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Abstract. We describe a cryptographic provenance verification ap-
proach for ensuring system properties and system-data integrity at
kernel-level. Its two concrete applications are demonstrated in mal-
ware traffic detection and keystroke-based bot identification. Specifically,
we first demonstrate our provenance verification approach by realizing
a lightweight framework for blocking outbound malware traffic. This
traffic-monitoring framework leverages the differences in legitimate user-
traffic and kernel-level malware-traffic, and provides a powerful check-
point for examining all outbound traffic of a host, which cannot be by-
passed. Then, we design and implement an efficient cryptographic pro-
tocol that enforces keystroke integrity by utilizing on-chip Trusted Com-
puting Platform (TPM). The protocol prevents the forgery of fake key
events by malware.
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1 Introduction

Compared to the first generation of malicious software (malware) in late
1980’s, modern attacks are more stealthy and pervasive. Network- or host-based
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signature-scanning approaches were proven ineffective against new and emerging
malware [15]. As pointed out by Christodorescu et al. [5], the fatal weakness in
these pattern-matching approaches is that they are purely syntactic.

We view malicious bots or malware in general as ghost entities stealthily re-
siding on a human user’s computer and interacting with the user’s computing re-
sources. For example, the malware may issue network calls to send outbound traf-
fic for denial-of-service attacks, spam, or botnet command and control. However,
conventional operating system typically allows flexible execution pathways and
data flow patterns, and is not designed to distinguish legitimate user-initiated
from malware-triggered networking or file system activities. SELinux is a Linux
feature that supports access control policies and confines programs in their priv-
ileges of accessing system resources. SELinux requires manual specification of
policies which may be cumbersome for users.

Our goal is to improve the trustworthiness of kernel-level data-flow path,
specifically, we provide automatic mechanisms that ensure the correct origin or
provenance of critical system data, which prevents adversaries from utilizing
host resources (e.g., networking API). Data-provenance integrity is a security
property defined by us. It states that the source where a piece of data is gener-
ated cannot be spoofed or tampered with. We give concrete illustration of how
data-provenance integrity can be realized for kernel-level data, namely keystroke
events and outbound network packets, in a host-based setting, through a cryp-
tographic provenance verification technique.

For outbound network packets, we deploy special cryptographic kernel mod-
ules at strategic positions of a host’s network stack, so that packets need to
generated by user-level applications and cannot be injected in the middle of the
network stack. We implement our solution in Windows operating system and
demonstrate its low overhead even with large network workloads. The signifi-
cance of network-packet provenance is two-fold: i) stealthy malware that hides
its user-level presence may be detected when it attempts to communicate to
remote servers, as this type of malware typically injects network traffic directly
into network layer; and ii) we are able to deploy sophisticated packet monitor
or firewall above or at the transport layer such as [30] without being bypassed
by malware – malware bypassing transport-layer personal firewalls is a typical
problem for PCs.

We also illustrate how to sign and verify keystroke events that are from
external keyboard device in a client-server architecture, i.e., verifying the prove-
nance of keystrokes. We discuss the application of this system for distinguishing
user inputs from malware inputs. Our method has general application beyond
the specific keystroke and network traffic problems studied, and can be used
as a fundamental building block for constructing high-assurance mini operating
system such as MINIX.

One of the technical challenges for host-based security is how to guaran-
tee the integrity of detection system itself and prevent it from being tampered
by advanced malware. We illustrate an effective hardware-based approach that
leverages trusted platform module (TPM) to attest the system integrity includ-
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ing the security modules used for provenance signing and verification. TPM has
been used recently for providing a secure passage for sensitive user data such as
passwords in BitE [20], which is later improved by Bump [21]. These two sys-
tems encrypt keystrokes in order to prevent attackers’ keyloggers from learning
secret personal information. Although we use TPM for ensuring system integrity
as in Bump and BitE, the goal of our solution is different — our work verifies
keystroke origin and prevents malware injection of fake key events. More related
work is discussed in Section 5.

