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Abstract— For decades, the spread of disinformation in online
social networks (OSNs) has been a serious social issue. Disinfor-
mation via social media can easily mislead people’s beliefs toward
or against an event that may mislead their behaviors based on
the misbeliefs. The game theory approaches have been proposed
under dynamic settings to limit the adverse influences of disinfor-
mation. It is a challenge to expand the users’ game strategies from
the spreading decisions to the possible opinion updating choices.
This work proposes a game-theoretic opinion framework that can
formulate dynamic opinions by a belief model called Subjective
Logic (SL) and provide opinion updates on five types of users’
interactions on OSN platforms. The opinions are updated based
on user choices and user types through the game interactions
among legitimate users, attackers, and a defender in an OSN.
Via the extensive simulation experiments, the effectiveness of the
opinion models of five decision-makers (DMs) is analyzed in terms
of users believing or disbelieving disinformation in an epidemic
model with parameter optimization. Our results show that while
homophily-based DMs (H-DMs) introduce the highest opinion
polarization, uncertainty-based DMs (U-DMs) can effectively
filter untrustworthy users propagating disinformation.

Index Terms— Disinformation, influence, opinion dynamics,
opinion/network polarization, subjective opinion, uncertainty.

NOMENCLATURE

ωi = {b, d, u, a} SL opinion by belief, disbelief,
uncertainty, and base rate.

P(bi ) and P(di) User i ’s projected belief and
projected disbelief from ωi .

ωF , ωT , ωU False, true, and uncertain initial
opinion.

⊕,⊗ Consensus and trust operator
from SL.

c j
i (uc j

i or hc j
i ) SL’s uncertainty or homophily-

based discounting factor.
ω̈i Uncertainty maximized opinion of

user i .
U-DM, H-DM, E-DM Uncertainty, Homophily, and

Encounter-based decision makers.
A-DM, HE-DM Assertion and Herding-based

decision makers.
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ξ Threshold of uncertainty
maximization.

P f
i and P p

i User i ’s feeding preference and
posting preference.

P Di j Projected discrepancy between two
opinions.

φi Threshold to accept or request
a friend.

E P Ai
k Expected payoff of an attacker

taking strategy k.
E P D

� Expected payoff of a defender
taking strategy �.

E PUi
m Expected payoff of a decision

maker taking strategy m.
c� Defender’s cost of strategy �.
ui j

k�m , uD
�k Utility value of an element in E P Ai

k
and E P D

� .

p
A j

Ui
Probability of a decision-maker
j as an attacker.

NR Number of reports to alert a
defender.

ρ Tolerance to report a malicious
user.

η Learning rate in gradient decent.
I Number of interactions in

simulation.
N Number of nodes in the OSN.

I. INTRODUCTION

THANKS to the popularity of online social networks
(OSNs) and their highly advanced features, communi-

cations via social media or OSNs become part of our daily
life. In various OSN platforms, people exchange their opinions
without high confidence or share them without going through
any verification process. It is well known that disseminating
false information, including unverified rumors, misinforma-
tion, or disinformation, can easily destroy individuals’ reputa-
tions or lives. In this work, we use the terms false information
or disinformation interchangeably where it refers to false
information propagated with malicious intent [24]. As a result,
manipulating public opinions toward sensitive issues can easily
happen when disinformation propagates extremely fast. Fur-
ther, disseminating disinformation can be highly detrimental in
affecting critical decision-making processes in our real life at
the levels of individuals, communities, and global society [5],
[16], such as in elections, pandemics, health, or education.
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In an OSN, a person can take advantage of different activi-
ties to connect to other users and share opinions. The level of
a person’s acceptance of a given opinion has been estimated
based on various aspects, such as personality traits (e.g., agree-
ableness, open-mindedness, and stubbornness), a tendency to
relying on others’ opinions (e.g., herding), homophily (e.g.,
like-mindedness), competence (e.g., domain expertise), or con-
fidence (e.g., certainty) [7], [8], [20]. There has been a rich vol-
ume of approaches modeling and simulating the behaviors of
OSN users in updating their opinions and propagating (false)
information [41], [42], [43]. Based on OSN user’s bounded
rationality caused by inherent cognitive bias or incapability of
humans [1], [17], [32], [37], [40], most existing game theory
diffusion models are grounded by users’ decisions of spreading
rumors or not. To limit disinformation cascades, the incentives
and punishments of spreading unverified rumors were accessed
by environment factors, network topology, neighbors’ strategy
preferences, and individual factors.

However, mitigating disinformation propagation in the exist-
ing game models by network users as decision-makers (DMs)
meets several main challenges: 1) Users’ decisions of updating
uncertain opinions. More real user behaviors, such as updating
opinions from social interactions, can serve as a complement
of spreading decision. However, little work has leveraged game
theory to justify the significant tendency of users’ information
processing. 2) Defense from both individual and network
levels. Individual users’ type of subjective opinion updates
can mitigate the effect of disinformation in the OSN by the
dynamic opinion-based epidemic model. 3) Network polariza-
tion. It is critical to address the divergent influences of users’
opinion updates on network communities as disinformation is
often related to the polarization of users [29].

This work aims to demonstrate how OSN users’ rational
information processing behaviors based on various opinion
update criteria and models can influence the mitigation of dis-
information propagation and further impact network dynam-
ics and opinion polarization. To model OSN users’ social
interactions by real individual behavioral features, this work
proposes an opinion game framework with three players,
including an attacker, defender, and user. An attacker refers to
malicious users (i.e., false informers) who have the intent of
disseminating disinformation for misleading legitimate users to
(dis)believe in false (or true) information. A defender may be
an OSN system administrator whose policy ensures a safe and
trustworthy OSN environment. Users mean other legitimate
OSN DMs who interact with their friends and make rational
decisions to update opinions in this game model.

The followings are the key contributions in this study.

1) We develop a robust belief model to formulate users’
subjective and dynamic opinions by Subjective Logic
(SL) theory. This model characterizes opinion update
rules of five types of DMs’ disinformation processing.

2) We propose a game-theoretic opinion update strategies
framework. It defines the goals, strategies, and payoffs
of three networked agent roles. This opinion game
investigates how different ways of updating opinions can
help DMs combat disinformation propagation.

3) We demonstrate each player role’s (i.e., an attacker,
defender, or user) best strategy by decision-making
under uncertainty in an OSN. The best strategy of

each player is compared to the strategy identified by
Nash equilibrium (NE). NE unrealistically assumes all
players can have correct beliefs about the moves of their
opponents.

4) We optimize epidemic model parameters in an effective
gradient decent algorithm. Since the opinion dynamics
of all the network agents can reflect the transition
of states in susceptible-infected-recovered (SIR) model,
we optimize their infection (i.e., believing in disinforma-
tion) and recovery (i.e., disbelieving in disinformation)
rates.

