
1

O3FA: A Scalable Finite Automata-based Pattern-
Matching Engine for Out-of-Order Deep Packet Inspection

Xiaodong Yu, Wu-chun Feng, Danfeng (Daphne) Yao Michela Becchi
Department of Computer Science Dept. of Electrical and Computer Engineering

Virginia Tech University of Missouri
Blacksburg, VA, USA Columbia, MO, USA

{xdyu, feng, danfeng}@cs.vt.edu becchim@missouri.edu

ABSTRACT
To match the signatures of malicious traffic across packet bound-
aries, network-intrusion detection (and prevention) systems (NIDS)
typically perform pattern matching after flow reassembly or pack-
et reordering. However, this may lead to the need for large packet
buffers, making detection vulnerable to denial-of-service (DoS)
attacks, whereby attackers exhaust the buffer capacity by sending
long sequences of out-of-order packets. While researchers have
proposed solutions for exact-match patterns, regular-expression
matching on out-of-order packets is still an open problem. Specif-
ically, a key challenge is the matching of complex sub-patterns
(such as repetitions of wildcards matched at the boundary be-
tween packets). Our proposed approach leverages the insight that
various segments matching the same repetitive sub-pattern are
logically equivalent to the regular-expression matching engine,
and thus, interchanging them would not affect the final result.

In this paper, we present O3FA, a new finite automata-based,
deep packet-inspection engine to perform regular-expression
matching on out-of-order packets without requiring flow reassem-
bly. O3FA consists of a deterministic finite automaton (FA) cou-
pled with a set of prefix-/suffix-FA, which allows processing out-
of-order packets on the fly. We present our design, optimization,
and evaluation for the O3FA engine. Our experiments show that
our design requires 20x-4000x less buffer space than conventional
buffering-and-reassembling schemes on various datasets and that
it can process packets in real-time, i.e., without reassembly.

1. INTRODUCTION
Regular-expression matching is a core task in deep packet
inspection (DPI), which is a fundamental networking opera-
tion. A traditional form of DPI consists of searching the
packet payload against a set of patterns. Network intrusion
detection systems (NIDS) are an essential part of network
security devices. A NIDS receives and processes packets,
and then reports the possible intrusions. Some well-known
open-source NIDS – such as Snort and Bro – employ DPI
as their core; most major networking companies offer their
own NIDS solutions (e.g., security appliances from Cisco
and Juniper Networks). In NIDS, every pattern represents a
signature of malicious traffic; thus, the DPI engine of a
NIDS inspects the incoming packets payloads against all
available signatures and triggers pre-defined actions if a
match is detected. A regular expression can cover a wide

variety of pattern signatures [1-3]. Because of their expres-
sive power, regular expressions have been increasingly
adopted to express pattern sets in both industry and aca-
demia. To allow multi-pattern search, current NIDS mostly
represent the pattern-set through finite automata (FA) [4],
either in their deterministic or in their non-deterministic
form (DFA and NFA, respectively).

A large body of research has focused on developing effi-
cient regular-expression matching engines. For memory-
centric solutions, where the automaton is stored in memory,
DFA-based approaches are more popular than NFA-based
ones because of their predictable memory bandwidth re-
quirements. Specifically, processing an input character in-
volves only one DFA state traversal, which can be translat-
ed into a deterministic number of memory accesses. How-
ever, this attractive property comes at the cost of potentially
large requirements for memory space. In fact, DFAs con-
structed from large and complex sets of regular expressions
may suffer from the state explosion problem, making the
storage requirements prohibitively large. State explosion
can take place during DFA generation when the correspond-
ing regular expressions have repetitions of wildcards and/or
large character sets. Several variants of DFA [5-11] have
been proposed to address this problem, and thus, limit the
effects of state explosion with varying degree.

In real-world scenarios, a network data stream can span
multiple packets. Those packets can arrive at network secu-
rity devices out of order due to multiple routes, packet re-
transmission, or NIDS evasion. Thus, the packets must be
re-ordered appropriately upon receipt. Previous work ana-
lyzing Internet traffic has reported that about 2%-5% of
packets are affected by reordering [12-14]. However, these
studies have focused on benign traffic; while attackers may
intentionally mis-order legitimate traffic to trigger denial-
of-service (DoS) attacks [14]. NIDS face challenges [15]
when processing data streams that span across out-of-order
packets, especially when performing regular-expression
matching against traffic containing malicious content that is
located across packets boundaries. In such cases, the mali-
cious patterns are split and carried by multiple packets; and
NIDS cannot detect them by processing those packets indi-
vidually.

 2

Several solutions have been proposed to address the
problem of processing out-of-order packets in NIDS. One
approach that is widely adopted in current network devices
is packet buffering and stream reassembling [14, 16-18]. In
this case, incoming packets are buffered and packet streams
are reassembled based on the information in the header
fields. Regular-expression matching is then performed on
the reassembled data stream. This approach is intuitive and
easy to implement but can be very resource-intensive and
vulnerable to DoS attacks, whereby attackers exhaust the
packet buffer capacity by sending long sequences of out-of-
order packets. Recently, researchers have proposed several
new solutions [19-21] aimed to relieve packet-buffer pres-
sure or even avoid packet buffering and reassembling. This
is done by tracking all possible traversal paths or leveraging
data structures such as suffix trees. While they alleviate the
burden of handing out-of-order packets to some extent,
these methods are either applicable only to simple patterns
(exact-match strings or fixed-length patterns) or suffer from
undesirable worst-case properties (and are therefore still
vulnerable to DoS attacks).

In this work, we aim to provide a solution that (1) pro-
cesses out-of-order packets without requiring packet buffer-
ing and stream reassembling, (2) relies only on finite au-
tomata, and (3) handles regular expressions with complex
sub-patterns. One of the main challenges in our design
comes from handling regular expressions that include un-
bounded repetitions of wildcards and large character sets.
Why is this a challenge? These sub-patterns can represent
unbounded sets of exact-match substrings that cannot be
exhaustively enumerated. Our solution leverages the fol-
lowing observation: all exact-match strings that match a
repetition sub-pattern are functionally equivalent from the
point of view of the regular-expression matching engine
and interchanging them will not affect the final matching
result. Our proposed solution consists of regular DFAs
coupled with a set of supporting FAs either in NFA or DFA
form. The supporting FAs are used to detect and record –
using only a few states (typically no more than five) –
segments of packets that can potentially be part of a match
across packet boundaries. While processing packets out-of-
order, those segments can be dynamically retrieved from
the recorded states and can be then used to resolve matches
across packet boundaries.

To be efficient, any automata-based solution requires
minimizing the number of automata, their size, and the
number of states that can be active in parallel. Our ap-
proach includes optimizations aimed to achieve these goals.
In summary, our contributions are as follows:
• O3FA, a new finite automata-based DPI engine to per-

form regular-expression matching on out-of-order pack-
ets in real time, i.e., without requiring flow reassembly.

• Several optimizations to improve the average-擦色 and
worst-case behavior of the O3FA engine and an analysis
of how packet ordering affects the buffer size.

• An evaluation our O3FA engine on various real-world
and synthetic datasets, where our results show that the
O3FA engine requires 20x-4000x less buffer space than
conventional buffering and reassembling-based solutions
but with only 0.0006%-5% traversal overhead.

