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ABSTRACT
Main stream operating system kernels lack a strong and re-
liable mechanism for identifying the running processes and
binding them to the corresponding executable applications.
In this paper, we address the identification problem by
proposing a novel secure application identification model in
which user-level applications are required to present identi-
fication proofs at run time to be authenticated to the kernel.
In our model, applications are supplied with unique secret
keys. The secret key of an application is registered with a
trusted kernel at the installation time and is used to uniquely
authenticate the application. We present a protocol for the
secure authentication of applications. Additionally, we de-
velop a system call monitoring architecture that uses our
model to verify the identity of applications when making
designated system calls. Our system call monitoring can be
integrated with existing mandatory access control systems
to enforce application-level access rights. We implement and
evaluate a prototype of our monitoring architecture in Linux
as device drivers with no modification of the kernel. The re-
sults from our extensive performance evaluation shows that
our prototype incurs low overhead, indicating the feasibility
of our approach for cryptographically identifying and au-
thenticating applications in the operating system.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls

General Terms
Security
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Operating system, malware, cryptography, application au-
thentication, process identification
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1. INTRODUCTION
Operating system kernels often enforce minimal restric-

tions on the applications permitted to execute, resulting in
the ability of malicious programs to abuse system resources.
Stealthy malware running as stand-alone processes, once in-
stalled, can freely execute enjoying the privileges provided
to the user account running the process. However, kernels
are not designed to detect malicious behaviors, or identify
malicious processes at runtime.

A well-known approach to protecting systems from ma-
licious activities is through the deployment of mandatory
access control (MAC) systems. Such systems often provide
the kernel with access monitoring mechanisms as well as pol-
icy specification platforms. The user decides on the policies
and the various access rights on system resources. Existing
MAC systems such as SELinux [17], grsecurity [1], and Ap-
pArmor [8] enable the user (or the system administrator) to
express detailed and powerful policies. These solutions are
often implemented using the Linux Security Modules [26] to
monitor access to selected system resources, and apply the
specified policies to the corresponding processes.

In this paper, we point out that the existing MAC-based
based approaches to application authorization alone are not
sufficient for defeating modern malware. That is, the kernel
must have secure mechanisms for authenticating and iden-
tifying processes, beyond the simple and easy-to-forge pro-
cess ID (PID) or process name based identification. Thus, a
critical problem in detecting malicious activities in the user-
space is the ability to strongly identify processes at runtime
and bind them to appropriate application identities. The
identification of processes is a necessary step to prevent ma-
licious processes to achieve their goals by benefiting from
the access rights of legitimate processes.

Although providing useful security solutions, existing
MAC systems do not explicitly address the problem of ap-
plication identification. In [25], the authors present an ex-
tension to the Singularity operating system to define appli-
cations as first-class entities. The extension provides a lan-
guage for the specification of application-level access rights.
However, the proposed method combines the identity of the
application (using application name) with the user’s access
rights and does not provide an explicit application identi-
fication model. Another approach is to identify malicious
processes through the use of behavioral analysis. One may
attempt to identify malicious processes through an anomaly-
detection based approach by conducting analysis on process
behaviors. However, this approach suffers from advanced
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and newly discovered attacks that are capable of bypassing
the detection scope [21].

Our goal is to securely identify processes at runtime and
distinguish legitimate processes from undesired (and per-
haps malicious) ones. Such a secure identification must pro-
vide high assurance in detecting and preventing the execu-
tion of malicious processes.

We present a novel identification model in which appli-
cations are identified and authenticated with high assur-
ance. A privileged legitimate application is associated with
a strong identity used to authenticate itself to the kernel.
Using our identification model, we achieve the following:

• Application identification. Applications with reg-
istered identities, can authenticate to the trusted ker-
nel in order to provide proofs of identity. The kernel
can prove the identity of legitimate applications, rely-
ing on the uniqueness of application identities and a
secure in-host authentication protocol.

• Application monitoring. Our identification model
enables the design and implementation of a sophisti-
cated system call monitoring architecture that is used
to enforce application-level access rights.

Contributions. We present our secure application iden-
tification model using which the kernel can identify and au-
thenticate the running processes. We present the design of
a modified challenge-response protocol to securely authen-
ticate applications. Moreover, we design and implement a
system call monitoring architecture to monitor the execu-
tion of the processes through their interactions with moni-
tored system calls. We use standard benchmarks to evaluate
the performance of our implementation and show that our
system is feasible to implement without a significant perfor-
mance penalty.