5) We analyze the opinion and network polarization under
five opinion models. The dominant opinions of all
users in the identified modularity-based communities [9]
indicate which opinion model can defend disinformation
better.

This work significantly extends the previous work [10]
and [11] with the following additional contributions.

1) We distinguish the homophily-type users’ game strate-
gies preferences from other DM types in the same
network. This extended study elaborates how DMs’
choices can combat disinformation.

2) We validate the defense of disinformation in the network
level by an uncertain opinion-based SIR model. The SIR
model quantifies the rates of disinformation spreading
and recovery in the given network where various types
of DMs update their opinions.

3) We extend the defense analysis to the simulations of
different initial attacker ratios in the network and demon-
strate the network polarization caused by a high ratio of
attackers.

4) We clarify the defense against disinformation propa-
gation based on the three network views in Fig. 1,
including a number of DMs’ social interactions and
opinion updating decisions, each DMs opinion scale
in opinion polarization network, and the overall epi-
demic status in the SIR network. This enables users’
interactions and opinion models to affect disinformation
propagation, which also influences the segregation of
two parties in believing true or false information and
opinion polarization in a given OSN.

This article is structured by the following sections.
Section II discusses the research on existing information
diffusion game models and the effect of network-level polar-
ization cause by disinformation. Section III introduces the
SL belief model and the five opinion models used in our
work. We also describes DMs’ social interactions and accord-
ingly decisions in sharing information and making friends.
Section IV describes the game-theoretic opinion update frame-
work of three agent roles, attackers, users, and defender,
and their aims, strategies, and payoff functions. Section V-A
describes the experimental setup, metrics, and experiment
settings. Section V-B presents the findings and discussions of
the simulation results. Section VI conclude our article with
the summarized key findings and future research directions.

II. RELATED WORK

In this section, we provide the brief overview of the state-
of-the-art research about opinion models, game theoretic infor-
mation diffusion, the effect of disinformation on polarization.
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Fig. 1. Overview of the proposed opinion update game in an OSN. The top figure illustrates the three game examples in one interaction, compared to their
related NEs. The middle figure represents the opinion polarization in the last interaction. The bottom figure depicts the network status of the middle figure
by the epidemic model.

A. Opinion Models

Opinion models show how OSN users update their opinions
when encountering another OSN user with a different opinion.
An assertion model provides two criteria for users to update
an opinion [44]: 1) the amount of knowledge and 2) the degree
of belief. The users can determine the level of knowledge
exchange regarding their forgetfulness, learning capability,
and trust in another user. A herding-based opinion model is
also developed by considering the amount of pair-wise social
interactions with all other friends [23]. Uncertainty-based
opinion model was also discussed where a user could update
an opinion when an encountered user’s opinion has higher
certainty, such as high expertise [7]. Similarly, an uncertainty
range interval-based opinion model is used for a user to
update an opinion [39]. This model calculated the distance
between two opinions based on the range of the uncertainty
interval length if an agent has uncertain opinions. However,
the works above [7], [23], [44], and [39] did not consider a
user’s rational behaviors in updating opinions. Unlike those
works, we leveraged game theory in diverse opinion models
to investigate the impact of the user’s rational behavior on the
spread of disinformation.

B. Game Theoretic Information Diffusion

Yang [37] formulated an opinion diffusion game where
players with binary opinions can take the benefits of a

“cooperative” or “defective” strategy to reach an opinion
consensus. Li et al. [17] studied the payoffs of rumor
diffusion decisions with a punishment cost in an OSN.
Askarizadeh et al. [1] examined the dynamics of rumor dif-
fusion and control strategies (e.g., spreading either rumor,
anti-rumor, or neutral messages) by the evolutionary game
theory (EGT). A few factors, such as an attitude toward rumor,
the anxiety of society, or strength of rumor and anti-rumor,
can influence the evolutionary stable state by the ordinary
differential equation (ODE). Xiao et al. [32] modeled the
competition of rumors and anti-rumor messages for the same
recipient and investigated the user psychology factors by
EGT. Zhang et al. [40] modeled the evolution of neighbors’
reputation, which influenced the payoffs of a user’s spreading
decision to reduce the negative effects of malicious users.

Szabó and Tőke [25] investigated the Fermi updating rule
to understand the likelihood of strategy imitation, estimated
based on the benefit of neighbors’ fitness. Li et al. [17] studied
rumor propagation in OSNs by considering diverse social
and individual characteristics, including friend relationships,
cognitive judgment capability, strategy imitation, and rumor
propagation cost. Askarizadeh et al. [1] also examined rumor
propagation in OSNs by considering individuals’ attitudes
or awareness toward rumors, a level of community anxiety,
and the spread intensity of rumors and anti-rumor cascades.
Huang et al. [14] used diverse game models to investigate
cost-effective defense strategies against rumor propagation.
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Yoshikawa et al. [38] estimated users’ opinions using Bayesian
networks based on trust and reliability in users.

Unlike the above works [1], [14], [17], [25], [32], [37], [38],
[40], our work used game theory to model users’ opinion prop-
agation behaviors and strategies to deal with disinformation.
In addition, we investigated how the game-theoretic opinion
models and rational user behaviors affect opinion dynamics
and the patterns of disinformation spreading.

Xiao et al. [33] proposed a Diffusion2pixel algorithm to
transform the relationship network of online users with topic
diffusion into an image pixel matrix. This work showed
the performance of their proposed approach in effectively
predicting the group diffusion trends of rumor and considered
the competitive relationship between rumor and anti-rumor.
Li et al. [19] developed a tripartite cognitive model that
disseminates information based on the symbiosis and antago-
nism of multiple types of messages and the polymorphism of
users’ cognitive process under the influence of multimessages.
This work proved the non-coexistence relationship of multiple
messages while those messages can form a game situation.
Xiao et al. [34] explored the adversarial game relationship
between rumor and anti-rumor in the propagation process and
proposed a rumor propagation model. The proposed model is
designed to enhance homomorphism data in the sample space
while using the evolutionary game to devise a mutual influence
model of rumor and anti-rumor, and predict the group behavior
with rumor topics. However, the above works [19], [33],
and [34] did not consider uncertain opinion updates in dealing
with disinformation where rational agents may have different
utility functions to maximize their objectives as our work does.

C. Effect of Disinformation on Polarization

False information spreading can increase the polarization of
users [29] while polarization can expedite the diffusion of false
information [3]. Polarized users exposed to similar content
have a divergent and longer response time when posting
fake news [30]. The network can be segmented into several
polarized groups because of the echo chambers and users
being interconnected within the same group [22]. Polarized
social network structures can also significantly reduce access
to social capital in terms of relational and cognitive social
capital [22]. A user’s activity on false information diffusion
correlates with homophily [3] in opinions. Polarization can
predict homophile clusters because users connect with a sim-
ilar polarization. In the homophile clusters, false information
can be easily propagated [3]. Unlike the above works [3],
[22], [29], [30], we first investigate how certain types of
user interactions can reduce opinion polarization caused by
disinformation in an OSN.

