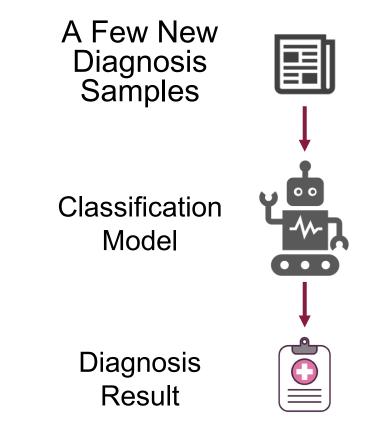
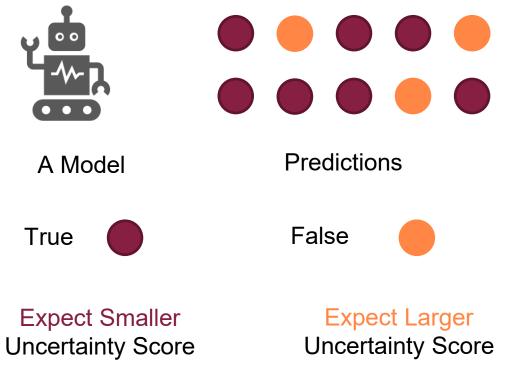


CLUR: Uncertainty Estimation for Few-Shot Text Classification with Contrastive Learning


Jianfeng He, Xuchao Zhang, Shuo Lei, Abdulaziz Alhamadani, Fanglan Chen, Bei Xiao, Chang-Tien Lu

> Virginia Tech Microsoft American University

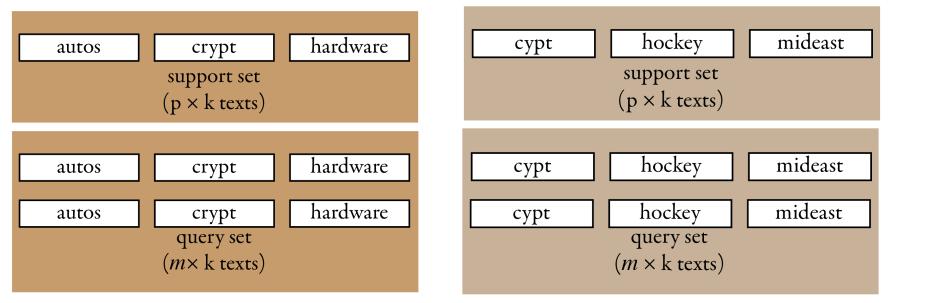
Few-shot text classification is important.


- Few-shot text classification learns a classifier by a few training or even only one training example per class.
- E.g., a new disease with only a few recorded diagnosis at beginning

Trust the diagnosis results? Ask human expert for recheck?

Therefore, we need uncertainty estimation to detect false prediction in few-shot scenerios.

- Uncertainty estimation quantifies to which degree we should discard a model prediction.
- Applications of uncertainty estimation
 - Out-of-domain detection
 - □ Active learning
 - Misclassification detection (Our focus)


Misclassification detection

Our Task: Uncertainty Estimation in Few-Shot Text Classification (UEFTC)

Task Setting: Based on meta-learning (meta-training & meta-testing)

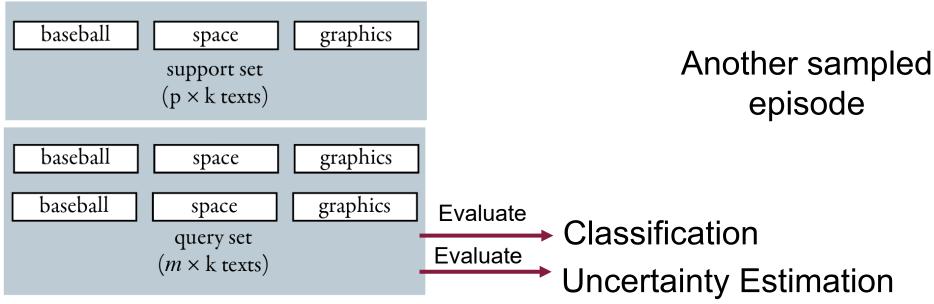
Training Episode 2

Training Episode 1

Meta-training: p-shot (sample size) k-way (class size), 1-shot 3-way Samples in both support and query sets are given labels for minimizing loss.

