±1.38 70.08±1.26 75.41±1.17 80.69±1.04 85.13±0.92 71.59±1.93 81.78±0.89

HuffPost in the 5-way 1-shot setting
FTC-DS 40.65±1.48 48.92±1.33 56.25±1.25 63.64±1.14 70.31±1.08 66.35±2.21 61.35±1.37
DE 42.46±1.63 50.15±1.51 56.87±1.40 64.02±1.35 70.34±1.24 64.72±2.50 58.82±1.72
DE+Metric 42.55±1.40 50.27±1.31 57.19±1.19 64.33±1.10 70.64±1.07 65.48±2.26 59.96±1.29
MSD1 43.25±1.23 50.91±1.16 57.64±1.09 64.63±1.03 70.70±0.99 65.09±1.98 60.59±1.18
MSD2 42.92±1.12 50.70±1.03 57.32±0.97 64.23±0.92 70.58±0.87 64.88±1.80 59.41±1.04
SimSiam(CLUR-a-1) 43.18±1.31 50.73±1.24 57.46±1.17 64.58±1.12 70.80±1.02 65.42±1.96 61.41±1.24
CLUR-b-3 44.05±1.62 51.62±1.48 58.26±1.38 65.20±1.27 71.39±1.17 66.50±2.43 63.07±1.53

Table 2: 5-way 1-shot using BERT word embedding on
20News.

ClassificationID Methods F1 Score (𝑟 = 0%)↑ AUROC↑ AUPR↑

1 FTC-DS 38.92 64.54 58.58
2 DE 44.81 63.40 59.45
3 DE+Metric 45.16 63.66 59.84
4 MSD1 45.75 64.00 61.09
5 MSD2 45.47 63.18 59.19
6 SimSiam(CLUR-a-1) 44.40 63.82 59.30
7 CLUR-b-3 46.54 64.78 62.57

CLUR-a-1, we conclude that case 2 is better than case 1. Together,
case 3 performs the best among the three cases.
6. Do detach, intersection andpredictor (introduced in Sec. 3.3)
improve uncertainty estimation? From Tab. 4, we can conclude
below. (i) The detach is effective by comparing the CLUR-b-3 and
CLUR-c-3. This is because the detach acts as a form of structural
ensemble and helps reduce uncertainty. (ii) As for the intersection

comparison between projections and predictions, it is inconsis-
tently effective in UEFTC by finding the slight difference between
CLUR-a-2 and CLUR-b-2. (iii) The predictor leads to the most obvi-
ous improvement by comparing CLUR-b-3 and CLUR-d-3. This is
because the predictor provides more parameters and better handles
classification and uncertainty estimation simultaneously.
Generalization to other few-shot models. We conducted a gen-
eralization analysis, as shown in Tab. 5 and discussed in Sec. A.3.2.
Experiment on a high-risk domain dataset. Besides the four
commonly used datasets, we are also interested in exploring the
effectiveness of CLUR on public high-risk datasets, such as health-
care. Therefore, we conducted experiments on a medical-domain
dataset, as shown in Tab. 6 and discussed in Sec. A.3.3.

6 CONCLUSION
This paper proposes CLUR to improve Uncertainty Estimation for
Few-shot Text Classification. CLUR, which is based on data en-
semble and pseudo label, overcomes the unique challenge of hav-
ing few support samples in UEFTC. CLUR achieves UEFTC by
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Table 3: Results of baselines and CLUR using fastText word embedding in 5-way 5-shot setting, where standard deviations are
behind “±”. More results are in Tab. 1.

Methods Uncertainty Ratio (F1 Score, Eliminated Ratio)↑ AUROC ↑ AUPR↑0% 10% 20% 30% 40%
20News in the 5-way 5-shot setting

FTC-DS 63.83±1.18 70.87±1.05 76.76±0.92 82.31±0.79 86.86±0.68 76.22±1.69 85.46±0.54
DE 65.95±1.27 72.56±1.08 77.62±1.00 82.56±0.93 86.69±0.88 74.15±2.09 84.10±0.84
DE+Metric 65.82±1.07 72.58±0.95 77.81±0.83 83.08±0.77 87.34±0.70 75.52±1.72 84.65±0.84
MSD1 65.97±1.20 72.61±1.04 77.88±0.93 82.93±0.87 87.09±0.86 73.98±2.00 83.15±1.04
MSD2 65.83±1.06 72.35±0.95 77.83±0.85 83.10±0.79 87.24±0.74 74.72±1.71 83.37±0.79
SimSiam(CLUR-a-1) 66.02±1.31 72.71±1.17 78.02±1.01 83.10±0.94 87.15±0.90 74.78±2.03 84.10±0.96
CLUR-b-3 66.88±1.16 73.71±0.99 79.20±0.85 84.26±0.78 88.21±0.76 76.50±1.77 86.39±0.57