The relationships between homophily and disinformation
propagation have been examined to study their effect on
opinion or network polarization. A large community tends to
have high homophily [12]. Intracommunity enables informa-
tion diffusion faster than intercommunity as it exposes people
to interact with other communities. This phenomenon can be
easily observed in political campaigns where disinformation
is exploited to trigger and increase conflicts and break social
ties and social capital between different parties [2]. However,
how disinformation propagation influences social capital has

not been deeply studied [27]. Unlike the works above [2], [12],
[27], our work studies how users’ rational interaction models
can influence the segregation of opinion communities where
two extreme parties believe in true or false information.

III. UNCERTAINTY-BASED OPINION MODEL

This section uses SL [8], [15] to formulate each user’s
subjective opinion. We describe the key dimensions and ini-
tialization of SL, users’ different preferences on exchanging
and updating opinions, and user interactions in an OSN. All
the variables in this model are summarized in Nomenclature.

A. Opinion Formation

For a given proposition, such as a piece of news, an opinion
in SL, ω = {b, d, u, a}, is defined by four dimensions as

b, d, u, a ∈ [0, 1]4, b + d + u = 1 (1)

where the degree of belief (i.e., pro, agree, b) means that an
agent believes the given proposition is true without knowing
the real truth. The degree of disbelief (i.e., con, disagree,
d) describes that the agent opposes the proposition, thus
disbelieving it. The u refers to uncertainty, often called vacuity,
representing uncertainty due to a lack of evidence. The base
rate a reflects an agent’s prior knowledge which can represent
expertise or bias [15]. In SL, an agent can update his opinion
including base rate a by interacting with other agents. Each
agent’s initial opinion is formulated by observed evidence
following the following mapping rule:

b = r

r + s + W
, d = s

r + s + W
, u = W

r + s + W
(2)

where r is the amount of positive evidence and s is the
negative evidence for a certain proposition. The W is the
amount of uncertain evidence as inherent errors from a system.
Based on agent i ’s binomial opinion ωi = {bi , di , ui , ai}, the
expectations of projected belief P(bi ) and disbelief P(di ) are

P(bi) = bi + ai ui , and P(di) = di + (1 − ai)ui (3)

where P(bi ) + P(di ) = 1. The ai is critical in interpreting
uncertainty ui when bi and di are almost the same.

B. Initialization of Opinions

In the beginning, the zealots [28] of true informers or false
informers, who support two extreme opinions as true opinion,
ωT = {b → 1, d → 0, u → 0, a = 1}, and false opinion (i.e.,
disinformation), ωF = {b → 0, d → 1, u → 0, a = 0}. The
initial opinions of the rest of users are defined as Uncertain
opinion, by ωU = {b → 0, d → 0, u → 1, a = 0.5}, without
showing strong preference.

C. Opinion Update

When two users i and j interact, with opinions ωi and ω j ,
they may exchange and update their opinions based on their
preferences. Agent i ’s trust opinion ωi⊗ j in j ’s opinion is
defined by a discounting operator [15], c j

i ∈ [0, 1], as

ωi⊗ j =
�

bi⊗ j = c j
i b j , di⊗ j = c j

i d j

× ui⊗ j = 1 − c j
i

�
1 − u j

�
, ai⊗ j = a j

�
. (4)
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The c j
i can be specified based on user i ’s type of decision-

making. We may consider a user i as three types: 1)
uncertainty-based DM (U-DM); 2) homophily-based DM
(H-DM); and 3) encounter-based DM (E-DM). The following
discounting operators are used accordingly.

1) Uncertainty-Based Discounting (uc j
i ): Uncertainty (or

lack of confidence) on given information has been used
as a basis to decide whether to reflect the information in
a user’s opinion update [7]. In SL, the uncertainty-based
discounting operator, uc j

i is the combination of two
uncertainties as [7]

uc j
i = (1 − ui)

�
1 − u j

�
. (5)

We mainly consider uncertainty u derived from a lack
of evidence and conflicting evidence. To consider both,
we leverage the so-called uncertainty (or vacuity) max-
imization technique [15]. In SL, an opinion update
stops when uncertainty is zero, which will prevent new
information from being effectively applied in the latest
opinion. The uncertainty maximization technique [15]
enables the amount of conflicting evidence to be trans-
formed to the vacuity (i.e., ui ) of an opinion. Given
user i ’s opinion ωi , P(bi ) and P(di ), the correspond-
ing vacuity-maximized opinion is estimated by ω̈i =
(b̈i , d̈i , üi , ai ) where üi , b̈i and d̈i are

üi = min

�
P(bi )

ai
,

P(di)

1 − ai

�

b̈i = P(bi) − ai üi , d̈i = P(di) − (1 − ai )üi . (6)

Only when ui is sufficiently low by a threshold, ξ , the
above üi can replace uc j

i in (5).
2) Homophily-Based Discounting (hc j

i ): Homophily (or
like-mindedness) is an important influence factor of an
opinion update [18]. We use the cosine similarity to
measure the extent of homophily of two users’ belief
and disbelief masses in the range of [0,1], as the hc j

i by

hc j
i = bi b j + di d j�

b2
i + d2

i

�
b2

j + d2
j

. (7)

3) Encounter-Based Discounting (c j
i = 1): The agent i

encounters and trusts j ’s full opinion by ωi⊗ j = ω j

in (4) when c j
i = 1. Otherwise, c j

i can be either uc j
i or

hc j
i in SL. When interacting with new information from

the trust opinion of j by the consensus operator [15],
agent i can update the opinion as ωi ⊕ ωi⊗ j . = {bi ⊕
bi⊗ j , di ⊕di⊗ j , ui ⊕ui⊗ j , ai ⊕ai⊗ j }. The details of each
element are given by [15]

bi ⊕ bi⊗ j =
	
bi



1 − c j

i

�
1 − u j

�� + c j
i b j ui

�
/δ;

di ⊕ di⊗ j =
	
di



1 − c j

i

�
1 − u j

�� + c j
i d j ui

�
/δ;

ui ⊕ ui⊗ j =
	
ui



1 − c j

i

�
1 − u j

���
/δ;

ai ⊕ ai⊗ j =
�
ai −

�
ai +a j

�
ui

�

1−c j

i

�
1 − u j

��+a j ui

δ−ui



1−c j

i

�
1 − u j

��
(8)

where δ = ui + 1 − c j
i (1 − u j) − ui (1 − c j

i (1 − u j )) =
1 − c j

i (1 − ui)(1 − u j ) and δ �= 0 is assumed. The level
of uncertainty ui ⊕ ui⊗ j is the same as 1 − (bi ⊕ bi⊗ j +
di ⊕ di⊗ j ).