Training Episode 3

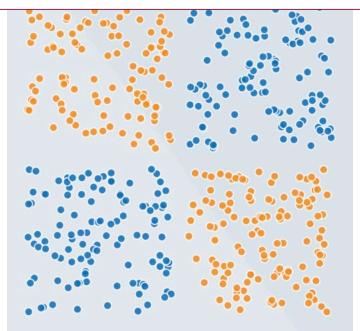
. . .

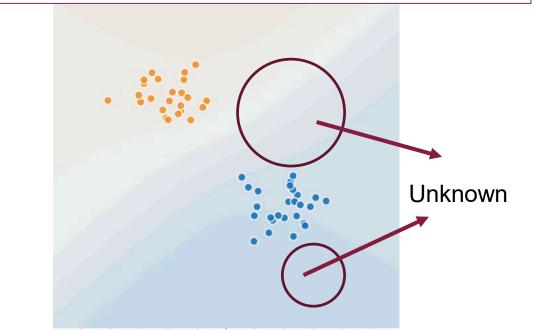

We aim to improve Uncertainty Estimation in Few-Shot Text Classification (UEFTC).

Task Setting: Based on meta-learning (meta-training & meta-testing)

Testing Episode 2

. . .

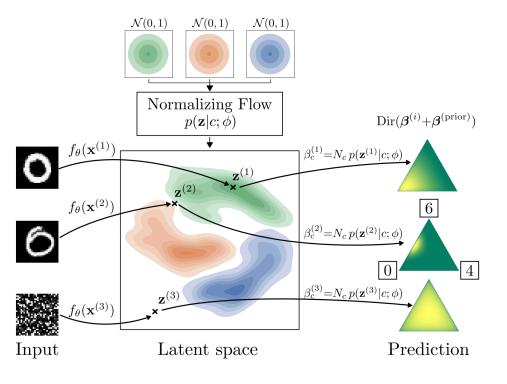

Testing Episode 1


Meta-testing Process (use disjoint classes to meta-training) Only in support samples are given labels. Evaluation: classification & uncertainty estimation

Challenge in UEFTC: <u>Few Support Samples</u>

Sufficient training samples \rightarrow accurate sample or parameter distribution.

<u>Previous</u>: Uncertainty estimation on traditional text classification Few support samples → inaccurate sample or parameter distribution. (i.e., 1 support sample per class)

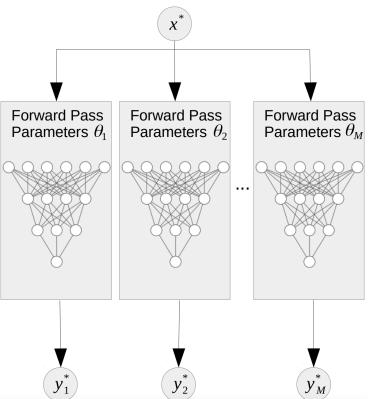


Ours: Uncertainty estimation on few-shot text classification (UEFTC)

Few-support-sample Impacts on Current Uncertainty Estimation Models in UEFTC

- 1. Sample-distribution-based methods
- > probability/distance to distribution of each class of training samples
- e.g., Posterior Neural Network

Sample distribution in UEFTC is inaccurate.

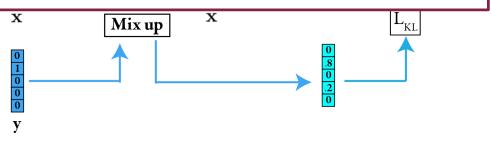


Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts. NIPS 2020. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. NIPS 2018.