Our Contributions We present a new cryptographic provenance verifica-
tion (CPV) approach, and demonstrate its applications in realizing i) robust
host-based traffic-monitoring and ii) keystroke-integrity service.

1. We apply our cryptographic provenance verification approach in realizing a
host-based traffic-monitoring framework. The framework is capable of de-
tecting stealthy outbound traffic of kernel-level malware by enforcing the
provenance verification for outbound network packets. Malware traffic that
bypasses normal network-stack functions is not accompanied with prove-
nance proofs and is effectively detected. We describe our experimental eval-
uation with real-world and synthetic rootkits. Our throughput validation on
upstream network traffic shows that for 64 KB packet size the overhead for
cryptographic operations is less than 5%.

2. We illustrate our cryptographic provenance verification in the design of a
keystroke integrity service that utilizes the hardware Trusted Platform Mod-
ule (TPM). We construct a lightweight cryptographic protocol that prevents
malicious bots from injecting keystroke events into host’s applications. This
keystroke integrity service also prevents tampering attacks on the host’s
kernel. We implement our prototype with an enabled on-chip TPM, and ex-
perimentally evaluate both the computation and communication overheads.

Our proposed cryptographic provenance verification mechanism is useful be-
yond keystroke integrity. We demonstrate the use of simple cryptographic mech-
anisms for ensuring other kernel-data integrity (namely network packet), and
its effectiveness against rootkits. Our work enables the authentication of two
important data streams: user inputs and network flow. Such a frameworks can
be used to realize the temporal correlation under more powerful malware than
what was considered in [6, 14]. In addition, our work can also enable host-based
semantic-based correlation analysis between inputs and network packets. Fine-
grained input-traffic correlation is an open question (see also Section 6) that has
not been addressed in existing malware-detection literature.

Organization of the Paper: We give an overview of our cryptographic
provenance verification (CPV) approach and our security models in the next
section. In order to illustrate our host-based provenance verification approach,
in Section 3 we describe a cryptographic traffic-monitoring framework and also
demonstrate its effectiveness in catching kernel-level malware traffic. In Section 4,
we present a Trusted Platform Module (TPM)-based cryptographic protocol,
which ensures that users’ keystroke events cannot be forged by malware. Related
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work is described in Section 5. In Section 6, we conclude the paper and describe
plans for future work.

2 Models and Definitions

We define cryptographic provenance verification as a robust attestation mecha-
nism that ensures the true origin of data produced by an entity such as a system
device or a program. Such a system can be realized by cryptographically certi-
fying (i.e., signing) the data generated at the source. However, our provenance
verification has a fundamental difference from the traditional cryptographic sig-
nature scheme. In most signature schemes the signer is assumed to be a person
who exercises discretion in signing documents and also in protecting his or her
signing keys. In the context of malware detection, the signer and verifier are
programs, e.g., kernel modules, which may be fooled or tampered with in the
certifying process. As such, prevention against these attacks is critical. As it
will soon become clear, the techniques in cryptographic provenance verification
are also very different from the language-based or policy-based tainted inference
analysis [24], as we emphasize on the enforcement of normal system properties
with lightweight cryptographic primitives and trusted computing infrastructure.

Security Goal: We aim to prevent unauthorized use of a personal computer
by a malicious bot (or by an individual who is not the owner). Specifically, our
goal is to address the following important question: Is the computer being used
by the authenticated owner or by an intruder?

Malware attack models and security assumptions We consider a strong mal-
ware attack model as follows. The malware may attempt to tamper with legiti-
mate user-applications and the client’s operating system including kernel-space
components of our detection framework. Malware may run as a user-level appli-
cation or conceal itself within the kernel as rootkits. Malware is active in making
outside connections for command & control or attacks. For example, malware
may attempt to log user inputs, inject traffic bypassing host’s firewall, forge
input events, tamper with network traffic, modify kernel modules and file sys-
tems, access secret keys of the detection framework, tamper with the browser or
P2P client. Our framework aims to be secure against all these attack attempts.
Hardware attacks will be studied by us but not included in this model.