2. BACKGROUND & RELATED WORK
Finite automata (FA) are widely used to perform regular-
expression matching. In automata-based approaches, the
matching operation is equivalent to a FA traversal that is
guided by the content of the input stream. Worst-case guar-
antees on the input processing time can be met by bounding
the amount of per-character processing. As the basic data
structure in the regular-expression matching engine, the
finite automaton must be deployable on a reasonably provi-
sioned hardware platform. As the size of pattern-sets and
the expressiveness of individual patterns increase, limiting
the size of the automaton becomes challenging. The explo-
ration space is characterized by a trade-off between the size
of the automaton and the worst-case bound on the amount
of per-character processing. Non-deterministic and deter-
ministic finite automata (NFAs and DFAs, respectively) are
at the two extremes of this exploration space. NFAs have a
limited size but can require expensive per-character pro-
cessing, whereas DFAs offer limited per-character pro-
cessing but at the cost of a possibly large automaton. As an
example, Figure 1 shows the NFA and DFA accepting regu-
lar expressions a.*bc and bcd (the dot-star sub-pattern “.*”
represents any segment with any length). In the figure, the
states active after processing input stream acbc are high-
lighted using diagonal filling. As can be seen, the NFA con-
sists of fewer states, i.e., seven (7) versus eight (8), while
the DFA leads to less per-character processing, i.e.,one (1)
versus four (4) concurrently active states.

While offering this attractive traversal property, DFAs
can suffer from the well-known state explosion problem.
Each DFA state corresponds to a set of NFA states that can
be simultaneously active [4]. Therefore, given an N-state
NFA, the functionally equivalent DFA may potentially have
up to 2N states. This state explosion may limit the DFA’s
ability to handle large and complex sets of regular expres-
sions (typically those that include bounded and unbounded

Figure 1. (a) NFA and (b) DFA accepting regular expres-
sions a.*bc and bcd. Accepting states are colored gray.
States active at the end of the processing of input acbc are
highlighted with a diagonal filling. In the NFA, states 0 and
1 have a self-loop on any characters of the alphabet. In the
DFA, state 1 has incoming transitions on character b from
states 1 to 7, and incoming transitions from states 1 to 4 on
any characters other than a and b (incoming transitions to
states 0, 2 and 5 can be read in the same way).

 3

repetitions of wildcards or large character sets). Existing
proposals targeting DFA-based solutions have focused on
two aspects: (i) designing compression schemes aimed at
minimizing the DFA memory footprint; and (ii) devising
new automata to alternate DFAs in case of state explosion.
Alphabet reduction [5, 22-24], run-length encoding [5],
default transition compression [22, 25], state merging [7]
and delta-FAs [26] fall in the first category, while multiple-
DFAs [5, 6], hybrid-FAs [7], history-based-FAs [8], XFAs
[9], counting-FAs [10], and JFAs [11] fall in the second
category. All of these solutions, however, have been de-
signed to operate on reassembled packet streams.

The classic approach (to tackle the packet reordering
problem) buffers the received data packets, reorders them,
and finally reassembles the packet stream (or packet flow).
Dharmapurikar et al. [14] propose a system to buffer and
reorder packets. Their system consists of a packet analyzer,
an out-of-order packet processing unit, and a buffer manag-
er. It mitigates the risk of denial-of-service (DoS) attacks
by forcing attackers to use multiple attacking hosts. How-
ever, the system is still vulnerable to attacks, exhausting the
buffer capacity. Similar packet buffering and stream reas-
sembly solutions have also been proposed and adopted in
industry (e.g. Cisco [16], Nortel Networks [17], and
Netrake [18]).

Despite its widespread adoption, this buffering and reas-
sembling approach is vulnerable to DoS attacks whereby
attackers exhaust the buffer capacity by sending long se-
quences of out-of-order packets. There have been a handful
of proposals attempting to reduce these risks by avoiding
packet buffering and stream reassembly.

For example, Varghese et al. [27] propose Split-Detect.
This system splits the signatures of malicious traffic into
pieces, performs deep packet inspection on these sub-
signatures, and diverts the TCP packets for reassembly
from the fast path to the slow path upon detection of any of
these sub-signatures. Split-Detect can achieve up to 90%
storage requirement reduction compared to conventional
NIDS. However, rather than avoiding stream reassembly, it
offloads it to the slow path. In addition, Split-Detect is re-
stricted to exact-match signatures and patterns with a fixed
length. In contrast, our approach works on arbitrarily-sized
patterns.

Johnson et al. [21] propose a DFA-based solution that,
for each packet, performs parallel traversals from each and
all DFA states. Because the initial DFA state is unknown
when processing an out-of-order packet, any DFA state
must be considered a potential initial state. A post-
processing step is then be performed to reconstruct valid
traversals at packet boundaries. Although this scheme may
be effective in the presence of non-malicious traffic (where
the traversal is limited to a few DFA states), it does not
provide a good worst-case bound, and it may involve a
large amount of post-processing.

More recently, Chen et al. [20] propose AC-Suffix-Tree.
This scheme avoids packet buffering and stream reassembly

by combining an Aho-Corasick DFA with a suffix tree.
Zhang et al. [19] propose On-Line Reassembly (OLR), a
scheme that stores patterns in a directed acyclic word graph
(DAWG). Both of these solutions, however, apply only to
exact-match patterns and are unable to handle regular ex-
pressions, which are more common in real-world applica-
tions. Our approach does not suffer from this limitation.

3. O3FA DESIGN
In this section, we present our approach for performing reg-
ular-expression matching on out-of-order packets without
requiring prior stream reassembly. The main challenge in
this problem comes from the handling of matches across
packet boundaries. At a high level, our proposed solution
couples one or more DFAs with supporting-FAs. The DFAs
find matches within a packet while the supporting-FAs de-
tect and record segments of packets that can potentially be
part of a match across packet boundaries. While processing
out-of-order packets, these segments can be dynamically
retrieved from the state information collected on the sup-
porting-FAs, and they can subsequently be concatenated to
the incoming packet in order to handle cross-packet match-
es.

To have an intuition of this idea, consider matching input
stream cabcdeab against pattern b.*cde. Let us assume that
this input stream spans across two packets: P1=cabc and
P2=deab. We can observe that pattern b.*cde is matched
across packet boundaries (the match starts in P1 and ends in
P2; the segments of P1 and P2 involved in the match are un-
derlined). If we use a DFA, this match will be detected only
if packets P1 and P2 are processed in order. If the packets
are processed out of order, we will need a way to detect that
segment de of P2 and segment bc of P1 are partial matches
(specifically, they match the suffix and the prefix of the
considered patterns, respectively). We will then use this
information to reconstruct the match. Our proposed sup-
porting-FA serves this purpose. We note that, because
b.*cde is neither an exact-match string nor a fixed-length
pattern, it cannot be handled by previous approaches such
as SplitDetect [27], AC-Suffix-Tree [20], and ORL [19].

Because we are concerned about patterns with variable
length, we focus on regular expressions containing repeti-
tions of characters (e.g., c+ and c*), character sets (e.g, [ci-
cj]*), and wildcards (.*). We note that regular expressions
without these features can be handled by traditional meth-
ods. For example, a regular expression containing a non-
repeated character set [ci-cj] can be transformed by exhaus-
tive enumeration into a set of exact-match patterns. For
readability and in the interest of space, the remaining de-
scription focuses on the more general case (wildcard repeti-
tions); however, our solution applies to all kinds of repeti-
tions.

A central question in the O3FA design is as follows: how
can we identify the minimal packet segments that must be
recorded in order to handle cross-packet matches? We note

 4

that excessively long segments would pose pressure on the
required packet buffer and on the amount of processing
involved in the matching operation, thus leading to ineffi-
ciencies. Our design leverages the following observations.