In addition to above three types of DMs, models of other
DMs can also take advantage of users’ preferences by existing
opinion update rules [23], [44]. We consider the assertion-
based (A-DM) and herding-based DMs (HE-DM) as com-
paring counterparts for extensive experiments of investigating
their effectiveness in combating the spread of disinformation.
These are designed based on the following assertion and
herding opinion update rules as follows.

a) Assertion opinion update model: Comparable to the
proposition in SL, the amount of knowledge and degree of
subjective prior belief can form the assertion opinion by
Ai = {ki, spbi } [44]. When treating ki and spbi as the belief,
disbelief, and base rate in ωi , and matching the ranges of
spbi from [−1, 1] to base rate ai in [0, 1], the assertion-based
opinion update rule for ωi⊕ j is by

ki⊕ j = ki + k j(1 − ki ) for k ∈ [b, d, u] (9)

ai⊕ j = ai + b j a j(1 − ai).

Since the assertion model can obtain more knowledge of ki

and collect more evidence of b, d , u, the total of b, d , u can
exceed 1. To fit the sum of bi⊕ j , di⊕ j , ui⊕ j to 1, the next
step is to redistribute the SL masses of three dimensions by
ki⊕ j/(


k∈{b,d,u} ki⊕ j).

b) Herding opinion update model: Similar to the imitation
of all the neighbors’ behaviors, a user can update the opinion
by evaluating all the neighbor’s opinion similarities by the
convincing power [23]. Fitting to the SL opinion, for x ∈
[b, d, a], the herding update rule for ωi⊕ j is

xi⊕Fi = min

⎡
⎣1, xi + ui

|Fi |
�
j∈Fi

�
1 − u j

��
x j − xi

�⎤⎦ (10)

where ui = 1 − (bi + di). This herding influence implies that
user i will rely more on the neighbors j ’s opinions whose
u j is low particularly when user i is not confident of his/her
opinion.

D. Interaction Model for Opinion Update

Users can update their opinions when they are exposed
to other users’ opinions from user interactions in OSN. The
interaction model covers two real-world user interactions:
1) the activities of sharing information and 2) connecting or
disconnecting with other users. The details of those activities
as follows.

1) Sharing Opinion: A user can have a chance to update
his/her opinion through sharing his/her opinion as follows.

a) Pair-wise interaction: Leaving comments or receiving
messages or providing feedback (e.g., leaving sentiments, such
as likes) with one friend, which is called feeding behavior.
This feeding probability of user i , denoted by P f

i , is collected
from real datasets.

b) Posting: Sharing user opinion with all friends by posting
messages. We also extract this posting probability of user i
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from real datasets, denoted by P p
i , for the user to interact

with other users.
In this interaction model, users may update opinions with

one neighbor by feeding or with all neighbors by posting. User
i interacts with neighbor j , who has two types of sharing, P f

j

and P p
j , and a relative degree of activities Pi j , by

Pi j = P f
j + P p

j
k∈Fi



P f

k + P p
k

� (11)

where Fi is the set of user i ’s friends. We assume that a user
will interact with other users who are more active, which
is reasonable in real OSNs. If users i and j interact, the
feeding probabilities of both (i.e., P f

i and P f
j ) will increase.

If user i takes the “updating and sharing” (SU ) strategy (see
Section IV-B), then the posting P p

i will increase.
2) Maintaining a Friend Network: A user will make friend-

ing or unfriending decisions based on uncertainty or projected
difference (PD) between his/her opinion and friends’ or other
users’ opinions, depending on the user type. The PD between
two user opinions is [7]

PDi j =
��bi − b j

�� + ��di − d j

��
2

. (12)

Each user’s friending and unfriending activities will follows.
a) Friending: Each user will invite a friend based on his/her

tendency to connect. The probability of a new edge connecting
to any node with degree k is by the price model [21] as
((k + 1)pk/m + 1), where m is the mean out-degree and
pk is the fraction of nodes with degree k. User j ’s threshold
φ j is a random real number in [0, 1] following the Gaussian
distribution. U-DM j accepts friending requests from i only
when ui < φ j ; Other DM j accepts the request if PD j i < φ j .
Otherwise, j will reject it.

b) Unfriending: A user can unfriend a current friend when
he/she finds his/her opinion is way different from the friend
user’s. Given uncertainty is less than 0.5 (i.e., u j < 0.5) for j
to ensure sufficient interactions to update opinion, U-DM user
i will unfriend j based on the threshold φi when φi < u j <
0.5; while other DM user i will unfriend j if the PD in (12)
satisfies P D ji > φi .

IV. GAME THEORETIC AGENT MODEL

In Fig. 1, we demonstrate a whole game considered by
three types of players (i.e., an attacker, defender, and user).
This game is represented by an undirected graph, denoted
by G(V , E), where V is a set of vertices representing game
players and E is a set of edges representing the friend
relationship (i.e., ei j = 1 when players i and j are friends;
otherwise ei j = 0). Each player i (i.e., vi ) can form his/her
opinion based on an amount of information received from
nearby friends (i.e., adjacent players in a given G).

Since the social network mediates the interactions among
players, a single game can only occur when two players are
friends (i.e., directly connected in a topology). Accordingly,
a player can start a single game with another friend at a differ-
ent interaction time. Although one player can participate single
games repeatedly from all interactions’ times, this section
will define a single game by three players’ roles, attackers,

a defender, and legitimate users. We define and formulate
each player’s objectives, strategies, and its payoff function
in a single game. Supposing two players select each of their
strategies, they can decide how to update their opinions based
on their innate preferences, roles, or adopted opinion models.
Then they can judge each utility from the results of opinion
updates. A player’s payoff function by taking a particular
strategy is a weighted sum of the utilities, considering all the
possible strategies of an interacting friend. Finally, in a single
game, each player can find a preferred strategy associated
with the highest payoff value defined by (13), (16), and (19).
We summarize the input (i.e., strategies) of each player’s
payoff function and the output (i.e., expected payoff) of the
payoff function in Table I.