Few-support-sample Impacts on Current Uncertainty Estimation Models in UEFTC

2. Parameter-distribution-based methods

e.g., Bayesian Neural Network (BNN)
Feasible parameter set has a larger size
<u>Inaccurate</u> parameters distribution

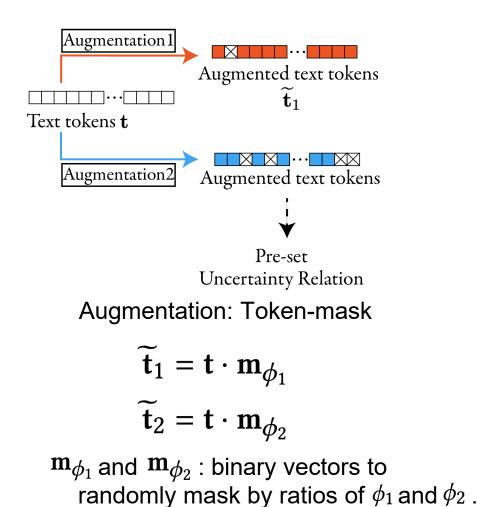


Few-support-sample Impacts on Current Uncertainty Estimation Models in UEFTC 3. Pseudo-label-based methods

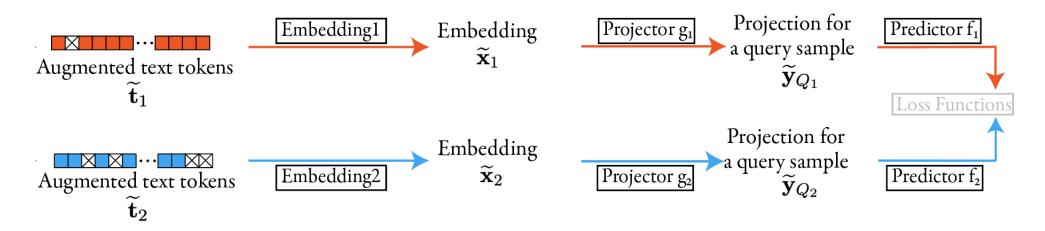
- Augment samples
- Manually set their psuedo ground-truth uncertainty score given a specific model structure.
- E.g., Mix-up
- Advantage: Independent on sample size


Drawback: Manually set pseudo uncertainty scores (inaccurate).

Thus, we propose a method to self-adaptively learn pseudo groundtruth uncertainty scores.

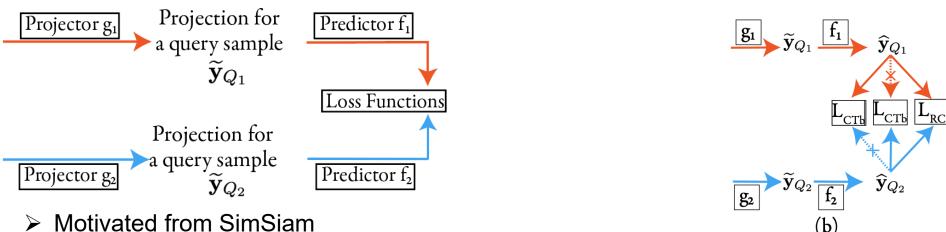

Towards More Accurate Uncertainty Estimation In Text Classification. EMNLP 2020.

Our Model: Contrastive Learning from Uncertainty Relations (CLUR)


Main motivation: self-adaptively learn pseudo ground-truth uncertainty scores given a model.

CLUR: Augmentation & Unequal Relation

 $\widetilde{\mathbf{t}}_1$ X \mathbf{N} $\phi_1 = \phi_2$ $\phi_1 \in [0, \Phi_1]$ \mathbf{t}_2 Case 1: Equal uncertainty relation ϕ_1, ϕ_2 are independent $\widetilde{\mathbf{t}}_1$ $\phi_1 \in [0, \Phi_1]$ $\phi_2 \in [0, \Phi_1]$ Case 2: Unequal uncertainty relation with <u>no</u> margin ϕ_1, ϕ_2 are independent $\tilde{\mathbf{t}}_1$ $\phi_1(\phi_2) \in [0, \Phi_1]$ $\phi_2(\phi_1) \in [\Phi_1 + \tau, \Phi_2] \quad \widetilde{\mathbf{t}}_2 \quad \blacksquare \quad \blacksquare \quad \blacksquare \quad \blacksquare$ Case 3: Unequal uncertainty relation with <u>a</u> margin **Uncertainty Relations**


