
MR-Droid: A Scalable and Prioritized Analysis of
Inter-App Communication Risks

Fang Liu1, Haipeng Cai2, Gang Wang1, Danfeng (Daphne) Yao1, Karim O. Elish3, and Barbara G. Ryder1

1Department of Computer Science, Virginia Tech
2School of Electrical Engineering and Computer Science, Washington State University

3Department of Computer Science, Florida Polytechnic University
fbeyond@cs.vt.edu, hcai@eecs.wsu.edu, {gangwang,danfeng}@cs.vt.edu, kelish@flpoly.org, ryder@cs.vt.edu

Abstract—Inter-Component Communication (ICC) enables
useful interactions between mobile apps. However, misuse of ICC
exposes users to serious threats, allowing malicious apps to access
privileged user data via another app. Unfortunately, existing ICC
analyses are largely insufficient in both accuracy and scalability.
Most approaches rely on single-app ICC analysis which results in
inaccurate and excessive alerts. A few recent works use pairwise
app analysis, but are limited by small data sizes and scalability.

In this paper, we present MR-Droid, a MapReduce-based
computing framework for accurate and scalable inter-app ICC
analysis in Android. MR-Droid extracts data-flow features be-
tween multiple communicating apps to build a large-scale ICC
graph. We leverage the ICC graph to provide contexts for inter-
app communications to produce precise alerts and prioritize risk
assessments. This scheme requires quickly processing a large
number of app-pairs, which is enabled by our MapReduce-based
program analysis. Extensive experiments on 11,996 apps from 24
app categories (13 million pairs) demonstrate the effectiveness
of our risk prioritization scheme. Our analyses also reveal new
real-world hijacking attacks and collusive app pairs. Based on
our findings, we provide practical recommendations for reducing
inter-app communication risks.

I. Introduction
Inter-Component Communication (ICC) is a key mechanism
for app-to-app communication in Android, where components
of different apps are linked via messaging objects (or Intents).
While ICC contributes greatly to the development of collabora-
tive applications, it also becomes a predominant security attack
surface. In the context of inter-app communication scenarios,
individual apps often suffer from risky vulnerabilities such as
Intent hijacking and spoofing, resulting in leaking sensitive
user data [8]. In addition, ICC allows two or more malicious
apps to collude on stealthy attacks that none of them could
accomplish alone [5], [26]. According to a recent report from
McAfee Labs [1], app collusions are increasingly prevalent on
mobile platforms.

To assess ICC vulnerabilities, various analytics methods
have been proposed, ranging from to inter-app Intent anal-
ysis [8], [29] to static data flow tracking [2], [38], [5]. Yet,
most of these approaches focus one individual app at a time,
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ignoring its feasible communication context, i.e., how the
vulnerable interface can be exploited by other real-world apps.
In addition, single-app analyses produce overly conservative
risk estimations, leading to a high number of (false) alarms [8],
[11], [29]. Manually investigating all the alerts would be a
daunting task for security analysts.

Recently, researchers start to co-analyze ICCs of two or
more apps simultaneously. This allows researchers to gain
empirical contexts on the actual communications between apps
and produce more relevant alerts, e.g., identifying privacy
leak [22] and permission escalations [3], [34]. However,
existing solutions are largely limited in scale due to the
high complexity of pair-wise components analyses (O(N2)).
They were either applied to a much smaller set of apps
(only a few hundred, versus a few thousand in single-app
analyses), or small sets of inter-app links. The only system that
successfully processed a large number of apps (e.g., 11K apps)
is PRIMO [27]. However, PRIMO is an ICC mapping tool for
app pairs, which does not provide security and risk analysis.
Moreover, PRIMO is designed to run on a single workstation.
The large memory consumption makes it challenging for
market scale analysis.

In this paper, we present MR-Droid, a MapReduce-based
parallel analytics system for accurate and scalable ICC risk
detection. Our goal is to empirically evaluate ICC risks based
on an app’s inter-connections with other real-world apps, and
detect high-risk pairs. Our intuition is that an ICC is of high-
risk not only because it has a proof-of-concept vulnerability,
but more importantly the app is actually communicating
with other apps through this ICC interface. This intuition
is similar to a recent work that prioritizes proof-of-concept
vulnerabilities in CVE [33]. Ideally, all vulnerabilities should
be addressed, but our priority needs to be on those that are
causing a real-world impact.

To achieve this goal, we construct a large-scale ICC graph,
where each node is an app component and the edge represents
the corresponding inter-app ICCs. To gauge the risk level of
the ICC paris (edge weight), we extract various features based
on app flow analyses that indicate vulnerabilities. For instance,
we examine whether the ICC pair is used to pass sensitive data,
or escalate permissions for another app. With the ICC graph,
we then rank the risk level of a given app by aggregating all



its ICC edges connected to other apps.
Our system allows app market administrators to accurately

pinpoint market-wise high-risk apps and prioritize risk migra-
tion. Individual app developers can also leverage our results
to assess their own apps. In addition, the ICC graph provides
rich contexts on how an app vulnerability is exploited, and by
(or with) which external apps. For the purpose of this paper,
we customize our features to capture three major ICC risks:
app collusion (malicious apps working together on stealth
attacks), intent hijacking and intent spoofing (vulnerabilities
that allow unauthorized apps to eavesdrop or manipulate inter-
app communications).

To scale up the system, we implement MR-Droid with
a set of new MapReduce [10] algorithms atop the Hadoop
framework. We carefully design the 〈key, value〉 pairs for each
MapReduce job and balance the workload among MapReduce
nodes. Instead of performing pair-wise ICC mapping, we
leverage the hash partition functionality of MapReduce and
achieve near-linear complexity. The high-level parallelization
from MapReduce allows us to analyze millions of app pairs
within hours using commodity servers.

