
Orpheus: Enforcing Cyber-Physical Execution Semantics to
Defend Against Data-Oriented Attacks

Long Cheng
Department of Computer Science

Virginia Tech, USA
chengl@vt.edu

Ke Tian
Department of Computer Science

Virginia Tech, USA
ketian@vt.edu

Danfeng (Daphne) Yao
Department of Computer Science

Virginia Tech, USA
danfeng@vt.edu

ABSTRACT

Recent studies have revealed that control programs running on
embedded devices suffer from both control-oriented attacks (e.g.,
code-injection or code-reuse attacks) and data-oriented attacks
(e.g., non-control data attacks). Unfortunately, existing detection
mechanisms are insufficient to detect runtime data-oriented ex-
ploits, due to the lack of runtime execution semantics checking.
In this work, we propose Orpheus, a security methodology for de-
fending against data-oriented attacks by enforcing cyber-physical
execution semantics. We address several challenges in reasoning
cyber-physical execution semantics of a control program, including
the event identification and dependence analysis. As an instantia-
tion of Orpheus, we present a new program behavior model, i.e., the
event-aware finite-state automaton (eFSA). eFSA takes advantage of
the event-driven nature of control programs and incorporates event
checking in anomaly detection. It detects data-oriented exploits if
physical events and eFSA’s state transitions are inconsistent. We
evaluate our prototype’s performance by conducting case studies
under data-oriented attacks. Results show that eFSA can success-
fully detect different runtime attacks. Our prototype on Raspberry
Pi incurs a low overhead, taking 0.0001s for each state transition
integrity checking, and 0.063s∼0.211s for the cyber-physical con-
textual consistency checking.

CCS CONCEPTS

• Security and privacy→ Software and application security;
Intrusion/anomaly detection andmalwaremitigation; •Com-

puter systems organization→Embedded and cyber-physical

systems;

KEYWORDS

Anomaly detection; Cyber-physical systems; Data-oriented attacks;
Control programs; Execution semantics; Event awareness;

1 INTRODUCTION

Embedded control and monitoring systems are becoming widely
used in a variety of CPS (Cyber-Physical Systems) and IoT (Internet

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC 2017, December 4–8, 2017, San Juan, PR, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5345-8/17/12. . . $15.00
https://doi.org/10.1145/3134600.3134640

of Things) applications1, including building and home automation,
medical instrumentation, automotive, as well as operations of criti-
cal infrastructures such as chemical and nuclear facilities, electric
power grid, oil and natural gas distribution [51]. In these applica-
tions, embedded systems software monitors physical environments
by taking sensory data as input and makes control decisions that
affect physical environments or processes [40]. We refer to such em-
bedded systems software in CPS/IoT applications as cyber-physical
control programs, a.k.a. control programs.

Control programs are critical to the proper operations of CPS/IoT,
as anomalous program behaviors can have serious consequence,
or even cause devastating damages to physical systems [11]. For
example, the Stuxnet [33] malware allowed hackers to compromise
the control system of a nuclear power plant andmanipulate physical
equipment such as centrifuge rotor speeds. Therefore, protecting
control programs against malicious attacks becomes of paramount
importance in cyber-physical applications. Recent studies [11, 18,
27, 29, 42, 65] have shown that control programs suffer from a
variety of runtime software exploits. These attacks can be broadly
classified into two categories:
• Control-oriented attacks exploit memory corruption vulnerabil-
ities to divert a program’s control flows, e.g., malicious code
injection [24] or code reuse attacks [29]. Control-oriented at-
tacks in conventional cyber systems (i.e., without cyber-physical
interactions) have been well studied [50]. It is possible that exist-
ing detection approaches [9, 10, 17, 25, 36] are extended to defend
against control-oriented attacks in embedded systems software.
• Data-oriented attacks2 manipulate program’s internal data vari-
ables without violating its control-flow integrity (CFI), e.g., non-
control data attacks [19], control-flow bending [17], data-oriented
programming [31]. Data-oriented attacks are much more stealthy
than attacks against control flows. Because existing CFI-based
solutions are rendered defenseless under data-oriented attacks,
such threats are particularly alarming.
Since many control decisions are made based on particular val-

ues of data variables in control programs [11], data-oriented at-
tacks could potentially cause serious harm to physical systems in a
stealthy way. We further categorize data-oriented attacks against
control programs into two types. i) Attacks on control branch,
which corrupt critical decision making variables at runtime to exe-
cute a valid-yet-unexpected control-flow path (e.g., allowing liquid