CLUR: General Modules

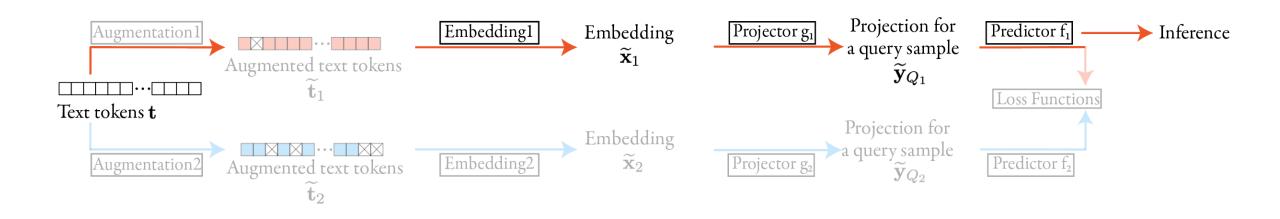
General Module

- Projection & prediction
 - □ Both k-dimensions (k classes)
 - □ Follow contrastive learning (SOTA usage of augmented samples)

CLUR: Loss Functions

□ No negative pairs & large batch size (Few-support-sample limitation)

Contrastive loss equal uncertainty relation (D: Cosine distance; o: detach):

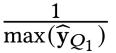

$$L_{CT_b} = D[\widehat{\mathbf{y}}_{Q_1}, o(\widehat{\mathbf{y}}_{Q_2})] + D[\widehat{\mathbf{y}}_{Q_2}, o(\widehat{\mathbf{y}}_{Q_1})]$$

Contrastive loss in <u>unequal</u> uncertainty relation: (H: entropy for uncertainty)

$$L_{CT_b} = max\{[H(\widehat{\mathbf{y}}_{Q_1}) - H(o(\widehat{\mathbf{y}}_{Q_2}))] \times (\phi_2 - \phi_1), 0\} + max\{[H(\widehat{\mathbf{y}}_{Q_2}) - H(o(\widehat{\mathbf{y}}_{Q_1}))] \times (\phi_1 - \phi_2), 0\}$$

Predicted uncertainty relation Pseudo ground-truth uncertainty relation
Total loss: $L_{SUM_b} = L_{RC} + \gamma L_{CT_b} \longrightarrow L_{RC}$ avoids overconfidence (not closing to 1)

Exploring simple siamese representation learning. CVPR 2021


CLUR: Inference

Only use the first submodel (first row) & skip augmentation

Classification: arg max

Uncertainty Score: reciprocal of maximum probability

Exploring simple siamese representation learning. CVPR 2021.

Experimental Settings

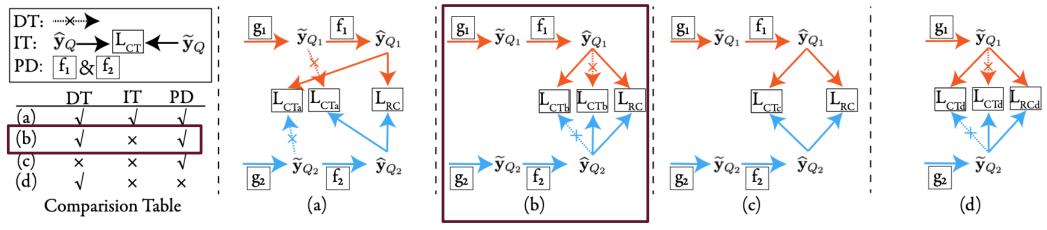
Five public datasets

- □ <u>News</u> domain: 20News, HuffPost, RCV1
- **D** <u>User review</u> domain: Amazon Reviews
- □ <u>Medical</u> domain: Med-Domain
- Metrics
 - □ AUROC
 - AUPR
 - F1 scores in eliminated ratios
 - Simulate human recheck
 - Replace the most uncertain parts by the ground truth
- Our CLUR and baselines are all default based on a classical fewshot model, FTC-DS.

Few-shot Text Classification with Distributional Signatures. ICLR 2020.