We evaluate our systems on a large set of 11,996 Android
apps collected from 24 major Google Play categories (13
million ICC pairs). Our manual post-analysis confirms the ef-
fectiveness of our approach in reducing false, excessive alerts.
For apps labeled as high-risk, we obtain a 100% true positive
rate in detecting collusion, broadcast injection, activity- and
service-launch based intent spoofing, and a 90% true positive
rate for activity hijacking and broadcast theft detection. For
app pairs labeled as medium- or low-risk, manual analysis
show their actual risks are substantially lower, indicating the
effectiveness of risk prioritization. Our system is also highly
scalable. With 15 commodity servers, the entire process took
less than 25 hours for an average of only 0.0012 seconds
per app pair. More importantly, our runtime experiment shows
the computation time grows near-linearly with respect to the
number of apps.

Our empirical analysis also reveals new insights to app
collusion and hijacking attacks. We find previously unknown
real-world colluding apps that leak user data (e.g., passwords)
and escalate each other’s permission (e.g., location or network
access).

In addition, we find a more stealth way of collusion using
implicit intents. Instead of “explicitly” communicating with
each other (easy to detect), the colluding apps using high
customized (rare) actions to mark their implicit intent to
achieve the same effect of explicit intent. This type of collusion
cannot be detected by analyzing each app independently.
Finally, we find third-party libraries and the automatically-
generated apps have contributed greatly to today’s hijacking
vulnerabilities.

Our paper makes four key contributions.
• We propose an empirical analytics method to identify

risks within inter-app communications (or ICC). By con-
structing a large ICC graph, we assess an app’s ICC risks
based on its empirical communications with other apps.

Using a risk ranking scheme, we accurately identify high-
risk apps.

• We design and implement a highly scalable MapReduce
framework for our inter-app ICC analyses. With carefully
designed MapReduce cycles, we avoid full pair-wise ICC
analyses and achieve near-linear complexity.

• We evaluate our system on 11,996 top Android apps
under 24 Google Play categories (13 million ICC pairs).
Our evaluation confirms the effectiveness of our approach
in reducing false alerts (90%-100% true positive rate) and
its high scalability.

• Our empirical analysis reveals new types of app collusion
and hijacking risks (e.g., transferring user’s sensitive
information including password1 and leveraging rarely
used implicit intents2). Based on our results, we provide
practical recommendations for app developers to reduce
ICC vulnerabilities.

II. Models & Methodology
In this section, we describe our threat model and the secu-
rity insights of large-scale inter-app ICC analysis. Then we
introduce our research methodology.

A. Threat Model
Our work focuses on security risks caused by inter-app com-
munications through ICCs. We consider three most important
classes of inter-app ICC security risks.

• Malware Collusion. Through inter-app ICCs, two or
more apps collude to perform malicious actions [25],
[26], [35] that cannot be achieved by each app alone.
This is done either by passing Intents to exported compo-
nents, or by using the same sharedUserId among the
colluding apps. Malware collusion can result in disguised
data leak and system abuse.

• Intent Hijacking. Sending an intent via an implicit ICC
may not reach the intended recipient. Instead, it may be
intercepted (hijacked) by an unauthorized app. This threat
can be categorized into three subclasses based on the
type of the sending component: broadcast theft, activity
hijacking, and service hijacking [8]. Intent hijacking may
lead to data/permission leakage and phishing attacks.

• Intent Spoofing. A typical scenario is that a vulnerable
app has a component that only expects intents from
itself (or Android system). However, if the component
is exposed, other malicious apps can send forged intents
spoofing this vulnerable app to trigger undesired actions.
Intent spoofing can be classified into three subclasses
by the type of the receiving component: broadcast in-
jection, malicious activity launch, and malicious service
launch [8].
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B. Security Insights for Inter-app Analysis
Next, we discuss the key differences between single-app anal-
ysis and pair-wise app analysis. We explain why large-scale
pairwise analysis is critical to threat detection and mitigation.

We start with an example, where two apps A and B
communicating via a vulnerable ICC. Suppose A has access
to location information and sends it out through an implicit
Intent. The manifest of B defines an Intent filter that restricts
the types of Intents to accept. Once A’s Intent passes through
the Intent filter, B then sends the received data out through
SMS to a phone number (phoneNo).

With single-app analysis (e.g., ComDroid [8]), B would
be identified as always vulnerable to Intent spoofing attacks
because its SendSMSService component is exported with-
out permission protection (other apps can send SMS through
B). Likewise, A would be detected as always vulnerable, as
other apps could hijack its implicit Intent and receive the
location information. However, single-app analysis does not
consider specific communication contexts. It cannot track the
destination of the implicit sensitive Intent in A, and unable to
identify which communicating peers may hijack the intent and
abuse the sensitive data. The Android design of ICC makes
this type of vulnerabilities prevalent. ComDroid [8] reported
that over 97% of the studied apps are vulnerable. However,
reporting an app as generically vulnerable or malicious is
overly-conservative, and lead to insufficient precision and
excessive alerts.

To this end, we propose to prioritize apps’ ICC risks based
on their communication contexts. In practice, the ICC risk
becomes real when an app has actual communications with
other real-world apps. For example, A’s security risk increases
if malicious apps are found being able to leak A’s location
information. More external hijacking apps would indicate a
higher security risk because users have a higher possibility to
install A and the malicious apps at the same time.