RCV1 in the 5-way 5-shot setting
FTC-DS 72.28±1.63 78.82±1.42 83.35±1.23 87.79±1.11 91.29±0.97 77.26±2.54 89.65±0.75
DE 73.13±1.51 79.48±1.25 84.64±1.10 89.18±0.97 92.16±0.90 80.11±2.39 91.34±0.65
DE+Metric 74.52±1.46 80.49±1.19 84.90±1.11 89.01±1.06 92.20±0.93 77.57±2.56 90.86±0.69
MSD1 74.05±1.55 80.51±1.35 85.42±1.16 89.76±1.11 92.65±0.99 79.53±2.46 90.98±0.78
MSD2 74.44±1.25 80.75±1.03 85.22±0.98 89.52±0.86 92.56±0.75 79.24±2.01 91.2±0.57
SimSiam(CLUR-a-1) 73.51±1.49 80.14±1.27 84.60±1.10 88.76±1.02 92.08±0.91 79.11±2.37 90.80±0.71
CLUR-b-3 75.88±1.37 82.09±1.23 86.31±1.11 90.28±0.98 93.17±0.83 79.65±2.29 91.55±0.65

Amazon in the 5-way 5-shot setting
FTC-DS 81.23±1.05 86.75±0.83 90.62±0.70 93.67±0.61 95.81±0.54 81.00±1.75 94.66±0.32
DE 81.07±1.26 86.48±1.05 90.31±0.93 93.49±0.77 95.58±0.66 80.93±2.15 94.29±0.51
DE+Metric 81.05±1.23 86.54±1.04 90.33±0.89 93.36±0.77 95.46±0.67 80.72±2.14 94.17±0.52
MSD1 81.79±1.24 87.01±1.04 90.81±0.85 93.84±0.75 95.91±0.63 81.07±2.05 94.72±0.47
MSD2 81.06±1.09 86.44±0.91 90.20±0.79 93.24±0.69 95.36±0.62 80.12±1.90 94.08±0.44
SimSiam(CLUR-a-1) 80.75±1.33 86.26±1.16 90.02±0.99 92.98±0.83 95.09±0.75 79.73±2.24 93.66±0.56
CLUR-b-3 81.95±1.09 87.37±0.90 91.49±0.76 94.47±0.57 96.21±0.51 82.35±1.79 95.16±0.36

HuffPost in the 5-way 5-shot setting
FTC-DS 62.28±0.92 69.44±0.87 75.70±0.76 81.60±0.69 86.23±0.63 75.82±1.29 84.06±0.52
DE 63.80±1.20 70.79±1.06 76.48±0.99 81.86±0.91 86.22±0.79 74.74±1.74 83.50±0.72
DE+Metric 63.58±1.27 70.45±1.14 76.31±1.03 81.75±0.86 86.01±0.84 74.72±1.79 83.42±0.79
MSD1 64.11±1.14 71.16±1.03 76.83±0.92 82.09±0.85 86.35±0.77 74.80±1.64 83.64±0.76
MSD2 63.58±0.98 70.43±0.88 76.19±0.82 81.51±0.78 85.90±0.71 74.28±1.44 83.16±0.60
SimSiam(CLUR-a-1) 63.67±1.29 70.39±1.15 75.87±1.07 81.25±0.96 85.71±0.89 73.74±1.84 82.87±0.82
CLUR-b-3 63.55±1.37 70.74±1.22 76.63±1.12 82.04±1.00 86.48±0.89 75.74±1.89 84.10±0.82

Table 4: Ablation study of CLUR using fastText word embedding in the 5-way 5-shot setting on Amazon dataset, where standard
deviations are behind “±.”