2. THE AUTHENTICATED APPLICATION
FRAMEWORK

A major step in enforcing application-level access rights
on the running processes is to identify a process and properly
bind it to the corresponding application. Existing manda-
tory access control (MAC) systems such as AppArmor and
SELinux use installation paths and process names to iden-
tify processes and enforce appropriate access rights. How-
ever, such an identification mechanism is weak. That is
because the installation path and the process name are dy-
namic concepts and are subject to change by the user or
by an attacker. Thus, to guarantee secure access control
enforcement, a MAC system needs to rely on a strong iden-
tification model.

In the diagram of Figure 1, we present a high-level con-
ceptual process of protection against malware that can effec-
tively identify legitimate processes and enforce application-
level access rights with the assistance of a mandatory access
control system. In this process, three major components
need to participate. First, a classification component de-
cides on the legitimacy of the executable code. Next, an
identification component must register legitimate applica-
tions identified in the first step and prove their identities to
the following component. Finally, access policies are spec-
ified and used to monitor the execution of a process and
enforce access rights within a mandatory access control sys-
tem. While the classification of applications and policy spec-

ification are critical steps, we realize the lack of a proper
identification and binding mechanism that can complete the
protection process. Hence, throughout this paper we present
our solution for the identification component in the form of
the following steps:

1. Application key registration. We generate a
unique secret key for each legitimate application.

2. Application authentication. We use the provided
application key to securely authenticate the applica-
tion code which contains the key and produce identity
tokens.

3. Execution monitoring. We monitor the execution
of the processes to limit the activities of unauthenti-
cated ones.

4. Identification and binding. We identify a regis-
tered application process using generated identity to-
kens and bind them to the corresponding application
access rights.

We introduce the design and implementation of the Au-
thenticated Application (A2) framework to address the four
steps required to provide strong identification of applica-
tions. The core idea of A2 is a novel identification model that
is based on sharing unique symmetric keys between every in-
stalled application (that runs in the form of stand-alone pro-
cesses) and the kernel. The strengths of this model is based
on the cryptographic properties of symmetric keys gener-
ated by the key generators for standard encryption func-
tions. The design of A2 is driven by the following security
goals:

1. Providing unforgeable identities that can be used by
mandatory access control systems verify the legitimacy
of the processes.

2. Enabling effective application-level access rights at the
system call usage level.

To achieve our security goals, we define an application key
as follows:

Definition 1. An application key is a string of charac-
ters s of length l generated by a cryptographic key generation
function f : l → s such that with an appropriate length l, s
is always unique and is computationally hard to guess.

Each application key is generated using a trusted kernel
helper (discussed in Section 2.4) and is used for a single
application. Every process created by an application must
be able to use the key to authenticate itself to the kernel.
Application keys can be generated using secure symmetric
encryption key generation functions such as AES [20].

2.1 Threat Model
Our basic trusted components are the kernel code and

kernel’s memory region. We assume that kernel does not
contain any malicious code. Further, we assume that confi-
dentiality and integrity of the kernel’s memory is preserved.
We assume that legitimate applications may be vulnerable
and thus allow downloading malicious code. However, le-
gitimate applications may not contain malicious code and a
malware cannot misuse a legitimate application without run-
ning as a stand-alone process. Specifically, malicious code
running within the boundary of a legitimate process (such as
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Figure 1: Conceptual process of protection against malware.

a malicious browser script or extension) is out of the scope of
our work. Moreover, we assume the hardware, the installed
firmware and standard operating system APIs are trusted.
We also assume that an attacker has no physical access to
the machine and does not know the user’s credentials.

A2 is used to fundamentally distinguish legitimate pro-
cesses from malicious ones. Although the identification
model itself is not a malware detection method, it can be
used to boost the security guarantees of MAC systems as
well as application sandboxing solutions. Later in Section
2.5 we discuss the integration of our application identities
with an existing a MAC system.

2.2 Design Overview
In A2, each legitimate application is supplied with a secret

key that is only accessible by the application code and the
kernel. At the time of creating a process, the application’s
secret key is used by the process to authenticate itself to
the kernel. Once the process is securely authenticated, the
kernel can assure its identity relying on the strong properties
[4] of the cryptographic hash functions.