We assume that the on-chip Trusted Platform Module (TPM) is tamper-
resistant; the cryptographic operations are implemented correctly; and the re-
mote server is trusted and secure. TPM provides the guarantee of load-time code
integrity. It does not provide detection ability for run-time compromises such as
buffer overflow attacks [8]. Thus, we assume that the kernel and its modules
are clean and do not contain run-time vulnerabilities. Although this assumption
may appear to be strict, recent advances in minimal trusted operating system
such as MINIX are making it become a reachable reality. In addition, advanced
rootkits may still be active under this assumption, indicating the importance of
our solutions.
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Although simple, the cryptographic provenance verification method can be
used to ensure and enforce correct system and network properties and appropri-
ate workflow under a trusted computing environment. Next, we illustrate two
such applications in Section 3 and 4 for enforcing the origin of outbound packets
on the Internet protocol stack and for ensuring the correct origin of keyboard
inputs, respectively.

3 Provenance Verification For Host’s Traffic Integrity

In this section, we illustrate our cryptographic provenance verification approach
in a network setting, in particular for ensuring the integrity of outbound pack-
ets, as they flow through the host’s network stack. We describe the design and
implementation of a lightweight traffic-monitoring framework. It can be used as
a fundamental and necessary building block for constructing powerful personal
firewalls or traffic-based malware detection tools. Malware bypassing commercial
personal firewalls has been a common problem.
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Fig. 1. Schematic drawing of components in the framework and their interactions
with the host’s network stack. Legitimate traffic origins from application layer whereas
kernel-level malware traffic is injected into the lower layers.

We demonstrate the effectiveness of our traffic-monitoring framework in
detecting stealthy outbound traffic of kernel-level malware, namely rootkits.
Our provenance verification scheme requires outgoing network packets to flow
through a checkpoint (e.g., a kernel module) on a host, to obtain proper prove-
nance proofs for later verification. Therefore, outbound malware traffic that by-
passes normal user-mode network functions to send is detected, as it is unable to
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provide their provenance proofs. Thus, we effectively prevent any traffic to send
without passing through the checkpoint – significantly improving the assurance
of traffic-based malware detection on hosts. Such a simple-yet-powerful traffic-
monitoring framework conveniently yields several advanced detection mecha-
nisms such as input-traffic correlation analysis on application-level traffic such
as [28, 29], which we briefly describe in Section 6. In particular, our solution
provides an effective defense against common bypassing attacks.

Most malware constantly communicates with the outside world, with the
intent of exporting sensitive data. Our detection is, recurrently, based on the
observation that there are intrinsic differences between how a person and mal-
ware interacts with a computer. Legitimate outbound network traffic initiated
by humans passes through the entire network stack in the host’s operating sys-
tem. Rootkit is a type of malware that hides its presence in operating systems
making it difficult to detect. Rootkit-based malware typically bypasses higher-
layer of inspections in the network stack by directly calling low-level network
functions, as illustrated in Figure 1. We explore the network stack and packet
properties of outgoing traffic generated by humans and malware, and develop a
robust cryptographic protocol for enforcing the proper packet provenance on the
network stack.

3.1 Architecture of Traffic Provenance Verification

We design a traffic-monitoring framework in a stand-alone architecture and
demonstrate the feasibility of cryptographically enforcing that all outbound traf-
fic flows through a transport-layer entrance on a host’s Internet protocol stack.
Internet protocol stack or network stack is part of the host’s operating system
and consists of five layers – application, transport, network, data link, and physi-
cal layers. User-space outbound traffic (e.g., browser or email packets) travels all
five layers on the stack from the top to the bottom before sending out. System
services (e.g., Windows updates) are typically implemented as applications, thus
their traffic also traverses the entire Internet protocol stack.