1Though CPS and IoT are defined with different emphasis and have no standard definitions agreed
upon by the research community, they have significant overlaps. In general, CPS emphasizes the
tightly coupled integration of computational components and physical world. While IoT has an
emphasis on the connection of things with networks. If an IoT system interacts with the physical
world via sensors/actuators, we can also classify it as a CPS [2].
2Wemainly focus on runtime software exploits, and thus sensor data spoofing attacks in the physical
domain are out of the scope in this work.

https://doi.org/10.1145/3134600.3134640

to flow into a tank despite it is full [12] or preventing a blast furnace
from being shut down properly as in the recent German steel mill
attack [3]). ii) Attacks on control intensity, which corrupt sen-
sor data variables to manipulate the amount of control operations,
e.g., affecting the number of loop iterations to dispense too much
drug [11]). These data-oriented attacks result in inconsistencies
between the physical context and program execution, where ex-
ecuted control-flow paths do not correspond to the observations
in the physical environment. Unfortunately, there exist very few
defenses [11, 62] and they are ineffective to prevent both attack
types due to the lack of runtime execution semantics checking.

In many instances, a CPS/IoT system can be modeled as an event-
driven control system [22, 32]. We refer to events as occurrences of
interest that come through the cyber-physical observation process
or emitted by other entities (e.g., the remote controller), and trigger
the execution of corresponding control actions. In this paper, we
point out the need for an event-aware control-program anomaly
detection, which reasons about program behaviors with respect to
cyber-physical interactions, e.g., whether or not to open a valve
is based on the current ground truth water level of a tank [12].
None of existing program anomaly detection solutions [50] has
the event-aware detection ability. They cannot detect attacks that
cause inconsistencies between program control flow paths and the
physical environments.

We address the problem of securing control programs against
data-oriented attacks, through enforcing the execution semantics
of control programs in the cyber-physical domain. Specifically,
our program anomaly detection enforces the consistency among
control decisions, values of data variables in control programs, and
the physical environments. Our main technical contributions are
summarized as follows.
• We describe a new security methodology, named Orpheus, that
leverages the event-driven nature in characterizing control pro-
gram behaviors. We present a general method for reasoning
cyber-physical execution semantics of a control program, includ-
ing the event identification and dependence analysis. We present
a new event-aware finite-state automaton (eFSA) model to detect
anomalous control program behaviors particularly caused by
data-oriented attacks. By enforcing runtime cyber-physical exe-
cution semantics, eFSA detects subtle data-oriented exploits when
physical event are inconsistent with the corresponding event-
dependent state transitions. While our exposition of Orpheus is
on an FSA model at the system call level, the design paradigm of
Orpheus can be used to augment many existing program behavior
models, such as the n-gram model [59] or HMM model [60].
• We implement a proof-of-concept prototype on Raspberry Pi
platforms, which have emerged as popular devices for building
CPS/IoT applications [11, 37, 52]. Our prototype features: i) A
gray-box FSA model that examines the return addresses on the
stackwhen system calls aremade, and thus significantly increases
the bar for constructing evasive mimicry attacks. ii) An LLVM-
based event dependence analysis tool to extract event properties
from programs and correlate the physical context with runtime
program behaviors, which we refer to as cyber-physical execution
semantics. iii) A near-real-time anomaly detector using named
pipes, with both local and distributed event verifiers to assess
the physical context.

• We conduct a thorough evaluation of eFSA’s performance through
three real-world embedded control applications. Results show
that our approach can successfully detect different runtime data-
oriented attacks reproduced in our experiments. Our prototype of
the runtime anomaly detector takes ∼0.0001s to check each state
transition in eFSA model, ∼0.063s for the local event verification,
and ∼0.211s for the distributed event verification.
The focus of this paper is on providing new security capabili-

ties by enforcing cyber-physical execution semantics in defending
against data-oriented attacks. Our design is a general approach
for event-driven embedded control systems. In Sec. 7, we discuss
in-depth practical deployment issues, including program anomaly
detection as a service, implementation on bare-metal devices and
programmable logic controllers (PLCs), and possible low overhead
tracing with real-time requirements.

2 MODEL AND DESIGN OVERVIEW

In this section, we use examples to illustrate our new detection
capabilities, and describe the threat model of this work. Then, we
present the design overview of the eFSA model.