Observation 1: If a regular expression R is matched
across a set of packets P1,.., PN, then the suffix of P1 must
match a prefix of R and the prefix of PN must match a suffix
of R.

Observation 2: Given a regular expression R in the form
sp1.*sp2 and an input stream I containing a matching seg-
ment of the form M1M*M2, where M1 matches sp1 and M2
matches sp2, any modifications to I that substitutes M* with
a shorter segment will not affect the match outcome.

According to Observation 1, O3FA must detect segments
of incoming packets that match any suffixes/prefixes of the
considered regular expressions. These segments are record-
ed by storing the corresponding matching states information,
and they can be dynamically retrieved and properly concat-
enated with later-arrival packets to detect cross-boundary
matching. For example, while matching regular expression
b.*cde on packets P1=caba, P2=dcac and P3=dead that ar-
rive in order P3→P1→P2, we first detect that segment de in
P3 matches suffix de, and then that segment ba in P1 match-
es prefix b.*. When P2 arrives, we retrieve those segments
and concatenate them with P2, then conduct regular expres-
sion matching on badcacde and detect the cross-boundary
matching of b.*cde. In general, prefix b.* can match arbi-
trarily long strings, which may span across any number of
intermediate packets.

However, according to Observation 2, in order to recon-
struct the match, it is sufficient to record the shortest seg-
ment of the input stream that matches the regular expression
with the wildcard repetition. In the considered example,
rather than recording segment ba of packet P1, we can
simply record segment b. In addition, if a regular expres-
sion p.*s is matched across a set of packets P1,..,PN such
that the suffix of P1 matches p and the prefix of PN matches
s, recording the intermediate packets P2,..,PN-1 will not be
necessary for matching purposes.

The design is complicated by the fact that multiple regu-
lar expressions would require recording multiple segments,
possibly leading to inefficiencies. In section 4 we propose a
mechanism (that we call Functionally Equivalent Packets)
to combine segments related to different regular expres-
sions. As we will discuss, this method leverages the overlap
between different segments.

3.1 O3FA Data Structure
We now discuss the design of O3FA, a composite automata-
based solution that implements the scheme described above.
As mentioned, O3FA consists of two components:
• One or more “regular” DFAs used to perform regular

expression matching and constructed based on the giv-

en regular expression set. Any automata optimization
techniques [5-11, 22, 25, 26, 28] can be applied to
these DFAs.

• Supporting-FAs used to detect and record significant
segments of incoming packets. According to the above
discussion, supporting-FAs should be constructed to
detect segments matching regular expressions’ prefixes
and suffixes, and can therefore be of two kinds: prefix-
FAs and suffix-FAs. These automata can be in either
NFA or in DFA form.

In order to build the prefix- and suffix-FAs, we split the
regular expressions at the positions of the repetition sub-
patterns. For example, regular expression abc.*def.*ghk
will be broken down into three sub-
patterns: .*abc.*, .*def.* and .*ghk (the .* before abc is due
to the fact that the original regular expression is unanchored,
that is, it can be matched at any position of the input
stream). This breakdown is possible because the support-
ing-FAs are used to record packet segments, and not to per-
form pattern matching; the short packet segments recorded
by breaking down the regular expressions into sub-patterns
will be concatenated into larger segments during processing.
This breakdown allows significantly simplifying the sup-
porting automata: by allowing dot-star terms to appear only
at the beginning or at the end of each pattern, it will avoid
state explosion when representing the supporting-FAs in
DFA form. The full prefix and suffix sets corresponding to
the given sub-patterns are: {.*abc.*, .*abc, .*ab, .*a,
 .*def.*, .*def, .*de, .*d, .*ghk, .*gh, .*g} and {.*abc.*,
abc.*, bc.*, c.*, .*def.*, def.*, ef.*, f.*, .*ghk, ghk, hk, k},
respectively.

However, some simplifications are possible. First, since
the suffixes must be matched at the beginning of packets
(Observation 1) and can end anywhere within a packet, the
“.*” at the end of each suffix is redundant. Second, patterns
that are common to prefix and suffix sets
(e.g. .*abc, .*def, .*ghk) can be removed from the prefix set
(these patterns would lead to the detection of the same seg-
ments1). Third, sub-patterns that are covered by more gen-
eral patterns belonging to the same set (e.g. abc is a special
case of .*abc) can also be eliminated. After these simplifi-
cations, the prefix and suffix sets used to build the prefix-
and suffix-FA will be {.*abc.*, .*ab, .*a, .*def.*, .*de, .*d,
 .*gh, .*g} and {.*abc, bc, c, .*def, ef, f, .*ghk, hk, k}, re-
spectively. Note that the suffix set contains both anchored
and unanchored patterns (the latter start by “.*”). These two
groups of patterns can be compiled in two different suffix-
Fas (i.e., an anchored and an unanchored suffix-FA) to al-

1 The reason why these patterns are removed by the prefix set will

become apparent later. Specifically, since all prefix matches in
the middle of packets can be discarded, keeping these patterns
in the suffix set ensures that they will be detected by the suffix-
FA.

 5

low space optimizations when representing the automata in
DFA form.

During processing, upon a match within a supporting-FA,
the corresponding accepting state must be recorded, and it
will then be used to retrieve the packet segments to be con-
catenated to the current input packet. This “extended” input
packet will then be processed by the “regular” DFA. How-
ever, some matches that occur within the supporting-FAs
can be discarded, thus diminishing the amount of infor-
mation that must be recorded to reconstruct relevant packet
segments. First, since prefixes need to be matched only at
the end of packets (Observation 1), all prefix matches oc-
curring in the middle of any packets can be discarded. Sec-
ond, if multiple anchored suffixes of a regular expression
are matched, only the longest one must be recorded (shorter
suffixes will be subsumed by it).

Figure 2 shows an example on regular expression set
{abc.*def, ghk}, both patterns are unanchored (that is, they
can be matched at any position of the input stream). The
prefix set, anchored suffix set and unanchored suffix set are
{.*abc.*, .*ab, .*a, .*de, .*d, .*gh, .*g}, {bc, c, ef, f, hk, k}
and {.*abc, .*def, .*ghk}, respectively. Figure 2 (a)-(d)
show the resulting regular DFA, prefix-FA, anchored suf-
fix-FA and unanchored suffix-FA; all supporting-FAs are
left in NFA form. We assume three input packets: P1=bhab,
P2=cegh and P3=adef, with the arriving order being P3→P1

→P2. After P3 is processed, the matching state sets of regu-
lar DFA and anchored suffix-FA are empty; the unanchored
suffix-FA matching states is 6; the prefix-FA matching
states are {8, 9}; since those matches do not happen at the
tail of P3, they will be discarded. Then, we process P1; the
matching state sets of regular DFA, anchored suffix-FA and
unanchored suffix-FA are empty; the prefix-FA matching
states are {5, 6}; since only matching state 5 is active at the
end of P1 processing, this sole prefix-FA state will be rec-
orded. When P2 arrives, we should first check the recorded
information of its previously processed neighbor packets
(i.e., predecessor P1 and successor P3): P1 has a recorded
prefix-FA state 5; the retrieved segment is ab and should be

concatenated to P2 as a prefix. P3 has a recorded unan-
chored suffix-FA state 6; the retrieved segment is def and
should be concatenated to P2 as a suffix. Then, the modified
P2 is abceghdef; after it is processed with the regular DFA,
the matching of the pattern abc.*def will be reported.

4. OPTIMIZATIONS
Our basic O3FA design has two limitations: it can lead to
false positives (that is, it may report invalid matches) and it
can suffer from inefficiencies during processing. In this
section, we describe a mechanism – called Index Tags – to
avoid false positives, and a suitable format for the support-
ing-FAs and two auxiliary data structures to improve the
matching speed.