The idea of prioritizing vulnerabilities is not just for ICC
risks. Researchers recently identified a similar problem in
CVE, the largest public database of security vulnerabili-
ties [33]. Due to the large volume of proof-of-concept vul-
nerabilities, many of them remain unaddressed. There is a
strong need to prioritize vulnerabilities based on how likely
the vulnerability will be exploited in the real-world.

To evaluate the risk level of a given app, we not only
need to check its own ICC properties, but need to examine
its external communications with peer apps. This can only
be done by pair-wise app analysis. The analysis should keep
track of which apps can hijack the Intent of A or collude
with A to abuse the location information, and provides a
detailed list of apps and their corresponding components
(e.g., B.SendSMSService) involved in the attacks. To fully
reconstruct the communication contexts for an app, we also
need to scale-up our analysis to cover a large number of apps
and app-pairs.

In the rest of this paper, we demonstrate how such a solution
can be realized by a highly-scalable distributed ICC graph, and
a neighbor-aware risk ranking scheme. Our solution not only
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Fig. 1: The construction of an ICC graph. Our MapReduce
algorithms compute the complete ICC graph for a set of apps.
We only consider inter-app ICCs.

seeks to detect vulnerable apps but also label them with risk
levels and communication contexts. This provides a big picture
for the mobile app market to identify the most vulnerable apps
to prioritize risk mitigation. At the same time, app developers
can be better guided to fix vulnerabilities when they are aware
of risks from external apps.

C. Method and Computational Goal
We build MR-Droid for ICC risk analysis with two key steps:

1) We build a complete inter-app ICC graph with dis-
tributed ICC mapping. This is done by identifying all
communication app pairs for a given set of apps.

2) We perform neighbor-aware inter-app security analysis
on top of the ICC graph and rank the apps and app pairs
with respect to their risk levels.

Fig. 1 shows how the ICC graph is constructed.
Definition 1: Inter-app ICC graph is a directed bipartite

graph G = (VS , VD, EVS→VD
), where each node v ∈ VS∪VD

represents the specifications of an entry or exit point of
external ICC of an app, and each edge e ∈ EVS→VD

represents
the Intent-based communication between one app’s ICC exit
point vs ∈ VS to another app’s ICC entry point vd ∈ VD. We
refer to a node in the set VS in G as a source. We refer to a
node in the set VD as a sink.

In Section III, we introduce the details of distributed ICC
mapping, which involves a preprocessing step 1. IDENTIFY
ICC NODES and two MapReduce jobs referred to as 2.
IDENTIFY ICC EDGES, 3. GROUP ICCS PER APP PAIR. Sec-
tion IV illustrates how we perform neighbor-aware inter-app
risk analysis with respect to intent hijacking, intent spoofing
and collusion attacks.

III. Distributed ICC Mapping
We now present the distributed ICC mapping algorithms in
MR-Droid. The purpose of the algorithms is to construct
the ICC graph in a scalable manner. Our distributed ICC
mapping algorithms involve three major operations: IDENTIFY
ICC NODES, IDENTIFY ICC EDGES, and GROUP ICCS PER
APP PAIR, where the last two operations are performed in
MapReduce framework. The workflow is shown in Fig. 2.

A. Identifying ICC Nodes
The purpose of Identify ICC Nodes is to extract all the sources
and sinks from all available apps. We customized the Android
ICC analysis tool IC3 [28] for this purpose.
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Fig. 2: Our workflow for analyzing Android app pairs with MapReduce. The dashed vertical lines indicate redistribution
processes in MapReduce. E, I, S represent explicit edge, implicit edge, and sharedUserId edge respectively.

Sink Extraction. We analyze each app’s decoded manifest
and retrieve the attributes for sinks. We also parse the dynamic
receivers of each app as exported receiver components.3 A
public open-access component may generate multiple sinks.
The number is determined by the number of the component’s
Intent filters, as each Intent filter is extracted into a sink in
ICC graph. A component is extracted into a sink only when
it has no Intent filters.

Source Extraction. The attributes of sources are obtained
by propagating values in fields of outbound Intents. We utilize
IC3 [28] to perform program slicing and string analysis. String
analysis may generate multiple possible values for one Intent
field, which is due to multiple paths from where the string
value is defined. We track all the possible values, and label
them with the same identifier. Thus, there may be multiple
values associated with an attribute of a source.

B. Identifying ICC Edges
IDENTIFY ICC EDGES operations are performed together in
MapReduce. The purpose is to identify all matching source
and sink pairs, which are connected with edges in the ICC
graph. There are three types of edges: explicit edge, implicit
edge, and sharedUserId edge.The explicit edge and implicit
edge correspond to explicit and implicit intent. The share-
dUserId edge corresponds to the private ICC communication
using sharedUserId.

Our Map1 algorithm transforms sources or sinks into the
〈key, value〉 pairs. During the redistribution phase (after Map1),
the 〈key, value〉 pairs that have the same key are sent to the
same reducer. Reduce1 algorithm identifies qualified edges
from the redistributed records. Qualification is based on action
test and category test4 for implicit edges and exact string match
for explicit and sharedUserId edges. These tests are efficiently
performed in the redistribution phase with only the edges that
pass the action test and category test sent to Reduce1.

Outputs at the end of Reduce1 phase are 〈key, value〉 pairs,
where key consists of package names (the app identifier) of
a communicating app pair (the edge), and value contains
properties of the edge.

3The main difference between a dynamic receiver and the components in
the Android manifest is that the former can only receive Intents when it is in
pending or running status.

4https://developer.android.com/guide/components/intents-filters.html

C. Multiple ICCs Per App Pair
An app pair may have multiple ICC data flows between them.
For our subsequent risk analysis in Section IV, we will need to
identify and cluster all the inter-app ICCs that belong to an app
pair. Therefore, the purpose of GROUP ICCS PER APP PAIR
performed in MapReduce is to group ICCs that belong to the
same app pair. In addition, we perform permission checking on
all the three types of edges and data test on implicit edges.The
key is the package names of an app pair. A reducer in the
Reducer2 algorithm records the complete set of inter-app ICCs
between two apps that pass the tests.