Uncertainty Ratio (F1 Score, Eliminated Ratio) ↑Methods Detach Intersection Predictor 0% 10% 20% 30% 40% AUROC ↑ AUPR ↑

Amazon in the 5-way 5-shot setting
CLUR-b-3 ✓ × ✓ 81.95±1.09 87.37±0.90 91.49±0.76 94.47±0.57 96.21±0.51 82.35±1.79 95.16±0.36
CLUR-c-3 × × ✓ 81.44±1.09 86.91±0.94 90.59±0.77 93.63±0.70 95.76±0.61 81.26±1.92 94.52±0.43
CLUR-d-3 ✓ × × 80.17±2.09 85.90±1.76 89.93±1.48 93.33±1.23 95.58±1.02 81.13±3.05 94.33±0.92
CLUR-a-2 ✓ ✓ ✓ 80.83±1.29 86.32±1.12 90.14±0.96 93.33±0.82 95.50±0.71 80.69±2.15 94.23±0.55
CLUR-b-2 ✓ × ✓ 80.59±1.23 86.11±1.06 90.00±0.91 93.25±0.80 95.42±0.70 80.79±2.07 94.17±0.52
CLUR-c-2 × × ✓ 80.90±1.19 86.31±1.01 90.05±0.84 93.08±0.75 95.20±0.66 80.11±2.05 93.91±0.48

self-adaptively learning pseudo uncertainty scores using our pro-
posed uncertainty relations instead of manually setting the pseudo
uncertainty scores. Moreover, we investigate the effects of three
commonly used contrastive learning components in UEFTC and
discover that only the detach and predictor benefit the model. CLUR
can be optimized by removing the intersection comparison com-
ponent in the contrastive learning model. Experiments on four

datasets demonstrated that CLUR using unequal uncertainty rela-
tion with a margin obtained more accurate uncertainty scores.
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A APPENDIX
A.1 Preliminary Knowledge
A.1.1 MSD: pseudo uncertainty. MSD1 [25] uses the mix-up to
augment data and simulate the generation of uncertainty. It has an
augmented sample x̃ by two text embedding x𝑖 and x𝑗 with their
respective labels y𝑖 and y𝑗 as below,

x̃ = 𝜗x𝑖 + (1 − 𝜗)x𝑗 , ỹ = 𝜗y𝑖 + (1 − 𝜗)y𝑗 (11)

where 𝜗 is a random number ranging from Ω to 1. The Ω is set above
0.5. It then learns a KL divergence loss for the augmented data. It
uses a basic way to measure uncertainty, which is the reciprocal
of the maximum probability of a softmax vector. Thus, its pseudo
uncertainty is 1

𝜗
because of ỹ, which is used as the pseudo uncer-

tainty score to train an uncertainty estimation model. However, the
manual-set pseudo uncertainty scores are inaccurate, because we
have implicit knowledge of the pseudo uncertainty scores.

A.2 Model
A.2.1 Analysis Of Case 3 in Sec. 4.2. Assumption: We assume that
the text semantics is not related to the rank of the words, but only
related to the numbers of different words in a text (same assumption
as bag-of-words (BOW) model [22]).

Conclusion: On above assumption, though each token contributes
differently to text semantics, a larger difference (𝜏 ) in the numbers of
mask tokens leads to a more accurate pseudo uncertainty relation.

Analysis: We token-mask an 𝑛-word text for twice. As a result,
one augmented text has 𝑒0 + 𝑒1 remaining words, the other one
has 𝑒0 + 𝑒2 remaining words after token-mask. Among the two
augmented texts, 𝑒0 words are the commonly remaining words in
two texts after token-mask. The 𝑒1 words and 𝑒2 words are the
two groups of uniquely remaining words for each augmented text,
we assume 𝑒1 > 𝑒2 . We set the semantic contributions of each
word to a text for 𝑒0 words as Z1, Z2, ..., Z𝑒0 , also set the semantic
contributions of each word to a text for 𝑒1 words and 𝑒2 words as
b1, b2, ..., b𝑒1 and 𝜌1, 𝜌2, ..., 𝜌𝑒2 , respectively. Thus, based on BOW
assumption, we have the semantics Ψ1 and Ψ2 of two augmented
texts as,

Ψ1 =
𝑒0∑︁
𝑖=1

Z𝑖 +
𝑒1∑︁
𝑗=1

b 𝑗

Ψ2 =
𝑒0∑︁
𝑖=1

Z𝑖 +
𝑒2∑︁
𝑗=1

𝜌 𝑗

(12)

where each Z𝑖 ≥ 0, b 𝑗 ≥ 0 and 𝜌 𝑗 ≥ 0. Plus, each Z𝑖 , b 𝑗 and 𝜌 𝑗 in
Eq. 12 is independent in BOW assumption. Due to the independence
of each Z𝑖 , b 𝑗 , and 𝜌 𝑗 , the "each token contributes differently to
text semantics" in our conclusion has been satisfied. Then, in the
current situation (case 2 with no margin), due to 𝑒1 > 𝑒2, we assume
Ψ1 > Ψ2, which means pseudo uncertainty scores of the first sample
should be smaller than the pseudo uncertainty scores of the second
sample. But the assumption might be wrong, because we have
no idea whether