The proposed game framework uses a repeated game con-
sisting of multiple single games. A repeated game is a form of
an extensive game where the same game (called a stage game)
is played repeatedly, and the stage game influences decisions in
future games. We use a repeated game to describe continuous
interactions between attackers, users, and a defender (a social
network platform administrator). In the repeated game, each
player can take an action by predicting other players’ actions
based on their actions observed in the previous stage games.
Each stage game belongs to a game of incomplete and
imperfect information, such that each player does not know the
type of an opponent. For example, the attacker may not know a
user’s type. A defender may not know exactly whether a given
user is a legitimate user or an attacker. The user may not know
whether an encountered user is an attacker or another user.
We also assume that each player knows his/her opponent’s
move based on limited observability. This is modeled based
on the probability distribution of the opponent’s actions with
90% accuracy, representing each player’s belief about his/her
opponent. All above assumptions considering incomplete and
imperfect information of the game is well aligned with real-
world, uncertain situations.

A. Attacker Agent Model

An attacker aims to maximize the influence of disinfor-
mation by directly disseminating disinformation or disrupting
users from obtaining true information by taking various decep-
tion strategies [16].

1) Strategies: The four attack deception strategies as
follows.

a) Degradation (DG; a A
1 ): This strategy is to confuse legit-

imate users by injecting noise into true information. This is
realized by forwarding a highly uncertain opinion, represented
by {b, d, u, a} = {1/n, 1/n, (n−2)/n, 0.5}, where n is a large
number of evidence.

b) Corruption (C; a A
2 ): This strategy produces false beliefs

by injecting disinformation or replacing true information with
disinformation. We realize this by propagating an opposite
opinion of exchanging b and d to the friends.

c) Denial (DN; a A
3 ): This strategy is to prevent users from

accessing true information by not forwarding true information
to their friends. It can lead to a lack of information, creating
uncertainty and making users’ judgment difficult in discerning
the truthfulness of information.
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TABLE I

INPUT AND OUTPUT OF THE GAME MODEL WITH THREE PLAYERS

d) Subversion (S; a A
4 ): This strategy is to mislead a user’s

decision by altering his/her information process, such as
considering noncredible information more or credible infor-
mation less. For S, the attacker will feed false opinions, ωF ,
as described in Section III.

Note that an attacker taking actions of C , or DN will use
opinions received from other users and perform the attack on
the deception opinions as described above.

2) Payoffs: We assume that the attacker performs the
above strategies by sharing messages rather than performing
pair-wise interactions for efficiency. Attacker i can estimate
its expected payoff of taking strategy k by

EPAi
k

�
aU , aD

� =
�
�∈D

�
m∈U

pD
� · pU

m · ui j
k�m (13)

where D is the set of the defender’s strategies, U is the set of
the user’s strategies, � is an element strategy in D, and m is
an element strategy in U . The pD

� refers to the probability for
a defender to take strategy � (i.e., either detect/terminate the
attacker’s account or continue monitoring, aD

1 or aD
2 ). The pU

m
is the probability of a user to take strategy m (i.e., aU

1 − aU
3 ).

An attacker obtains pD
� and pU

m based on the historical record.
The ui j

k�m is the utility when attacker i takes k strategy when
the defender takes � strategy and user j takes m strategy. The
ui j

k�m is given by

ui j
k�m = ds

�
k, m, ωi , ω j

� − g� (14)

where the utility is estimated by the gain minus loss. The
gain is estimated by ds(k, m, ωi , ω j ) which represents the
improvement made for the mean similarity between the false
opinion, ωF , and users j ’s opinion by taking attack strategy k
and not taking it. The ds(k, m, ωi , ω j ) is given by

ds
�
k, m, ωi , ω j

� = s
�
k, m, ωF , ω j

� − s
�¬k, m, ωF , ω j

�
(15)

where s(k, m, ωF , ω j ) refers to the cosine similarity in (7)
of j ’s opinion and false opinion ωF when the attacker
takes k strategy when interacting with user type m. The
s(¬k, m, ωF , ω j ) refers to the similarity score for the attacker
not taking k strategy in the same context. The g� is the
attacker’s loss when the defender takes � strategy, estimated
based on the average similarity in (7) between the true opinion
and each of all users’ opinions.

B. User Agent Model

A user aims to judge information correctly based on his/her
propensity. A user can be either of the five DMs types
described in Section III-C: 1) U-DM; 2) H-DM; 3) E-DM;
4) A-EM; and 5) HE-DM (i.e., U: uncertainty, H: homophily,
E: encounter, A: assertion, and HE: herding).

1) Strategies: A user’s three strategies as follow.
a) Updating and sharing (SU; aU

1 ): A user updates his/her
opinion and shares the updated opinion with other friends.

b) Updating (U; aU
2 ): A user updates his/her opinion only

but does not share the updated opinion with other friends.
c) No updating (NU; aU

3 ): A user discards a received
opinion.

2) Payoffs: User i plays with other user or an attacker, not a
defender. However, user i does not know whether that player
is an attacker or a legitimate user. Hence, user i estimates
his/her expected payoff of taking strategy m by

EPUi
m

�
aU j

� = p
A j

Ui
· u

Ui A j
m +



1 − p

A j

Ui

�
· u

Ui U j
m (16)

where p
A j

Ui
is the probability that user j is an attacker. The

u
Ui A j
m or u

Ui U j
m is the utility user i can obtain by taking strategy

m when an encountered user is an attacker or a legitimate user
(can be either one of the five DM types), respectively. The
u

Ui A j
m is given by

u
Ui A j
m =

⎧⎨
⎩

�
k∈A

p
A j

k · −s
�
m, ωF , ωi , ω j

�
, if m = aU

1 or aU
2

0, if m = aU
3

(17)

where k is a strategy taken by attacker j and p
A j

k is user
i ’s belief of attacker j performing strategy k. User i can
estimate p

A j

k based on its historical experience with attack-
ers in the past. The s(m, ωF , ωi , ω j ) represents the mean
similarity between false opinion, ωF , and users i ’s expected
opinion after interacting with attacker j via m strategy. The
s(m, ωF , ωi , ω j ) is estimated by the cosine similarity.

For u
Ui U j
m , depending on user j ’s type, it should be estimated

as user j can choose one of his/her strategies by

u
Ui U j
m =

⎧⎨
⎩


m�∈U j

p
U j

m� · uc j
im� , if j is U − DM type

m�∈U j
p

U j

m� · hc j
im� , if j is other DM types

(18)

where uc j
im� and hc j

im� are calculated by (5) and (7), respec-
tively, with the opinions of users i and j updated by strategy
m � where U j is a set of actions by user j .