D. Workload Balance
The types of actions and categories are unevenly distributed
with very different frequencies. This property leads to the
unbalanced workload at different nodes in Reduce1. This will
significantly impact the performance because most of the
nodes are idle while waiting for the nodes of heavy workload.
To address this problem, we add a tag before each key emitted
by the Map1. The tag helps to divide the large amount of key-
value pairs, which should be sent to one reducer, into m parts
feeding m reducers. The tags incur additional communication
and disk storage overhead. The optimal parameter m is se-
lected to maximize performance and achieve high scalability.

Our distributed ICC mapping conservatively matches the
sources with all the potential sinks even if the links are of low
likelihood. The full set of links provides security guarantees
for our risk analysis. For example, collusion apps may leverage
rarely used implicit intent specifications for targeted communi-
cation. Ignoring any low-likelihood links would miss detecting
such attacks. Our following security analysis incorporates all
the possible links and gives a prioritized risk result to minimize
security analysts’ manual investigation.

IV. Neighbor-based Risk Analysis
Next, we present our neighbor-aware security risk analysis,
covering the three key types of threats defined in our threat
model. The input of our risk analysis is the ICC graph
produced by the MapReduce pipeline, and the output is the
risk assessment per communicating app pair in the graph for
malware collusion threats, or per individual app for (Intent)
hijacking and spoofing threats.

For the latter two types of risks for a single app, our
neighbor-aware security analysis differs from previous ap-
proaches (e.g., ComDroid [8], Epicc [29]), because we exam-



TABLE I: Features for security risk assessment.
Feature Definition Hijacking Spoofing Collusion
Data linkage # of outbound/inbound links that carry data
Permission leakage # of apps connected to via links that involve permission leaks
Priority distribution Mean and standard deviation of priority set for outbound/inbound links
Link ambiguity # of outbound explicit links missing package prefix in the target comp.
Connectivity # of outbound/inbound links and/or number of connected apps

ine ICC sinks and sources in the app and all of its inter-app
ICC links. Our approach adds more semantic and contextual
information to the risk assessment, which helps to reduce
false warnings. In addition, our risk assessment identifies the
presence of a risk (i.e., detection) and reports how serious
that risk may be (i.e., risk ranking). In this section, we
explain how we compute the security risks associated with
app vulnerabilities and collusions.

A. Features
To assess the security risks of ICCs, we extract five key
features as shown in Table I. We utilize combinations of these
features to detect different types of risks. Note that these
features are all expressed in numerical values.

Regarding the definition of each feature: 1) we define
that an ICC link carries data if the ICC Intent contains a
non-empty data field; 2) a permission leak occurs when an
unauthorized app gains access to the resources (via the other
app) without obtaining the required permissions themselves;
(3) the “priority” of a link is a property of the Intent filter for
the corresponding ICC Intent; we use median and standard
deviation of the priority values of all inbound/outbound links
to characterize the distribution; (4) when specifying the target
component for an explicit ICC, the package name of that
component may be missing; (5) we use the number of ICC
links and the number of connected apps to quantify link-
connectivity and app-level connectivity respectively.

Using these features, we can empirically compute the risk
level for each app. We first compute the risk with respect
to individual features, and then aggregates them to obtain
an overall risk value. Important features are assigned more
weight during the aggregation. Meanwhile, some features (e.g.,
priority distribution) are of high importance and thus are used
to determine the overall risk level directly without involving
other features.

B. Hijacking/Spoofing Risk

ߤ െ ߪ2 ߤ ߤ  ߤߪ2  ߤߪ െ ߪ

Low

Medium

High

Fig. 3: Feature value distribution and classification.

We first describe the risk assessment method for hijacking
and spoofing attacks. Given a feature f , the feature-wise risk
of f for app a is evaluated based on the distribution of all f
values in the ICC graph, and classified into three risk levels
from low to high as illustrated in Figure 3. The rationale is

that the risk level is proportional to the feature value and all
feature values in the ICC graph are normally distributed. We
normalize the categorical value of each feature f by mapping
(low, medium, high) to (.1, .5, 1.0) respectively. To
incorporate the varying contributions of different features on
the overall risk, we assign customizable feature weights based
on heuristics. The eventual risk value is computed as the
weighted sum of feature-wise risk values. We upgrade the risk
level if no apps are detected at the higher levels in order to
normalize the risk levels.

1) Hijacking: We utilize all the five link features for
detecting Intent hijacking. Since the Intent-sending app is the
subject of evaluation in a hijacking scenario, we only consider
outbound links for all relevant features. Also, since an Intent is
much less likely to be hijacked if the target is specified explic-
itly than implicitly, only implicit links are considered. The only
exception is for link ambiguity, computing which only involves
explicit links. This special feature captures the possibility
of hijacking via ambiguous target-component specification—
ignoring the package prefix in the target component name.
Using these five features, the overall risk value is computed
as follows.
• If link ambiguity ≥ 1 or priority values are high

(mean+STD≥500), we report the risk as high and exit.
• We sum up the numerical feature values for data linkage,

permission leakage, app-level connectivity, and link-level
connectivity, with weights .3, .4, .2, and .1 respectively.
Then we cast the resulting numerical values to its cate-
gorical risk level, according to where the value falls in
the three equal-length subintervals of [0.1,1.0].