∑𝑒1
𝑗=1 b 𝑗 >

∑𝑒2
𝑗=1 𝜌 𝑗 or not. If

∑𝑒1
𝑗=1 b 𝑗 >

∑𝑒2
𝑗=1 𝜌 𝑗

is true, then our pseudo uncertainty relation is accurate. Thus,
we define 𝑃 (Ψ1 > Ψ2) to represent a probability that our pseudo
relation is accurate for a pair of augmented text, given 𝑒1 > 𝑒2.

In case 3, due to the additional margin 𝜏 , the difference in num-
bers of remaining words is enlarged. Thus, we token-mask less
a = ⌞𝑛 × 𝜏⌟ words for the first augmentation. As a result, the num-
ber of remaining words of the first augmentation is changed from
𝑒0 + 𝑒1 to 𝑒0 + 𝑒1 + a , but the number of remaining words of the
second augmentation is still 𝑒0 + 𝑒2. Thus, the semantics Ψ

′
1 of the

first augmented text with 𝜏 is,

Ψ
′
1 =

𝑒0∑︁
𝑖=1

Z𝑖 +
𝑒1∑︁
𝑗=1

b 𝑗 +
a∑︁

𝑘=1
b
′

𝑘 (13)

where each b
′

𝑘
≥ 0 is the semantic contributions of each word to a

text for a additionally remaining words. As a result, to compare the
accuracy of pseudo uncertainty relation for a pair of augmented
texts with/without 𝜏 , we have the below by plugging in Eq. 12 and
Eq. 13,

𝑃 (Ψ
′
1 > Ψ2) − 𝑃 (Ψ1 > Ψ2)

= (Ψ
′
1 − Ψ2) − (Ψ1 − Ψ2)

= Ψ
′
1 − Ψ1 ≥ 0

(14)

Thus, we show that the probability that the pseudo uncertainty
relation with 𝜏 is true, is higher than that without 𝜏 . In other words,
the accuracy of pseudo uncertainty relation with 𝜏 is higher.

A.2.2 Loss Modules. Explain 𝛽 in our revised cross-entropy
loss L𝑅𝐶 of Eq. 7 in Sec. 4.4. Given a prediction ŷ𝑄 ∈ R𝑘 and
its respective ground truth y𝑄 ∈ R𝑘 , we analyze the the relation
between L𝐶𝐸 (ŷ𝑄 , y𝑄 ) + 𝑙𝑜𝑔(𝛽) and 0, where 𝛽 ∈ [0.5, 1). We detail
the L𝐶𝐸 as below,

L𝐶𝐸 (ŷ𝑄 , y𝑄 ) = −
𝑘∑︁
𝑖=1

y𝑖𝑄𝑙𝑜𝑔(ŷ
𝑖
𝑄 ) (15)

where y𝑖
𝑄

and ŷ𝑖
𝑄

are the 𝑖-th entry of y𝑄 and ŷ𝑄 respectively.

Since y𝑄 is a one-hot vector and we assume its y𝑗
𝑄
= 1 and the rest

entries of y𝑄 are all 0, we have below,

L𝐶𝐸 (ŷ𝑄 , y𝑄 ) = −y𝑗
𝑄
𝑙𝑜𝑔(ŷ𝑗

𝑄
)

= −𝑙𝑜𝑔(ŷ𝑗
𝑄
)

(16)

where L𝐶𝐸 > 0. This is because ŷ𝑄 is input to a softmax function in
the PyTorch implementation of cross-entropy loss 5, and ŷ𝑗

𝑄
∈ (0, 1).

