
Infinitely Deep Graph Transformation Networks

Lei Zhang∗, Qisheng Zhang∗, Zhiqian Chen†, Yanshen Sun∗, Chang-Tien Lu∗ and Liang Zhao‡
∗Department of Computer Science, Virginia Tech

Email: {zhanglei, qishengz19, yansh93, ctlu}@vt.edu
†Department of Computer Science and Engineering, Mississippi State University

Email: zchen@cse.msstate.edu
†Department of Computer Science, Emory University

Email: liang.zhao@emory.edu

Abstract—This work develops a node-edge co-evolution model
for attributed graph transformation, where both the node and
edge attributes undergo changes due to complex interactions.
Due to two fundamental obstacles, learning and approximat-
ing attributed graph transformation have not been thoroughly
explored: 1) the difficulty of jointly considering four types
of atomic interactions including nodes-to-edges, nodes-to-nodes,
edges-to-nodes, and edges-to-edges interactions. 2) the difficulty
of capturing iterative long-range interactions between nodes and
edges. To solve these issues, we offer a novel and scalable
equilibrium model, NEC∞, with node-edge message passing and
edge-node message passing. Additionally, we propose an efficient
optimization algorithm that is based on implicit gradient theorem
and includes a theoretical analysis of NEC∞. The effectiveness
and efficiency of the proposed model have been demonstrated
through extensive experiments on synthetic and real-world data
sets.

Index Terms—GNN, IGNN, Implicit model, Graph translation,
Graph transformation, Attributed graph

I. INTRODUCTION

Graphs have been used as universal representations of

relational or interactive components in many problem domains

such as social networks, physics, chemistry, and urban comput-

ing. To model and learn from such data, GNNs were proposed

to generate meaningful node representations by simultaneously

considering the edge attributes and node attributes. In the most

recent years, a new problem, attributed graph transformation,

has been proposed as a more generic task than the most

existing problem settings [1]–[3]. Different from most graph-

based problem settings, two graphs instead of one are involved

in this problem including an input graph and a target graph.

The goal of the attributed graph transformation problem is to

learn and approximate the mapping from the input attributed

graph to the target attributed graph, where both node attributes

and edge attributes could change in the transformation.

The attributed graph transformation problem covers a wide

range of real-world tasks including the ones that cannot be

formulated under the regular graph neural network and node

embedding settings. For example, the process of malware

confinement and propagation is a typical attributed graph trans-

formation learning problem [4]. Given the initial state of an

IoT (Internet of Things) system with node and edge attributes,

it is desired to predict its final state in a muti-attributed graph

where both node attributes and edge attributes are changed

due to malware propagation and malware epidemic control

processes. The chemical reaction prediction problem is also

an attributed graph transformation problem since both node

(atom) attributes and edge (bond) attributes are changed from

the input graph (reactant) to the target graph (product) [5].

The attributed graph transformation problem poses signif-

icant challenges and existing methods are not sufficient to

fully address them. Recent advancements in deep learning

have led to the development of graph-related techniques that

can address specific aspects of the problem, but not all of

them. Neural ordinary differential equations have been used

for learning dynamics in systems with fine-grained dynamic

graph data [6]–[8]. However, our problem differs from this

line of work as we are only given a single snapshot (the input

graph) and are required to predict the final state by an end-

to-end learning and underlying process instead of being given

prior knowledge of it. Some deep graph translation and one-

shot graph generation methods explicitly model node-edge,

edge-node, node-node, and edge-edge interactions [9]–[11].

However, they still rely on and computationally only afford

a predefined and limited number of GNN layers and cannot

capture long-range dependencies that suffice the inference of

equilibrium of target graphs.

To address these issues, we propose an infinite-depth node-

edge co-evolving (NEC∞) model for solving the graph trans-

formation problem. Our model can jointly consider both node

and edge interactions simultaneously, and has the ability to

learn unknown graph transaction mappings with complex

iterative interactions. Specifically, we model all node-edge

interactions with an equilibrium model that update node and

edge representations iteratively until a guaranteed equilibrium

status. In this way, the final representations are stable fixed-

point solutions for both node and edge dynamics in the model.

The contribution of this work are summarized as follows:

1) The development of a new framework for attributed
graph transformation. We propose the first deep equilibrium

model with the node-edge co-evolution message passing mech-

anism to tackle the attributed graph transformation task where

both node and edge attributes can change after transformation.

2) The theoretical analysis for the deep equilibrium
model with the node-edge co-evolution message passing.
We derive its well-posedness condition to ensure the existence

of a unique fixed-point solution.

3) The proposal of an efficient implicit function theorem-

778

2023 IEEE International Conference on Data Mining (ICDM)

DOI 10.1109/ICDM58522.2023.00087

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(I
C

D
M

) |
 9

79
-8

-3
50

3-
07

88
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
58

52
2.

20
23

.0
00

87

979-8-3503-0788-7/23/$31.00 ©2023 IEEE

based optimization algorithm. It does require layer-by-

layer backpropagation and has constant memory requirements

regardless of the effective depth of the network.

4) The conduct of extensive experiments to validate the
effectiveness and efficiency of the proposed model. The

results show that NEC∞ can effectively capture long-range

dependencies and outperform the state-of-the-art models on

both synthetic and real-world datasets.

II. RELATED WORK

A. Deep Equilibrium Models on Graph Data

Deep equilibrium model is one type of implicit model.

Different from traditional explicit models (e.g., CNNs, RNNs),

implicit layers/models define a layer in terms of satisfying

some joint conditions of the input and output. Specifically,

deep equilibrium models are defined for satisfying equilibrium

equations and yielding fixed-point solutions [12]. Several

works [12]–[14] show the potential advantages of deep equi-

librium models on many applications, e.g., language mod-

eling, image classification, and semantic segmentation. Just

until recently, deep equilibrium models have been applied

to graph data. IGNN [15] learns node representations by

solving an equilibrium equation with respect to node attributes.

Another work of efficient infinite-depth graph neural networks

(EIGNN) derives a closed-form solution to inverse jacobian in

IGNN with matrix decomposition, avoiding numeric loss and

non-convergence issues in iterative solvers [16]. They all focus

on improving the efficiency of optimizing the weights in an

equilibrium equation for a vanilla GCN but fail to extend the

model to more complicated backbone models.

B. Deep Graph Transformation Learning

Early approaches in this field were tailored to specific ap-

plications and domains. For instance, methods were proposed

for molecular optimization, and protein structure generation

[17], [18]. Similarly, Do et al. focused on the task of chemical

reaction prediction by utilizing the explicit connectivity among

nodes [19]. These approaches can be classified as one-shot

generation methods which refer to building probabilistic graph

models based on the matrix representation that can generate

all nodes and edges in one shot [11]. Guo et al. proposed

the first generic framework for graph-to-graph transformation

learning, which is based on four different interaction paths

[4]. More recent work has also aimed to address the attributed

graph transformation problem, but with a focus on learning a

distribution rather than making predictions [10].

