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ABSTRACT
Recent research has explored the use of graph neural networks
(GNNs) for decentralized control in swarm robotics. However, it
has been observed that relying solely on local states is insufficient
to imitate a centralized control policy. To address this limitation,
previous studies proposed incorporating 𝐾-hop delayed states into
the computation. While this approach shows promise, it can lead
to a lack of consensus among distant flock members and the forma-
tion of small localized groups, ultimately resulting in task failure.
Our approach is to include the delayed states to build a spatiotem-
poral GNN model (ST-GNN) by two levels of expansion: spatial
expansion and temporal expansion. The spatial expansion utilizes
𝐾-hop delayed states to broaden the network while temporal expan-
sion, can effectively predict the trend of swarm behavior, making
it more robust against local noise. To validate the effectiveness of
our approach, we conducted simulations in two distinct scenar-
ios: free flocking and flocking with a leader. In both scenarios, the
simulation results demonstrated that our decentralized ST-GNN
approach successfully overcomes the limitations of local controllers.
We performed a comprehensive analysis on the effectiveness of
spatial expansions and temporal expansions independently. The
results clearly demonstrate that both significantly improve over-
all performance. Furthermore, when combined, they achieve the
best performance compared to global solution and delayed states
solutions. The performance of ST-GNN underscores its potential as
an effective and reliable approach for achieving cohesive flocking
behavior while ensuring safety and maintaining desired swarm
characteristics.
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• Information systems→ Spatial-temporal systems; • Com-
puter systems organization→Robotics; •Computingmethod-
ologies → Modeling and simulation.
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1 INTRODUCTION
Flocking is a collective behavior observed in groups of agents, such
as birds, fish, or artificial agents, where theymove together in a coor-
dinated manner. In a flock, each agent follows simple rules based on
local information to achieve a common group objective [6]. Multi-
agent systems based on flocking models exhibit self-organization
and goal-directed behavior, making them suitable for various ap-
plications, including automated parallel delivery, sensor network
design, and search and rescue operations. Flocking is typically mod-
eled as a consensus or alignment problem, aiming to ensure that all
agents in the group eventually agree on their states [5]. Classical
methods such as those proposed by Tanner [8] and Olfati-Saber [5],
define rules and constraints governing the position, speed, and
acceleration of the agents. However, these methods heavily rely
on parameter tuning and are limited to predefined scenarios. In
contrast, learning-based methods spontaneously explore complex
patterns and adapt their parameters through training, providing
more flexibility and adaptability compared to classical approaches.

There are primarily two research directions in learning-based
methods. One approach focuses on imitation learning, as demon-
strated by Tolstaya et al. [9], Kortvelesy et al. [3], Zhou et al. [12],
and Lee et al. [4]. The other approach involves multiagent deep
reinforcement learning (MADRL) techniques, as explored in the
works of Yan et al. [11] and Xiao et al. [10]. MADRL is particularly
useful when labels are unavailable, but it presents its own set of
challenges. In this work, we choose to utilize imitation learning due
to the availability of an expert policy that has proven to be effective
for our task [7–9].

Recent research in this field adopts a graph-based approach to
represent flocks and leverages GraphNeural Networks (GNNs) [1, 2]
for modeling and analyzing flock dynamics. This approach shows
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Figure 1: Comparison between the delayed state method and
ST-GNN. The top row illustrates time-varying graphs, where
𝑡𝑖 represents the timestamp and 𝑆𝑖 denotes the corresponding
state at 𝑡𝑖 , depicted by different colors. The bottom row show-
cases the results of the 3-hop delayed state method at each
𝑡𝑖 , with a focus on node 0 (𝑉0). At 𝑡0, 𝑉0 is directly connected
to 𝑉1 and 𝑉2, but the link between 𝑉0 and 𝑉1 breaks at 𝑡−1.
Consequently, in delayed state 𝑆 ′0, 𝑉0 cannot access the states
of 𝑉3 and 𝑉4 through 𝑉1 due to the broken link. Similarly, at
𝑡−2, we obtain 𝑆 ′−2 since𝑉0 is 1-hop away from𝑉3,𝑉4, through
𝑉1. The delayed state method only utilize {𝑆 ′0}, while ST-GNN
integrates the sequence of {𝑆 ′0, 𝑆