4.1 Index Tags
Our initial O3FA engine design may report false positives in
the presence of multiple regular expressions. For example,
consider a dataset with two regular expressions: {bc.*d,
acd}. Two input packets P1:caaba and P2:cabdc are re-
ceived out of order (P2→P1). Obviously, no matches should
be reported on the corresponding input stream caabacabdc.
However, in our basic O3FA design, the anchored suffix-FA
will detect the segment cabd of P2 that matches suffix c.*d
of the first pattern; when P1 arrives, segment cd will be re-
trieved and concatenated to P1 as a suffix, leading to the
extended packet caabacd. Processing this packet with the
regular DFA will lead to the false match acd to be reported.

To understand the root cause of this problem, we make
the following observation.

Observation 3: Let R be a set of regular expressions, R’
a proper subset of R, and r a regular expression belonging
to R but not to R’. Let S be the set of segments of the input
packets that match any prefix or suffix of regular expres-
sions in R’. If there exists at least a segment in S that also
matches a prefix or suffix of regular expression r, then a
false positive can be reported during processing.

In the example above, let R be {bc.*d, acd}, and R’ be
{bc.*d}. We observe that segment cd of P2 matches pattern
bc.*d in R’ as well as pattern acd that belongs to R but not
to R’. This fact leads to the false positive indicated above.

Based on this observation, in order to eliminate false pos-
itives, we must correlate the matched suffixes and prefixes
with the corresponding regular expressions. To this end, we
assign an index tag to each regular expression, and associ-
ate these index tags to the corresponding accepting states
within regular and supporting FAs. During processing, we
store the index tags associated to all traversed supporting-
FA accepting states in a tag list. When the regular DFA
reports a match, if the index tag of the matched regular ex-
pression is in the tag list, then the match is valid; otherwise,
it is a false positive. Consider the example above; let tag1
and tag2 be the index tags of patterns bc.*d and acd, corre-
spondingly. When the prefix cabd of P2 is detected to match

Figure 2. (a) DFA accepting pattern set {abc.*def, ghk}, (b)
prefix-FA, (c) anchored suffix-FA and (d) unanchored suf-
fix-FA built upon corresponding prefix set, anchored suffix
set and unanchored suffix set. Accepting states are colored
gray.

 6

suffix c.*d of the first pattern, tag1 is pushed in the tag list.
After the extended packet caabacd is processed against the
regular DFA, the match of pattern acd will be discarded as
false positive, since the index tag tag2 is not in the tag list.

4.2 Compressed Suffix-NFA
As mentioned above, the supporting-FAs may be represent-
ed either in NFA or in DFA form. We recall that NFAs are
compact but may suffer from multiple concurrent state acti-
vations, which may negatively affect the processing time.
On the other hand, DFAs have the benefit of a single state
activation for each input character at the cost of a potential-
ly large number of states, affecting the memory space re-
quired to encode the automaton. In this section, we point
out the most effective representation for each of the sup-
porting-FAs.

We recall that, in our O3FA design, the anchored suffix
set contains only exact-match patterns. An NFA containing
only anchored exact-match patterns can have only one ac-
tive state. Thus, the anchored suffix-FA can be left in NFA
form without loss in processing efficiency. We denote this
automaton as anchored suffix-NFA (asNFA).

The anchored suffix set can have a large amount of re-
dundancy due to the nature of suffixes. An n-character pat-
tern can lead to n-1 suffixes, with every two adjacent suf-
fixes differing in only one character. This creates compres-
sion opportunities for asNFA. We propose a compressed
suffix-NFA (csNFA) representation, which reduces both
the asNFA size and bandwidth requirements. Specifically,
given the nature of the suffixes of any given pattern, we
merge the asNFA states and transitions starting from the tail
states. Figure 3 shows an example. Figure 3(a) is the asNFA
built upon anchor suffix set {bcdca, cdca, dca, ca, a}; Fig-
ure 3(b) is the corresponding csNFA. In this example, the
compression reduces the number of NFA states from six-
teen to six and removes six transitions.

While being more compact, csNFA requires a more elab-
orate segments retrieval procedure. In an asNFA, segments
retrieval can be done by simply tracking back from the rec-
orded matching states to the entry state. However, in the
optimized csNFA, this straightforward approach does not
work since the backtracking may lead to ambiguity at some
states. To address this problem, during csNFA traversal we
identify all states that are active after the processing of the

first input character and assign state pair <start_state,
end_state> to each active state, where start_states are these
active states and end_states are last states of the traversed
paths originating from them. Only state pairs <start_state,
end_state> such that end_states are accepting states are
significant; moreover, as we discussed in Section 3, only the
state pair representing the longest matching path needs to be
recorded. The matched segment can then be retrieved by
tracing the csNFA matching path using the recorded state
pair. Since the anchored suffix set includes only exact-
match patterns, the start_states set has a limited size and
the active paths are expected to go dead after the processing
of a small number of input characters, reducing the amount
of processing. Our experiments in Section 6 confirm the
efficiency of this proposed compression scheme.

As an example, we consider the csNFA of Figure 3(b)
and input cadc. csNFA processes the first input as {0}—c
→{2,4}; we assign state pairs to both active states and track
the traversal: {2}—a→{Ø}, {4}—a→{5}. Since the first
path goes dead and the second path reaches the tail state of
the csNFA, the traversal leads to two state pairs: <2,2> and
<4,5>. Since only state 5 is an accepting state and <4,5>
matches the longest segment, only state pair <4,5> needs to
be recorded. State pair <4,5> should then be back-traced as
5—a→4—c→0, leading to the retrieval of segment ca.

4.3 Prefix- and Suffix-DFA with State Map
We recall that all patterns in the prefix set and unanchored
suffix set are unanchored (that is, they may be matched at
any position of the input stream). Since their entry state is
always active (potentially leading to the concurrent activa-
tion of multiple NFA branches), NFAs accepting unan-
chored patterns tend to have multiple concurrent active
states, which negatively affect the processing time. By re-
quiring a single state activation for each input character
processed, a DFA representation guarantees minimal pro-
cessing time, potentially at the cost of a larger memory re-
quirement. However, we recall that patterns in the prefix
and suffix sets do not have wildcard repetitions, and thus do
not lead to significant state explosion. Thus, the DFA for-
mat is suitable for both prefix- and unanchored suffix-FAs;
we denote these automata as prefix-DFA (pDFA) and suf-
fix-DFA (sDFA).

The number of states in a DFA can be minimized through
a well-known procedure [4]. In addition, as discussed in
Section 3, all prefix matches occurring in the middle of
packets can be ignored. This allows further optimizations to
the prefix-DFA. Specifically, all accepting states that do not
present a self-loop can be made non-accepting, and all self-
loops can be removed from the remaining accepting states.
This simplification can both reduce the size of the prefix-
DFA and simplify the processing (by making a filtering step
to remove non-terminal matches unnecessary).

Figure 3. (a) basic asNFA and (b) optimized csNFA built
upon anchored suffix set {bcdca, cdca, dca, ca, a}. Accepting
states are colored gray.

 7

The use of a DFA representation for these automata,
however, has a drawback: it complicates the retrieval of the
matching input segments. Since there may be multiple paths
leading to the same DFA state, it is not possible to retrieve
the input segment solely based on the recorded DFA state.
To tackle this problem, we propose using a state map,
which maps the pDFA/sDFA states to the corresponding
NFA states; segment retrieval can then be done by back-
tracing NFA paths. Since pDFA and sDFA do not suffer
from state explosion, the size of this state map is contained.
One DFA state may map to multiple NFA states; in those
cases, however, only the NFA state that leads to the longest
retrieved segment needs to be included in the state map,
allowing a one-to-one mapping.