Our design of the traffic-monitoring framework extends the host’s network
stack and realizes two kernel modules, Sign and Verify modules, as illustrated
in Figure 1. Both signing and verification of packets take place on the same
host but at different layers of the kernel network stack – the Sign module is at
the upper edge of the transport layer, and the Verify module is at the lower
edge of the network layer. The two checkpoints sharing a secret cryptographic
key monitor the integrity of outbound network packets. All legitimate outgoing
network packets first pass through the Sign module, and then through the Verify
module. The Sign module signs every outbound packet, and sends the signature
to the Verify module on the same host, which later verifies the signature with a
shared key. The signature proves the stack provenance of a packet. If a packet’s
signature cannot be verified, then it is labeled as suspicious, having bypassed
the Sign Module, and likely generated by stealthy malware.

Directly invoking lower data-link layer or physical layer functions to send
traffic is hardware-dependent and hard in practice. We find that installing the
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Verify module at the network layer is sufficient. We note that our framework
alone cannot detect application-level malware such as malicious browser exten-
sions, as we aim to provide a general infrastructure for traffic-monitoring. Detect-
ing application-level malware by semantic-based input-traffic correlation using
our framework is currently being developed by us.

For key management, when the system starts up, the Sign Module and the
Verify Module generate their respective public/private key pairs and notify each
other of their respective public keys. Then the two modules securely exchange a
symmetric key, which is used for signature generation and verification. Specifi-
cally, Verify Module sends a random string encrypted with Sign Module’s public
key and Sign Module replies with another random string encrypted with Verify
Module’s public key. The XOR result of the two strings is the symmetric key
which is used to sign and verify network packets.

To ensure the integrity of the detection framework and signing key secrecy, we
can utilize the on-chip TPM to generate the signing keys and to attest kernel and
module integrity at boot. The approach is similar to keystroke-integrity service
described later in Section 4, where the attestation of kernel and module integrity
requires a remote trusted server. Enlisting a remote server for integrity purpose
was also previously used in [2]. There are two main goals in such a TPM-based
integrity service: i) monitoring the integrity of client’s kernel including compo-
nents of our traffic-monitoring framework, and ii) ensuring the integrity of the
Sign/Verify module’s secret keys. For achieving i), standard TPM operations for
attesting client’s kernel integrity via hash-based trusted boot, RSA-based initial
authentication, and chained attestation. We also require the server to continu-
ously monitoring the client’s kernel state through periodic measuring its TPM
quotes summarized in platform configuration registers (PCRs) – a number of
160-bit registers intended to enable the server to obtain unforgeable information
about the client’s platform state. Although more complex, under certain assump-
tions of the sealed storage and evaluation of attestation values, it is also possible
to realize the integrity service on the same host in a stand-alone architecture.
Details are omitted due to space limit. In comparison to the virtualization-based
traffic detection approach by Srivastava and Giffin [26], our solution provides an
effective cryptographic alternative that leverages the available trusted computing
infrastructure.

3.2 Prototype Implementation and Experiment Evaluation

We implement our rootkit detection mechanism in Windows XP, and experimen-
tally evaluate it with real-world rootkits and assess the throughputs on upstream
network traffic. The Sign Module is realized as a TDI filter device at the upper
edge of the transport layer in the Windows TCP/IP stack. All legitimate net-
work packets from the Winsock API is captured and signed by the Sign Module.
The Verify Module is an NDIS intermediate miniport driver at the lower edge of
the network layer. It intercepts and verifies all packets just before they are sent
to network interface card drivers.
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In our prototype, we use UMAC (message authentication code using univer-
sal hashing) in lieu of a public-key digital signature scheme for proving message
integrity due to UMAC’s efficiency and simplicity [17]. Intuitively, the Verify
Module at the network layer has to reassemble Ethernet frames in order to recon-
struct the original transport layer data segments and then compute signatures.
Fortunately, because UMAC computes signatures incrementally and outgoing
Ethernet frames in the network stack are sequential, the Verify Module does not
need to reassemble fragments. It updates the corresponding signature for each
fragment on-the-fly, which significantly reduces the time and memory costs. It is
important to note that the packet signature is not appended to each packet, as
this would result in unnecessary checksum recalculations and signature-stripping
by the Verify Module. Instead, the Sign Module sends UMAC directly to Verify
Module, as shown in Figure 1. UMAC values are kept in a hash table indexed
by packet source address, destination address and port for fast lookup.