2.1 New Detection Capabilities

Our new detection capability is detecting data-oriented attacks in
control programs, including hijacked for/while-loops or conditional
branches. These stealthy attacks alter the underlying control pro-
gram’s behaviors without tampering control-flow graphs (CFGs).
We illustrate our new detection capabilities using a smart syringe
pump as an example 3. The control program reads humidity sensor
values as well as takes remote user commands, and translates the
input values/commands into control signals to its actuator. Partial
code is shown in Fig. 1. Our approach reasons about control pro-
grams’ behaviors w.r.t physical environments, and is able to detect
the following attacks:
• Attacking control branch. An attack affecting the code in Fig. 1(a)
may trigger push-syringe or pull-syringe regardless of phys-
ical events or remote requests. It corrupts control variables that
result in event function Push_Event or Pull_Event returning
True (in lines 3 or 5). Such an attack leads to unintended but
valid control flows.
• Attacking control intensity.An attack affecting the code in Fig. 1(b)
may corrupt a local state variable (e.g., steps in line 10) that con-
trols the amount of liquid to dispense by the pump. An attack
may cause the syringe to overpump than what is necessary for
the physical environment. Range-based anomaly detection would
not work, as the overwritten variable may still be within the per-
mitted range (but incompatible with the current physical context).
Such an attack (i.e., manipulating the control loop iterations) does
not violate the program’s CFG either.
Existing solutions cannot detect these attacks, as the detection

does not incorporate events and cannot reason about program be-
haviors w.r.t. physical environments. C-FLAT [11], which is based
on the attestation of control flows and a finite number of permit-
ted execution patterns, cannot fully detect these attacks. Similarly,

3https://hackaday.io/project/1838-open-syringe-pump

while(…){

eventRead();
if(Push_Event())

push-syringe();
else if(Pull_Event())

pull-syringe();
…

}

1

3

2

4

6

5

7

push-syringe(){

steps = … ;
for(i=0; i<steps; i++)
{

write(i2c,…);
…

}

}

9

11

10

12

14

13

15

8 16

(a) (b)

Figure 1: Two examples of data-oriented software exploits

in a real-world embedded control application. An attacker

could purposely (a) trigger control actions by manipulating

the return value of Push_Event or Pull_Event, and (b) manip-

ulate the number of loop iterations in push-syringewithout

violating the control program’s CFG.

recent frequency- and co-occurrence-based anomaly detection ap-
proaches (e.g., global trace analysis [48] and system call frequency
distribution (SCFD) [62]) cannot detect such either type of attacks,
as their analyses do not model runtime cyber-physical context
dependencies.

2.2 System Model and Definition of Events

Fig. 2 shows an abstract view of the event-driven CPS/IoT system
architecture, which is also in line with the architecture of modern
Industrial Control Systems (ICS)4. In general, it is composed of the
following components: 1) a physical process (e.g., industrial plant or
smart home); 2) sensors that measure the physical environment; 3)
actuators that trigger physical changes in response to control com-
mands sent by the control program; 4) control programs running on
embedded devices that supervise and control physical processes by
taking sensory data as input and making local control decisions; 5)
a remote control server (which is optional), letting users remotely
monitor and control the physical process. A control program com-
municates with the physical process through sensors and actuators,
where physical environments are sensed and events (e.g., coming
from the environment or emitted by other entities) are detected,
and then actuation tasks are executed through a set of actuators.

Sensors Actuators

Events

Embedded Control Program

Remote Control Server

Control
signals

Physical Space

Figure 2: An abstract view of the embedded control system

architecture in event-driven CPS/IoT applications.

Without loss of generality, we define two types of events in
control programs: binary events and non-binary events.

4In industrial control domain, the control program is often referred to as control logic, and the
firmware on PLC (i.e., field device) acts as a kind of operating system [28].

• Binary events return either True or False, which are defined
in terms of pre-specified status changes of physical environ-
ments and provide notifications to the control program (e.g.,
Push_Event or Pull_Event in Fig. 1). Such events are commonly
pre-defined and used in IoT’s trigger-action programming ("if,
then") model [32, 54].
• Non-binary events correspond to the sensor-driven control ac-
tions within a for/while loop, e.g., sensor values affect the amount
of control operations of push-syringe in Fig. 1. It is challeng-
ing to identify non-binary events since they are not explicitly
declared in control programs.

Embedded devices (a.k.a. field devices) in CPS/IoT applications
are situated in the field, where their operating systems are typically
embedded Linux/Windows variants [46] or PLC firmware [28].
Traditionally, many of these embedded control systems were not
considered prominent attack targets due to their isolation from
potential attack sources. However, the historical isolation has begun
to break down as more and more embedded devices are connected
to business networks and the Internet in the trend of IoT, making
control programs running on embedded devices (as well as the
remote control server) increasingly vulnerable [46].