We illustrate this design through an example. Let us con-
sider pattern .*abc.*bcd. The corresponding unanchored
suffix and prefix sets are {.*abc, .*bcd} and
{.*abc.*, .*ab, .*a, .*bc, .*b}, respectively. The corre-
sponding automata are shown in Figure 4 and 5. Specifical-
ly, Figure 4 (a) and (b) show the unanchored suffix-NFA
and the sDFA and state map, respectively. Figure 5(a), (b)
and (c) show the prefix-NFA, the reduced prefix-NFA ob-
tained by applying the optimizations discussed above, and
the resulting pDFA and state map, respectively. Suppose
that the input packet is bcdbabcdcb. The traversal of pDFA
in Figure 5(c) is: 0—b→4—c→5—d→0—b→4—a→1—b
b→2—c→3—d→0—c→0—b→4. The traversed accepting
state (state 3) and the final active state (state 4) must be
recorded. To retrieve the input segments, we first map those
states to NFA states 3 and 7 by looking up the state map,
and then back-trace along the NFA. This operation leads to
the retrieval of segments abc and b. Segment retrieval on
the sDFA is performed using the same procedure.

4.4 Quick Retrieval Table
Retrieving input segments by back-tracing along NFA paths
can be inefficient. To improve efficiency, we propose the
use of a quick retrieval table, which maps the NFA states
directly to portions of regular expressions. This table allows
retrieving input segments without back-tracing. A quick
retrieval table lookup returns an offset in the relevant regu-
lar expression; the input segment can then be extracted di-

rectly from the regular expression. This data structure is
particularly beneficial in the case of long segments.

As an example, consider regular expression abcdca. The
anchored suffix set and corresponding csNFA are the same
as for the example in Section 4.2. Figure 6 (a) shows the
csNFA and Figure 6(b) shows the quick retrieval table,
which stores <index_tag, offset> pairs. We recall that index
tags point to regular expressions. If the recorded state pair
is <4, 5>, for example, a lookup in the quick retrieval table
will return index tag tag1 corresponding to pattern abcdca,
and start- and end- offsets 5 and 6, respectively. This will
result in retrieving segment ca.

4.5 Functionally Equivalent Packets
Any incoming packet may contain multiple segments that
match a prefix or a suffix. For example, the sample packet
in Section 4.3 contains two segments that match two differ-
ent prefixes. All these segments should be recorded and
retrieved properly, and all retrieved segments should be
processed with the current input packet. A simple approach
is to sequentially concatenate the segments retrieved to the
current packet and process all modified current packets. For
example, supposing that the current packet is efgh, using the
same example of Section 4.3, then two retrieved segments
are abc and b, and the two corresponding concatenated cur-
rent packets abcefgh and befgh should be processed serially.
This solution can be highly inefficient. However, concur-
rently concatenating all retrieved segments to the current
packet is not straightforward, since many segments may
have overlaps. Our proposed solution is the Functionally
Equivalent Packet (FEP). The main idea is to construct an
alternate packet based on all retrieved segments and then
deal with the alternate packet instead of the segments. Such
an alternate packet contains all effective information (i.e.,
all detected segments) of the original packet and thus is
functionally equivalent to the original one.

Figure 4. (a) NFA format and (b) equivalent sDFA format

with states map for unanchored suffix set {.*abc, .*bcd}.
Accepting states are colored gray.

Figure 5. (a) original NFA format, (b) optimized NFA, (c)
pDFA with states map for prefix set
{.*abc.*, .*ab, .*a, .*bc, .*b}. Accepting states are colored
gray.

 8

Consider the example RegEx ab.*bcd; the prefix set is
{.*ab.*, .*a, .*bc, .*b}. Figure 7 (a) and (b) are the NFA
format and pDFA with a states map for this prefix set. Sup-
posing the input packets are P1=afab, P2=eabc and P3=defg,
there is obviously only one matching of ab.*bcd across all
three packets. Two pDFA states 2 and 4 are recorded after
packet P2 is processed, representing two detected segments
that match prefixes .*ab.* and .*bc. The retrieved alternate
segments are ab and bc. Directly concatenating both seg-
ments to P3 as abbcdefg can cause a false-positive matching.
Our FEP design needs only one change that recording
<state, offset> pairs instead of only matched states; the off-
set is the offset of matched segment’s last character in the
packet. When retrieving segments, all retrieved alternate
segments will be filled into an empty string, filling positions
accord to their offsets; then, the filled string will be shrunk-
en to get FEP. Figure 7(c) shows the construction of FEP to
P2. <2,3> and <4,4> are two recorded <state, offset> pairs.
The alternate FEP of P2 is abc; substituting P2 by FEP in
the data stream as afababcdefg will not affect the matching
results.

5. O3FA-BASED SYSTEM
In this section, we describe the design of a regular expres-
sion-matching engine based on our proposed O3FA.

5.1 O3FA Engine Architecture
Our O3FA engine consists of four components: (i) a Regu-
lar Expression (RegEx) Parser, (ii) a Finite Automata (FA)
Kernel, (iii) a State Buffer, and (iii) a Functionally Equiva-
lent Packet (FEP) Constructor.

The RegEx Parser operates offline. It first breaks the

regular expressions as described in Section 3 and generates
the corresponding prefix and anchored/unanchored suffix
sets. It then generates the required regular DFAs (rDFA)
and supporting-FAs: compressed suffix-NFA (csNFA), pre-
fix-DFA (pDFA) and suffix-DFA (sDFA).

The FA Kernel is the operational core of the O3FA en-
gine and performs online packet processing. Specifically, it
processes every input packet (possibly extended by the FEP
Constructor) against regular and supporting-FAs, and stores
the matching state information into the State Buffer.

The State Buffer is an auxiliary component that assists
both the FA Kernel and the FEP Constructor. This compo-
nent stores the matching state information generated by the
FA Kernel, and it provides information required by FEP
reconstruction to the FEP Constructor. As discussed in Sec-
tion 4, the State Buffer stores: final states from the regular
DFA traversal, state pairs <start_state, end_state> from the
csNFA traversal, and <state, offset> pairs from the pDFA
and sDFA traversal. Specifically, the State Buffer stores an
entry for each packet processed. During processing, if nei-
ther the predecessor nor the successor of the current packet
has been previously processed, the current packet is directly
processed by the FA Kernel and the resulting matching in-
formation is stored in the State Buffer. Otherwise, the FEP
Constructor retrieves the predecessor/successor’s entry in
the State Buffer, and it constructs the FEP of the arrived
predecessor/successor packets based upon that state infor-
mation. The FEP is then concatenated with the current
packet, and the modified packet is processed by the FA
Kernel. At the end of FA processing, the matching state
information is stored in the current packet’s entry of the
State Buffer, and the related predecessor/successor entries
are deleted from the State Buffer since the corresponding
information is part of the current packet’s entry. Storing

Figure 6. (a) csNFA and (b) quick retrieval table for an-
chored suffix set {bcdca, cdca, dca, ca, a}. Accepting states
are colored gray. Each char. position is a pair of index tag
and offset, i.e., <tag, offset>

Figure 7. (a) NFA format and (b) equivalent pDFA format

with states map built upon prefix set {.*ab.*, .*a, .*bc, .*b}.
(c) Construction of functionally equivalent packet to pack-
et P2=eabc.

check pre/suc

Current packet

arrived
predecessor/
successor?

query pre/suc
buffer entry

concatenated
packet

Y
N

Y
if N

functionally
equivalent
packet

matching? report
intrusion

if Y

FA Kernel

States Buffer

Functionally Equivalent Packet
(FEP) Constructor

matching
states info

Figure 8. Packet processing flow. Dotted arrows indicate
alternative paths if there are no arrived succes-
sor/predecessor packets.