III. PROBLEM FORMULATION

Definition III.1 (Attributed Graph Transformation). An at-
tributed graph is defined as G = (V, E), where V is a
set of |V| nodes and E represents edges. F ∈ R

D×|V|

is the node attributes tensor, where D is the dimension of
node attributes. E ∈ R

K×|E| is the edge attributes tensor,
where K is the dimension of edge attributes. The problem
of attributed graph transformation is defined as learning a

TABLE I: Important notations and descriptions

Notations Descriptions
G(V0, E0, E0, F0) Input graph with node set V0, edge set

E0, edge attributes tensor E0 and node
attributes tensor F0

G(V ′, E ′, E′, F ′) Target graph with node set V ′, edge set
E ′, edge attributes tensor E′ and node
attributes tensor F ′

|V| Number of nodes
|E| Number of edges
B Node-edge incidence matrix

Hv node embedding, Hv ∈ R
p×|V|

He edge embedding, He ∈ R
q×|E|

Wve weight matrix for the node to edge
message passing

Wev weight matrix for the edge to node
message passing

(�)|·| element-wise absolute value of a ma-
trix or vector

mapping T from an input graph G0 to a target graph GT :
T : G0(V0, E0, E0, F0) → GT (V ′, E ′, E′, F ′).

For instance, let’s consider the malware containment prob-

lem. Here, V0 refers to the IoT device characteristics, while E0

denotes the physical distance matrix between the devices be-

fore confinement. Subsequently, V ′ represents the condition of

the IoT devices after containment, such as being compromised

or not, while E′ represents the distance matrix that has been

adjusted through malware epidemic management protocols.

In the attributed graph transformation task, both the node

and edge attributes can change. The commonly studied node

embedding/classification problem can be seen as a special case

of the attributed graph transformation problem where the edge

features remain the same during the transformation. Learning

the attributed graph transformation necessitates addressing two

key considerations: 1) Four types of atomic interactions.

As both node attributes and edge attributes change during the

transformation, and they are dependent on each other, it is es-

sential to consider four types of atomic interactions including

nodes-to-edges, nodes-to-nodes, edges-to-nodes, and edges-

to-edges interactions. For example, in the case of malware

confinement where nodes represent IoT devices and edges

reflect communication paths between devices, the transient

state of a node or edge is impacted by both the incident

nodes and edges [20]. A model for learning the attributed

graph transformation must possess the ability to represent all

four types of atomic interactions. 2) Iterative long-range
interactions. While each type of atomic interaction could

be straightforward to model, learning the attributed graph

transformation process in an end-to-end fashion is challenging

as the interactions often occur iteratively or asynchronously,

and result in long-range dependencies. The target graph to

predict is often a stable graph after complex interactions, not

a graph after a specific number of atomic interactions. As an

example, the PageRank algorithm can be viewed as a graph

transformation process where the target graph is the graph

779

when the PageRank has converged. In this case, the local

operation of PageRank can be easily described in a linear

model, but the entire convergence process is non-trivial to

model with any traditional feed-forward neural networks.

Attributed graph translation should consider both the above

considerations, which cannot be comprehensively handled by

existing methods. The typical practice of tackling the prob-

lem of long-range dependencies is using a large number of

layers. However, besides this strategy being computationally

expensive, it can lead to over-smoothing issues, resulting in the

model failing to capture relevant information. Incorporating

four types of atomic interactions within a single model and

balancing the need for long-range dependency without over-

smoothing present a significant challenge.

IV. INFINITE-DEPTH NODE-EDGE CO-EVOLUTION

In this section, we formally introduce the proposed NEC∞

and elaborate its implementation details.

A. Overall Architecture

The proposed infinite-depth model for the attributed graph

transformation learning problem can be defined as:

F ′ = gΘe(H
t
e), E

′ = fΘv (H
t
v),

Ht+1
e , Ht+1

v = T (Ht
e, H

t
v, F0, E0),

subject to: Ht
e = Ht+1

e and Ht
v = Ht+1

v .

(1)

Here the function T is applied to both the node and edge

embeddings recurrently until it converges to a fixed point,

i.e., Ht
e = Ht+1

e , Ht
v = Ht+1

v , here Ht
� is the hidden rep-

resentation after t-th layer/iteration. This type of formulation

is commonly referred to as a deep equilibrium model (DEQ)

and can be considered as a recurrent neural network operating

on a graph with the constraint that a fixed-point solution must

be found. Once the fixed-point is discovered, the function T
is equivalent to a model with an infinite number of layers

and is able to capture global-range node/edge dependencies,

as both Hv and He will remain unchanged with the addition

of extra layers. The key advantage of using this equilibrium

formulation is that T is immune to oversmoothing because it

is still considered as a single implicit layer. Specifically, the

function T in Eq. (1) is not a feedforward neural network, but

rather an implicit layer, as the output of the layer is defined

by satisfying the equilibrium equation.

The proposed NEC∞ learns the graph transformation pro-

cess through the use of a specifically designed DEQ function

T . In Section IV-B, we formally define the function T to tackle

the different types of interactions among nodes and edges for

the graph transformation problem. In Section IV-C, we discuss

the strict mathematical condition for when Eq. (1) can function

as intended (i.e., yielding a fixed-point solution as the output)

and formulate the problem as a constrained optimization prob-

lem. In Section IV-D, an efficient optimization method based

on projected gradient descent (PGD) and alternating direction

method of multipliers (ADMM) is proposed for solving the

constrained optimization problem.

B. Node-Edge Co-Evolution Message Passing

To handle the attributed graph transformation problem, the

message passing function T in Eq. (1) must be able to capture

the four types of atomic interactions among nodes and edges

as outlined in Section III. In order to take into account the

nature of recurrent models, function T is decomposed into

two basic paths: the node-to-edge message passing path and

the edge-to-node message passing path. These two paths are

then applied iteratively, allowing for direct inferences of the

nodes-to-edges and edges-to-nodes atomic interactions. As the

message passing procedure is applied iteratively, the nodes-to-

nodes and edges-to-edges interactions can also be inferred by

stacking one layer of node-to-edge message passing path and

one layer of edge-to-node message passing path, or one layer

of edge-to-node message passing path and one layer of node-

to-edge message passing path respectively. The two message-

passing paths are defined in the following equations.