C. Defender Agent Model

A defender (e.g., a given OSN system administrator) plays
a game against an attacker if a malicious user receives NR

misconduct reports provided by other users.
1) Strategies: The defense strategies as follows.
a) Terminating a malicious user (T ; aD

1 ): The defender will
suspend the account of a reported user based on its evaluation
using the expected payoff function in (19).

b) Monitoring a suspect user (M; aD
2 ): A defender finds a

suspect user but regards this user as nonmalicious.
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2) Payoffs: The defender can estimate its expected payoff
of taking strategy � by only considering the attacker’s strategy
as follows:

EPD
�

�
a A

� =
�
k∈A

pA
k · uD

�k (19)

where A is the set of the attacker’s strategies and k is an
element strategy in A. The pA

k refers to the probability for an
attacker to take strategy k. If the reported attacker is not a
real attacker, but a legitimate user, the defender will assume
that the reported user is an attacker and estimates its utility
based on (19). The uD

�k is the utility when the defender takes
� strategy when the attacker takes the k strategy. Unlike the
attacker’s utility, the defender will consider the utility of each
strategy based on the overall impact introduced to the system.
Hence, uD

�k is estimated where the overall strategies of the
attacker and users are considered by

uD
�k = ds

�
�, k, ωT , ω�� − c� (20)

where ds(�, k, ωT , ω�) refers to the improvement made by
taking strategy � for the mean similarity between the truthful
opinion, ωT , and the expected opinion ω� of all users (includ-
ing all active users known as legitimate) given an attacker
taking k strategy, compared to not taking defense strategy �.
The ds(�, k, ωT , ω�) is given by

ds
�
�, k, ωT , ω�� = s

�
�, k, ωT , ω�� − s

�¬�, k, ωT , ω�� (21)

where s(�, k, ωT , ω�) and s(¬�, k, ωT , ω�) are estimated as the
mean value of the cosine similarity in (7) between the truthful
opinion and a user’s opinion and the maximum possible
ds(�, k, ωT , ω�) is 1. The c� is a constant cost incurred for
the defender to take strategy � where the cost of T (i.e., aD

1 )
is 0.1 and the cost of M (i.e., aD

2 ) is 0.

D. Opinion-Based SIR Epidemic Model

The propagation of disinformation can alter the opinions
of users. In the population view, each user can be assigned a
status based on the projected belief P(b) and disbelief P(d).
By the SIR model, the Susceptible S users have P(b) ≤
0.5 and P(d) ≤ 0.5. A user of P(d) > 0.5 belongs to status
Infected (I ) and a user of P(b) > 0.5 stays in recovered
state (R). The SIR model quantifies the dynamics of transition
from S to I and I to R by the infection rate βt and recovery
rate γt . We use time-dependent β and γ because our opinion
propagation is influenced by the decision-making process in
the game model, but not naturally transmitted by contact like
the spread of disease. The ODEs to solve this SIR model at
any time t are

dS

dt
= −βt St It ,

dI

dt
= βt St It − γt It ,

dR

dt
= γt It (22)

where St + It + Rt = N with N nodes in a given net-
work. This SIR status and infection and recovery rates can
represent the effect of disinformation propagation under the
different opinion update models. However, the parameters
θ = {β1, . . . , βT , γ1, . . . , γT } are only available from the game
model simulation results. We investigate how each opinion
model generates βt and γt which determines the extent of
disinformation propagation in the network.

1) Parameter Optimization and Gradient Decent: Given the
simulation of users’ opinions, we can calculate the St , It , and
Rt for t ∈ [1, T ]. Then we need to fit those values to the ODEs
in (22). We use gradient descent [4] to optimize the parameters
of interest, i.e., θ = {β1, . . . , βT , γ1, . . . , γT }. The objective
function considering all T interactions are defined as below

J (θ) =
T�

t=1

�
Ĩθ,t − It

�2
(23)

where Ĩθ (t) is the estimated number of infectious people
at time t via the SIR model with parameters θ . However,
the gradients are intractable since they are parameters of the
SIR model, which is an ODE. We use the small difference
(1%) between the objective function divided by the difference
between the parameter to approximate a parameter’s gradient.
For approximation, the βt ’s gradient is derived by

∇βtJ (θ) = Jt (θ) − Jt(1.01 × θ)

−0.01 × βt
(24)

where Jt (θ) = ( Ĩθ,t − It )
2. Note that the small difference

(i.e., 1%) is applied by adding 1.01 in the numerator and -
0.01 in the denominator in the above equation. After we get
the gradients of parameters, i.e., ∇β(θk) and ∇γ (θk) for the kth
iteration, we use the gradient descent’s update rule to update
the parameters to obtain θk+1 by

βk+1 = βk − η∇β(θk), and γk+1 = γk − η∇γ (θk) (25)

where η is the learning rate.
2) SIR Status Prediction: When the lists of βt and γt under

each time points are available from the data-fitting step, we can
estimate the future count of each St , It , and Rt users from the
ODE model in (22). Given the initial S0, I0, and R0, we can
predict the next-step values of each role, i.e., S1, I1, and R1,
from (22), using β1 and γ1. This step can be iterated to predict
the numbers of S, I , and R at any future interaction time.

V. EXPERIMENT RESULTS AND ANALYSIS

A. Experiment Setup

1) Dataset: The 1KS-10KN dataset [35], [36] includes Twit-
ter accounts of 10 000 normal users and 1000 human attackers.
The legitimate users and spammers have an average number
of friends of 7744 and 2520, respectively. The dataset has
a full spectrum of profiles, social activities, and tweets texts
for each user. From the user behaviors data, the initial P f

j
was calculated as the sum of the frequencies of reply and
favorite tweets and initial P p

j was the sum of the tweeting
and retweeting frequencies.

2) Metrics: We use the following performance metrics.
a) Agent’s opinion (ωi = {bi, di , ui , ai}): It consists of the

four masses of an agent i ’s opinion, which can show how
convergent or divergent users’ opinions are after T number of
interactions.

b) Ratios of S, I , and R: This counts the user status based
on their SL-based opinions at each interaction time.

c) Infection rate β and recovery rate γ : These rates under
each opinion model can show a different effect on the DMs.
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TABLE II

KEY PARAMETERS AND THEIR DEFAULT VALUES

d) Network community topology: It visualizes the quality
of two communities generated from the greedy modularity
algorithm [9] before and after disinformation propagation.

e) Probability distribution of taking strategies: The proba-
bility distributions of each player role taking their strategies
help to understand how those choices of strategies have
introduced different ways to process false information and
corresponding outcomes.

f) NE analysis: In a noncooperative game, NE solution can
be analyzed where each player is assumed to know the other
players’ strategies and their preferences [26], leading to the
best payoff estimation based on the best actions.