In the identification model of A2, applications are recog-
nized as individual principals. Keyed applications are the
most privileged applications while unregistered applications
(that are unable to identify themselves) are restricted and
considered potentially malicious. This identification mecha-
nism provides a secure sandbox for the potentially malicious
processes and isolates them from authenticated processes. It
is necessary to allow the creation of any process regardless of
its identity. This is to enable any application to authenticate
itself at runtime in order to provide proof of identity. In ad-
dition, this strategy results in uncovering stealthy malware
as soon as it interacts with the kernel through a monitored
system call.

The A2 framework consists of three main components:
Trusted Key Registrar, Authenticator and Service Access
Monitor (SAM) depicted in Figure 2. We implement the
Authenticator and SAM as Linux kernel modules without
modifying the kernel (see Section 3). We describe the func-
tions of our components in the following.

Trusted Key Registrar is a kernel helper responsible
for installing a key for the application and registering the
application with the kernel. The application interacts with
the trusted key registrar to receive a secret key. The trusted
key registrar stores the same key and registers it for the
corresponding application within a secure storage to be used
for the authentication of the processes at runtime.

Authenticator is responsible for authenticating a pro-
cess when it first loads. The Authenticator generates iden-

tity tokens (defined in Section 2.3.1) based on a token gen-
eration protocol.

Service Access Monitor (SAM) is responsible for ver-
ifying the tokens at runtime and enforce application-level ac-
cess rights. Since the tokens are maintained by the Authen-
ticator, SAM realizes its task by coordinating with the Au-
thenticator through a shared data structure. SAM enforces
application-level access rights based on a user-specified ap-
plication policy.

2.3 Secure Authentication of Applications
In order to identify a running process and bind it to the

corresponding application 1, the process must be able to
prove its identity to the trusted kernel using the applica-
tion’s secret key. The authentication is summarized in three
generic steps. First, the kernel needs to send a random nonce
to the application process. The process produces the hash-
based message authentication code (HMAC) using the nonce
and the secret key and returns the nonce back to the kernel.
The kernel regenerates the HMAC and compares it to the
value returned by the application.

Implementing the authentication protocol in kernel is not
trivial. A technical challenge is how to support the secure
communication between an application and the kernel in
an efficient way. The first design choice is that the kernel
directly accesses the application’s key and verifies its iden-
tity provided that the key is stored in a predefined location.
However, this method does not provide the security level
that is needed in order to establish a strong identification.
The location of the key can be either defined in memory
or the file system. Defining the key in the memory imposes
additional risk to stealing the key as well as causing complex-
ity of maintaining the key location. The alternative design
would be separating the key in a restricted key storage to be
used by the kernel at the authentication time. This design
choice is not adequate since it is not possible to securely
bind a running process to the correct key file at runtime.
Therefore, we use an authentication protocol that can be
executed on a socket file between the process and the ker-
nel. This method can be realized using a memory-based
socket (or a shared memory region) such as the /proc file
system [13]. The advantage of using the /proc file system
is that it is conveniently accessible by kernel device drivers
and is under the complete control of the kernel. More details
on the implementation can be found in Section 3.

2.3.1 Token Generation Protocol
Our authentication protocol is used to generate identity

1A piece of executable code that runs in at least one stand-
alone process.
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Figure 2: The access to selected system calls is monitored by A2. Pi denotes an application process.

tokens for legitimate applications. The identity tokens are
later used to identify the processes when interacting with
the kernel through the system calls. The identity tokens are
needed since the authentication and verification of identity
are separated in A2. That is, the authentication is only per-
formed at the time of creating a new process. When the cre-
ated process accesses a monitored system call, the identity
verification takes places by searching for an identity token.
Beside providing the needed security, the separation of au-
thentication and identity verification improves the system
call monitoring overhead (see Section 3.2).

Our token generation protocol (TGP) is used to authen-
ticate individual processes based on the keys of the corre-
sponding applications. TGP follows a standard challenge-
response authentication protocol used in secure data com-
munications over a network. We modify the standard pro-
tocol to include necessary kernel-side verifications as well as
including token generation steps.