However, we do not expect the ŷ𝑗
𝑄
is always close 1, as it is now not

100% confidence belonging to 𝑗-th class due to data augmentation.
Thus, we add 𝛽 to L𝐶𝐸 as below,

L𝐶𝐸 (ŷ𝑄 , y𝑄 ) + 𝑙𝑜𝑔(𝛽) = −𝑙𝑜𝑔(ŷ𝑗
𝑄
) + 𝑙𝑜𝑔(𝛽) = 𝑙𝑜𝑔( 𝛽

ŷ𝑗
𝑄

) (17)

Then, we substitute Eq. 17 into Eq. 7, we have below,

L𝑅𝐶 =𝑚𝑎𝑥 [𝑙𝑜𝑔( 𝛽

ŷ𝑗
𝑄1

), 0] +𝑚𝑎𝑥 [𝑙𝑜𝑔( 𝛽

ŷ𝑗
𝑄2

), 0] (18)

where L𝑅𝐶 equals to constant 0 with no penality, if y𝑗
𝑄1

≥ 𝛽 and

y𝑗
𝑄2

≥ 𝛽 . Thus, they both have feasible solution [𝛽, 1) in 𝐿𝑅𝐶 .

5The PyTorch implementation of cross-entropy loss is "torch.nn.CrossEntropyLoss",
which can be found from its official API.
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Table 5: The comparison between baselines and our CLUR-b-3 in setting CNN as embeddings and Prototypical Network as
classifiers on 20News with the 5-way 1-shot setting.

Methods Uncertainty Ratio (F1 Score, Eliminated Ratio)↑ AUROC ↑ AUPR↑0% 10% 20% 30% 40%
FTC-DS 27.12±3.58 35.75±3.43 43.48±3.29 51.64±3.09 58.96±2.95 55.75±5.96 37.11±6.91
DE 29.83±3.52 38.09±3.36 45.55±3.18 53.51±3.00 60.72±2.88 58.81±5.70 41.14±6.81
DE+Metric 31.09±3.04 39.22±2.89 46.54±2.76 54.35±2.56 61.35±2.41 58.76±4.74 42.17±5.05
MSD1 30.96±2.84 39.06±2.68 46.36±2.58 54.08±2.48 61.04±2.38 57.75±4.76 40.13±4.33
MSD2 30.36±3.53 38.44±3.34 45.71±3.17 53.53±2.99 60.60±2.77 57.72±5.26 40.54±5.85
SimSiam(CLUR-a-1) 30.39±3.42 38.52±3.28 45.81±3.14 53.55±2.97 60.66±2.76 57.58±5.32 40.62±5.90
CLUR-b-3 31.77±3.32 40.16±3.09 47.54±2.92 55.37±2.73 62.47±2.56 59.20±5.18 43.89±5.75

Table 6: Comparing baselines and CLUR-b-3 using FTC-DS on the Med-Domain dataset with the 5-way 1-shot setting.

Methods Uncertainty Ratio (F1 Score, Eliminated Ratio)↑ AUROC ↑ AUPR↑0% 10% 20% 30% 40%
FTC-DS 50.63±1.79 58.98±1.55 65.63±1.40 71.69±1.28 77.08±1.23 67.42±2.37 70.24±1.66
DE 56.01±1.83 63.13±1.67 69.36±1.53 75.17±1.44 80.36±1.32 70.94±2.54 75.53±1.43
DE+Metric 54.98±2.12 62.06±1.96 68.32±1.85 74.31±1.71 79.80±1.55 71.01±2.89 75.62±1.79
MSD1 55.93±1.99 62.88±1.82 69.04±1.70 74.85±1.60 80.02±1.44 70.10±2.71 74.39±1.65
MSD2 55.99±1.50 62.96±1.39 69.04±1.32 74.78±1.21 79.94±1.08 70.15±2.10 75.82±1.08
SimSiam(CLUR-a-1) 54.48±1.69 61.49±1.62 67.78±1.51 73.89±1.39 79.43±1.32 70.64±2.36 74.31±1.49
CLUR-b-3 56.81±1.69 63.87±1.51 70.16±1.42 76.10±1.32 81.44±1.21 72.31±2.36 77.29±1.31

Table 7: Parameter settings that we use to get our CLUR-b-3
results with fastText embeddings.