′
−1, 𝑆

′
−2}, providing a more

comprehensive set of information.

promise in addressing complex flocking tasks by harnessing the
power of graph-based representations and neural networks. In
addition, studies such as Tolstaya et al. [9], Kortvelesy et al. [3],
Zhou et al. [12], and Lee et al. [4] utilize a technique called "delayed
state" to incorporate the information from the 𝑘-step-before states
of a robot’s 𝑘-hop neighbors, where 𝑘 = 1, 2, 3, ... [9]. This method
enables the learning of spatially extended representations in the
local network. However, this approach overlooks the influence of a
robot’s historical states and the historical states of its neighbors,
thereby neglecting the temporal sequence of swarm movement.

We demonstrate the limitation of the delayed state approach in
Figure 1. If we rely solely on the delayed state method, the target
node 𝑉0 can only use delayed states of 𝑆 ′0 and is unable to access
the previous states of 𝑉3,𝑉4 as illustrated in 𝑆 ′−2. With the ST-GNN
approach, 𝑉0 can leverage the history of delayed states 𝑆 ′0, 𝑆

′
−1, 𝑆

′
−2

to align its movement with 𝑉3 and 𝑉4, thereby incorporating both
spatial and temporal information. By incorporating the temporal
relations of robots, ST-GNN enables a more comprehensive under-
standing of the system dynamics, leading to improved coordination
and performance. With this insight, we make the following primary
contributions in this work:
Proposing a novel spatiotemporal imitation learning model
for decentralized swarm control: ST-GNN (Spatio-Temporal
Graph Neural Network) integrates both current and historical robot
states, along with neighbor information, to enable effective action
control. To the best of our knowledge, we are the first designed a
ST-GNN model capable of achieving key objectives simultaneously,
such as flocking, the leader following, with performance comparable
to centralized solutions.

Performing extensive experiments on two tasks: In our eval-
uation, we conducted a comparative analysis of ST-GNN against
delayed states GNN and other centralized solutions. We considered
various metrics, including MAE, minimal distance of the swarm,
velocity alignment, and distance to the leader. The results clearly
demonstrate the advantages of ST-GNN in achieving successful
outcomes in both flocking and leader following tasks.
Providing a flexible configurable environment to adapt to
real-world scenarios: In real-world scenarios, each device has its
own capacity limitations in terms of communication range, max-
imum velocity, and maximum acceleration. We have made these
parameters configurable, allowing for adaptability and flexibility.
Conducting comprehensive analysis on ST-GNN expansion
settings: We performed a thorough analysis to evaluate the ef-
fectiveness of spatial expansions, temporal expansions, and their
combination in ST-GNN to gain insights into these expansion set-
tings’ impact on the model’s performance.

2 METHOD
In this section, we will cover problem formulation, the expert policy,
i.e., a centralized solution, and our proposed decentralized model
using spatiotemporal graph neural networks.

Consider a scenario where we have a collection of 𝑁 robots
situated in a two-dimensional plane. We assume that all robots
are identical, possessing the same capabilities, such as a maximum
acceleration𝑈max, a maximum velocity𝑉max, and a communication
range 𝑅𝑐 . Each robot 𝑖 can be uniquely identified by its position p𝑖
and its velocity v𝑖 . The objective of our model is to estimate the next
acceleration command u𝑖 for each robot, based on the current state
by itself and its neighbors, represented by the position and velocity
(p, v). In our analysis, we consider each robot 𝑖 as a vertex denoted
by 𝑉𝑖 in the network G. An edge (𝑖, 𝑗) exists between two robots
if the distance 𝑟𝑖 𝑗 between them is less than 𝑅𝑐 . This connectivity
can be represented using an adjacency matrix 𝐴 ∈ R𝑁×𝑁 , where
an element 𝐴𝑖 𝑗 is non-zero if and only if the edge (𝑖, 𝑗) is present
in the network G.