TGP is used to prove the identity of a process to the ker-
nel. TGP must assure that no process can impersonate other
processes using a replay attack provided that the applica-
tion keys remains secret. Further, a registered application
process must be able to successfully authenticate itself, if
it was not previously authenticated. TGP also assures that
no process can launch a denial of service attack on the ker-
nel. Thus, we say that the identity of a process is proved if
the process has a key with compliance to Definition 1 and
successfully executes TGP such that a token is generated.

In the following, we formally define a registered applica-
tion, an identity token and the Authenticator:

Definition 2. A registered application is a piece of exe-
cutable code that runs in the form of one or more stand-alone
processes and is issued a secret key by the kernel.

Definition 3. An identity token is a tuple (app, pid)

where app is the name of a registered application and pid is
the kernel process ID of the process created by app.

The identity token is unique and binds to a single process.
It is valid until the termination of the process and is gener-
ated by the Authenticator but it is readable by the Secure
Access Monitor.

Definition 4. The Authenticator is a kernel module that
implements the token generation protocol and is responsible
for creating and maintaining identity tokens for registered
applications.

Let A denote the Authenticator module and p be a user
process where p.pid is p’s process identification and p.app is
p’s application name. The function malicious(p) would log
p as malicious and may take any necessary action depending
on the security policies. Additionally, tgenerate(p) is a
function to generate a token tk for the process p. Finally,
arequest(p.app) is a function used by p to send an authen-
tication request to A. The steps of TGP are as follows. In
each step the actions of (if there is any) A and p are specified.

Token Generation Protocol:

1. p: Sends arequest(p.app) to A.

2. A: Receives and verifies the request:

2.1 Verifies if the requesting application has a regis-
tered key. Otherwise, malicious(p).

2.2 Verifies if p has already established a token. If so,
malicious(p).

2.3 A Limits the authentication requests in order to
prohibit the applications to flood the kernel in-
tentionally or due to an unintended software bug.
Thus, A verifies if count(p) < limit(p). If the limit
check was failed, malicious(p). Each application
has a specified limit of simultaneous requests. This
is set as part of A’s verification policy.

2.4 Generates a random nonce s and sends it to p. Ad-
ditionally, A sets a timer t for the string to expire if
there was no response from p. The time frame to
expire t needs to be very short as this authentica-
tion is performed without networking inaccuracies.
We only need the timer for the case that the pro-
cess crashed or was killed and did not continue the
authentication.

3. p: Generates the hash-based message authentication
code (HMAC) h = HMAC(s,p.pid, k) (where k is p’s
secret key) and sends it to A.

4. A: If t has expired, the authentication request is dis-
carded. If p is still executing, it will be terminated to
prevent a race condition.

5. A: Computes h′ = HMAC(s,p.pid, k). If h = h′, then
tk = tgenerate(p). tk is valid until the termination
of p. Otherwise, malicious(p).

6. A: Stores tk in a data structure tlist that is only
readable by the verification module (i.e. SAM).
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TGP prevents replay attacks since h = HMAC(s,p.pid, k)
may not be accepted if received from any process other than
p. Denial of service attacks are also prevented since TGP
limits the number of requests that may be received from a
single process in Step 2.3. Further, code injection attacks are
avoided in TGP. An attacker can write a malicious code to
the shared memory socket. The code may be read either by
p or A. However, since the communication between p and A

has a definite length (either the length of the request, or the
nonce or the HMAC), exploiting a buffer overflow is avoided
by verifying the string length.

2.3.2 Tokens Storage
The tlist is a data structure that is maintained by the

Authenticator. Authenticator can only allow read access to
tlist to be used by a verification module inside the kernel.
In systems with heavily use of various types of software (es-
pecially multi-process software), tlist may grow relatively
large. It is not efficient to store the tlist in a sequential list.
That is because, the tlist will be frequently searched for
tokens at the time of system call monitoring by the verifica-
tion module. Therefore, it is beneficial to make use of binary
search trees, which on average reduce the time of searching
to O(log n) where n is the number of tokens in the list. Bi-
nary search trees take longer time for the insert operation
compared to a normal sequential list (O(log n) as opposed
to O(1)). However, our insert operation is not as critical as
the search since the insert is less frequent than the search.
Linux kernel include an API for red-black trees [3] (a bal-
anced binary search tree), that can be used for maintaining
the tlist . Red-black trees are used for the organization of
virtual memory but are available to other Linux kernel func-
tions or modules. These trees provide a search as efficient
as that of the binary search trees.