Datasets 5-way 1-shot 5-way 5-shot
𝛾 Φ1 𝜏 Φ2 𝛾 Φ1 𝜏 Φ2

20News 0.1 0.1 0.1 0.3 1 0.1 0.1 0.3
RCV1 1 0.1 0.1 0.3 1 0.1 0.05 0.25
Amazon 1 0.1 0.05 0.25 1 0.1 0.15 0.35
HuffPost 1 0.15 0.1 0.4 1 0.15 0.1 0.4

Below is our remaining losses, besides those in Sec. 4.4.
Loss module (a). In loss module (a), for an unequal uncertainty
relation (case 2 or 3 in Sec. 4.2), our L𝐶𝑇𝑎 is,

L𝐶𝑇𝑎 =𝑚𝑎𝑥{[𝐻 (ŷ𝑄1 ) − 𝐻 (𝑜 (ỹ𝑄2 ))] × (𝜙2 − 𝜙1),
0} +𝑚𝑎𝑥{[𝐻 (ŷ𝑄2 ) − 𝐻 (𝑜 (ỹ𝑄1 ))] × (𝜙1 − 𝜙2), 0}

(19)

The two items in Eq. 19 can be explained in a similar way to Eq. 10.
Loss module (c). It is designed to verify the effectiveness of detach
in UEFTC. It has the same 𝐿𝑅𝐶 as Eq. 7. We only consider case 3 for
it because we found case 3 achieved the best performance among
three cases of uncertainty relations, when we used Loss module (b)
for the experiments. Its 𝐿𝐶𝑇𝑐 in unequal uncertainty relation is,

L𝐶𝑇𝑐 =𝑚𝑎𝑥{[𝐻 (ŷ𝑄1 ) − 𝐻 (ŷ𝑄2 )] × (𝜙2 − 𝜙1), 0} (20)

because there is no detach 𝑜 , so there is no more difference between
the two items in Eq. 10. The total loss is 𝐿𝑆𝑈𝑀𝑐

= 𝐿𝑅𝐶 + 𝛾𝐿𝐶𝑇𝑐 .
Loss module (d). It is designed to verify the effectiveness of pre-
dictor in UEFTC by removing the predictors. Its 𝐿𝑅𝐶𝑑

is conducted
on the projections ỹ𝑄1 . Its 𝐿𝐶𝑇𝑑 in unequal uncertainty relation is,

L𝐶𝑇𝑑 =𝑚𝑎𝑥{[𝐻 (ỹ𝑄1 ) − 𝐻 (𝑜 (ỹ𝑄2 ))] × (𝜙2 − 𝜙1), 0}
+𝑚𝑎𝑥{[𝐻 (ỹ𝑄2 ) − 𝐻 (𝑜 (ỹ𝑄1 ))] × (𝜙1 − 𝜙2), 0}

(21)

The total loss is 𝐿𝑆𝑈𝑀𝑑
= 𝐿𝑅𝐶𝑑

+ 𝛾𝐿𝐶𝑇𝑑 .

A.3 Experiments
A.3.1 Implementation Details. We use fastText [33] as the word
embedding by default. For all experiments, we set 𝛽 = 0.75. We
list the parameter settings on Tab. 7, which are parameters used
to get our reported CLUR-b-3 results. For the 5-way 1-shot using
BERT embedding on 20News, we set 𝛾 = 0.1, Φ1 = 0.1, 𝜏 = 0.1, and
Φ2 = 0.3. The ablation studies also use the respective parameters.

A.3.2 Generalization On Other Few-Shot Model. Our CLUR-b-3
is experimentally effective on CNN embedding and Prototyp-
ical Network classifier.We conducted experiments using CNN
embeddings [68] and Prototypical Network [2] classifiers for the
UEFTC, which are common used in few-shot learning. We com-
pared our CLUR-b-3 model to the baselines in the 5-way 1-shot
setting on the 20News dataset. The results of our experiments are
presented in Tab. 5. Our results indicate that our CLUR-b-3 model
surpasses all the baselines, such as achieving over 3.35 points AURP
compared to MSD2 in Tab. 5. These results suggest that our CLUR-
b-3 model is effective not only for FTC-DS [1] but also for CNN
embeddings and Prototypical Network classifiers. As a result, CLUR
exhibits potential for generalization to other few-shot models.

A.3.3 Experiment On A Med-Domain Dataset. Besides the four
common-used datasets, we also explore the effectiveness of CLUR
on public high-risk datasets like healthcare.We chooseMed-Domain
dataset [10], which has medical transcription and labels. We use
its subset of 1294 samples among 29 classes for our experiments,
where the subset is released in our data split. We compare the per-
formance between baselines and our CLUR-b-3 based on FTC-DS,
shown as Tab. 6. We conclude that our CLUR still works well in
the high-risk domain, say, the healthcare domain. This is because
our CLUR surpasses all baselines, such as improving 2.16 points
AUROC over MSD2 in Tab. 6.
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