Node-to-edge: Ht+1
e = T1(H

t
v, B) = φ(WveH

t
vB),

Edge-to-node Ht+1
v = T2(H

t
e, B) = φ(WevH

t
eB

ᵀ),
(2)

where Ht
v and Ht

e are the node embedding and edge em-

bedding on the t−th layer, respectively. B is the incident

matrix. Wve and Wev are trainable weights. φ is an activation

function. In this paper, we use ReLU activation, but it can be

any activation function with CONE property (e.g. Sigmoid,

tanh, ReLU, LeakyReLU, etc.). During the node/edge message

passing procedures, the node embeddings Hv ∈ R
p×|V| always

remain the same, while edge embeddings He ∈ R
q×|E| also

remain the same. To map from the feature spaces F ∈
R

D×|V|/E ∈ R
K×|E| to the embedding spaces Hv ∈ R

p×|V| /

He ∈ R
q×|E|, we add an MLP bΩ. If we explicitly seek node

embedding fixed points, the final message passing function is

defined as :

H∗
v = Tv(H

∗
v , B)

= φ(Wevφ(WveH
∗
vB)Bᵀ + bΩ(E0, F0)),

H∗
e = Te(H

∗
v , B) = φ(WveH

∗
vB).

(3)

Once the fixed-point for node embeddings is found as is

shown in Eq. (3), the fixed-point for edge embeddings is

also automatically found because of the nature of equilibrium

functions. Assuming the fixed-point solution for the node

embedding is H∗
v , then the edge embedding in the next layer

is Te(H∗
v , B). As the node embeddings have reached the fixed

point, the node embedding in the next layer will still be

H∗
v , thus the next of the next edge embedding will still be

Te(H∗
v , B). Alternatively, if we seek edge embedding fixed

points first, the function bΩ will be defined to output features

in the space of Rq×|E|.

C. Sufficient Well-posedness Condition for NEC∞

While our model in Eq. (3) is designed to generate a fixed-

point solution, it may not always yield a solution for arbitrary

input and weights. Thus, the notion of well-posedness and the

sufficient well-posedness condition play an important role in

our model as a deep equilibrium model. This notion has been

previously introduced in [21] for ordinary implicit models and

780

in [15] for ordinary graph neural networks. To ensure the

existence and uniqueness of the solution to Eq. (3), we define

the notion of well-posedness for NEC∞ in attributed graph

transformation problems.

Definition IV.1 (Well-posedness for NEC∞). The tuple
(Wve,Wev, B) is said to be well-posed for φ if for any
b ∈ R

p×|V|, the solution Hv ∈ R
p×|V| of the following

equation
Hv = φ(Wevφ(WveHvB)Bᵀ + b), (4)

exists and is unique.

Similar to [21], we derive the sufficient condition for the

well-posedness to hold based on the proposed node-edge

co-evolution message passing. According to Definition IV.1,

the condition is about the relationship among three variables

including Wve, Wev , and B.

Theorem IV.2 (PF sufficient condition for well-posedness

on Eq. (3). Suppose φ is a component-wise non-expansive
(CONE) activation map. In such a case, (Wve,Wev, B) is
considered well-posed for any φ if λpf ((B ⊗ Wev)

|·|(Bᵀ ⊗
Wve)

|·|) < 1. Additionally, the solution Hv to equation (3)
can be obtained by iteratively applying equation (3).

The proof of Theorem IV.2 is given in Appendix A

While the condition about the Perron-Frobenius (PF) eigen-

value λpf (BBᵀ)λpf (W
|·|
evW

|·|
ve) < 1 in Theorem IV.2 guar-

antees that the well-posedness can be obtained, calculating

the PF eigenvalue is very costly. To avoid a costly spectral

decomposition process, we enforce the following more strict

condition ‖W |·|
evW

|·|
ve‖∞ < λpf (BBᵀ)−1. It has been proven

in existing work that this is still equivalent to the sufficient PF

condition [15]. More details can be found in Appendix C.

D. Optimization of NEC∞

The optimization of weights in NEC∞ differs from most

existing neural networks because the layer is defined by

equilibrium and the optimization process involves constraints.

The loss function can be written as:

min
Θv,Θe,Wev,Wve,Ω

L1(F
′, gΘe(Hv)) + L2(E

′, fΘe(He)),

subject to: He = φ(WveHvB),

Hv = φ(Wevφ(WveHvB)Bᵀ + bΩ(E0, F0)),

λpf (BBᵀ)λpf (W
|·|
evW

|·|
ve) < 1,

(5)

where the constraint λpf (BBᵀ)λpf (W
|·|
evW

|·|
ve) < 1 is derived

from Section IV-C. Readout functions gΘe
and fΘe

are MLPs.

To efficiently solve this problem while keeping the function

stable and constrained, we use a combination of projected

gradient descent (PGD) and implicit function theorem (IFT).

Since Hv and He are also the fixed point solutions, we derive

the analytic solution with IFT. In this way, we can avoid doing

backpropagation on each layer, and the memory usage remains

constant regardless of the number of layers before the model

reaches the fixed-point. To ensure that the model will converge,

while we move in the direction of the negative gradient, we

also use PGD to “project” the weights onto the feasible set

defined by the constraint. The projection itself is also a sub-

problem of optimization and is solved by using alternating

direction method of multipliers (ADMM) [22].

1) ADMM-based Projection: The projection operator can

be expressed as the following optimization problem.

{W+
ev,W

+
ve} = argmin ||Wve −W+

ve||2F + ||Wev −W+
ev||2F ,

subject to: λpf (W
|·|
evW

|·|
ve) < κ, κ = 1/λpf (BBᵀ),

(6)

where W+
ev and W+

ve refer to the updated versions of Wev and

Wve, respectively, after the projection. We enforce the stricter

condition ||W |·|
evW

|·|
ve ||∞ ≤ κ. The projection operator now

becomes a child optimization problem in Eq. (7).

minimize ||X − P ||2F + ||Y −Q||2F ,
subject to ||X |·|Y |·|||∞ ≤ κ.

(7)

As the constraint in Eq. (7) is for X |·|, each dimension in X
and P will always be of the same sign. If one dimension in X
has the opposite sign with the corresponding dimension in P ,

the opposite of that dimension will also satisfy the same con-

straint but result in a smaller loss. Similarly, each dimension in

Y and Q will also always have the same sign. For simplicity,

we can first minimize ||X |·| −P |·|||2F + ||Y |·| −Q|·|||2F . Once

the optimal X ′ = X |·| and Y ′ = Y |·| are obtained, the actual

X and Y can be simply calculated by X = sign(P) � X ′

and Y = sign(Q) � Y ′. This trick simplifies the problem in

Eq. (7) to the following version, assuming all values of X , Y ,

P , and Q are positive:

minimize ||X − P ||2F + ||Y −Q||2F ,
subject to XY = C, ||C||∞ ≤ κ.

(8)

To solve Eq. (8) with ADMM, We first define the augmented

Lagrangian, for a parameter ρ > 0:

Lρ(X,Y,C, λ) = ||X − P ||2F + ||Y −Q||2F
+ 〈λ,XY − C〉F + (ρ/2)||XY − C||2F .