Using the tlist data structure to store the tokens is nec-
essary to avoid modifying the stock Linux kernel. While the
performance penalty is modest (see Section 3.2), it is possi-
ble to modify the kernel to store the tokens in the process
control block. Using the latter design choice, both search
and insertion time remain constant. We further discuss this
in Section 3.

2.4 Application Key Registration
Prior to performing any authentication, it is necessary

for the kernel to generate and register the secret keys for
legitimate applications. In this section, we present the key
registration and revocation steps.

The secret key must be registered by the kernel at the
installation time and must be stored in the application’s
code. To protect the key from being stolen by static analysis
of the executable code, A2 restricts read access to executable
codes by any application. Further, the installed key is only
associated with one installation instance and is not valid
once the application is re-installed.

To register the key, we design a trusted key registrar that
is used to register applications’ keys in the kernel and the
application. The trusted registrar exchanges the key in-
formation with the application in a secure system state.
The trusted registrar itself is authenticated and identified
through the TGP protocol with a special key installed man-
ually. The steps taken by the trusted registrar are as follows:

1. The application is started for the first time and re-
quests a key from the trusted registrar.

2. The trusted registrar verifies if the application was pre-
viously issued a key and if the application is designated
legitimate either by the user or after an application
certification process.

3. If verification passed, the trusted registrar generates k
and sends it back to the application. Otherwise, the
application is removed and reported as malicious.

4. The application accepts k and stores it in its exe-
cutable code.

As depicted in Figure 1, the original identity of the ap-
plication is determined as part of a binary classification and
certification process. The purpose of this certification is to
verify the legitimacy of the application at the first place. To
allow the installation of the application, the trusted registrar
decision is based on the user’s permission as well the result
of the certification process. If either give a negative answer,
the trusted registrar would not issue a key for the appli-
cation. Existing binary analysis and certification solutions
such as BitBlaze [23] can be utilized for this purpose.

2.5 Verification of Identities
Our token generation protocol is used to securely authen-

ticate running processes and generate identity tokens. These
identity tokens are used by the Secure Access Monitor to val-
idate application access rights at runtime and authorize the
use of system calls accordingly. SAM’s main functionality is
to monitor designated system calls and verify the identity of
processes for other cooperating kernel components such as
a MAC system. The system call monitoring mechanism as-
sists a MAC system to enforce its specified policies using the
provided identity verification. Our monitoring mechanism is
general enough to monitor any desired kernel function.

Our identity tokens are integrated with existing MAC sys-
tems. For instance, we modified AppArmor to make use
of the identity tokens generated by the Authenticator and
verified by SAM. Using the identity tokens, AppArmor can
strongly bind a process to the application profile and enforce
appropriate access rights. Further details on the integration
of a MAC system with our framework are left for future
work.

2.6 Security Analysis
In this section we present the properties of the A2 frame-

work. We discuss in detail the security guarantees that are
achieved using our identification model.

Strong application identities. Our presented applica-
tion identification model is strong since it uses cryptographic
keys that are kept secret and protected by the A2 framework.
The secret key of an application is unforgeable as it is com-
putationally hard for a malware to find the key. Moreover,
the token generation protocol enables transparent and secure
communication between applications and the kernels relying
on the properties of the cryptographic hash functions.

Application isolation and access rights. In the A2
framework, we fully sandbox undesired processes. This
sandboxing relies on the fact that malicious applications fail
to authenticate to the kernel and thus are prevented from us-
ing most critical system calls. Moreover, such processes are
exposed to the kernel when trying to interact with it with-
out the presence of a valid token. This makes A2 a powerful
tool to find malware that was dropped by other applications
by various means such as through drive-by-download. Al-
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though a legitimate application such as a web browser may
allow malware to be downloaded, A2 prevents the down-
loaded malicious code to reach its ultimate goal.

Key protection. Application binaries provide secure
storages for application keys. To protect the secret key from
being revealed to other applications, A2 restricts read access
to registered application binaries. In principle, malware can
also steal a key from application’s memory at runtime, using
a buffer overflow. However, as we restrict the activities of
unidentified processes, such an attack cannot be achieved.

Scope of A2. A2 is capable of identifying interpreted
programs running as stand-alone processes. For instance, a
Java executable runs as a separate process named Java. In
this case, the program can have a unique key and be reg-
istered in the installation time. Each program can authen-
ticate itself independently using our framework. Other in-
terpreted languages such as Adobe Action Script and Word
document macros are out of the scope of our model.