Our CLUR model performs better than baselines in UEFTC on 5-way 1-shot setting.

Methods	Ur	ncertainty Rati	o (F1 Score, El	iminated Ratio)↑	AUROC ↑			
Methous	0%	0% 10% 20% 30% 40%		40%	AUROC	AUPR↑			
20News in the 5-way 1-shot setting									
FTC-DS	47.56 ± 1.56	55.76 ± 1.38	62.92 ± 1.25	69.86 ± 1.11	75.77 ± 1.04	68.17 ± 2.15	68.20±1.29		
DE	52.32 ± 1.70	59.45 ± 1.59	65.71 ± 1.47	72.12 ± 1.32	77.57 ± 1.27	67.69 ± 2.44	69.38 ± 1.57		
DE+Metric	52.33 ± 1.61	59.63 ± 1.44	65.73 ± 1.36	72.04 ± 1.26	77.61 ± 1.15	68.02 ± 2.38	69.44±1.45		
MSD1	53.11 ± 1.60	60.47 ± 1.47	66.61±1.36	72.87 ± 1.26	78.38 ± 1.09	68.40 ± 2.35	70.01 ± 1.36		
MSD2	52.54 ± 1.32	60.09 ± 1.19	66.54 ± 1.10	$72.59 {\pm} 1.04$	77.96 ± 0.93	68.49 ± 1.91	69.78±1.01		
SimSiam(CLUR-a-1)	53.30 ± 1.57	60.63 ± 1.43	66.86 ± 1.32	73.19 ± 1.23	78.59 ± 1.16	68.74 ± 2.29	70.89 ± 1.36		
CLUR-b-3	54.53 ±1.50	62.06 ±1.37	68.29 ±1.25	74.59 ±1.11	80.02±0.98	70.50 ±2.13	73.71±1.22		
	RCV1 in the 5-way 1-shot setting								
FTC-DS	51.32 ± 1.64	59.71 ± 1.49	66.16±1.33	72.83 ± 1.23	78.65 ± 1.12	70.48 ± 2.32	73.99±1.22		
DE	55.42 ± 1.62	62.96 ± 1.50	68.91 ± 1.37	$74.99 {\pm} 1.22$	80.09 ± 1.14	70.72 ± 2.34	75.12 ± 1.12		
DE+Metric	54.89±1.68	62.50 ± 1.52	68.41 ± 1.34	74.59 ± 1.25	79.78 ± 1.20	70.61 ± 2.46	74.51 ± 1.24		
MSD1	54.91±1.79	62.32 ± 1.64	68.27 ± 1.48	74.60 ± 1.36	79.82 ± 1.26	70.11 ± 2.50	73.67 ± 1.35		
MSD2	55.54 ± 1.65	62.96 ± 1.50	68.91±1.39	75.18 ± 1.30	80.39 ± 1.17	71.12 ± 2.37	$75.34{\pm}1.23$		
SimSiam(CLUR-a-1)	54.12±1.97	61.66 ± 1.79	67.98 ± 1.67	74.47 ± 1.49	79.71±1.38	71.10 ± 2.73	74.24 ± 1.56		
CLUR-b-3	55.89 ±1.60	63.48 ±1.44	69.47 ±1.35	75.62±1.23	80.91 ±1.12	72.31 ±2.26	77.00 ±1.10		


UEFTC results on <u>5-way 1-shot</u> on 20News & RCV1

Our CLUR model performs better than baselines in UEFTC 5-way 5-shot setting.