(9)

ADMM consists of the following iterations:

X = (2P − λY ᵀ + ρCY T)(2I + ρY Y ᵀ)−1, (10)

Y = (2I + ρXᵀX)−1(2Q−Xᵀλ+ ρXᵀC), (11)

C = argmin
||C||∞≤κ

〈λ,XY − C〉F , (12)

λ = λ+ ρ(XY − C). (13)

See Appendix B for more details on how the analytical

solutions for X , Y , and C are derived.
Denote optimal primal variables by X∗ and Y ∗, and the

optimal dual variable by λ∗. The primal feasibility is measured
by primal residual:

r = ||Xk+1Y k+1 − Ck+1||F . (14)

The dual residual can be defined as:

s = ρXk+1(Y k − Y k+1)(Y k)ᵀ. (15)

Algorithm 1 summarizes the ADMM optimization iteration.

781

Algorithm 1 ADMM-based projection for PGD

Input: Weight metrics A and B, parameter κ
Choose εpri > 0 , εdual > 0
repeat

Update X by Eq. (10) // analytical solution

Update Y by Eq. (11) // analytical solution

Update C by infinity norm

Update λ by λk+1 = λk + ρ(XY − C)
Calculate the primal residual by Eq. (14)

Calculate the dual residual by Eq. (15)

if r > 10s then
ρ ← 2ρ

else if 10r < s then
ρ ← ρ/2 //varying penalty parameter

else
ρ ← ρ //varying penalty parameter

end if
until r < εpri, s < εdual

2) Gradient Descent based on Implicit Function Theorem:
After the projection, we calculate the gradients of loss with
respect to weights in the equilibrium model by utilizing the
implicit function theorem.

Hv = φ(Wevφ(WveHvB)Bᵀ + bΩ(E0, F0)). (16)

From the chain rule, it is easy to obtain ∇Hv
L for the internal

state. In addition, we can write the gradient w.r.t scalar q ∈
Wev as follows:

∇qL = 〈∂Z
∂q

,∇ZL〉, (17)

where Z = WveHvB assuming fixed Hv . Unlike Hv that is
implicitly defined, Z is a closed evaluation of Z = WveHvB
assuming Hv doesn’t change depending on Z. We find that
∇ZL can be calculated by solving the following equilibrium
equation in Eq. (18). This format is similar with how IGNN
was solved but with different derivation (see Appendix D for
details).

∇ZL = D1 � (W ᵀ
ev(D2 � (W ᵀ

ve∇ZLBᵀ))B +∇HvL). (18)

After ∇ZL is calculated, it is easy to infer the derivative of

the loss with respect to Wev and Wve:

∇WevL = 〈 ∂Z

∂Wev
,∇ZL〉 = ∇ZLR(φ(WveHvB))ᵀ.

∇WveL = HvB((Bᵀ∇ZLWev)� φ′(WveHvB)).
(19)

Detailed partial derivative calculations for Eq. (19) can be

found in Appendix E.

The updates of bω is done automatically with chain rule

and autograd. In the backpropagation, ∇ZL is calculated first

with the IFT-based algorithm (Appendix D). From there on,

optimizing bω is not different from updating weights in a

feedforward NN.

V. EXPERIMENTS

In this section, we present the evaluation results over the

proposed NEC∞ model.

A. Experimental Setup

1) Datasets: We performed experiments on a set of pub-

licly available attributed graph transformation datasets, which

consisted of four synthetic random graph datasets and four

real-world datasets. In order to assess our model’s capability

in tracking long-range dependencies, we also created two

additional synthetic dynamical system datasets.

Synthetic random graph datasets: To evaluate the ability

of models to approximate predefined node-edge translation

functions, we utilized four synthetic benchmark datasets Syn

I - Syn IV [4]1. These datasets were generated using different

random graph generators and translation rules. The input graph

structures were created using either the Erdős-Rényi (ER)

model or the Barabási-Albert (BA) model, with the number

of nodes ranging from 20 to 60. The target graph structure

is defined as the multi-hop graph of the input graph, where

each edge in the target graph represents multi-hop reachability

in the input graph. The node attributes in the input graphs

correspond to the node degrees, while the node attributes in

the target graphs are calculated using a predefined polynomial

function applied to the node attributes in the input graphs. In

both the input and target graphs, the edge attributes are binary

variables that indicate whether an edge is present or absent.

Each dataset consists of 500 pairs of input-output graphs.

Synthetic dynamical system dataset: To further demon-

strate the models’ performance in handling graph translation

problems involving long-range node-edge interactions, we

generated two additional discrete dynamical system datasets:

Syn-V and Syn-VI. Each dataset contains 500 pairs of input-

output graph pairs. The graph structures in Syn-V were created

with ER model in the same way as Syn-I dataset. The graph

structures in Syn-VI were created with BA model in the same

way as Syn-IV dataset. The 1-dimensional input node features

were sampled from a uniform distribution on the interval [0, 1).
The output node features are the stable-state results of the

dynamical system with linear evolution functions.

Malware confinement dataset: Three malware datasets

for IoT devices are used for evaluating the performance

of malware confinement prediction tasks [23]. For all three

datasets, the nodes in the input graph represent IoT devices

in the system where the node attribute is a binary value

referring to whether the device is compromised or not. The

edge attribute between two nodes is defined as the physical

distance between two devices. The target graphs represent

the graphs with updated node and edge attributes after the

malware confinement, which can be considered as stable

graphs resulting from a dynamical system [20]. Each of the

three datasets consists of 334 pairs of input and target graphs,

with varying contextual parameters such as infection rate,

recovery rate, and decay rate.

Molecule reaction dataset: We apply graph translation

methods to a fundamental problem in organic chemistry, which

involves predicting the product (target graph) of a chemical

reaction given the reactant (input graph). The datasets used in

1source: https://github.com/xguo7/Dataset-for-Deep-Graph-Translation

782

our study were collected by Lowe [24] from USPTO granted

patents for chemical reaction extraction studies [24], and they

have been previously used for attributed graph transformation

evaluations [4]. We work with a dataset comprising 5,000

reactant-product pairs, which are evenly divided into training

and testing sets. The node features in this dataset include ele-

mental identity, connectivity degree, hydrogen atoms, valence,

and aromaticity, while the bond features capture bond type and

connectivity.

2) Comparison Methods: To assess the effectiveness of

our proposed method, we conducted comparisons with several

existing approaches, namely NR-DGT, NEC-DGT [4], and

IGNN [15]. NR-DGT is a node-edge co-evolution GNN model

with two blocks/layers, while NEC-DGT is a variant of NR-

DGT that incorporates graph spectral-based regularization. On

the other hand, IGNN is a deep equilibrium model that only

passes messages for node embedding. In comparison to these

existing approaches, our proposed model shares similarities

with IGNN in terms of being an infinite layer GNN and

considers node-edge co-evolution, akin to NEC-DGT. Addi-

tionally, we also compared our proposed method against two

categories of state-of-the-art techniques: 1) link attribute pre-

diction/graph structure learning (GSL) methods, and 2) node

classification/regression methods. These comparisons allowed

us to thoroughly evaluate the performance of our approach and

understand its relative strengths and weaknesses.