2) Spoofing: In a spoofing scenario, the Intent-receiving
app is the subject of evaluation, thus we consistently consider
inbound links for the three features involved (see Table I). In
addition, we consider both implicit and explicit links except
for the priority distribution (implicit links only) because the
priority can only be set for implicit Intents. Finally, since
spoofing attack is more likely to succeed when using explicit
Intents than implicit ones, we weigh explicit links higher.
Using these three features, the overall risk value is computed
as following:
• If the priority values are high (mean+STD≥500), we

report the risk as high and exit.
• We sum up the numerical feature values for permission

leakage, app-level connectivity, and link-level connectiv-
ity for explicit links using weights .4, .2, and .2 (total
of .8). Then, we sum up the three feature values for
implicit links with weights 0.1, 0.05, and 0.05 (total of
0.2). Finally, we add up the two numbers and cast the
result back to its categorical risk level according to where



the value falls in the three equal-length subintervals of
[0.1,1.0].

C. Collusion Risk
For collusion attacks, we analyze two apps together in each
app pair. For the three features involved (see Table I), we
consider both inbound and outbound links, and both implicit
and explicit links. In addition, since explicit link indicates
collusions on-purpose, we weight explicit links higher than
implicit links. The overall risk level is computed as following:
• For connectivity, we assign value 5 for an unidirectional

explicit connection (i.e., one app connects to the other
app via explicit ICCs but the other app connects back via
implicit links), 10 for a bidirectional explicit connection,
and 3 for a bidirectional implicit connection. For data
linkage, we assign value 3 and 2 for data transfer through
explicit and implicit links respectively. For permission
leakage, we assign value 3 if leakage exists (0 otherwise).

• We calculate the sum of the three numerical feature values
above, and cast the result to a categorical risk level
(high, medium, low) according to where the value falls
in the three equal-length subintervals of [1,16].

• Particularly, we select apps with low implicit connectiv-
ity, and retrieve the corresponding app pairs with bidirec-
tional implicit connections. Empirically, the connectivity
is low if the number of inbound or outbound implicit
links <20. Pairs with both apps having low implicit
connectivity are set to high risk of collusion. Pairs with
only one app having low implicit connectivity are set to
medium risk.

V. Evaluation
We implemented our system with native Hadoop MapReduce
framework. The input is the ICC sources and sinks extracted
from individual apps using IC3 [28], the most precise single-
app ICC resolution in the literature. We modified IC3 to
accommodate the MapReduce paradigm. The Hadoop system
is deployed on a 15-node cluster, with one node as master and
the rest as slaves. Each node has two quad-core 2.8GHz Xeon
processors and 8GB RAM.5

Datasets. For our evaluation, we apply our system to
11,996 most popular free apps from Google Play. We select
the top 500 apps from each of the 24 major app categories
(4 apps were unavailable due to bugs in program analysis).
We downloaded the apps in December 2014 with an Android
4.2 client. We ran our inter-app ICC analysis and security risk
assessment on 12,986,254 app pairs.

In addition to this empirical dataset, we also test our
system on DroidBench6, the most comprehensive Android app
benchmark for evaluating Android taint analysis tools. The
latest suite DroidBench 3.0 consists of 8 app-pair test cases
for evaluating inter-app collusions.

5The algorithms can also be implemented with Spark [41] with faster in-
memory processing. It will require much larger RAMs to hold all the data.

6https://github.com/secure-software-engineering/DroidBench/tree/develop

Validation. Due to the lack of ground truth on the empirical
data, we devote substantial efforts to manually inspect the apps
for validation.7 In addition, we will evaluate the performance
of the distributed ICC analyses by gauging the running time
of each phase of the pipeline. Our evaluation seeks to answer
the following questions.
• Q1: What are the risk levels of app pairs? (Section V-A)
• Q2: How accurate is our risk assessment and ranking?

(Section V-B)
• Q3: What do detected attacks look like? (Section V-C)
• Q4: What is MR-Droid’s runtime, including per-app ICC

resolution and ICC graph analyses? (Section V-D)

A. Q1: Results of Risk Assessment
We apply our system to the collected app dataset. The resulting
ICC graph contains 38,134,207 source nodes, 26,227,430 sink
nodes and 75,123,502 edges. On the per-app level, there are in
total 12,986,254 app pairs that have at least one ICC link. Each
app averagely connects with 1185 external apps (9.9% of all
apps), confirming the overall sparsity of the graph. For non-
connected app pairs, we can safely exclude them during the
security analysis. Our security analysis focuses on all potential
security risks related to Intent hijacking, Intent spoofing and
app collusion (Section II-A). We quantify and rank security
risks into as categorical risk levels following the procedures
detailed in Section IV. In total, our system identified 150 high-
risk apps, 1,021 medium and 10,825 low risk apps.

Table II summarizes the results, highlighting the numbers of
apps or app pairs vulnerable to the high and medium level of
risks. Prominently, stealthy attacks such as activity hijacking
and broadcast theft dominate medium and high risks of any
type. These attacks often involve passively steal user data.

The more intrusive types of attacks such as service launch
and broadcast injection are less prevalent. In addition, consid-
erably collusion-attacks are revealed by our analyses. There
are six colluding app pairs are of high risk, and 169 are of
medium risk.

App Categories. By analyzing the categories of detected
apps, we find PERSONALIZATION apps have the most
significant contribution to high&medium-risk pairs (19.3%).
These apps usually help users to download themes or ring-
tones using vulnerable implicit intents. For example, the app
com.aagroup.topfunny lets user to download other apps
from the web. A malicious app can easily hijack the implicit
intent and redirect user to downloading malicious apps or
visiting phishing websites. ENTERTAINMENT apps are also
heavily involved high&medium-risk ICCs (8.9%). For exam-
ple, app com.rayg.soundfx offers downloading ringtones
via vulnerable implicit intents. Another high&medium-risk
category is LIFESTYLE (7.3%). These apps often require
sensor data (e.g., GPS, audio, camera) for their functionalities.
One vulnerable app is com.javielinux.andando. It is
a location tracking app but it broadcasts GPS information

7We plan to share these manually labeled datasets as benchmarks to the
Android security community.