We first test our tool against a piece of proof-of-concept malware that can
bypass the transport layer to send outgoing packets. Our experiments show that
the Verify Module detects such an attack. However, the malware can disable URL
filtering functionality of Trend Micro OfficeScan Client. An extended version of
our detection implementation is able to identify real-world rootkits (weaker than
our proof-of-concept malware), including Fu_Rootkit, hxdef, and AFXRootkit,
all of which hide process information and opening ports.

Our experimental evaluation in Figure 2 shows that the overhead imposed
by the cryptographic integrity verification on the outbound traffic streams is
minimal when transport-layer segment size is large (e.g., 64KB). Figure 2 shows
the network throughputs with and without signing (left), or with partially signed
packets (right). With provenance verification on each packet, the throughout
decreases in general. However, as the packet size grows, the costs of signing
and verification are amortized and the throughput approaches the ideal value.
The observed performance degradation is minimal and acceptable in practice,
since most personal computers have low upstream traffic even with peer-to-peer
applications running.

Our above-described detection framework enforces the correct flow of out-
bound traffic through the host’s network stack. This feature enables other ad-
vanced traffic inspection solutions at the transport-layer, without worrying about
malware bypassing the inspection checkpoint. Installing sophisticated traffic in-
spection at the transport layer of a host is desirable, due to the ease of accessing
user-space data. Thus, we feel that this contribution is beyond the specific rootkit
problem studied.

4 Provenance Verification For Keystroke Integrity

In this section, we apply our cryptographic provenance verification approach in
realizing an efficient framework for ensuring keystroke integrity in a client-server
architecture. The work is motivated by wanting to utilize user inputs in malware
detection. Yet, in a strong adversary model as described earlier in Section 2, a
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Fig. 2. Comparisons on outbound packet throughputs with or without signing in the
left and with partially signed packets in the right.

necessary requirement for utilizing user inputs for security purposes is to prevent
attackers from i) injecting (fake) input (e.g., keystroke and mouse) events into
the system, and ii) tampering attacks on the detection framework itself. We pro-
vide an integrity service that achieves both goals. With our solution, keyboard
events entered by human users from the external keyboards are uniquely identi-
fied and their provenance is cryptographically verified. Fake inputs injected by
malware can be detected. Our protocol utilizes lightweight cryptographic func-
tions, and our key management leverages on-chip TPM [18, 1]. We use TPM to
ensure the secrecy of signing and verification keys, as well as the integrity of a
host’s kernel and framework modules.

The TPM is useful in addressing kernel- and root-level attacks. We, however,
note that the TPM alone is not sufficient in preventing the injection of fake
key events, as these type of attacks can originate from applications and is thus



10 Stefan, Wu, Yao, and Xu

beyond kernel-level security. For example, any X application can inject events
without any communication with the keyboard driver. Our integrity service also
addresses these application-level attacks efficiently. An existing approach (as
in SATEM [31]) to prevent application-level attacks, e.g., substituting libraries
with compromised versions, is to have kernel libraries as part of the trusted
system that gets loaded and attested by TPM. In comparison to the SATEM
approach [31], our architecture is more specific to key event integrity and thus
is simpler.

4.1 Architecture For Keystroke Integrity

A schematic drawing of our keystroke integrity service architecture is shown in
Figure 3. Our design is to have two channels attached to the remote server: plain
keystroke events from a client and signed keystroke events from a module (i.e.,
trust agent) that is part of the kernel attested to using the TPM. Signatures
accompanying legitimate keystroke events prove their provenance information.