Link attribute prediction / GSL methods: GT-GAN is a

recent generative adversarial network for graph topology learn-

ing [10]. GraphRNN is an LSTM-based deep autoregressive

model that can approximate any distribution of graphs with

minimal assumptions about their structure [25]. GraphVAE
is a variational autoencoder-based graph topology generation

method [26].

Node classification/regression methods: IN is a general

GNN framework for learning node-level, edge-level and graph-

level representations [27]. DCRNN is a holistic approach

that captures both spatial and temporal dependencies using

diffusion convolution [28]. STGCN constructs ST-Conv blocks

with spatial convolution layers and residual connections [29].

3) Evaluation: The attributed graph transformation prob-

lem is a multi-objective machine learning problem. While node

attributes and edge attributes are used as input at the same

time, the node prediction and edge prediction are evaluated

separately. For different datasets, the target attributes, for both

nodes and edges, can be binary values or continuous values.

We use MSE, R2, Pearson’s r, and Spearman’s r as metrics.

For binary values, we use accuracy as the metric. For all

datasets, we followed the same training and testing protocols

as described in [4]. 2

B. Performance

1) Metric-based evaluation for synthetic datasets: Results

for synthetic random graph datasets (Syn-I - Syn-IV) are

2The source codes can be found at https://anonymous.4open.science/r/NEC-
infty–6A1C/

shown in Table II. It can be seen that the proposed model

outperforms all comparison methods on both the node and

edge attributes prediction. Specifically, in terms of node at-

tribute prediction, the methods that consider both node and

edge message passing (NR-DGT, NEC-DGT, NEC∞) perform

significantly better than the methods that only do node-to-

node message passing (IN, DCRNN, STGCN). This is because

the traditional node-to-node message-passing methods only

consider a static graph topology while the attributed graph

transformation problem requires explicitly modeling the evolv-

ing edge attributes as well. Furthermore, the proposed NEC∞

performs better than NR-DGT and NEC-DGT. Especially

on the Syn-IV dataset for BA graphs, the MSE has been

decreased one order of magnitude (from 1.86 to 0.183) com-

pared with the second-best performed method. The additional

performance boost comes from the infinite depth equilibrium

layer that captures global graph information. When it comes

to edge attribute prediction, the proposed NEC∞ also shows

significant advantages. It outperforms NEC-DGT by 30% on

average and more for the rest methods. On Syn-IV, the edge

prediction accuracy is improved to almost 100%. The results

demonstrate the effectiveness of the infinite-depth node-edge

co-evolution.

Results for synthetic dynamical system datasets are shown

in Table III. Only node attribute prediction results are eval-

uated because the dynamical systems in Syn V and Syn VI

only output new node attributes. Our main baseline method

NEC-DGT still performs well but was not able to outperform

STGCN on Syn-VI due to the unchanged edges. However, for

both node MESE and Pearson’s r, NEC∞ outperforms all the

comparison methods. It is not a surprise because equilibrium

functions are naturally the mathematical tools for modeling

discrete dynamical systems.

2) Evaluation of the learned translation mapping for
synthetic data: To illustrate whether the inherent mapping

mechanism for both node and edge attributes in the attributed

graph transformation problem is learned correctly by NEC∞,

we visualize the ground-truth mapping and plot the learned

distribution by NEC∞ for all the four synthetic datasets. The

ground-truth mapping is drawn according to the predefined

functions in the dataset generation described in section V-A1.

Figure 1 shows a ground-truth line in green and predicted

values in red dots. As shown in Figure 1, the predicted

values are located closely around the ground-truth plot. This

is mainly because the equilibrium architecture approximates

the underlying transformation dynamics in a natural way.

Figure 2 visualizes the convergence processes for both the

forward pass fixed-point solution in Eq. (3) of Hv and the

intermediate variable ∇ZL in Eq. (18).

3) Metric-based evaluation for malware confinement
datasets: Performance metrics for the malware detection task

are shown in Table IV. The edge attributes are continuous

values and thus are evaluated by E-MSE, E-R2, and E-P.

The node attributes are evaluated by E-Acc. NEC∞ achieves

the overall best performance. For node attributes prediction,

NEC∞ performs the best on the first two datasets but slightly

783

TABLE II: Evaluation of Generated Target Graphs for Syn-

thetic Dataset (N for node attributes, E for edge attributes, P

for Pearson correlation, SP for Spearman correlation and Acc

for accuracy)

Data Method N-MSE N-R2 N-P N-Sp Method E-Acc

Syn-I

IN 5.97 0.06 0.48 0.44 GraphRNN 0.621
DCRNN 51.36 0.12 0.44 0.45 GraphVAE 0.659
STGCN 15.44 0.19 0.42 0.56 GT-GAN 0.703
IGNN 14.69 0.007 0.82 0.89 NR-DGT 0.701
NR-DGT 2.13 0.87 0.90 0.89 NEC-DGT 0.712
NEC-DGT 1.98 0.76 0.93 0.91 NEC∞ 0.944
NEC∞ 1.018 0.93 0.965 0.959

Syn-II

IN 1.36 0.85 0.77 0.87 GraphRNN 0.562
DCRNN 71.07 0.11 0.39 0.37 GraphVAE 0.463
STGCN 33.11 0.21 0.15 0.15 GT-GAN 0.700
IGNN 3.76 0.88 0.94 0.94 NR-DGT 0.701
NR-DGT 1.43 0.91 0.94 0.97 NEC-DGT 0.720
NEC-DGT 1.91 0.93 0.97 0.97 NEC∞ 0.969
NEC∞ 1.203 0.96 0.982 0.983

Syn-III

IN 35.46 0.31 0.59 0.56 GraphRNN 0.452
DCRNN 263.23 0.09 0.41 0.39 GraphVAE 0.370
STGCN 43.34 0.22 0.48 0.47 GT-GAN 0.577
IGNN 3.27 0.90 0.95 0.95 NR-DGT 0.625
NR-DGT 5.90 0.90 0.94 0.92 NEC-DGT 0.658
NEC-DGT 4.56 0.93 0.97 0.96 NEC∞ 0.955
NEC∞ 3.322 0.95 0.976 0.974

Syn-IV

IN 4.63 0.10 0.53 0.51 GraphRNN 0.517
DCRNN 63.03 0.12 0.22 0.16 GraphVAE 0.300
STGCN 6.52 0.08 0.11 0.10 GT-GAN 0.805
IGNN 4.16 0.32 0.62 0.65 NR-DGT 0.670
NR-DGT 4.49 0.12 0.55 0.54 NEC-DGT 0.843
NEC-DGT 1.86 0.73 0.93 0.89 NEC∞ 0.998
NEC∞ 0.183 0.97 0.98 0.985

TABLE III: Evaluation of Generated Target Graphs for Dy-

namical System Dataset

Dataset Method N-MSE N-P

Syn-V

IN 0.004 0.67
DCRNN 0.005 0.44
STGCN 0.005 0.53
IGNN 0.016 0.85
NR-DGT 0.017 0.63
NEC-DGT 0.009 0.76
NEC∞ 0.003 0.92

Dataset Method N-MSE N-P

Syn-VI

IN 0.003 0.81
DCRNN 0.011 0.70
STGCN 0.007 0.92
IGNN 0.0018 0.96
NR-DGT 0.017 0.74
NEC-DGT 0.0009 0.87
NEC∞ 0.0004 0.99

worse than STGCN on Malware III. The most possible rea-

son is that Malware III is less dependent on the node-edge

interactions and NEC∞ has to be trained to perform both

node attribute and edge attribute predictions at the same time.