TABLE II: Numbers of apps vulnerable to Intent spoofing/hijacking attacks and potentially colluding app pairs reported by
our technique, and true positives (in parentheses) manually validated as indeed vulnerable or colluding, per risk category and
level. The DroidBench test result is not included in this table.

Intent Hijacking Intent Spoofing

Activity
Hijacking

Service
Hijacking

Broadcast
Theft

Activity
Launch

Service
Launch

Broadcast
Injection Collusion Pairs

High 94 (9/10) 10 (7/10) 15 (9/10) 17 (10/10) 4 (4/4) 7 (7/7) 6 (6/6)
Med. 790 (8/10) 32 (6/10) 303 (7/10) 9 (8/9) 8 (8/8) 0 169 (14/169)
Low 11,112 (2/10) 11,954 (0/10) 11,678 (1/10) 11,970 (0/10) 11,984 (0/10) 11,989 (0/10) 12,986,079 (0/10)

through an implicit broadcast intent. Other apps can eavesdrop
the broadcasted intent and acquire location data even if they
don’t have location permissions.

We find that categories such as FINANCE are less involved
in high&medium-risk ICCs (1.2%). Since these apps often
deal with banking and financial payments, it is likely that
these apps have put more efforts on security. Even so, we still
find high-risk apps under these categories. For example the
app com.ifs.androidmobilebanking.fiid3383
has links in its app to visit its website. However, they trigger
implicit intents, which can be easily redirected to phishing
websites by malicious apps.

Validation with DroidBench. We have used DroidBench
to confirm the effectiveness of our analysis. The latest suite
DroidBench 3.0 consists of 8 app-pair test cases for evaluating
inter-app collusion. Our approach detected all 8 of them: 6
were labeled as high risk under collusion, and 2 were labeled
as high risk under intent hijacking. Our system put the two
apps under hijacking category because the way they collude
leads to a hijacking vulnerability. They use implicit intents
with the default Category and “ACTION SEND” Action. Our
experiment shows that many other apps can receive this type
of implicit intents and acquire sensitive information.

B. Q2: Manual Validation
To further assess the usefulness of MR-Droid, we manually
examined over 200 apps to verify the validity of our detection
results. More specifically, we randomly select 10 apps from
all 7 attack categories at all 3 risk-levels — for category/level
with fewer than 10 apps, we chose all of them. We carefully
inspected the selected apps in two ways to check their behav-
ior: (1) static inspection, by which we examine relevant Intent
attributes of each app and manually match them against peer
apps (in its neighbor set); (2) dynamic verification, in which
we run individual apps and app pairs on an Android emulator
and observe suspicious behaviors in the activity logs.

The validation result is presented in (the parentheses of) Ta-
ble II. For each selected set of apps or app pairs, we report the
percentage that was verified to be indeed vulnerable. Overall,
this work justified our risk detection and ranking approach.
We find apps labeled as high-risk have a much higher rate to
be actually vulnerable. We have a 100% true positive rate in
detecting collusion, broadcast injection, activity- and service-
launch based intent spoofing. We have a 90% true positive rate
for activity hijacking and broadcast theft detection. For apps
labeled as low risks, the true positive rate is much lower: 5 out

of 7 categories have a true positive rate of 0%. These results
suggest that the rankings produced by our approach can help
users and security analysts prioritize their inspection efforts.

Sources of Errors. Our approach still has a few false alerts
(at high-risk level). We find that most of them were caused by
unresolved attributes in relevant Intent objects. In those cases,
we conservatively match unresolved source points to all the
sinks in order to cover possible ICCs. This matching leads to
false positives. One improvement this is to combine our static
program analysis with probabilistic models to better resolve
ICC attributes [27]. Regarding false negatives, we cannot give
a reliable estimation since we did not scan all apps within the
market and due to the lack of ground truth.

C. Q3: Attack Case Studies
Based on our manual analysis, we present a few case studies
to discuss empirical insights on ICC-based attacks.

Stealthy Collusion via Implicit Intents. During our
analysis, we find some colluding apps also use implicit
intents in an effort to avoid detection. Colluding apps
usually use explicit intent, since they know “explicitly”
which app(s) they are colluding with. However, using
explicit intent makes the collusion easier to detect,
even by single-app analyses. The new collusion uses
highly customized “action” and “category” to mark the
implicit intent, hoping no other apps will accidentally
interrupt their communication. For example, the app
org.geometerplus.fbreader.plugin.local_op-
ds_scanner has open interfaces with a customized
action name android.fbreader.action.ADD-
_OPDS_CATALOG in its intent filter. Another app
com.vng.android.zingbrowser.labanbookreader
sends implicit intent with the same action and leverages the
first app to scan the local WiFi network (the second app itself
does not have the permission). This type of collusion cannot
be detected if each app was analyzed individually.

Risks of Automatically Generated Apps. We found many
of the high-risk apps were automatically generated by app-
generating websites (e.g., www.appsgeyser.com). These apps
send a large number of implicit Intents, attempting to reuse
other apps’ functionality as much as possible. For example,
com.conduit.app_39b8211270ff4593ad85daa1-
5cbfb9c6.app is an automatically generated app and it
contains a number of unprotected interfaces including those
for viewing social-media feeds from Facebook and Twitter. It



has 20,805 connections with other apps, five times more than
the average.