For the expert policy, we adopted Tanner’s solution [8], which
incorporates two crucial components: collision avoidance and veloc-
ity alignment among the swarm. Tanner’s expert policy generates
the acceleration command 𝑢 by combining the collision avoidance
potential (as defined in Equation 1) with the velocity agreement
within the swarm (as the first term defined in Equation 2). The re-
sulting control 𝑢𝑖 as defined in Equation 2, is a centralized solution
that takes into account the velocity differences among all robots
and the local collision potential.

𝑈𝑖, 𝑗 =
1
𝑟2
𝑖, 𝑗

+ 𝑙𝑜𝑔| |𝑟𝑖, 𝑗 | |2, | |𝑟𝑖, 𝑗 | | ≤ 𝜌. (1)

𝑢𝑖 = −
𝑁∑︁
𝑗=1

(𝑣𝑖 − 𝑣 𝑗 ) −
𝑁∑︁
𝑗=1

(∇𝑟𝑖,𝑗𝑈 (𝑖, 𝑗)). (2)

To design our decentralized model using only local information, we
implement two level expansions. First we incorporate spatial expan-
sion by merging in 𝐾-hop delayed state 𝑋𝑘 , where 𝑋𝑘 represents
the delayed state at a specific time step in the past (e.g., 𝑡 = −𝑘). We
utilize the adjacency matrix 𝐴𝑘 , which captures the connectivity
at time step 𝑡 = −𝑘 to merge in the delayed state (as defined in
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Equation 3). Next we pass all the delayed states𝑋𝑘 through the first
Long Short-Term Memory (LSTM) layer. The LSTM network allows
us to capture the delayed states of 𝐾-hop neighbors, expanding the
spatial representation of the system. The spatially expanded embed-
dings are then stored sequentially and passed through the second
LSTM layer for temporal expansion. The temporal expansion plays
a crucial role in predicting the movement of the swarm, overcoming
the limitations imposed by relying solely on local information. This
process is illustrated in Figure 2.

𝑋𝐾 = (
𝐾∏
𝑖=0

𝐴𝑖 )𝑋𝑘 , 𝑘 = 1, 2, ..., 𝐾 . (3)
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Figure 2: ST-GNN model spatial temporal expansion.

3 SIMULATION
In this section, we discuss the simulation settings and present the
results of our study. Our model aims to generate the estimated
acceleration command 𝑢. To train our model, we utilized the L2 loss
function along with the Adam optimizer. The architecture of our
model includes a single SAGEConv layer with a parameter size of
16, which is used to aggregate neighborhood states. The aggregated
states are then used to calculate delayed states using Equation 3.
Subsequently, all K-delayed states are passed through the first LSTM
layer with a hidden layer size of 16 to achieve spatial expansion.
The output is then fed into the second LSTM layer with a hidden
layer size of 16 to complete the temporal expansion. Finally, the
last output from the second LSTM is extracted and passed through
a two-layer MLP to generate 𝑢.

We train models in the free flocking environment with 𝑁 =

30. The swarm size is chosen to ensure spatial expansion could
encompass a significant number of robots. The parameters are set
as follows: 𝑅𝑐 = 7, sample period 𝑇𝑠 = 0.01, 𝑉𝑚𝑎𝑥 = 10, 𝑈𝑚𝑎𝑥 =

50, random initial positions uniformly distributed in [0, 𝑅𝑐 ∗
√
𝑁 ],

and random initial velocities uniformly distributed in [−10, 10]. To
ensure a valid initial configuration, each robot must have at least
two neighbors, and the minimum distance between any two robots
must be greater than 0.5.