In summary, the node-edge message passing methods (NEC-

DGT and NEC∞) can handle node and edge prediction at the

same time better than the rest methods. By introducing the

infinite-depth node-edge message passing, NEC∞ consistently

performs better than its finite layer counterpart.

4) Metric-based evaluation for molecule reaction
datasets: In this task, the proposed model is compared with

the baselines (NEC-DGT and NR-DGT) and traditional re-

action prediction method WLDN. Table V shows the per-

formance of all methods on edge accuracy, the main metric

for reaction prediction tasks. Even the baselines achieve good

performance, they cannot reach a perfect 100 percent accuracy

like NEC∞ does. This shows that NEC∞ can be applied to a

wide range of real-world applications and make accurate node

and edge attribute predictions at the same time.

Fig. 1: Visualizations of predicted node attributes and the

ground truth relationship for synthetic graphs.

Fig. 2: Visualization of the fixed-point solution as results for

node embedding Hv and ∇ZL in optimization.

C. Scalability Analysis

Due to the node-edge and edge-node message passing, the

time complexity of NEC∞ is O(|V|2), matching that of NEC-

DGT and proving more scalable than GraphVAE (O(|V|4)).
It’s important to note that an equilibrium layer is generally

slower than a feed-forward layer with the same function;

hence, a NEC∞ layer is expected to be slower than a NEC-

DGT layer at the same time complexity. However, it’s worth

highlighting that a single NEC∞ can be viewed as an infinite

number of equivalent layers.

The proposed NEC∞ model with the IFT-based optimiza-

tion algorithm is more efficient and scalable than the recurrent-

version counterpart. We refer to the counterpart as NEC-Rec
which is a recurrent model with the same module (node-

edge co-evolution message passing) and weight tying. To

demonstrate it, Figure 3 and 4 illustrates the scalability of

NEC∞ with respect to the graph size and the number of

layers respectively. The run time and memory usage of both

NEC∞ and NEC-Rec increase superlinearly when the number

of nodes increases due to the inevitable pairwise node-to-

edge message passing. However, NEC∞ runs much faster and

784

TABLE IV: Evaluation of Generated Target Graphs for Mal-

ware Dataset (N for node attributes, E for edge attributes, P

for Pearson correlation, SP for Spearman correlation and Acc

for accuracy)

Malware-I

Method E-Acc E-MSE E-R2 E-P Method N-Acc

GraphRNN 0.610 1831.43 0.52 0.00 IN 0.878
GraphVAE 0.506 2453.61 0.00 0.04 DCRNN 0.878
GT-GAN 0.630 1718.02 0.42 0.11 STGCN 0.923
NR-DGT 0.910 668.57 0.82 0.91 IGNN 0.882
NEC-DGT 0.921 239.79 0.78 0.91 NR-DGT 0.910
NEC∞ 0.938 195.72 0.78 0.92 NEC-DGT 0.929

NEC∞ 0.934

Malware-II

Method E-Acc E-MSE E-R2 E-P Method N-Acc

GraphRNN 0.705 1950.46 0.44 0.29 IN 0.882
GraphVAE 0.606 2410.57 0.73 0.16 DCRNN 0.879
GT-GAN 0.903 462.73 0.13 0.81 STGCN 0.933
NR-DGT 0.911 448.48 0.68 0.83 IGNN 0.843
NEC-DGT 0.938 244.40 0.81 0.91 NR-DGT 0.885
NEC∞ 0.941 233.66 0.81 0.92 NEC-DGT 0.934

NEC∞ 0.948

Malware-III

Method E-Acc E-MSE E-R2 E-P Method N-Acc

GraphRNN 0.839 1775.58 0.16 0.23 IN 0.873
GraphVAE 0.8119 2109.64 0.39 0.32 DCRNN 0.873
GT-GAN 0.945 550.30 0.63 0.80 STGCN 0.937
NR-DGT 0.954 341.10 0.76 0.88 IGNN 0.876
NEC-DGT 0.960 273.67 0.81 0.90 NR-DGT 0.877
NEC∞ 0.978 231.99 0.83 0.92 NEC-DGT 0.900

NEC∞ 0.928

TABLE V: Evaluation of Generated Target Graphs for

Molecule Dataset: N for node attributes, E for edge attributes

Method N-MSE N-R2 N-P N-Sp Method E-Acc

IN 8e−2 0.46 0.13 0.12 GT-GAN 0.868
STGCN 6e−4 0.98 0.99 0.97 WLDN 0.966
IGNN 6e−4 0.98 0.99 0.99 NR-DGT 0.991
NR-DGT 8e−4 0.97 0.99 0.99 NEC-DGT 0.992
NEC-DGT 4e−4 0.99 0.99 0.99 NEC∞ 1.0
NEC∞ 4e−4 0.99 0.99 0.99

becomes more memory efficient when the graph grows larger.

The run time and memory usage of NEC∞ stay stable when

the number of layers increases because the proposed optimiza-

tion algorithm updates the weight in the model without the

layer-by-layer backpropagation.

Fig. 3: Run time and RAM usage w.r.t the number of nodes.

Fig. 4: Run time and RAM usage w.r.t number of layers.

VI. CONCLUSION

This paper focuses on a new problem, end-to-end attributed

graph transformation. To achieve this, we propose a novel

NEC∞ method consisting of a graph deep equilibrium model

which translates an initial graph to a target graph with dif-

ferent node and edge attributes. To jointly tackle complicated

node-edge dynamics, the infinite-depth node-edge co-evolution

message passing is proposed. We also proposed an efficient

implicit theorem-based optimization algorithm to avoid heavy

computation and memory overhead. To the best of our knowl-

edge, NEC∞ is the first work of its kind that is capable of

incorporating both node and edge dynamics within an equilib-

rium architecture. Extensive experiments have been conducted

on both synthetic and real-world datasets. Experiment results

have shown that our NEC∞ can approximate the underlying

ground-truth translation rules, even those with iterative graph-

wide operations, and it significantly outperforms existing

methods and baselines.

REFERENCES

[1] L. Wu, P. Cui, J. Pei, L. Zhao, and L. Song, “Graph neural networks,”
in Graph Neural Networks: Foundations, Frontiers, and Applications.
Springer, 2022, pp. 27–37.