Our prototype realizes the trust agent in kernel and a trust client in user-
space as shown in Figure 3. The trust client is a program that forwards messages
between the (kernel-level) trust agent and remote server. The client-side trust
agent and the remote trusted server shared a secret session key. The trust agent
signs each keystroke event and the server verifies the signature. The server also
monitors through TPM-based operations the client’s integrity including its ker-
nel and components. If an attacker tampers with the client, the remote trusted
server notices mismatches in the information sent from the two channels, by
verifying the signatures of keystroke events.

This integrity service defends against advanced malware attacks including the
replay of prior-captured user keystrokes, fake key-event injections, and tampering
with our client. Main operations include: i) trust agent and remote server key
exchange; ii) trust agent signs keystroke events; iii) client relays signed events to
the server; and iv) remote server also verifies kernel configuration. Our prototype
is implemented in a client-server architecture in Linux using the Intel Integrated
TPM, details of which are described in Section 4.3. This capability in ensuring
user-input integrity and preventing malware forgery of input events has general
applications and serves as a fundamental component in constructing security
systems with trusted user inputs. This keystroke-integrity service can also be
applied to ensure the integrity of mouse events, e.g., mouse clicks, which we do
not demonstrate here.

4.2 Key Management in Keystroke Integrity Service

We present our key management mechanism used in our keystroke integrity
service. TPM operations using the on-chip master secret key is slow for time-
sensitive applications such as ours. Therefore, we introduce a set of secret keys
derived from it for our cryptographic operations in order to improve the effi-
ciency. Our design involve creating three private/public RSA key pairs: a binding
key, a signing key and a storage key. The binding key is used to securely store the
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Fig. 3. The architecture of our keystroke-integrity service.

symmetric keys used for signing and encryption. The signing key is used to sign
and encrypt outbound packets as well as TPM quotes. The storage key is used to
store the binding and signing keys. Our key management mechanism leverages
the on-chip TPM secret key and sealed storage, which provides a secure location
to store secret keys, until system integrity can be verified. Thus, the secrecy of
keys is guaranteed, and the efficiency of kernel-level cryptographic operations is
also largely improved. Our key exchange or quote signing follows the following
procedure.

1. The trust agent uses the TPM to generate two random strings (a0,a1). The
trust agent generates a TPM quote and uses the signing key to sign it. The
generated data in this step are encrypted using the server’s public key.

2. The server generates two random strings (b0, b1) and encrypts them using
the trust agent’s public key.

3. Server and trust agent exchange random strings and XOR the received bits
with the sent bits to use as two symmetric keys (e.g., a0⊕ b0, a1⊕ b1), using
one key for signing, and the other for encryption; this key exchange protocol
follows from [23]. Finally, the server verifies the TPM quote.

When the trust agent disconnects, the binding key is used to bind the sym-
metric keys and securely store them so the key exchange is not required during
the next connection; the server requests a new key exchange when necessary
(after a certain number of messages are exchanged). The TPM quote procedure
is repeated periodically during each connection. The secrecy of keys is guaran-
teed, as they are encrypted (and stored on hard disk) with on-chip TPM key
when not used; additionally, when the keys are decrypted and loaded into kernel
memory, because /dev/kmem is disabled, reading of the keys is also prevented.
The latter is enforced by the server’s verification of signed quotes representing
machine states.
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4.3 Implementation and Evaluation of Keystroke Integrity Service

Our prototype is implemented using the Intel Integrated TPM, following TPM
Interface Specifications 1.2. We write code that realizes a trust agent in kernel
and a trust client. The trust client is a simple-yet-essential program that parses
the non-encrypted messages and forwards them accordingly between the kernel-
level trust agent and remote server. We provide cryptographic functions on key
events, including signing key events by the trust agent and verifying key events
by the remote server. We also provide the encryption and decryption functions
on the packets from the client to the remote server to prevent network snooping
of keystrokes. Last but not least, we provide key management mechanism for the
integrity service that leverage TPM storage keys, as described in Section 4.2.