2.3 Attack Model and Assumptions

In this paper, we make the following security assumptions:
• Capabilities of the adversary.We assume that the adversary has
successfully authenticated embedded devices (or the control
server) under her control to the local network, and is able to
launch runtime software exploits which may be unknown or
known but unpatched at the time of intrusion. We are not con-
cerned how attackers gained entry into the devices and launch
different attacks, but focus on uncovering abnormal program
execution behaviors after that [36]. This is a typical assumption
in existing anomaly detection works.
• CPS platform. We assume the initial state (i.e., the training stage)
of the application is trustworthy, which is a general requirement
of most behavior-based intrusion detection systems [62]. We also
assume the runtime monitoring module is trusted and cannot
be disabled or modified. This assumption is reasonable because
it can be achieved by isolating the monitoring module from the
untrusted target program with hardware security support such
as Intel’s TrustLite or ARM’s TrustZone [11]. At the time of
detection, the user space is partially or fully compromised, but
the operating system space has not been fully penetrated yet,
and thus it is still trusted [65].
• Our focus. We focus our investigation on runtime software ex-
ploits, and thus sensor data spoofing attacks in the physical do-
main [53] are out of the scope. We assume sensor measurements
are trustable. We limit our attention to data-oriented attacks that
involve changes of system call usage. Other data-related attacks
that do not impact observable program behavior patterns (e.g.,
modification of non-decision making variables) are beyond the
scope of this work. System call can be used as an ideal signal
for detecting potential intrusions, since a compromised program
can generally cause damage to the victim system only by ex-
ploiting system calls [21]. Despite system call based monitoring
is widely used for detecting compromised programs, we aim

at developing a CPS/IoT-specific anomaly detection system by
augmenting an existing program behavior model with physical
context awareness.

2.4 Design Overview and Workflow

An anomaly detection system is normally composed of two stages:
training (where program behavior models are built based on nor-
mal program traces) and testing (where a new trace is compared
against the model built in the training phase). Fig. 3 shows the steps
for constructing the eFSA program behavior model in our design.
In particular, to capture the cyber-physical context dependency
of control programs, our training stage encompasses both static
program analysis and dynamic profiling.

Control Program

❶ Event
Identification

1
3

2

5

4

1

3

2

5

4

Dynamic
Profiling

❷ Event Dependence
Analysis

❸ Basic FSA Model

❹ Event-aware FSA
(eFSA) Model

Figure 3: eFSAmodel construction in the training phase. This

workflow can be generalized to non-FSA anomaly detection

frameworks (i.e., augmenting an existing program behavior

model with contextual integrity).

There are four main steps in the training phase. We first identify
both binary events and non-binary events involved in the con-
trol program (❶). After that, we perform the event dependence
analysis to generate an event-annotated CFG (❷), which identifies
event triggered instructions/statements of the program (correspond-
ing to binary events), and control intensity loops (corresponding
to non-binary events). Then, we construct the basic finite-state
automaton (FSA) model based on dynamic profiling (❸). Given
an event-annotated CFG, we are able to identify the event-driven
system call sequences. To detect control intensity anomalies, we
conduct a control intensity analysis and associate the results with
corresponding non-binary events. By augmenting the event-driven
information over the basic FSA, we generate our event-aware FSA
(i.e., eFSA) for control program behavior modeling (❹).

The basic FSA model aims at detecting control-oriented attacks.
Our main contribution lies in the event awareness enhancement
based on the FSA model, which checks the consistency between
runtime behavior and program execution semantics. In the testing
phase, an anomaly is marked if there exists a state transition de-
viated from the automaton, or a mismatch between the physical
context and program control-flow path.

3 EFSA CONSTRUCTIONWITH STATIC

ANALYSIS AND DYNAMIC PROFILING

In what follows, we first present how we reason cyber-physical
execution semantics of a control program through static analysis.
Then, we describe details about how to build the eFSA model.

3.1 Event Identification

In order to discover the triggering relationship between external
events and internal program control flows, we first identify what
events are involved in a control program. For pre-defined binary
events, it is not difficult to identify these events (e.g., given event
functions declared in an event library or header file, we scan the
source code or executable binary). The main challenge is to identify
i) non-binary events and ii) non-pre-defined binary events. Our
LLVM-based [5] event identification algorithm can automatically
extract these events and only requires knowledge of sensor-reading
APIs and actuation APIs on the embedded system. They are pre-
specified sources and sinks5 in our static analysis.

According to the definition of a non-binary event in Sec. 2.2,
it contains a loop statement (e.g., for/while loop) in which sensor
values affect the amount of control operations. Our key idea is to
search for a loop statement that is data-dependent on any sensor-
reading API, and at least an actuation API is control-dependent on
this loop statement. The search is performed through backward
data dependence analysis and forward control dependence analysis.