[2] C. Graber and A. Schwing, “Dynamic neural relational inference for
forecasting trajectories,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2020, pp. 1018–
1019.

[3] X. Guo, L. Zhao, Z. Qin, L. Wu, A. Shehu, and Y. Ye, “Interpretable
deep graph generation with node-edge co-disentanglement,” in Proceed-
ings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, 2020, pp. 1697–1707.

[4] X. Guo, L. Zhao, C. Nowzari, S. Rafatirad, H. Homayoun, and S. M. P.
Dinakarrao, “Deep multi-attributed graph translation with node-edge co-
evolution,” in 2019 IEEE International Conference on Data Mining
(ICDM). IEEE, 2019, pp. 250–259.

[5] Y. Du, X. Guo, Y. Wang, A. Shehu, and L. Zhao, “Small molecule
generation via disentangled representation learning,” Bioinformatics
(Oxford, England), p. btac296, 2022.

[6] J. Z. Kolter and G. Manek, “Learning stable deep dynamics models,”
Advances in neural information processing systems, vol. 32, 2019.

[7] Z. Huang, Y. Sun, and W. Wang, “Coupled graph ode for learning
interacting system dynamics.” in KDD, 2021, pp. 705–715.

[8] C. Zang and F. Wang, “Neural dynamics on complex networks,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 892–902.

[9] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural
relational inference for interacting systems,” in International Conference
on Machine Learning. PMLR, 2018, pp. 2688–2697.

785

[10] X. Guo, L. Wu, and L. Zhao, “Deep graph translation,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

[11] X. Guo and L. Zhao, “A systematic survey on deep generative models
for graph generation,” arXiv preprint arXiv:2007.06686, 2020.

[12] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[13] S. Bai, V. Koltun, and J. Z. Kolter, “Multiscale deep equilibrium
models,” Advances in Neural Information Processing Systems, vol. 33,
pp. 5238–5250, 2020.

[14] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” Advances in neural information pro-
cessing systems, vol. 31, 2018.

[15] F. Gu, H. Chang, W. Zhu, S. Sojoudi, and L. El Ghaoui, “Implicit graph
neural networks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 11 984–11 995, 2020.

[16] J. Liu, K. Kawaguchi, B. Hooi, Y. Wang, and X. Xiao, “Eignn: Efficient
infinite-depth graph neural networks,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18 762–18 773, 2021.

[17] N. Anand and P. Huang, “Generative modeling for protein structures,”
Advances in neural information processing systems, vol. 31, 2018.

[18] W. Jin, K. Yang, R. Barzilay, and T. Jaakkola, “Learning multimodal
graph-to-graph translation for molecular optimization,” arXiv preprint
arXiv:1812.01070, 2018.

[19] K. Do, T. Tran, and S. Venkatesh, “Graph transformation policy network
for chemical reaction prediction,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 750–760.

[20] H. Sayadi, H. M. Makrani, S. M. P. Dinakarrao, T. Mohsenin, A. Sasan,
S. Rafatirad, and H. Homayoun, “2smart: A two-stage machine learning-
based approach for run-time specialized hardware-assisted malware
detection,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2019, pp. 728–733.

[21] L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai, “Implicit deep
learning,” SIAM Journal on Mathematics of Data Science, vol. 3, no. 3,
pp. 930–958, 2021.

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[23] S. M. P. Dinakarrao, H. Sayadi, H. M. Makrani, C. Nowzari, S. Rafatirad,
and H. Homayoun, “Lightweight node-level malware detection and
network-level malware confinement in iot networks,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 776–781.

[24] D. M. Lowe, “Extraction of chemical structures and reactions from the
literature,” Ph.D. dissertation, University of Cambridge, 2012.

[25] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “Graphrnn:
Generating realistic graphs with deep auto-regressive models,” in Inter-
national conference on machine learning. PMLR, 2018, pp. 5708–5717.

[26] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of
small graphs using variational autoencoders,” in International conference
on artificial neural networks. Springer, 2018, pp. 412–422.

[27] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al., “Interaction
networks for learning about objects, relations and physics,” Advances in
neural information processing systems, vol. 29, 2016.

[28] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in International Con-
ference on Learning Representations (ICLR ’18), 2018.

[29] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” in Proceed-
ings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI), 2018.

APPENDIX

A. PF sufficient condition for well-posedness

Theorem A.1 (PF sufficient condition for well-posedness on

Eq. (3). Assume that φ is a component-wise non-expansive
(CONE) activation map. Then, (Wve,Wev, B) is well-posed
for any such φ if λpf ((B ⊗ Wev)

|·|(Bᵀ ⊗ Wve)
|·|) < 1.

Moreover, the solution Hv of equation (3) can be obtained
by iterating equation (3).

Proof.

Hv = φ(Wevφ(WveHvB)Bᵀ + bΩ(E0, F0)). (20)

vectorize both sides:

vec(Hv) = φ(vec(Wevφ(WveHvB)Bᵀ) + vec(b))

= φ((B ⊗Wev)vec(φ(WveHv))) + vec(b)).
(21)

as φ is a component-wise non-expansive (CONE) activation

map:

vec(Ht+1
v −Ht

v)
|·|

= (φ((B ⊗Wev)vec(φ(WveH
t
vS))) + vec(B))

− φ((B ⊗Wev)vec(φ(WveH
t−1
v B))) + vec(B)))|·|

≤ ((B ⊗Wev)vec(φ(WveH
t
vB))− (B ⊗Wev)vec(φ(WveH

t−1
v B)))|·|

≤ (B ⊗Wev)
|·|(vec(φ(WveH

ᵀ
vB))− vec(φ(WveH

t−1
v B)))|·|

≤ (B ⊗Wev)
|·|(vec(WveH

ᵀ
vB)− vec(WveH

t−1
v B))|·|

= (B ⊗Wev)
|·|(vec(Wve(H

t
v −Ht−1

v)B))|·|

= (B ⊗Wev)
|·|((Bᵀ ⊗Wve)vec((H

t
v −Ht−1

v)))|·|

≤ (B ⊗Wev)
|·|(Bᵀ ⊗Wve)

|·| vec(Ht
v −Ht−1

v)|·|.
(22)

According to Lemma A.2, Eq. (3) has a unique solution if

λpf ((B ⊗Wev)
|·|(Bᵀ ⊗Wve)

|·|) < 1

λpf ((B ⊗ Wev)
|·|(Bᵀ ⊗ Wve)

|·|) = λpf ((BBᵀ) ⊗
(W

|·|
evW

|·|
ve)) = λpf (BBᵀ)λpf (W

|·|
evW

|·|
ve) < 1.