 9

Table 1. Memory footprint of FA Kernels (MB)

Dataset

FA Kernel
Regular multi-DFAs Supporting-FAs

of
DFA

Memory
Footprint

of FA
States

Memory
Footprint

Backdoor 8 60 4k 0.62
Spyware 10 56 12k 1.35

Dotstar0.05 15 26 26k 3.58
Dotstar0.1 8 60 25k 3.12
Dotstar0.2 14 100 23k 2.76
Range0.5 1 5.6 24k 2.43
Range1 1 5.8 24k 2.05

Exact-match 1 4.7 17k 1.92

only state information corresponding to previously pro-
cessed packets (as opposed to the entire packets) and dy-
namically clearing entries during processing allow limiting
the size of this buffer.

FEP Constructor: The FEP constructor uses state in-
formation provided by the State Buffer to reconstruct func-
tionally equivalent packets, as described in Section 4.5.

The packet processing flow is summarized in Figure 8.

6. EXPERIMENTAL EVALUATION
In this section, we provide experimental data to show the
feasibility of our O3FA engine design. Specifically, our
experiments are designed to analyze the following aspects:
(i) O3FA memory footprint on reasonably large and com-
plex regular expression sets; (ii) savings in buffer size re-
quirements of O3FA engine compared to traditional flow
reassembly schemes; (iii) memory bandwidth overhead of
supporting-FAs; and (iv) O3FA traversal efficiency.

6.1 Datasets & Streams
In our experiments, we use two real world and six synthetic
datasets. The real world datasets contain backdoor and
spyware rules from the widely used Snort NIDS2 (snapshot
from December 2011), and they include 176 and 304 regu-
lar expressions, respectively. The synthetic datasets have
been generated through the synthetic regular expression
generator3 [29] using tokens extracted from the backdoor
rules. Each synthetic dataset contains 500 regular expres-
sions. The synthetic dot-star* datasets contain a varying
fraction of dot-star sub-patterns (5%, 10% and 20%); in the
synthetic range* datasets 50% and 100% of the patterns
include character sets; finally, the synthetic exact-match
dataset contains only exact-matching strings.

For each dataset, we generate 16 synthetic traces using
the traffic trace generator3 [29]. This tool allows for gener-
ating traces that simulate various amount of malicious ac-
tivity. This can be realized by tuning parameter pM, which
indicates the probability of malicious traffic. In our experi-
ments, we use four probabilistic seeds and four pM values:
0.35, 0.55, 0.75 and 0.95, i.e., 16 traces in total for each
dataset. All traces have a 1 MB size. Experimental data of
each dataset discussed below based on the average perfor-
mance with four traces generated using different probabilis-
tic seeds.

6.2 Packet Reordering
To simulate out-of-order packet arrival, we break each syn-
thetic stream down into multiple packets and reorder these
packets. Packet reordering is driven by two parameters: the
out-of-order degree k and the stride s. Parameter k indicates

2 https://www.snort.org/
3 http://regex.wustl.edu/

the minimum number of arrived packets that are needed for
partial stream reconstruction; parameter s indicates the
maximum stride between two consecutive packets within
each group of k packets. Any real-world out-of-order pack-
ets flow can be re-generated from original flow follow the
driving of proper k and s.

For example, let us assume a stream consisting of eight
packets: P1 to P8. If we set k=2 and s=1, then packets are
reordered as P2→P1→P4→P3→P6→P5→P8→P7; if we set
k=4 and s=1, then packets are reordered as P4→P3→P2→P1

→P8→P7→P6→P5; if we set k=4 and s=2, the packets’ or-
der will be P4→P2→P3→P1→P8→P6→P7→P5. Obviously,
k=1 and s=1 implies natural ordering, while k=(packets
number) and s=1 leads to reverse ordering (in the example,
from P8 down to P1).

This packets’ reordering scheme allows us to characterize
how the packet order affects the performance of the O3FA
engine, and to compare the O3FA engine with the traditional
input stream reassembly method. In our experiments, we
break each 1MB stream into 16 packets that each has the
64KB standard TCP packet size. We reorder packets of
each stream using three parameter settings: k=2/s=1,
k=4/s=1 and k=4/s=2.

6.3 Experiment Results
6.3.1 O3FA Memory Footprint
First, we evaluate the memory footprint of the O3FA sup-
porting each of the considered datasets. The backdoor,
spyware and dotstar* datasets include sub-patterns (e.g.
dot-stars) leading to state explosion. To limit state explo-
sion, for these datasets we break the regular DFA into mul-
tiple DFAs [6] (the number of DFA ranges from 8 to 15).
Due to their simplicity, the exact-match and range* datasets
can be supported by a single regular DFA. The total number
of regular DFA states ranges from 9k to 254k across the
considered datasets. We recall that the supporting-FAs are

 10

Table 2. Ratio between the number of csNFA states traversed and the number of input characters processed (%)

Dataset
k=2, s=1 k=4, s=1 k=4, s=2

PM=0.35 PM=0.55 PM=0.75 PM=.95 PM=0.35 PM=0.55 PM=0.75 PM=0.95 PM=0.35 PM=0.55 PM=0.75 PM=0.95
Backdoor 0.0144 0.0202 0.0278 0.0349 0.0347 0.0337 0.0440 0.1010 0.0144 0.0202 0.0278 0.0349
Spyware 0.0590 0.1002 0.1163 0.1286 0.1158 0.1942 0.2188 0.1853 0.0590 0.1002 0.1163 0.1286
Dotstar0.05 0.0804 0.0838 0.1173 0.2595 0.1733 0.1394 0.1517 0.3927 0.0804 0.0838 0.1173 0.2595
Dotstar0.1 0.0526 0.0715 0.1054 0.2610 0.1129 0.1184 0.1701 0.3974 0.0526 0.0715 0.1054 0.2610
Dotstar0.2 0.0363 0.0611 0.1142 0.2977 0.0531 0.1112 0.1806 0.3622 0.0363 0.0611 0.1142 0.2977
Range0.5 0.0973 0.1015 0.2170 0.2238 0.1839 0.1865 0.3488 0.3831 0.0973 0.1015 0.2170 0.2238
Range1 0.0638 0.1180 0.2181 0.3927 0.1697 0.1910 0.3319 0.6929 0.0638 0.1180 0.2181 0.3927
E-M 0.0391 0.0627 0.1460 0.3140 0.1407 0.1395 0.1959 0.4374 0.0391 0.0627 0.1460 0.3140

of three kinds: compressed suffix-NFA (csNFA), prefix-
DFA (pDFA) and suffix-DFA (sDFA). As discussed in Sec-
tion 4, none of the supporting-FAs suffers from state explo-
sion, leading to relatively small automata. The number of
csNFA, sDFA and pDFA states ranges from 2k to 13k,
from 1k to 13k and from 1k to 9k, respectively. Range*
datasets have larger supporting-FA sizes. This is because
all character sets must be exhaustively enumerated before
constructing the supporting-FAs, resulting in large prefix
and suffix sets. The number of transitions of the csNFA
ranges from 5k to 27k. To achieve memory space efficiency,
we apply default-transition compression [22] to DFAs. Ta-
ble 1 shows the estimated memory footprint of the resulting
O3FA (we assume 32-bit transitions). As can be seen, O3FA
requires about 100MB memory space in the worst case,
which does not put pressure to commodity systems. In addi-
tion, because supporting-FAs do not suffer from state ex-
plosion, their size is in all cases limited, and their memory
space overhead is negligible in case of complex datasets
including dot-star terms.