A more specific step-by-step description of our event identifi-
cation is illustrated in Fig. 4 using a C-based control program as
an example. ❶ Constructing PDG: We first obtain the LLVM Inter-
mediate Representation (IR) of a control program using the Clang
compiler [5], and construct the program dependence graph (PDG)
at basic block level6, including both data and control dependencies.
❷ Locating conditional branch instruction with a loop: We search
the conditional "br" instruction, which takes a single "i1" value
and two "label" values. ❸ Backward data dependence analysis: We
conduct backward inter-procedural dataflow analysis to find any
prior data dependence on sensor-reading APIs. ❹ Forward control
dependence analysis: We then conduct forward inter-procedural
control-dependence analysis on the true branch of the conditional
instruction to find actuation APIs (e.g., APIs in WiringPi library
or functions writing GPIO pins [4]). ❺ Recording the identified
non-binary event and control intensity loop: This is the output of
the event identification module.

<label>:5
call void (...)* @actuator_signal()
...

...
%3 = load i32* @steps, align 4
%4 = icmp sle i32 %2, %3
br i1 %4, label %5, label %9

T F

<label>:9
ret void

Any sensor
reading API

Data dependence

Any actuation
API

Loop
Control dependence

❶

❷

❸

❹

❺

❷

❸

❹

Locating conditional
branch instruction

Backward data
dependence analysis

Forward control
dependence analysis

Recording non-binary
event and control
intensity loop

Constructing PDG

Figure 4: An example of identifying non-binary events

We also design a similar procedure for identifying non-pre-
defined binary events. An example of such event is when the tem-
perature exceeds a user-designated value, an event predicate returns
5Source and sink are terms in a dataflow analysis. The source is where data comes from, and the
sink is where it ends in a program [45].
6In program analysis, a basic block is a linear sequence of instructions containing no branches
except at the very end.

True. In this procedure, we search for the conditional branch either
"br" or "switch" instruction without a loop, and then perform the
same data/control dependence analysis. In particular, we need to
analyze both true and false branches of a "br" instruction, because
both branches may contain control actions and we also consider the
not-happening case (i.e., the branch without triggering any control
action) as an implicit event.

3.2 Event Dependence Analysis

Our event dependence analysis generates an event-annotated CFG,
i.e., approximating the set of statements/instructions that connect
events and their triggered actions. During the event identification,
we identify individual events that are involved in a control program.
We directly associate a non-binary event with its control intensity
loop. A challenge arises when dealing with nested binary events.

We address the nested events challenge using a bottom-up ap-
proach for recursive searching for event dependencies. Given a
binary-event triggered basic block, we backward traverse all its
control dependent blocks until reaching the root, and extract corre-
sponding branch labels (i.e., True or False).

<label>:0 ...
%3 = call i32 @E1()
%4 = icmp ne i32 %3, 0
br i1 %4, label %5, label %15

<label>:15
%16 = call i32 @E2()
%17 = icmp ne i32 %16, 0
br i1 %17, label %18, label %27

T F

<label>:5
Actuation...

<label>:27
…

T F
<label>:18
Actuation...

𝐸1
dependent

𝐸1⋀𝐸2
dependent

𝐸1⋀𝐸2
dependent

Figure 5: Event dependence analysis for nested events

Fig. 5 illustrates an example of our event dependence analysis
for nested binary events. Block 18 is control dependent on Block
15 in the True branch of E2 (called true-control-dependent). By
backward traversing the control dependence graph, we find Block
15 is further false-control-dependent on E1 in Block 0. Then, we
know Block 18 is control dependent on a composite event [E1 ∧E2].
In this example, we also find event dependencies for Blocks 5 and
27. Finally, we transform instruction-level event dependencies in
LLVM IR to statement-level dependencies in source code with line
numbers, which are the outputs of the event dependence analysis.

In addition to the static analysis approach, an alternative for
event dependence analysis is using dynamic slicing [63], which
identifies statements triggered by a particular event during multiple
rounds of program executions. It is worth mentioning that our
event identification and dependence analysis is a general approach
for reasoning cyber-physical execution semantics, independent of
specific program anomaly detection models.

3.3 Formal Description of eFSA
In this and the next few sections, we describe a specific FSA-based
anomaly detection model, which captures the event-driven feature
of control programs to detect evasive attacks.