Hijacking Vulnerabilities in Third-Party Libraries. We
observed that a significant amount of vulnerable exit points
are from third-party libraries. For example, a flash light
app com.ihandysoft.ledflashlight.mini.apk
bundles multiple third-party libraries for Ads and analytics.
One of the libraries com.inmobi.androidsdk sends
implicit intents to access external websites (e.g., connecting
to Facebook). A malicious app can hijack the Intent and
redirect the user to a phishing website to steal the user’s
Facebook password.

Colluding Apps by the Same Developers. Colluding apps
were usually developed by the same developers. For exam-
ple, org.geometerplus.zlibrary.ui.android and
org.geometerplus.fbreader.plugin.local_op-
ds_scanner app pair. The first app is a book reader app
with 167,625 reviews and 10 million – 50 million installs.
It leverages the later app (100K – 500K installs) to scan the
user’s local network interface. The first app itself does not have
the permission to do so. Both of the two apps were developed
by “FBReader.ORG Limited”.

Another example is the pair of uda.onsiteplanroom
and uda.projectlogging. The first app is for document
sharing in collaborative projects, and the second app is for
project progress logging. With a click of a button, users will
be redirected from the first app to the second app. User’s
sensitive information in the first app is also sent to the second
app without user knowledge. Such information includes user’s
name, email address, password, etc. These two apps were
written by the same developer “UDA Technologies, Inc.”.

The practical risk of app collisions varies from case to case.
The bottom line is, different apps written by the same devel-
oper should not open backdoors for each other to exchange
user data and access privileges without the user knowledge.

Insecure Interfaces for Same-developer Apps. Usu-
ally, apps developed by the same developer have specialized
interface to communicate with each other. The secure way
to do this is to use sharedUserID mechanism to protect
the data and interface from exposing to other apps. In our
empirical analysis, we find 560 app pairs are developed by the
same developer without using sharedUserID links. Instead,
they use explicit intents to implement the communication
interface, which is exposed to all other apps, leaving hijacking
vulnerabilities.

D. Q4: Runtime of MR-Droid
Finally, we analyze the runtime performance of MR-Droid.
Figure 4 depicts the time cost of our MapReduce pipeline
(y axis) as the number of apps increases (x axis). Overall,
the result shows that our approach is readily scalable for
large-scale inter-app analysis. The running time of ICC node
identification appears to dominate the total analysis cost, yet
its growth is linear with the number of apps. In addition,
given the sparse nature of the ICC graph (rarely does an

app communicate to all apps), we manage to achieve near-
linear complexity for edge identification and grouping ICCs.
In total, it takes 25 hours to perform the complete analysis on
13 million ICC pairs for 12K apps.

Noticeably, grouping ICCs for all app pairs only took 44
minutes, rendering 0.0012 seconds per app pair. This speedup
benefits from the reduced input size — a large portion of
(unmatched) ICC links have been excluded in the previous
phase. Our load balancing design also contributes to speeding
up the process. Currently, our cluster has 15 nodes. We
anticipate that increasing the cluster size would further speed
up the inter-app ICC analysis.
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Fig. 4: Analysis time of the three phases in our approach.

TABLE III: Worst-case complexity of different phases.
Approaches Operation Time Complexity

Identify ICC Nodes T n O(n)
Identify ICC Edges tlmn O(mn)

Group ICCs Per App Pair tgmn O(mn)
Our total (MapReduce) T n+ (tl + tg)mn O(mn)

Complexity Breakdowns. We show the computational
complexities of different phases in Table III. n is the number
of apps, and m is the average number of links per app. Note
that tl + tg � T and m � n because the ICC graph is
sparsely connected, and unmatched app pairs do not take any
analysis time.

Existing pair-wise app analysis methods are less scalable
because they need to combine the code of the two apps
first before running static analysis (e.g., IccTA coupled with
ApkCombiner). The time complexity for parsing n apps is
O(n2). The operation time is kT

(
n
2

)
with 2T being the

average analysis time of each two apps.

Summary of Findings. Our manual verification confirms
the accuracy of our system. For app pairs at high-risk level, we
obtain a 100% TP rate for the detection of collusion, broadcast
injection, activity- and service-launch based intent spoofing;
We have a 90% TP rate for broadcast theft, activity- and
service hijacking detection. On the other hand, app pairs at
low-risk level indeed have substantially lower TP rate. This
result indicates that our risk prioritization is effective. Our
empirical analysis reveals new types of app collusion and
hijacking risks (e.g., leveraging rarely implicit intents for more
stealthy collusion). Our runtime experiments demonstrate that
MapReduce pipeline scales well to a large number of apps.
Analyzing 11,996 apps and performing ICCs matching took
less than 25 hours. More importantly, the runtime cost has a
near-linear increase with respect to the number of apps.



VI. Security Recommendations
Based on our empirical study and manual verification, we
make the following recommendations for app developers to
reduce potential security risks.
• When carrying out sensitive operations, developers are

encouraged to use explicit Intents instead of implicit ones.
For example, to access Facebook account, communicating
to the Facebook app via explicit Intents is preferred over
a https URL as an implicit Intent to the Facebook
webpage.

• When possible, it is recommended to integrate all nec-
essary functionalities into a single app. If the developer
has to develop multiple apps that communicate with each
other, it is encouraged to use the safe communication
via sharedUserID to restrict other apps accessing the
interfaces.

• Developers are encouraged to use customized actions and
to enforce data and permission restrictions. These cus-
tomized configurations (compared to using the default)
will greatly reduce the chance to accidentally communi-
cate with other apps, hence reducing risks.