6.3.2 Buffer Size Savings
Figure 9 shows the maximum buffer size requirement com-
parison between the O3FA engine and a optimized flow

reassembly scheme adopted from traditional reassembling
engine [18]. The O3FA engine uses the state buffer de-
scribed in Section 5, while the flow reassembly scheme uses
a packet buffer. The optimized flow reassembly scheme
reassembles a partial stream once the buffered packets al-
low it and then processes that partial stream and flushes the
corresponding packet buffer entries. For each value of pM,
we average the results reported using four probabilistic
seeds. In the charts, the six bars represent combinations of
the two considered packet processing schemes and the three
reordered packet sequences (k=2/s=1, k=4/s=1 and
k=4/s=2). In all cases, we report the logarithmic value of the
buffer size.

Overall, the O3FA engine with state buffer achieves 20x-
4000x less buffer size requirement than does the optimized
flow reassembly scheme with packet buffer. We can also
see how the packet order and malicious traffic probability
affect the buffer size: (i) as could be expected, the degree of
packet reordering k affects the packet buffer size, while s
does not, and the buffer size has a linear relationship with k;
(ii) k has a minor effect on the state buffer size, while s has
a major effect on it; (iii) pM has a major effect on the state
buffer size: a higher pM leads to a larger buffer requirement.

0
1
2
3
4
5
6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

bu

ff
er

 s
iz

e(
By

te
s)

Backdoor

0
1
2
3
4
5
6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

Spyware

0
1
2
3
4
5
6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

Dotstar0.05

0
1
2
3
4
5
6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

Dotstar0.1

0
1
2
3
4
5
6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

lo
g

va
lu

e
of

 m
in

bu

ff
er

 s
iz

e(
By

te
s)

Dotstar0.2

0
1
2
3
4
5
6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

Range0.5

0
1
2
3
4
5
6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

Range1

0
1
2
3
4
5
6

Pm=0.35 Pm=0.55 Pm=0.75 Pm=0.95

Exact-Match

Figure 9. Maximum buffer size requirements for optimized reassembly scheme and O3FA engine on eight datasets. Note that
the vertical coordinate is in logarithmic scale.

 11

Table 3. O3FA traversal overhead compared to conventional stream reassembly methods (%)

Dataset
 k=2, s=1 k=4, s=1 k=4, s=2

PM=0.35 PM=0.55 PM=0.75 PM=0.95 PM=0.35 PM=0.55 PM=0.75 PM=0.95 PM=0.35 PM=0.55 PM=0.75 PM=0.95
Backdoor 0.0114 0.0102 0.0346 0.3277 0.0211 0.0139 0.0732 0.5140 0.0119 0.0076 0.0288 0.3376
Spyware 0.0059 0.0058 0.1333 2.4362 0.0101 0.0090 0.2635 3.6701 0.0057 0.0049 0.0753 2.4427
Dotstar0.05 0.0103 0.0076 0.2645 1.0132 0.0220 0.0389 0.4492 1.5218 0.0134 0.0221 0.2679 1.0135
Dotstar0.1 0.0041 0.0129 0.0116 2.2671 0.0120 0.0304 0.0183 3.3866 0.0073 0.0136 0.0111 2.2464
Dotstar0.2 0.0083 0.0092 0.0160 3.4655 0.0164 0.0173 0.0225 5.2268 0.0098 0.0101 0.0112 3.4838
Range0.5 0.0007 0.0011 0.0032 0.0137 0.0017 0.0020 0.0054 0.0214 0.0009 0.0012 0.0033 0.0128
Range1 0.0006 0.0011 0.0033 0.0123 0.0014 0.0020 0.0051 0.0153 0.0008 0.0012 0.0033 0.0102
E-M 0.0006 0.0011 0.0033 0.0168 0.0014 0.0022 0.0054 0.0214 0.0008 0.0012 0.0033 0.0159

These effects can be explained as follow. First, since the

considered flow reassembly scheme flushes the packet
buffer entries after partial stream reconstruction, the packet
buffer size is affected only by the minimum number of
packets required for partial reassembly, which is controlled
by parameter k; on the other hand, the size of the state buff-
er is affected by the number and size of non-empty buffer
entries, which are related to the detected segments and the
arrived predecessors/successors. The former is affected by
pM, while the latter is affected by the stride parameter s.
Specifically, k=2 and k=4 lead to two and four packets be-
ing buffered before partial reassembly, while s does not
affect this number; thus, k=4/s=1 and k=4/s=2 lead to the
same packet buffer size, and to twice the packet buffer size
than the k=2/s=1 case. However, s affects the arrival order
of the predecessor/successor of the current packet, thus
affecting the size of the state buffer. s=1 and s=2 lead to
two and three entries required (one for previous groups of k
packets, the others for packets out of current k packets hav-
ing neither a predecessor nor a successor), respectively;
thus, k=2/s=1 and k=4/s=1 lead approximately to the same
state buffer size requirement, while k=4/s=2 leads approxi-
mately to a 1.5x larger state buffer. Because a higher prob-
ability of malicious traffic leads to the possible detection of
more packet segments by supporting-FAs, resulting in more
matching state information being stored in buffer entries, a
larger pM can lead to an increased state buffer size require-
ment.

6.3.3 Memory Bandwidth Overhead
While in traditional solutions the memory bandwidth re-
quirement of the regular expression matching engine is
dominated by the processing of the regular DFAs, O3FA
engines have a memory bandwidth overhead due to the pro-
cessing of supporting-FAs. In particular, while DFA com-
ponents add a single state traversal (or memory access) per
input character, NFA components can potentially have a
more significant effect on the memory bandwidth require-
ment. Table 2 shows the ratio between the number of
csNFA states traversed and the number of input characters

processed. As can be seen, this ratio is generally small (well
below 1), leading to limited memory bandwidth overhead.
This small number of NFA state activations can be ex-
plained as follows: since the csNFA is anchored, most state
activations will die after processing a small number of input
characters.

6.3.4 Traversal Overhead
Because of FEP processing, the O3FA engine may process
more characters than inputs. These additional characters
processed bring traversal overhead over conventional
stream reassembly methods. Table 3 shows the O3FA tra-
versal overhead, expressed as a percentage ratio between
the number of extra characters processed and the size of the
input stream. As can be seen, the traversal overhead
(0.0006%-5%) is small enough to be negligible in practice.
In other words, O3FA traversal efficiency is comparable to
that of conventional stream reassembly methods.

This traversal overhead is affected by both pM and the
number of packets with a previously processed predeces-
sor/successor. In our experiments, k=4/s=1 packet sequenc-
es have longer FEP lengths than do k=2/s=1 and k=4/s=2
sequences. In addition, a larger pM leads to longer FEPs,
since it results in more packet segments being detected by
supporting-FAs.

In summary, our experiments have shown that: (i) on da-
tasets consisting of a few hundreds regular expressions with
varying complexity, the O3FA memory footprint is typically
less than 100MB, and the supporting-FAs size is limited
(3.5 MB in the worst case); (ii) O3FA state buffers can be
up to 20x-4000x smaller than conventional packet buffers;
(iii) the O3FA bandwidth is linear in the number of incom-
ing characters and not significantly affected by the NFA
components of O3FA; and (iv) the O3FA traversal efficien-
cy is comparable to that of conventional flow reassembly
methods.