3.1 Compared Algorithms
We conducted a comprehensive comparison of our proposedmethod,
ST-GNN, across various spatial (𝐾) and temporal (𝐿) expansion
sizes, ranging from 1 to 5. Additionally, we combined spatial and

temporal expansions with (𝐾, 𝐿) set as (2, 2), (3, 3), and (5, 5). To
provide a comprehensive evaluation, we compared ST-GNN with
Delayed Aggregation Graph Neural Networks (D-GNN) [9]. We
also explored a global variant of ST-GNN (G-STGNN), where 𝑅𝑐 was
set to infinity. In addition to Mean Absolute Error (MAE), we use
three other metrics to evaluate the performance. Minimal Distance
of swarm (Dmin) which is the mean of minimal distance between
any two robots during the episode. A large value indicates a failure
in swarm formation while a small value indicates higher collision
risk. Close to expert policy or larger value indicates better
performance.Velocity alignment (V) which is the mean of velocity
variance of the swarm during the episode. In the leader following
scenario, the variance is computed based on the leader. The lower
value indicates better performance. Distance to Leader (𝜏) is
used in the leader following scenario, and measures the mean dis-
tance from any robot to the leader. The lower value indicates
better performance.

3.2 Experiment Results
We evaluate model’s performance in new, unseen test environments,
where the swarm’s next states are determined by the model’s pre-
dictions 𝑢.

Model MAE V 𝐷𝑚𝑖𝑛

Expert – 0.17±0.00 4.75±0.13
Global GNN 2.46±0.17 0.16±0.00 4.62±0.12
D-GNN(K=1) 12.79±2.65 2.46±2.48 4.60±0.18
D-GNN(K=2) 12.04±0.85 0.59±0.32 3.09±0.12
D-GNN(K=3) 4.71±0.57 0.26±0.28 3.88±0.12
D-GNN(K=5) 4.54±0.45 0.18±0.02 3.97±0.11

ST-GNN(K=1,L=1) 5.59±0.34 0.20±0.02 4.86±0.08
ST-GNN(K=2,L=1) 2.54±0.31 0.17±0.02 4.76±0.09
ST-GNN(K=3,L=1) 2.29±0.23 0.17±0.01 4.69±0.14
ST-GNN(K=5,L=1) 2.58±0.27 0.19±0.02 4.77±0.12
ST-GNN(K=1,L=2) 5.22±0.49 0.16±0.03 4.80±0.06
ST-GNN(K=1,L=3) 5.05±0.37 0.18±0.02 4.68±0.09
ST-GNN(K=1,L=5) 4.25±0.43 0.18±0.03 4.78±0.06
ST-GNN(K=2,L=2) 2.26±0.35 0.20±0.02 4.75±0.15
ST-GNN(K=3,L=3) 2.07±0.18 0.17±0.01 4.71±0.12
ST-GNN(K=5,L=5) 1.94±0.17 0.18±0.02 4.77±0.12

Table 1: Multi-robot flocking results with 𝑁 = 30. ST-GNN
(𝐾 = 5, 𝐿 = 5) achieves the best performance.