Methods	Ur	ncertainty Rati		AUPR↑					
	0%	0% 10% 20% 30% 40%		40%	AUROC ↑				
FTC-DS	47.56 ± 1.56	55.76 ± 1.38	62.92 ± 1.25	69.86±1.11	75.77 ± 1.04	68.17 ± 2.15	68.20±1.29		
DE	52.32 ± 1.70	59.45 ± 1.59	65.71 ± 1.47	72.12 ± 1.32	77.57 ± 1.27	$67.69 {\pm} 2.44$	69.38 ± 1.57		
DE+Metric	52.33 ± 1.61	59.63 ± 1.44	65.73 ± 1.36	72.04 ± 1.26	77.61 ± 1.15	68.02 ± 2.38	69.44 ± 1.45		
MSD1	53.11 ± 1.60	60.47 ± 1.47	66.61±1.36	72.87 ± 1.26	78.38 ± 1.09	68.40 ± 2.35	70.01 ± 1.36		
MSD2	52.54 ± 1.32	60.09 ± 1.19	66.54 ± 1.10	$72.59 {\pm} 1.04$	77.96 ± 0.93	68.49 ± 1.91	69.78 ± 1.01		
SimSiam(CLUR-a-1)	53.30 ± 1.57	60.63 ± 1.43	66.86 ± 1.32	73.19 ± 1.23	78.59 ± 1.16	$68.74 {\pm} 2.29$	70.89 ± 1.36		
CLUR-b-3	54.53 ±1.50	62.06 ±1.37	68.29 ±1.25	74.59 ±1.11	80.02±0.98	70.50 ±2.13	73.71±1.22		
	RCV1 in the 5-way 1-shot setting								
FTC-DS	51.32 ± 1.64	59.71 ± 1.49	66.16 ± 1.33	72.83 ± 1.23	78.65 ± 1.12	70.48 ± 2.32	73.99 ± 1.22		
DE	55.42 ± 1.62	62.96 ± 1.50	68.91 ± 1.37	74.99 ± 1.22	80.09 ± 1.14	70.72 ± 2.34	75.12 ± 1.12		
DE+Metric	54.89 ± 1.68	62.50 ± 1.52	68.41 ± 1.34	74.59 ± 1.25	79.78 ± 1.20	70.61 ± 2.46	74.51 ± 1.24		
MSD1	54.91 ± 1.79	62.32 ± 1.64	68.27 ± 1.48	74.60 ± 1.36	79.82 ± 1.26	$70.11 {\pm} 2.50$	73.67 ± 1.35		
MSD2	55.54 ± 1.65	62.96 ± 1.50	68.91±1.39	75.18 ± 1.30	80.39 ± 1.17	71.12 ± 2.37	$75.34{\pm}1.23$		
SimSiam(CLUR-a-1)	54.12 ± 1.97	61.66 ± 1.79	67.98 ± 1.67	74.47 ± 1.49	79.71±1.38	71.10 ± 2.73	74.24 ± 1.56		
CLUR-b-3	55.89 ±1.60	63.48 ±1.44	69.47 ±1.35	75.62 ±1.23	80.91 ±1.12	72.31 ±2.26	77.00 ±1.10		

UEFTC results on <u>5-way 5-shot</u> on 20News & RCV1

Designed Loss for Ablation Studies of Contrastive Learning Modules

Summary and comparisons between our designed four loss functions (<u>DT</u>: Detach operation, <u>IT</u>: Intersection comparison, <u>PD</u>: Predictor).

- Designed another three losses
 - □ Main one: choice (b)

Ablation studies of CLUR

Methods Detach	Intersection	Predictor	Un	certainty Ratio	AUROC ↑	AUPR ↑				
methous		mersection	ricultor	0%	10%	20%	30%	40%		
	Amazon in the 5-way 5-shot setting									
CLUR-b-3	\checkmark	×	\checkmark	81.95±1.09	87.37±0.90	91.49 ±0.76	94.47 ±0.57	96.21 ±0.51	82.35±1.79	95.16 ±0.36
CLUR-c-3	×	×	\checkmark	81.44±1.09	86.91±0.94	90.59 ± 0.77	93.63±0.70	95.76±0.61	81.26 ± 1.92	94.52 ± 0.43
CLUR-d-3		×	×	80.17±2.09	85.90 ± 1.76	89.93 ± 1.48	93.33 ± 1.23	95.58 ± 1.02	81.13 ± 3.05	94.33 ± 0.92
CLUR-a-2	√ √	\checkmark	\checkmark	80.83±1.29	86.32 ± 1.12	90.14±0.96	$93.33 {\pm} 0.82$	$95.50 {\pm} 0.71$	80.69 ± 2.15	94.23 ± 0.55
CLUR-b-2	✓	×	\checkmark	80.59±1.23	86.11±1.06	90.00 ± 0.91	93.25 ± 0.80	95.42 ± 0.70	$80.79 {\pm} 2.07$	94.17 ± 0.52
CLUR-c-2	×	×	\checkmark	80.90±1.19	86.31 ± 1.01	90.05 ± 0.84	93.08 ± 0.75	95.20 ± 0.66	80.11 ± 2.05	93.91±0.48