7. CONCLUSION AND FUTURE WORK
In this paper we have introduced the O3FA engine, a new
regular expression-based DPI architecture that can handle

 12

out-of-order packets on the fly without requiring packet
buffering and stream reassembly. The O3FA at the core of
the proposal consists of regular DFA(s) and supporting-FAs,
the latter allowing the detection of matches across packet
boundaries. We have proposed several optimizations aimed
to improve both the matching accuracy and speed of the
O3FA engine. Our experimental evaluation shows the feasi-
bility and efficiency of our proposed O3FA engine.

The main goal of this paper is to demonstrate the O3FA
idea and engine design; in the future, we aim to deploy this
engine on real hardware. In particular, because the automa-
ta in O3FA can operate concurrently, the O3FA engine can
be implemented on parallel architectures such as FPGAs
[30] and GPGPUs [31], potentially leading to higher tra-
versal efficiency. Moreover, since the size of the O3FA
state buffer is typically at the KB level, better performance
can be achieved by storing this buffer in SRAM (rather than
in DRAM).

8. ACKNOWLEDGEMENT
This work was supported in part by the Institute for Critical
Technology and Applied Science (ICTAS), an institute
dedicated to transformative, interdisciplinary research for a
sustainable future (http://www.ictas.vt.edu).

Becchi has been supported by NSF grant CNS-1319748.

9. REFERENCES
[1] J. Newsome, B. Karp, and D. Song, "Polygraph: auto-

matically generating signatures for polymorphic
worms," in IEEE Symposium Security and Privacy,
2005.

[2] R. Sommer and V. Paxson, "Enhancing byte-level net-
work intrusion detection signatures with context," in
Proc. of CCS 2003.

[3] Y. Xie, et al., "Spamming botnets: signatures and char-
acteristics," in Proc. of SIGCOMM 2008.

[4] R. M. J. Hopcroft, and J. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation: Addison
Wesley, 1979.

[5] B. C. Brodie, D. E. Taylor, and R. K. Cytron, "A Scala-
ble Architecture For High-Throughput Regular-
Expression Pattern Matching," in Proc. of ISCA 2006.

[6] F. Yu, et al., "Fast and memory-efficient regular expres-
sion matching for deep packet inspection," in Proc. of
ANCS 2006.

[7] M. Becchi and P. Crowley, "A hybrid finite automaton
for practical deep packet inspection," in Proc. of CoN-
EXT 2007.

[8] S. Kumar, et al., "Curing regular expressions matching
algorithms from insomnia, amnesia, and acalculia," in
Proc. of ANCS 2007.

[9] R. Smith, et al., "Deflating the big bang: fast and scala-
ble deep packet inspection with extended finite automa-
ta," in Proc. of SIGCOMM 2008.

[10] M. Becchi and P. Crowley, "Extending finite automata
to efficiently match Perl-compatible regular expres-
sions," in Proc. of CoNEXT 2008.

[11] X. Yu, B. Lin, and M. Becchi, "Revisiting State Blow-
Up: Automatically Building Augmented-FA While Pre-
serving Functional Equivalence," in JSAC, vol. 32, pp.
1822-1833, 2014.

[12] V. Paxson, "End-to-end Internet packet dynamics," in
Proc. of SIGCOMM 1997.

[13] J. Sharad, et al., "Measurement and classification of
out-of-sequence packets in a tier-1 IP backbone," in
Proc. of INFOCOM 2003.

[14] S. Dharmapurikar and V. Paxson, "Robust TCP stream
reassembly in the presence of adversaries," in Proc. of
USENIX Security Symposium 2005.

[15] T. Ptacek and T. Newsham, "Insertion, Evasion and
Denial of Service: Eluding Network Intrusion Detec-
tion," Secure Networks, Inc. Technical Report, 1998.

[16] A. E. Saldinger, J. Ding, and S. K. Sathe, "Method and
apparatus for ensuring ATM cell order in multiple cell
transmission lane switching system," US Patent, 1999.

[17] A. S. J. Chapman and H. T. Kung, "Method and appa-
ratus for re-ordering data packets in a network environ-
ment," US Patent, 2001.

[18] A. V. Rana and C. A. Garrow, "Queue engine for reas-
sembling and reordering data packets in a network," US
Patent 2004.

[19] M. Zhang and J.-b. Ju, "Space-Economical Reassem-
bly for Intrusion Detection System," in Information and
Communications Security. vol. 2836, ed: Springer Ber-
lin Heidelberg, 2003, pp. 393-404.

[20] X. Chen, et al., "AC-Suffix-Tree: Buffer Free String
Matching on Out-of-Sequence Packets," in Proc. of
ANCS 2011.

[21] T. Johnson, S. Muthukrishnan, and I. Rozenbaum,
"Monitoring Regular Expressions on Out-of-Order
Streams," in Proc. of ICDE 2007.

[22] M. Becchi and P. Crowley, "An improved algorithm to
accelerate regular expression evaluation," in Proc. of
ANCS 2007.

[23] S. Kong, R. Smith, and C. Estan, "Efficient signature
matching with multiple alphabet compression tables," in
Proc. Security and privacy in communication networks,
2008.

 13

[24] J. Patel, A. X. Liu, and E. Torng, "Bypassing Space
Explosion in High-Speed Regular Expression Match-
ing," in TON, vol. 22, pp. 1701-1714, 2014.

[25] S. Kumar, et al., "Algorithms to accelerate multiple
regular expressions matching for deep packet inspec-
tion," in Proc. of SIGCOMM 2006.

[26] D. Ficara, et al., "An improved DFA for fast regular
expression matching," SIGCOMM Comput. Commun.
Rev., vol. 38, pp. 29-40, 2008.

[27] G. Varghese, J. A. Fingerhut, and F. Bonomi, "Detect-
ing evasion attacks at high speeds without reassembly,"
in Proc. of SIGCOMM 2006.

[28] R. Smith, C. Estan, and S. Jha, "XFA: Faster Signature
Matching with Extended Automata," in Symp. Security
and Privacy, 2008.

[29] M. Becchi, M. Franklin, and P. Crowley, "A workload
for evaluating deep packet inspection architectures," in
Proc. of IISWC 2008.

[30] C. R. Clark and D. E. Schimmel, "Efficient reconfigu-
rable logic circuits for matching complex network intru-
sion detection patterns," in Proc. of FPL 2003.

[31] X. Yu and M. Becchi, "GPU acceleration of regular
expression matching for large datasets: exploring the
implementation space," presented at the Proc. of CF
2013.

	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND & RELATED WORK
	3. O3FA DESIGN
	3.1 O3FA Data Structure

	4. OPTIMIZATIONS
	4.1 Index Tags
	4.2 Compressed Suffix-NFA
	4.3 Prefix- and Suffix-DFA with State Map
	4.4 Quick Retrieval Table
	Functionally Equivalent Packets

	5. O3FA-BASED SYSTEM
	5.1 O3FA Engine Architecture

	6. EXPERIMENTAL EVALUATION
	6.1 Datasets & Streams
	6.2 Packet Reordering
	6.3 Experiment Results
	6.3.1 O3FA Memory Footprint
	Buffer Size Savings
	Memory Bandwidth Overhead
	6.3.4 Traversal Overhead

	7. CONCLUSION AND FUTURE WORK
	8. ACKNOWLEDGEMENT
	9. REFERENCES