Multi-robot flocking scenario. In the first experiment, each
model was tested with 10 random initializations and continued
for 1000 steps. The results are summarized in Table 1. In spatial
expansion, as we increased𝐾 while keeping 𝐿 = 1, ST-GNN’s perfor-
mance improved as 𝐾 increased up to 𝐾 = 3, as indicated by lower
MAE and velocity variance values. However, further increasing
𝐾 to 5 decreased performance, highlighting the limitations of the
spatial-only approach. In temporal expansion, increasing 𝐿 while
keeping 𝐾 = 1 resulted in improved performance, with the best
results achieved when 𝐿 = 5, as indicated by MAE. When expand-
ing both 𝐾 and 𝐿, performance further improved. The best overall
performance was observed when 𝐾 = 5 and 𝐿 = 5, surpassing all
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other GNN models. These results demonstrate the effectiveness
of our approach in enhancing decentralized flocking models as a
valuable complement to centralized solutions.
Leader following scenario. In the second experiment, we tested
the new scenario using the same models trained in the classical
flocking scenario. In this experiment, we increased the swarm size
from 𝑁 = 30 to 𝑁 = 50 to demonstrate the models’ ability to
transfer to different swarm size without any changes. Following
random initialization, we selected two robots as leaders and set
their velocities to be the same, randomly assigned from the range
of [−5, 5]. The velocities of the remaining robots were reset to 0.
We halved the 𝑉𝑚𝑎𝑥 of the leaders to allow the rest of the robots to
catch up, since their initial velocity was 0. The two leaders were
not controlled by 𝑢 and continued moving with the same velocity
throughout the experiment. The results can be found in Table 2.
For spatial expansion, ST-GNN exhibited improved performance as
𝐾 increased until 𝐾 = 3, resulting in lower MAE, velocity variance,
and closer proximity to the leaders. Similarly, in temporal expansion,
ST-GNN demonstrated optimal performance when 𝐿 = 5. Moreover,
the best overall performance was achieved when 𝐾 = 5 and 𝐿 = 5.
These results highlight ST-GNN’s ability to transfer and adapt to
different scenarios while maintaining superior performance.

Model MAE V 𝜏

Expert – 0.24±0.01 14.63±1.95
D-GNN(K=1) 15.67±1.57 2.66±1.66 24.57±5.11
D-GNN(K=2) 15.12±1.09 1.42±0.92 23.85±7.77
D-GNN(K=3) 10.47±1.23 0.55±0.26 21.21±6.72
D-GNN(K=5) 9.67±0.91 0.41±0.14 20.65±7.03

ST-GNN(K=1,L=1) 14.89±0.67 0.52±0.09 17.60±2.34
ST-GNN(K=2,L=1) 11.14±1.01 0.36±0.04 16.52±2.87
ST-GNN(K=3,L=1) 9.56±1.16 0.30±0.03 16.12±2.93
ST-GNN(K=5,L=1) 9.87±1.46 0.32±0.03 16.31±3.21
ST-GNN(K=1,L=2) 13.23±0.39 0.47±0.05 17.25±2.57
ST-GNN(K=1,L=3) 14.30±1.95 0.49±0.07 18.89±4.98
ST-GNN(K=1,L=5) 13.14±0.92 0.44±0.08 17.25±2.24
ST-GNN(K=2,L=2) 11.69±0.74 0.39±0.05 16.59±2.67
ST-GNN(K=3,L=3) 9.39±1.27 0.30±0.02 16.09±2.78
ST-GNN(K=5,L=5) 8.17±1.46 0.28±0.03 15.69±2.52

Table 2: Leader following results with 𝑁 = 50 and 2 leaders.
ST-GNN(𝐾 = 5, 𝐿 = 5) achieves the best performance.

We present a qualitative result of the leader following scenario
in Figure 3. The ST-GNN model, trained with parameters 𝐾 = 5
and 𝐿 = 5 in the classical flocking scenario with 𝑁 = 30, is tested
in the new leader following scenario with a larger swarm size of
𝑁 = 100. This visualization provides a detailed depiction of how the
ST-GNN model effectively achieves velocity alignment, collision
avoidance, and leader following, resulting in the formation of a
cohesive swarm.

4 CONCLUSION
We demonstrate the effectiveness of ST-GNN as a decentralized so-
lution for swarm control. By leveraging ST-GNN, we can overcome
the limitations associated with relying solely on local information.

Figure 3: Leader following simulation results using ST-
GNN(K=5,L=5) with 𝑁 = 100 and 2 leaders.

This is accomplished by integrating prediction capabilities into
our model, enabling it to capture and respond to global swarm
dynamics. Our ST-GNN based learning model, specifically with pa-
rameters K=5 and L=5, has consistently outperformed spatial-only
models, showcasing its ability to leverage both spatial and temporal
information for improved performance.
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