• It is recommended to avoid automatically generating apps
using tools or services. Developers should be aware that
third-party libraries could be vulnerable or leak user’s
sensitive information.

VII. Limitations
Our risk analysis is primarily based on Intent attributes, while
dismissing data flows that involve the Intents. It is possible that
this approach misses true vulnerabilities. Alternatively, one can
perform more in-depth and fine-grained data-flow analysis [2],
[15]. However, these methods are more time-consuming and
thus less practical for market-wide app analyses. Compared to
static analysis, dynamic approaches, either single app analy-
ses [12] or inter-app analyses [17] are typically more precise.
The issue is that dynamic analysis is even slower, and it often
misses true threats that are not triggered during the executions.

Our current analysis focuses on app pairs. It is possible
for attacks to span across three or more apps. One way to
generalize our approach is to cluster app pairs into app groups.
This requires efficiently parallelizing the clustering process,
which we consider as future work.

VIII. Related Work
Inter-app Attacks. Attacks with multiple apps involved
have been proposed recently. Chin et al. [8] analyzed the
inter-app vulnerabilities in Android. They pointed out that
the message passing system involves various inter-app attacks
including broadcast theft, activity hijacking, etc. Davi et al. [9]
conducted a permission escalation attack by invoking higher-
privileged apps, which do not sufficiently protect their inter-
faces, from a non-privileged app. Ren et al. [32] demonstrated
intent hijacking can lead to UI spoofing, denial-of-service and
user monitoring attacks. Soundcomber [35] is a malicious app

that transmits sensitive data to the Internet through an overt/-
covert channel to a second app. Android browsers also become
the target of inter-app attacks via intent scheme URLs [36]
and Cross-Application Scripting [16]. Inter-app attacks have
become a serious security problem on smartphones.

Defense and Detecting Techniques. A significant amount
of solutions have been proposed to perform single-app analysis
and detect ICC vulnerabilities [14], [15], [40], [42], [37]. They
mostly analyze sensitive data flow within an app and detects
whether the sensitive information that flows out of the phone.
ComDroid [8] and Epicc [29] identify Intents specifications
on Android apps and detect ICC vulnerabilities. CHEX [24]
discovers entry points and detects hijacking-enabling data
flows in the app for component hijacking (Intent spoofing).
On-device policies [7], [30] were also designed to detect inter-
app vulnerabilities and collusion attacks.

Inter-app analysis has also been proposed in the litera-
ture [3], [4], [19], [20], [22], [31]. They mostly focus on the
precision and analysis of in-depth flow information between
apps. However, they are not designed to analyze large-scale
apps. It is unclear how well they scale with real world apps.
For example, IccTA [22] combines multiple apps into one
and performs single-app analysis on the combined one. It
would be extremely expensive if applied to a larger set of
apps. DIALDroid [4] is much more efficient. However, it still
takes over 6,339.6 hours for 110,150 apps on a 64 GB RAM
machine. In addition, in straightforward implementations, ex-
pensive program analysis is performed repetitively, which is
redundant. In comparison, we perform data-flow analysis of
an app only once, independent of how many its neighbors are.

PRIMO [27] reported ICC analysis of a large pool of apps.
Its analysis is on the likelihood of communications between
two apps, not specifically on security. Goodman-Kruskal’s γ
rank correlation measure and 10-fold cross-validation are used
to validate its probabilistic model. It does not provide any se-
curity classification. Moreover, PRIMO runs on a single host.
Our evaluation shows that running PRIMO with 10K apps
requires over 40GB memory even with highly compressed
metadata. Using a single machine is not a practical solution to
analyze market-wide apps with the O(N2) space complexity.

For related dynamic analysis, IntentFuzzer [39] detects
capability leaks by dynamically sending Intents to the exposed
interfaces. INTENTDROID [17] performs dynamic testing on
Android apps and detects the vulnerabilities caused by unsafe
handling of incoming ICC message. SCanDroid [13] checks
whether the data flows through the apps are consistent with the
security specifications from manifests. TaintDroid [12] tracks
information flows with dynamic analysis and performs real-
time privacy monitoring on Android. Similarly, FindDroid [43]
associates each permission request with its application context
thus protecting sensitive resources from unauthorized use.
XManDroid [6] was proposed to prevent privilege escalation
attacks and collusion attacks by ensuring the inter-app commu-
nications comply to a desired system policy. These dynamic
analyses complement our static-analysis solution. However,



their feasibility under a large number of app pairs is limited.

MapReduce for Large Scale Analysis. MapReduce frame-
work has been used in various areas such as data mining [18],
data management [21], and network/internet security [23].
Our approach leverages the MapReduce framework to analyze
large-scale apps for security analysis. To the best of our knowl-
edge, it is the first distributed-computing solution tailored for
addressing Android security problems.

IX. Conclusion
In this paper, we presented the design and implementation
of MR-Droid, a MapReduce pipeline for large-scale inter-
app ICC risk analyses. By constructing ICC graphs with
efficient parallelization, our system enables highly scalable
inter-app security analysis and accurate risk prioritization.
Using MR-Droid, we analyzed 11,996 most popular Android
apps (13 million app pairs) and examined their security risk
levels against intent hijacking, intent spoofing, and collusion
attacks. Our analysis reveals new types of app collusion and
hijacking risks (e.g., collusion through stealthy implicit intent).
We manually inspected a subset of the apps and validated
our security risk analysis. Our empirical results and manual
validation demonstrated the merits of MR-Droid in prioritizing
various ICC risks and the effectiveness of the prioritization.
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[21] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu. Distributed data management
using MapReduce. ACM Comput. Surv., 2014.

[22] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
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