3) Experiment Environment: A sample of N = 1, 000 nodes
sub-network contained Pfalse = 10% of total users as attackers
and another Ptrue = 10% of total users as true informers
and the rest of them (i.e., 80%) as users. As a result, the
initial state of SIR model was S0 = 800, I0 = 100, and
R0 = 100. The attackers and true informers were selected
from nodes with the top 20% in their degree centrality
measures. All the notations used are summarized in Table II.
The values of parameters describing user behaviors, such as
feeding and posting, are derived from real datasets described in
Section III-D. For other user behaviors (e.g., a tolerance level
to report a malicious user, ρ, and a threshold to accept a friend
request, ξ ), we assumed it follows Gaussian distribution with a
given mean and standard deviation (i.e., N (μ, σ )) to describe
the users’ different characteristics. It is possible to investigate
the sensitivity of the results when a different set of mean and
standard deviation is used to describe a different set of user
populations. Other system parameters, such as a threshold for
uncertainty maximization and learning rate (e.g., φ and η),
are selected at their optimal settings. The users were either
the same types, or from various ratios of H-DM and other
users for in-depth sensitivity analysis. Since the majority of
the followers were not in this collected network, the friending
network was simulated by allowing each user to select the
users with the highest pairwise topic similarity [31], which
was a cosine similarity of the top 20 tweets topics generated
by latent Dirichlet allocation (LDA) algorithm from their
total tweets. An attacker was assumed to connect to normal
users or true informers only. To reduce the stochastic errors,
one experiment setting was repeated 100 runs where one
simulation run covered T = 200 number of total interactions.
Each player’s probability distribution of actions was updated
by Dirichlet distribution [13] where an outcome from each
game is counted as one piece of evidence.

4) Simulation Procedures: In the 1st interaction, each
node interacts with at most one neighbor following the
steps.

1) 1.A: Each attacker starts playing a game by choosing
one neighbor to propagate false opinions by strategy
subversion.

2) 1.B: Each user i picks one of the friends j based on Pi j

and chooses an random action. If aU
1 or aU

2 is chosen,
user i updates an opinion (see Section III-C) based on
i ’s type.

3) 1.C: If attacker j interacts with user i who accepted j ’s
opinion to update his/her opinion, attacker j will share
the received opinion ωi with deception to other friends
in the next interaction.

4) 1.D: Each user follows the procedures of the friending
and unfriending decisions in Section III-D.

From the 2nd to T th interaction, one interaction time
allowed each player to play a game with at most one neighbor.
All the players were considered in a random order. If all
friends of a player had participated in games with others at
the current interaction round, this player would neither play a
game nor update opinion. The steps in one interaction were
as follows.

1) 2.A: Each attacker chose one neighbor i and decided
one attacker strategy by evaluating the payoffs of each
attacker strategy in (13). Then, the attacker propagated
the opinion received from 1.C with the taken deception
strategy to i and repeated 1.C.

2) 2.B: Each user kept performing 1.B but chose the best
user’s strategy of the highest expected payoff in (16).

3) 2.C: User i should report another user or attacker j
interacting with (i.e., a friend in user i ’s social network),
based on the extent of discrepancy between ωi and ω j

using (12). The tolerance ρ for user i to report to the
defender, an OSN service provider, was modeled as the
Gaussian distribution of mean μ and standard deviation
σ .

4) 2.D: The defender decided whether to suspend a
detected, malicious user or not by a higher payoff
strategy from (19), if a malicious user was reported at
least NR times by other users.

5) 2.E: Each user maintained the friending network by
following step 1.D. If a legitimate user reported a
malicious user in step 2.C, their friend relationship was
also removed.

For reproducibility of this experiment, we made all
extracted user activity features from the original dataset
and the source code for the simulation implemented
available at https://anonymous.4open.science/r/
opinions-game-22/README.md.

B. Numerical Results and Analysis

By default the percentages of true and false informers
were 10% each and the remaining 80% of users were single
type users of U-DM, H-DM, E-DM, A-DM, or HE-DM. The
sensitivity analysis of various false informers ratios Pfalse was
conducted. In the Appendices, we plotted the distribution
of strategies in our opinion game players when there were
mixtures of H-DMs and other DMs.

1) Analysis of Uncertain Opinions: Fig. 2 compared users’
opinions dynamics from five types of DMs in 200 game inter-
actions in terms of b (belief), d (disbelief), u (uncertainty), and
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Fig. 2. Evolution of SL-based opinions of all legitimate users over 200 interactions in belief (b, blue), disbelief (d, red), uncertainty (u, green), and base
rate (a, gray) under the dataset 1KS-10KN [35], [36]. (a) Uncertainty-DM. (b) Homophily-DM. (c) Encounter-DM. (d) Assertion-DM. (e) Herding-DM.

Fig. 3. SIR curves of five opinion models in our proposed game, including Rm as the removed nodes by the defender. (a) Uncertainty-DM. (b) Homophily-DM.
(c) Encounter-DM. (d) Assertion-DM. (e) Herding-DM.

Fig. 4. Simulated SIR curves of five opinion models from the ODE parameter optimization. The β and γ values fluctuate at each interaction time. The common
ranges from 200 interactions of each βt and γt are shown inside the figures. (a) Uncertainty-DM. (b) Homophily-DM. (c) Encounter-DM. (d) Assertion-DM.
(e) Herding-DM.

a (base rate). Since different types of users had distinctively
opinion dynamics, we could observe H-DM type users in
Fig. 2(b) introduce much higher polarization to the network
by spreading false opinions because some users believe true
information while other users believed in false information.
In contrast, in Fig. 2(a) of U-DM type users, more users
believed true information when they had more interactions
with other users, as shown by beliefs greater than 0.5 and
low-level disbeliefs. This is because the U-DM type users
interact and update their opinions based on uncertainty of
an encountered user’s opinion, and highly uncertain opinions
propagated by the attackers aiming to deter propagation of true
information were more likely to be dropped or less considered.
The HE-DM type users in Fig. 2(e) can also form high beliefs
and low disbeliefs during the interaction. In Fig. 2(c) and (d),
all users had opinion consensus after 200 interactions.

When U-DM and HE-DM users updated opinions in
Fig. 2(a) and (e), their belief gradually increased while uncer-
tainty gradually decreases. The base rate increased from the
initial 0.5 to the final interaction of nearly 1.0. In contrast,
in H-DM users’ opinion update, the uncertainty dropped
rapidly below 0.1 and belief, disbelief and base rate increased
to less than 0.9 in Fig. 2(b). Even after interaction 50, the

opinions distribution became stable. The belief and disbelief
values ranged across the whole range which showed a higher
diversity as in other types of users. When users interacted with
other users and updated their opinions based on the similarity
of opinions, they were more likely to believe disinformation
because H-DM type users can accept noisy, uncertain opinions
as long as the difference between their own opinions and the
received opinion was still below φ.

2) Analysis of Opinion Dynamics Using the SIR Model: In
terms of the opinion status analyzed by the SIR epidemic
model, the dynamics of all false informers, true informers, and
legitimate users in each of S, I , R were demonstrated in Fig. 3.
Another user state removed was included because the defender
could terminate the malicious accounts if it chose strategy
aD

1 = T . The curves of the SIR status showed the different
effects of disinformation propagation in the five DMs. The
infected users in all non-H-DMs increased and then decreased.
The decrease of R in U-DM and A-DM correlated with the
increase of removed nodes but H-DM and HE-DM did not
remove any users or attackers.