We construct the finite-state automaton (FSA) [47] model, which
is based on tracing the system calls and program counters (PC)

made by a control program under normal execution. Each distinct
PC (i.e., the return address of a system call) value indicates a differ-
ent state of the FSA, so that invocation of same system calls from
different places can be differentiated. Each system call corresponds
to a state transition. Since the constructed FSA uses memory address
information (i.e., PC values) in modeling program behaviors (called
the gray-box model), it is more resistant to mimicry attacks than
other program models [26, 50]. In an execution trace, given the kth
system call Sk and the PC value pck from which Sk was made, the
invocation of Sk results in a transition from the previous statepck−1
to pck which is labelled with Sk−1. Fig. 6(a) shows a pictorial exam-
ple program, where system calls are denoted by S0,. . . ,S6, and states
are represented by integers (i.e., line numbers). Suppose we obtain
three execution sequences, S01

S1
3
S2
6
S3
7
S2
6
S3
7
S5
10

S6
11 ,

S0
1
S1
3
S4
9
S4
9
S5
10

S6
11 ,

and S0
1
S1
3
S5
10

S6
11

S1
3
S5
10

S6
11 , the learnt FSA model is shown in Fig. 6(b),

where each node represents a state and each arc represents a state
transition.

S0;
while(…){
S1;
if(E1())

for(…humidity…){
S2;
S3;}

else if(E2())
for(…){S4;}

S5;
S6;}

1

3

2

4

6

5

7

8

10

9

3

9

6 S3
S0 S1

S1

S51

S6

S2

11
S4

S0,…,S6 denote system calls

(a) (b)

7

11

10

S3

S1
Binary event

Non-binary
event

Binary
event

S4

Figure 6: System call based finite-state automaton (FSA)

model: (a) an example program; (b) the corresponding FSA

model.

We formally define the eFSAmodel as a six-tuple: (S, Σ, s0, F ,E,δ).
S is a finite set of states which are PC values, and Σ is a finite set
of system calls (i.e., input alphabet). s0 is an initial state, and F is
the set of final states. E represents a finite set of external events,
which can affect the underlying execution of a control program. δ
denotes the transition function mapping S × Σ × E to S . Note that a
state transition may come with multiple physical events (referred
to as a composite event). Thus, the input alphabet can be expressed
as a cartesian product: E = E1 × E2 × · · · × En , where the input E
consists of n concurrent physical events. In particular, we consider
the non-occurrence (not-happening) of one or more events as an
implicit event in eFSA.

3

9

6
S3

S0 S1

S1

S51

S6

S2

11
S4

7

10

S3

S4

S1
𝑆1
3
𝑆2
6
|𝐸1

𝑆1

3

𝑆4

9
|𝐸1⋀𝐸2

𝑆2
6
𝑆3
7 |𝑁𝐵1

𝑆1

3

𝑆5

10
|𝐸1⋀𝐸2

Figure 7: An example of the eFSA model

Fig. 7 shows an example of eFSA model corresponding to the FSA
example in Fig. 6, where an event dependent transition is labeled

by "[System Call
PC]|Events". In this example, there are two binary

events and one non-binary event. We identify binary-event depen-
dent state transitions [S13

S2
6]|E1, [

S1
3
S4
9]|E2, and a non-binary-event

dependent control intensity loop [S26
S3
7]|NB1. It also contains an

implicit event dependent transition [S13
S5
10]|(E1∧E2). eFSA expresses

causal dependencies between physical events and program control
flows. By checking execution semantics at runtime, eFSA improves
the robustness against data-oriented attacks by increasing the diffi-
culties that an attack could bypass the anomaly detection.

3.4 Security Policies in eFSA
Our eFSA model extends FSA with external context constraints,
where event-dependent state transitions in FSA are labeled with
event constraints. To construct an eFSA, we need to identify event
dependent state transitions in FSA. Towards this end, we apply
the event dependence analysis results (described in Sec. 3.1 and
3.2) to transform statement-level dependencies in source code to
the state transition dependencies in FSA. Such a mapping might
be achieved through static analysis, e.g., passing over the parse
tree to search for system call invocations. However, a static analy-
sis based approach requires the modifications of gcc compiler or
system call stubs, and even requires hand-crafted modifications
for library functions [34, 57]. In eFSA, we adopt a dynamic profil-
ing based approach to discover event dependent state transitions,
where details are introduced in Sec. 5.

For state transitions that are dependent on binary events, the
cyber-physical policy enforcement is to make sure these binary
events return the ground truth values. For control intensity loops
that are dependent on non-binary events, we enforce security poli-
cies through a control intensity analysis, which models the relation-
ship between the observable information in cyber space (i.e., system
calls) and sensor values in physical space. eFSA then enforces the
policy that the observed control intensity should be consistent with
the corresponding sensor measurements.