Programs that are executed as part of other programs (for
example using execve) are also identifiable using A2. In our
model, a process does not inherit its access rights from its
parent process or the application that was responsible for
ordering the execution. For example, programs often run
using a shell terminal. It is the responsibility of the process
to perform the authentication and identify itself.

We further discuss a detailed analysis of our security
model in our technical report [2].

3. PROTOTYPE
We realize a prototype of the A2 framework in the Linux

Operating System (Debian 2.6.32). The two main compo-
nents of A2 (Authenticator and SAM) are developed as ker-
nel device drivers (modules). Due to limited space, the de-
tails on the implementation of the trusted registrar is left as
a future work.

3.1 Implementation
The Authenticator module uses the Linux kernel Crypto-

graphic API [6] to perform the HMAC operations using a
number of supported hashing algorithms. The Authentica-
tor communicates with the user space using the /proc file
system, which is a memory-based file system controlled by
the kernel. A protocol file is created by the Authenticator in
the /proc file system and is made accessible to all running
processes. The protocol remains secure since the communi-
cation is performed using the HMAC (Section 2.3.1).

SAM and the Authenticator communicate via a shared
data structure in the memory that holds the valid tokens.
This data structure is only visible to SAM and the Authen-
ticator. To verify a process’ identity, SAM searches through
a list of valid tokens that are maintained by the Authentica-
tor. We currently, implement the list of tokens as a sequen-
tial list. In our future implementations we are providing
two options for storing the tokens. One is through the use
of a red-black tree discussed in Section 2.3.2. Alternatively,
Authenticator can store the token in the Process Control
Block (PCB). The latter design would eliminate the search
overhead but requires a modification to the kernel.

To avoid the need to modify the kernel, SAM uses the
kprobe API to hook into system calls and monitor process
activities. Although the probes introduce extra overhead,
the produced overhead does not cause considerable latencies

to application’s functionality, limited by an upper-bound of
3 times more overhead (see Section 3.2).

3.2 Performance Evaluation
The strong security guarantees provided by our A2 frame-

work incur computational and management overhead in the
operating system. In order to assess the efficiency of our
framework, we answer the following questions in our exper-
iments:

• What is the system call overhead caused by A2 as a
result of verifying application’s identity at the time of
making system calls?

• How does A2 impact the overall system performance?

In our evaluation, we design a micro-benchmark to assess the
system call overhead. In order to assess the overall system
performance penalty due to A2, we use the lmbench micro-
benchmark [19]. For our analysis we used a VirtualBox vir-
tual machine (VM) with ubuntu 10.04 (32-bit) installed on
it. We allowed the VM to use up to 1 GB of memory. At
the time of our analysis a normal load of user programs were
launched. In addition to answering the questions mentioned
earlier, we experiment with two open-source keyloggers and
our key stealer malware to test A2’s functionality against
undesired software.

To measure the overhead caused by SAM on handling the
system calls we designed a set of programs to make extensive
use of a collection of system calls. We let SAM to monitor
a collection of seven system calls containing frequently used
system calls such as read and less frequently used system
calls such as getpid.

Each of our benchmarking programs are given a system
call and a number of iteration. We set each program to make
calls to the specified system calls for 150,000 iterations. The
programs do not perform any other tasks. We measure the
time spent in kernel for the system calls made by each pro-
gram in three experimental settings. First, we measure the
system without running any of our kernel modules. Next,
we run A2 modules, without performing any verifications
by SAM (i.e. searching the tlist). In the final experiment,
SAM verifies the tlist with a total of 300 stored tokens.
The results of our experiments are shown in Figure 3. On
average, the system call overhead is 3 times more than the
baseline latency.

Based on our experimental results, the major latency is
caused by the installed probes in the kernel functions. That
is because, the average extra latency caused by the verifi-
cation of the tlist (that already contains a total of 300
tokens) is 29.03%.

We measured the overall system performance downgrade
due to A2, in another set of three experiments. For these
experiments, we used the lmbench micro-benchmark [19].
This benchmark provides performance analysis for various
system functions such as networking and file system. We
include the results for signal handler, pipe communications,
UNIX socket transactions, process creation and termination
using fork and exit, and process creation using execve. As
shown in Figure 4, the extra latencies caused by A2 mod-
ules are not significant. On average, there is an increase of
26.76% in processing time and the maximum latency is for
UNIX socket transactions for an overhead of 54.65%.