UEFTC results on <u>5-way 5-shot</u> on Amazon dataset

CLUR with loss choice (b) using unequal uncertainty relation with a margin (case 3) performs the best.

Besides, the p-values of our t-test indicate that module contribution is <u>Predictor > Detach > Intersection</u>

Generalization of CLUR

We test CLUR on another classical few-shot model, <u>Prototypical</u> <u>Network</u>, and it is still effective.

Methods	Uı	ncertainty Rati	AUROC ↑	AUPR↑			
	0%	10%	20%	30%	40%	AUROC	
FTC-DS	27.12 ± 3.58	35.75 ± 3.43	43.48 ± 3.29	51.64 ± 3.09	58.96 ± 2.95	55.75±5.96	37.11±6.91
DE	29.83 ± 3.52	38.09 ± 3.36	45.55 ± 3.18	53.51 ± 3.00	$60.72 {\pm} 2.88$	58.81 ± 5.70	41.14 ± 6.81
DE+Metric	31.09 ± 3.04	39.22 ± 2.89	46.54 ± 2.76	54.35 ± 2.56	$61.35 {\pm} 2.41$	58.76 ± 4.74	42.17 ± 5.05
MSD1	30.96 ± 2.84	39.06 ± 2.68	46.36 ± 2.58	$54.08 {\pm} 2.48$	61.04 ± 2.38	57.75 ± 4.76	40.13 ± 4.33
MSD2	30.36 ± 3.53	38.44 ± 3.34	45.71 ± 3.17	53.53 ± 2.99	$60.60 {\pm} 2.77$	57.72 ± 5.26	40.54 ± 5.85
SimSiam(CLUR-a-1)	30.39 ± 3.42	38.52 ± 3.28	45.81 ± 3.14	53.55 ± 2.97	60.66 ± 2.76	57.58 ± 5.32	40.62 ± 5.90
CLUR-b-3	31.77 ±3.32	40.16 ±3.09	47.54 ±2.92	55.37 ±2.73	62.47 ±2.56	59.20 ±5.18	43.89 ±5.75

UEFTC results on 5-way 1-shot on 20News based on Prototypical Network.

Conclusion

- We <u>define</u> and provide a <u>benchmark</u> for Uncertainty Estimation on Few-shot Text Classification (UEFTC).
- For <u>few-support-sample challenge</u> in UEFTC, we propose Contrastive Learning with Unequal Relation (CLUR) to <u>self-adaptively</u> learn the pseudo ground-truth uncertainty scores given a specific model structure.
- Propose <u>unequal</u> uncertainty relation (>, <), which is ignored by the contrastive learning using only equal relation (=, ≠).
- The <u>data split</u> and <u>code</u> is coming soon, where the <u>link</u> has been attached in the paper.