The gradient decent was applied in Section IV-D to optimize
the infecting rate β and recovery rate γ in the ODEs of users.
The fitting curves of Fig. 3 were presented in Fig. 4 with the
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Fig. 5. Ratio of S, I , and R of five initial percentage of attacker, Pfalse, after 200 interaction times in our proposed game. (a) Uncertainty-DM. (b) Homophily-
DM. (c) Encounter-DM. (d) Assertion-DM. (e) Herding-DM.

Fig. 6. Community view of all the users in the network with their projected belief P(bi ) and communities, which shows belief in true information by blue
color and belief in disinformation by red color. (a) Plots the initial uncertain belief by green color, i.e., P(bi ) = 0.5. There are Pfalse = 20% attackers in the
beginning of each network. (b) Uncertainty-DM. (c) Homophily-DM. (d) Encounter-DM. (e) Assertion-DM. (f) Herding-DM.

ranges of βt and γt . There was no removed curve in Fig. 4
because it was not modeled in the SIR model and this caused
the higher numbers of R in Fig. 4(a), (c), and (d). The curves
of S, I , R in both figures were well matched with each other.
Both A-DM and H-DM in Fig. 4(d) and (e) had large infection
and recovery rates because the SIR curves stayed stable after
the first a few interactions. The H-DM in Fig. 4(b) maintained
a large number of I throughout the interactions so that β and γ
were close to 0 when the users were polarized to two extreme
groups and they hardly changed their opinions. In the first
a few interactions, the H-DMs had a higher β and lower γ ,
compared to the U-DMs in Fig. 4(a).

3) Analysis of Varying the Ratio of Attackers: Further exper-
iments were performed to investigate the influence of initial
attackers, i.e., Pfalse in each type of the network dynamics.
Fig. 5 plotted the dynamics of S, I , R, and removed nodes
after 200 interaction by increasing the Pfalse from 5% to 25%.
The results showed a clear trend that U-DMs in Fig. 5(a) were
the most resistant to the number of attackers because the I was
close to 0 for all the ratios of attackers. The I increased greatly
for H-DM users and in 25% initial attackers, most of the users
believe disinformation. The other E-DM, A-DM, and HE-DM
type users showed similar patterns that the I had a low level
when there were less attackers but the I increased along with
the increase of Pfalse.

4) Analysis of Opinion Dynamics and Polarization: Fig. 6
reflected the topology and dynamics of the network before and
after opinion updates by each types of users when there were
20% of initial attackers. We applied the community detection
algorithm called greedy modularity maximization [9]. The net-
work after U-DMs updating opinions in Fig. 6(b) indicated the
lowest polarization and the homogeniety of U-DMs’ opinions,
which implied that almost all the U-DM nodes had high beliefs
in true information, as shown with blue dots, after disinfor-
mation propagation in the U-DM network. Both the H-DM
and E-DM networks shown in Fig. 6(c) and (d) had highly

polarized blue and red communities with distinct boundaries,
but H-DMs could cause the most polarized network topology.
Fig. 6 supported that the opinion update model in U-DMs
helps users unite and share uniform opinions. On the other
hand, H-DMs could facilitate more polarized opinion groups,
which was aligned with the empirical phenomena observed
in the OSN platforms. This agreement of simulation and
empirical analysis proved the effectiveness of our game model.

Due to the space constraint, we show the experimental
results for additional sensitivity analysis in the submitted
supplement document. In the supplement document, Appendix
A discusses what strategy selection is made by different
players under varying the ratio of H-DM and other users.
Appendix B analyze the strategies chosen by our approach
and the NE which assumes players to hold accurate beliefs
toward the moves of the opponents.

C. Experimental Limitations

In this work, we found the following limitations due to the
inherent difficulties in modeling and simulation research.

1) Some user behaviors, such as a threshold to accept or
request a friend or a tolerance level to report a malicious
user, are set intuitively based on social science research
findings. Since they are not derived from real datasets,
some inaccuracies may be introduced due to inherent
limitations.

2) Game theory assumes that each agent (an OSN user) is a
rational entity to achieve its selfish goal and behaves to
maximize its utility. It may be arguable whether a human
is a rational entity and behaves to maximize its utility.
In future work, to describe an OSN user’s behaviors,
we will consider behavioral game theory [6], which is
well known to predict human behavior and decisions.

3) Although the number of followers is available, network
topologies representing the relationships between users
are unavailable in most datasets. Hence, we generated a
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friend network simulated based on the topic similarity,
which is reasonable in OSNs [31]. However, since the
friend network is not based on real network datasets,
there is an inherent limitation about whether the friend
network reflects a realistic network topology.

4) To address agents’ limited observability, we considered
90% accuracy of observations toward opponents’ moves.
However, there is an inherent uncertainty that may not
be accurately estimated in nature.

VI. CONCLUSION AND FUTURE WORK

This work proposed a game-theoretic opinion framework
allowing users to make rational decisions in updating their
opinions. We developed two opinion models with a user updat-
ing an opinion based on perceived uncertainty or homophily
of an encountered user’s opinion. This model can demonstrate
how these two types of users can defend against false infor-
mation. This study obtained the following key findings.

1) Uncertainty-based decision makers (U-DM) had the
most effective opinion model in combating the spread of
disinformation. This is because U-DM can better inform
the defender in reporting malicious users. In addition,
the defender can terminate the malicious users, leading
to mitigating false information propagation.

2) Homophily-based decision makers (H-DM) showed the
least performance in combating the spread of disinfor-
mation. H-DM tends to make users rely on opinions
similar to their own opinions. It also makes users’
opinions easily stuck in the opinion updates made at
the beginning because they do not tend to change their
opinions.

3) The spread of disinformation often introduces opinion
polarization. H-DM users are likely to produce higher
opinion polarization than users using other opinion mod-
els. In the friending and unfriending process, U-DM
users can remove adjacent users with high uncertainty
while connecting with users with low uncertainty, lead-
ing to less polarization.

4) We observed some discrepancies between NE’s and the
players’ strategies. This is because each player does not
have correct beliefs about the opponent’s move due to
inherent uncertainty, while NE-based strategy selection
is based on the true probability distributions of each
player’s move, which is not true in reality.

We plan to conduct the following future research direc-
tions: 1) examine the influences of the different numbers of
true informers and attackers when they are selected based on
different centrality metrics; and 2) conduct additional sensi-
tivity analyses, such as varying φ to adjust users’ friending
and unfriending decisions and ρ to change a user’s reporting
behavior for malicious users.
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