We implement a program in C which injects keyboard events in order to sim-
ulate forgeries. Our attack simulator has two components: the data synthesizer
and typing event injection. To simulate an (intelligent) bot’s attack, we write a
program to create fake keyboard events and inject them into the X server core-
event-stream (using the XTrap extension) as if typed on the actual keyboard.
From the application’s (or X client’s) perspective, the fake keyboard events can-
not be distinguished from actual key events (even though the keyboard is not
touched). Using the integrity service we confirm that our synthetic bots that
inject X-layer fake events are recognized as rogue.

We describe the detailed procedure of starting and running the integrity
service between the client and the remote server as follows.

1. Trusted boot: A kernel module, which we call trust agent, is loaded on boot
or can compiled in the kernel. The module creates a device /dev/cryptkbd.
We disable /dev/kmem and module loading after boot as to prevent any tam-
pering with the agent. A user-space trust client opens device /dev/cryptkbd
and concurrently opens a socket to the trusted server, waiting for communi-
cation. When the trust client opens /dev/cryptkbd, the trust agent attests
the trust client, which also prevents any other program from opening the
device.

2. Initial authentication: When the remote server gets a connection from
a client, it requests the initial attestation. The trust client uses the write
system call to request the required information from the agent. The trust
agent forwards the TPM platform configuration registers (PCRs), a TPM
quote (i.e., signed hash of the PCRs), and trust client signature, all signed
using the TPM signing key. The trust client forwards the information to the
server which verifies the information.

3. Key exchange and monitoring: The trust agent and the remote server
set up a shared key through a RSA key exchange protocol based on the TPM
keys. The trust client forwards keystroke events to remote server that verifies
the integrity of events. If signatures associated with events do not pass the
server’s verification, the trust agent is notified. The server also performs
timing-based authentication analysis as required.

We evaluate the overhead incurred by the event signing and encryption in
the keystroke-integrity service. We compute the average time over 1312 keystroke
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events with the TPM key initiation amortized. Each key press and key release
event is in a separate packet of 384 bytes. The signing of a packet using SHA-
1 with a 256-bit key takes 18.0 microseconds while encrypting a packet using
standard AES-CBC with a 256-bit key takes 67.6 microseconds. To estimate the
bandwidth overhead, we assume that a fast typist enters 212 words per minute [3]
and in English average word has 4.5 characters [25]. Each character has a press
event and a release event, respectively. Therefore, we obtain 12.2 KBps maximum
bandwidth overhead. Overall, we find that the cryptographic operations intro-
duced by this integrity service have low computational and communicational
overhead.

This integrity service is robust against a range of advanced attacks including
gaining root privilege on the computer, collecting the owner’s keystroke informa-
tion, fake key event injections, tampering local client, and rogue kernel/libraries.
Our protocol ensures the authentic origin of keystroke events, and embodies our
provenance verification approach. It also yields a general approach that can be
used for the attestation of other devices. In particular, it can be developed to
prevent bots from injecting fake events into other applications. One needs to
expand the TPM support for the applications to be protected, by writing a
trusted wrapper for the application to interface with the trust client and verify
the events.

5 Related Work

Our paper focuses on a host-based approach for ensuring kernel-level data in-
tegrity and demonstrates its application for malware detection. In comparison,
network trace analysis typically characterizes malware communication behaviors
for detection [9–13, 16, 22, 27]. Such solutions usually involve pattern-recognition
and machine learning techniques, and have demonstrated effectiveness against
today’s malware. Traces of botnets’ command-and-control (C&C) messages –
i.e., how bots communicate with their botmasters – are captured and their sig-
natures and access patterns analyzed. For example, a host may be infected if it
periodically contacts a server via IRC (Internet Relay Chat) protocol and sends
a large number of emails afterwards [12]. Network traffic analysis can be realized
by local Internet Service Providers to monitor and screen a large number of hosts
as part of a network intrusion-detection system.