3.5 Control Intensity Analysis

The main challenge for detecting runtime control intensity anom-
alies lies in that, given system call traces of a control program,
we need to map the control intensity to its reflected sensor mea-
surements, where only the number of loop iterations in a control
intensity loop is available. To this end, we first obtain the number
of system calls invoked in each loop iteration. Then, we model
the relationship between sensor measurements and the amount of
system calls in a control intensity loop through regression analysis.

Execution Window Partitioning and Loop Detection: Typically,
control programs monitor and control physical processes in a con-
tinuous manner, where the top-level component of a program is
composed of an infinite loop. For instance, an Arduino program [1]
normally consists of two functions called setup() and loop(), al-
lowing a program consecutively controls the Arduino board after
setting up initial values. We define an execution window as one
top-level loop iteration in a continuous program, and a behavior
instance as the program activity within an execution window. The
term execution window is equivalent to the scan cycle in industrial
control domain [37]. We partition infinite execution traces into a

set of behavior instances based on the execution window. The un-
derlying FSAmodel helps identify loops since it inherently captures
program loop structures. We first identify the starting state in the
top-level loop of a FSA. Then, once a top-level loop back edge is
detected, a behavior instance is obtained.

Regression Analysis: The purpose of the regression analysis is
to quantify the relationship between sensor measurements and
system call amount in a control intensity loop. Given the number
of system calls invoked in each loop iteration, one straightforward
approach is through manual code analysis. In this work, we present
an approach for automating this process. During the identification
of non-binary events in Sec. 3.1, we know what sensor types (i.e.,
sensor reading APIs) are involved in a control intensity loop. In the
training phase, we collect normal program traces together with the
corresponding sensor values. Then, we perform a simple regres-
sion analysis to estimate the relationship between the system call
amount (i.e., outcome) and sensor measurements (i.e., explanatory
variables) for each control intensity loop. For example, suppose a
control intensity loop is triggered by the change of humidity sen-
sor value (details are in Sec. 6.4). We observe that an increase of
humidity results in more iterations of the control intensity loop,
where each loop iteration incurs 3 system calls. Thus, we can re-
versely derive the changes of physical environment by observing
the number of iterations in a control intensity loop.

4 EFSA-BASED DETECTION

In this section, we present how an eFSA-based anomaly detector
detects anomalies particularly caused by data-oriented attacks, and
discuss about the design choices of event verification.

4.1 Runtime Monitoring and Detection

Our anomaly detector traces system calls as well as the correspond-
ing PC values during the execution of a control program. The anom-
aly detection is composed of two steps: i) state transition integrity
checking against the basic FSA model, and ii) event consistency
checking against the event verification in the eFSA-based anomaly
detector, which is our new contribution.

• Event-independent state transition. For each intercepted sys-
tem call, we check if there exists an outgoing edge labelled with
the system call name from the current state in FSA. If not, an
anomaly is detected. If the current state transition is not event-
dependent, we move the current state of the automaton to the
new state. This basic state-transition checking has been shown
to be effective against common types of control-oriented attacks
(e.g., code injection attacks or code-reuse attacks [24]) which
violate control flow integrity of the model.
• Event-dependent state transition. In case of an event depen-
dent state transition according to eFSA, we first perform the above
basic state-transition checking. More importantly, with the help
of the event verification (discussed in Sec. 4.2), we then check
the consistency between the runtime execution semantics and
program’s behavior, i.e., whether a specific physical event asso-
ciated with this event-dependent state transition is observed in
the physical domain. This step can detect stealthy data-oriented
attacks that follow valid state transitions but are incompatible

with the physical context. Another important aspect is the se-
lection of event checkpoints. To avoid redundant checking, we
set the checkpoint for a binary event at its first event-dependent
state transition. For a non-binary event, we perform the event
checking after it jumps out of the control intensity loop.