Thanks! Q & A

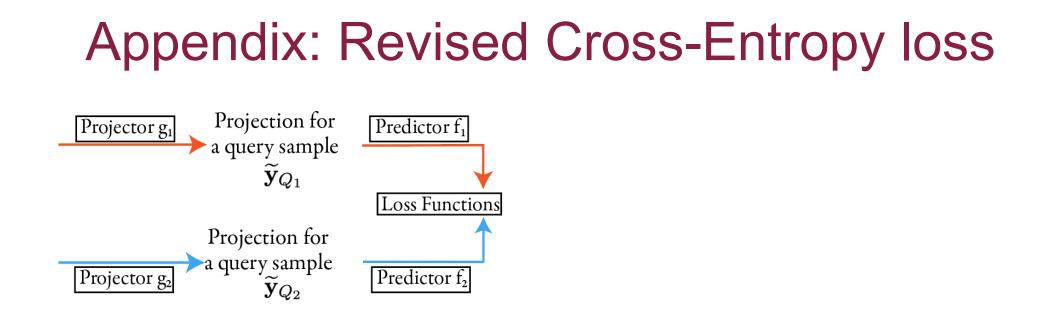
Jianfeng He Virginia Tech

Xuchao Zhang Microsoft

Shuo Lei Virginia Tech

Abdulaziz Alhamadani Virginia Tech

Fanglan Chen Virginia Tech


Bei Xiao American University

National Science Foundation (NSF) grants CNS-2141095 and 2050727.

Appendix: More Related Work

- Uncertainty estimation on text classification
 - **D** Training process
 - e.g., active learning
 - Testing process
 - e.g., out-of-distribution detection, misclassification
- Few-shot text classification
 - Meta-learning based
 - □ Transfer-learning based
- Contrastive learning
 - Equal relation
 - e.g., same(=)/different(≠) instance, same(=)/different(≠) class
 - □ <u>Unequal relation</u> (Our proposed)
 - e.g., larger (>) /smaller(<) uncertainty to be classified

Contrastive loss in <u>unequal</u> uncertainty relation: (H: entropy for uncertainty)

$$L_{CT_b} = max\{[H(\widehat{\mathbf{y}}_{Q_1}) - H(o(\widehat{\mathbf{y}}_{Q_2}))] \times (\phi_2 - \phi_1), 0\} + max\{[H(\widehat{\mathbf{y}}_{Q_2}) - H(o(\widehat{\mathbf{y}}_{Q_1}))] \times (\phi_1 - \phi_2), 0\}$$

Predicted uncertainty relation Pseudo ground-truth uncertainty relation

■ Revised cross-entropy loss: probability of correct class is within [β , 1), instead of closing 1 $L_{RC} = \max\{L_{CE}(\widehat{\mathbf{y}}_{Q_1}, \mathbf{y}_Q) + \log(\beta), 0\} + \max\{L_{CE}(\widehat{\mathbf{y}}_{Q_2}, \mathbf{y}_Q) + \log(\beta), 0\}$ Total loss: $L_{SUM_b} = L_{RC} + \gamma L_{CT_b}$

Exploring simple siamese representation learning. CVPR 2021.

Appendix: Experiments on Medical Domain

We also test CLUR on a medical domain dataset, and it is still effective.

Methods	Uı	ncertainty Rati	AUROC ↑	AUPR↑			
	0%	10%	20%	30%	40%	AUROC	nork
FTC-DS	50.63±1.79	58.98 ± 1.55	65.63 ± 1.40	71.69 ± 1.28	77.08 ± 1.23	67.42 ± 2.37	70.24 ± 1.66
DE	56.01 ± 1.83	63.13 ± 1.67	69.36 ± 1.53	75.17 ± 1.44	80.36 ± 1.32	70.94 ± 2.54	75.53 ± 1.43
DE+Metric	54.98 ± 2.12	62.06 ± 1.96	68.32 ± 1.85	74.31 ± 1.71	79.80 ± 1.55	71.01 ± 2.89	75.62 ± 1.79
MSD1	55.93±1.99	62.88 ± 1.82	69.04 ± 1.70	74.85 ± 1.60	80.02 ± 1.44	70.10 ± 2.71	74.39 ± 1.65
MSD2	55.99 ± 1.50	62.96 ± 1.39	69.04 ± 1.32	74.78 ± 1.21	$79.94{\pm}1.08$	70.15 ± 2.10	75.82 ± 1.08
SimSiam(CLUR-a-1)	54.48 ± 1.69	61.49 ± 1.62	67.78 ± 1.51	73.89 ± 1.39	79.43 ± 1.32	70.64 ± 2.36	74.31 ± 1.49
CLUR-b-3	56.81 ±1.69	63.87 ±1.51	70.16 ±1.42	76.10 ±1.32	81.44 ±1.21	72.31±2.36	77.29±1.31

UEFTC results on 5-way 1-shot on the Med-Domain dataset.