The element of human behavior has not been extensively studied in the
context of malware detection, with a few notable exceptions including solutions
by Cui, Katz, and Tan [6] and Gummadi et al. [14]. They investigated and
enforced the temporal correlation between user inputs and observed traffic. The
BINDER work [6] describes the correlation of inputs and network traffic based
on timestamps. It does not provide any security protection against the detection
system itself, e.g., how to prevent malware from forging input events. Our work
provides a hardware-based integrity service for that problem. In comparison
to NAB [14] which is designed specifically for browser input verification, our



14 Stefan, Wu, Yao, and Xu

work provides a more general kernel-level solution for keystroke integrity that is
application-oblivious.

Existing rootkit detection work largely focuses on operating system level de-
tection, including identifying suspicious system call execution patterns [4], dis-
covering vulnerable kernel hooks [28], exploring kernel invariants (e.g., Gibral-
tar [2]), or using virtual machine to enforce correct system behaviors [7, 26]. For
example, Christodorescu, Jha, and Kruegel collected malware behaviors like sys-
tem calls and compared execution traces of malware against benign programs [4].
They proposed a language to specify malware behavior and an algorithm to mine
malicious behaviors from execution traces. A malware analysis technique was
proposed and described based on hardware virtualization that hides itself from
malware [7]. Wang et al. systematically identified potential kernel hook points
in Linux kernel [28]. Although existing OS level detection methods are quite
effective, they typically require sophisticated and complex examination of kernel
instruction executions.

To enforce the integrity of the detection systems, a virtual machine monitor
(VMM) is usually required in particular for rootkit detection (e.g., [7, 26]). In
this paper, we leverage existing trusted computing infrastructure (the TPM is
available on most commodity computers) for enforcing various system integrity,
namely outbound-traffic integrity and keystroke integrity. The advantage of us-
ing TPM in comparison to VMM is the ease of accessing a host’s kernel, and the
ability to construct application-level fine-grained detection solutions, as described
in the future work section. The limitation of TPM under run-time compromises
as mentioned in Section 2 is still an active research area. For example, Flicker is
a recently-proposed trusted computing base for allowing sensitive applications
to run in isolation in an untrusted operating system [19]. In comparison, our
trusted computing architecture supports functions beyond application integrity
including enabling remote collection and verification of user input events, thus
preventing fake keyboard activities.

The work by Srivastava and Giffin [26] on application-aware blocking of mal-
ware traffic may bear superficial similarity to our host-based rootkit detection
solution. They used virtual machine monitor (VMM) to monitor application in-
formation of guest OS without using any cryptographic scheme. It is important
to note that our cryptographic provenance verification is a more general kernel-
level mechanism for ensuring data provenance that can be applied beyond the
specific network traffic monitoring and keystroke authentication problems stud-
ied.

6 Conclusions and Future Work

We described a general cryptographic provenance verification (CPV) technique
for ensuring the correct provenance (i.e., origin) of dynamic data generated in the
kernel. We demonstrated CPV’s application in host-based malware detection, in
particular how to distinguish malicious/unauthorized data flow from legitimate
one on a computer that may be compromised.
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Specifically, we made the following technical contributions in this paper. i)
We demonstrated our provenance verification approach in a lightweight frame-
work for ensuring the integrity of outbound packets of a host. This traffic-
monitoring framework creates a checkpoint that cannot be bypassed by malware
traffic, in particular from kernel-level malware. ii) We described an efficient
TPM-based keystroke-integrity verification protocol in a client-server architec-
ture that prevents malicious bots from forging keystroke events. This keystroke-
integrity service serves as an important building block for the future construction
of human-behavior driven security solutions.

For future work, we plan to extend our cryptographic provenance verification
approach to develop advanced input-traffic correlation and tracking analysis in
both stand-alone and client-server architectures. In almost all client-server or
pull architectures (e.g., Web applications), users initiate the requests, which
typically involve keyboard or mouse events. Few exceptions such as Web server
refresh operations can be labeled using whitelists. We will investigate how to
characterize and enforce normal traffic and input correlations in applications
such as Web browsing, legitimate downloading activities, and P2P file sharing
activities. We will study robust defenses against sophisticated malware exploits
in these new user-behavior driven security systems.
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