Our results show efficient system call performance with-
out a significant penalty due to our monitoring architecture.
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Figure 3: System call overhead measured in three
experiments: No A2 modules running, A2 without
any verification, and A2 running and performing
verification on a list of 300 tokens.

Figure 4: The latency caused by A2 modules for
UNIX socket transactions and process creations.

While performing the experiments inside a virtual machine
with limited resources, we did not notice the imposed laten-
cies as end users. Moreover, the token generation protocol
does not impose further performance penalties as it is not
part of the monitoring process. This protocol is only ex-
ecuted once at the time of creation of a process and the
generated identification token can be subsequently used in
the system call monitoring process.

4. RELATED WORK
Techniques for protection against malware include the use

of mandatory access control (MAC) systems, virtual ma-
chine monitors (VMM) to isolate untrusted software, appli-
cation sandboxing, and a variety of other approaches such
as hardware-based protection. In the following, we de-
scribe how A2 is related and compared to the mentioned
approaches.

SELinux is a policy-based MAC system [17], which does
not have a strong application identification mechanism that
is independent of a particular user identity and does not rely
on dynamic features such as a process ID. Grsecurity [1] is
a policy specification platform similar to SELinux with a
simplified specification language that suffers from the same
identification problem. A more usable MAC solution is de-

scribed in [16]. A cryptographic-based MAC system is the
authenticated system call work by Rajagopalan et al. [22],
which is closed in spirit to our A2 framework. The presented
work in the authenticated system call is limited to provid-
ing identities (the HMAC) to individual function calls to
system calls in an application. Thus, it does not provide
an identity to the application itself. Moreoever, Jaeger et
al. did pioneering work in kernel-based control of program
behaviors, including regulating downloaded executable con-
tent [10] and general-purpose policy enforcement through
intercepting inter-process communication [9].

As described in Section 2, the identification model pro-
vided as part of the A2 framework is complementary to
existing MAC-based solutions. We provide strong and se-
cure identification of running processes, which is a critical
step before proper application-level access rights can be en-
forced. A2 can integrate with application-level policy-based
MAC systems as described in Section 2.5.

Isolation using virtual machine monitors and application
sandboxing has been addressed in a number of projects.
VMM-based solutions such as [15, 12] make use of VMM
to provide high-assurance isolation and thus monitoring of
untrusted software. We do not implement the components
of A2 within a VMM to avoid the semantic gap introduced.
This semantic gap prevents A2 from close monitoring of the
process activities as well as proper identification of the pro-
cesses. Nevertheless, A2 can also be integrated with VMM-
based solutions to provide high assurance on the identity of
processes within untrusted environments.

Application sandboxing solutions such as Vx32 [7],
UserFS [14], and BLADE [18] are used to isolate undesired
code from being executed to maintain integrity and confiden-
tiality of the execution environment. The A2’s identification
mechanism enables strong and clear sandbox of undesired
code that runs as stand-alone processes. Techniques similar
to the ones described in the cited literature can be used to
further automate the decision on legitimacy of executable
code before the application registration step (Section 2.4).

Other approaches for protecting system resources against
unauthorized applications include signature-based malware
detection (proved to be ineffective against zero day attacks)
[5], integrity preserving based on information flow such as
PRIMA [11], and Trusted Platform Module [24]. These ap-
proaches provide valuable security solutions. However, our
security model differs in providing provable identity to na-
tive applications.

5. CONCLUSIONS AND FUTURE WORK
We presented a novel identification model that provides

strong and unforgeable application identities and binds the
processes to their corresponding applications at runtime.
Our identification model is combined with our system call
monitoring architecture that verifies identities of the pro-
cesses. This model resolves the problem of detecting the
identity and the origins of running processes inside a kernel.
In the A2 framework, malicious processes are completely
isolated to prevent them from attacking other processes or
achieving any attack goals.

Our evaluation results indicate the feasibility of using
cryptography for the purpose of identifying running pro-
cesses. We achieve this result by separating the authenti-
cation from the monitoring. Therefore, there is virtually no
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performance penalty due to the use of cryptographic func-
tions.
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