Lemma A.2. If φ is component-wise non-negative (CONE),
M is some squared matrix and v is any real vector of
compatible shape, the equation x = φ(Mx+ v) has a unique
solution if λpf (|M |) < 1. And the solution can be obtained
by iterating the equation. Hence, x = limt→∞ xt.

xt+1 = φ(Mxt + v), x0 = 0, t = 0, 1, . . . (23)

The proof of Lemma A.2 can be found in the supplementary

material B.3 in [16].

B. ADMM-based Production

ADMM consists of the iterations:

Xk+1 = argmin
X

(||Xk − P ||2F + 〈λ,XkY k − Ck〉

+ (ρ/2)||XkY k − Ck||2F),
Y k+1 = argmin

Y
(||Y k −Q||2F + 〈λ,Xk+1Y k − C〉

+ (ρ/2)||Xk+1Y k − Ck||2F),
Ck+1 = argmin

||C||∞≤κ

(〈λ,Xk+1Y k+1 − Ck〉F

+ ||Xk+1Y k+k − Ck||2F),
λk+1 = λk + ρ(Xk+1Y k+1 − Ck+1).

(24)

For X:

786

∂||X − P ||2F + 〈λ,XY − C〉F + (ρ/2)||XY − C||2F
∂X

= 0,

2(X − P) + λY T + ρ(XY − C)Y T = 0,

2X − 2P + λY T + ρXY Y T − ρCY T = 0,

X(2I + ρY Y ᵀ) = 2P − λY T + ρCY T ,

X = (2P − λY T + ρCY T)(2I + ρY Y ᵀ)−1.

(25)

For Y :

∂||Y −Q||2F + 〈λ,XY − C〉F + (ρ/2)||XY − C||2F
∂Y

= 0,

2(Y −Q) +Xᵀλ+ ρXᵀ(XY − C) = 0,

2Y − 2Q+Xᵀλ+ ρXᵀXY − ρXᵀC = 0,

(2I + ρXᵀX)Y = 2Q−Xᵀλ+ ρXᵀC,

Y = (2I + ρXᵀX)−1(2Q−Xᵀλ+ ρXᵀC).

(26)

For C:

The optimization can be decomposed along the rows of

C. Each subproblem involves projecting onto an L1-ball, and

efficient methods for this operation are available.

C. Additional information for the stricter sufficient well-
posedness condition

We adopt a similar method to that used in [15] to derive a

more stringent and computationally tractable sufficient condi-

tion for well-posedness of our model.

λpf (W
|·|
evW

|·|
ve)

=inf
S

||SW |·|
evW

|·|
veS

−1||∞ : S = diag(S), s > 0.
(27)

In the case where W
|·|
evW

|·|
ve has simple PF eigenvalue,

problem (27) admits positive optimal scaling factor s > 0, a

PF eigenvector of W
|·|
evW

|·|
ve . And we can design the equivalent

model with ‖W ′|·|
ev W

′|·|
ve ‖∞ < λpf (BBᵀ)−1 by rescaling:

f̃Θ(·) = fΘ(S
−1 ·), |W ′|·|

ev W ′|·|
ve = SW |·|

evW
|·|
veS

−1,

b̃Ω(·) = SbΩ(·), where S = diag(s).
(28)

D. Additional information for the IFT-based GD

To avoid taking derivatives of matrices by matrices, we

again introduce the vectorized representation vec(·) of ma-

trices. The vectorization of a matrix Hv ∈ B
p×|V| denoted

vec(X), is obtained by stacking the columns of Hv into one

single column vector of dimension p|V|. For simplicity, we

use
−→
Hv := vec(Hv) as a shorthand notation of vectorization.

With vectorization, we have:

−→
Hv = φ((B ⊗Wev)φ((B

ᵀ ⊗Wve)
−→
Hv) +

−→
B). (29)

similarly, now we change the definition of Z

−→
Z = ((B ⊗Wev)φ((B

ᵀ ⊗Wve)
−→
Hv) +

−→
B. (30)

According to Lemma A.3 in Appendix D, we have

∂
−→
Hv

∂
−→
Z

=
∂φ((B ⊗Wev)φ((B

ᵀ ⊗Wve)
−→
Hv) +

−→
B)

∂
−→
Z

+
∂φ((B ⊗Wev)φ((B

ᵀ ⊗Wve)
−→
Hv) +

−→
B)

∂
−→
Hv

∂
−→
Hv

∂
−→
Z

,

(31)

where

∂φ((B ⊗Wev)φ((B
ᵀ ⊗Wve)

−→
Hv) +

−→
B)

∂
−→
Hv

=
∂φ(

−→
Z)

∂
−→
Z

∂((B ⊗Wev)φ((B
ᵀ ⊗Wve)

−→
Hv) +

−→
B)

∂
−→
Hv

=D̃1(B ⊗Wev)
ᵀ(Bᵀ ⊗Wve)

ᵀD̃2,

(32)

and

D̃1 =
∂φ(

−→
Z)

∂
−→
Z

,

D̃2 =
∂φ((Bᵀ ⊗Wve)

−→
Hv)

∂(Bᵀ ⊗Wve)
−→
Hv

.

(33)

∇−→
Z
L = (

∂
−→
Hv

∂
−→
Z

)ᵀ∇−→
Hv

L. (34)

Plugging Eq. (31) to (34), we arrive at the following

equilibrium equation

∇−→
Z
L = D̃1(B ⊗Wev)

ᵀ(Bᵀ ⊗Wve)
ᵀD̃2∇−→

Z
L+ D̃1∇−→

Hv
L,

(35)

or in the devectorized form:

∇ZL = D1 � (W ᵀ
ev(D2 � (W ᵀ

ve∇ZLBᵀ))B +∇HvL). (36)

here the ∇Hv
L can be easily obtained through modern

autograd frameworks so ∇ZL can be calculated in the fixed-

point function in Eq. (36).

Lemma A.3. Using Implicit Function Theorem. The function
W
→ H is defined implicitly by H = f(H,W).

Then, H ′(W) = ∂f
∂HH ′(W) + ∂f

∂W .

E. Details for the derivative calculation in Section
For calculating ∇Wve

L, it requires calculating matrix to

matrix derivatives so we use the the vectorized representations

again.

∇−−→
Wve

L = 〈 ∂
−→
Z

∂
−−→
Wve

,∇−→
Z
L〉 = 〈∂

−→
Z

∂
−→
φ

∂
−→
φ

∂
−−→
Wve

,∇−→
Z
L〉

= 〈(R⊗Wev)
∂
−→
φ

∂
−−→
Wve

,∇−→
Z
L〉

= 〈(R⊗Wev)
∂
−→
φ

∂
−−−−−−→
WveHvB

∂
−−−−−−→
WveHvB

∂
−−→
Wve

,∇−→
Z
L〉

= ∇−→
Z
L((R⊗Wev)φ

′(
−−−−−−→
WveHvB)((BᵀHᵀ

v)⊗ I)).

(37)

Here I is a q × q identity matrix.
Thus

∇WveL = HvB((Bᵀ∇ZLWev)� φ′(WveHvB)). (38)

787