4.2 Event Verification Strategies

The objective of event verification is to detect event spoofing caused
by runtime data-oriented software exploits. Event verification is
highly application specific, and it is actually orthogonal to the eFSA
model itself. We describe several possible approaches for verifying
physical context.
• Local event verification: which is able to detect the inconsistency
between program runtime behavior and cyber-physical execution
semantics. For example, the monitor re-executes a binary-event
function to confirm the occurrence of the event. To detect control
intensity anomalies, the monitor retrieves sensor measurements
and compares them against the derived sensor values from sys-
tem call traces. There may exist false positives/negatives due to
sensor’s functional failures in practice.
• Distributed event verification: which assesses the physical context
by exploiting functionally and spatially redundancy of sensors
among co-located embedded devices. Since sensor data normally
exhibit spatio-temporal correlation in physical environments, it
increases the detection accuracy by involving more event verifi-
cation sources.
• Physical model based verification: complementary to the runtime
event verification, cyber-physical inconsistency may be detected
based on physical models [55]. For example, one may utilize fluid
dynamics and electromagnetics as the basic laws to create predic-
tion models for water system [30] and power grid [35]. Based on
the prediction models and predefined threat constraints, these
methods can then check whether the predicted environment
values are consistent with a control system’s behavior.

5 IMPLEMENTATION

To demonstrate the feasibility of our approach, we have imple-
mented a prototype with around 5K lines in C/C++, Bash and
Python codes, including the trace collection and preprocessing,
event identification and dependence analysis, eFSA model construc-
tion, and runtime anomaly detection modules. Our prototype uses
multiple off-the-shelf tools and libraries in Linux.

We choose Raspberry Pi 2 with Sense HAT as the main experi-
mental platform, which is a commonly used platform for building
embedded control applications [11, 37, 52]. Sense Hat, an add-on
board for Raspberry Pi, provides a set of environmental sensors to
detect physical events including pressure, temperature, humidity,
acceleration, gyroscope, and magnetic filed. During the training
phase, we collect program traces on Raspberry Pi and perform the
eFSA model construction on a Linux Desktop (Ubuntu 16.04, Intel
Xeon processor 3.50GHz and 16GB of RAM). In the testing phase,
the anomaly detector is deployed on Raspberry Pi to detect runtime
control-based or data-oriented attacks. As a special case, we con-
duct experiments for post-mortem analysis of anomalous behaviors
on a commercial drone to demonstrate how eFSA can be applied to
network event-triggering scenarios (where details can be found in

Sec. 6). In the following, we present key implementation aspects in
our prototype.

Dynamic Tracing. We use the system tool strace-4.13 to
intercept system call of a running control program. To obtain the
PC value from which a system call was invoked in a program, we
need to go back through the call stacks until finding a valid PC
along with the corresponding system call. We compile strace with
-libunwind support, which enables stack unwinding and allows us
to print call stacks on every system call.

[76 eb989c] write(1, "Start\n", 6) = 15
>/lib/arm -linux -gnueabihf/libc -2.19. so(__write +0x1c) [0 xc289c]
>/lib/arm -linux -gnueabihf/libc -2.19. so(_IO_file_write +0x48) [0 x6b008]
>/lib/arm -linux -gnueabihf/libc -2.19. so(_IO_file_setbuf +0xd4) [0 x6a4a8]
>/lib/arm -linux -gnueabihf/libc -2.19. so(_IO_do_write +0x18) [0 x6c038]
>/lib/arm -linux -gnueabihf/libc -2.19. so(_IO_file_overflow +0xf4) [0 x6c408]
>/lib/arm -linux -gnueabihf/libc -2.19. so(__overflow +0x20) [0 x6cf14]
>/lib/arm -linux -gnueabihf/libc -2.19. so(_IO_puts +0x140) [0 x615b8]
>/home/pi/Solard(main+0x20) [0x43c]

Figure 8: An example of using strace tool with stack un-

winding support, where call stacks are printed out with the

system call.

It is worth mentioning that our model works in the presence
of Address Space Layout Randomization (ASLR), which mitigates
software exploits by randomizing memory addresses, as the low 12
bits of addresses are not impacted by ASLR (PC values can be easily
aligned among different execution traces of a program). Fig. 8 shows
an example of using strace tool with stack unwinding support.
In this example, we use the PC value of relative address 0x43c for
the write system call. As a result, system calls that are triggered
from different places in a program will be associated with different
PC values, which enables the FSA model to accurately capture a
program’s structures (e.g., loops and branches).

Event Identification and Dependence Analysis. Our event
identification and dependence analysis tool is implemented within
the Low Level Virtual Machine (LLVM)7 compiler infrastructure,
based on an open source static slicer8 which builds dependence
graph for LLVM bytecode. An advantage of using LLVM-based
event dependence analysis is that, our tool is compatible with mul-
tiple programming languages since LLVM supports a wide range
of languages. Our event identification module identifies the line
numbers in source code where an event is involved. Then, the event
dependence analysis outputs the line numbers of event dependent
statements. After discovering statement-level (i.e., instruction-level)
event dependence, we next identify event-dependent state transi-
tions (i.e., system call level) in FSA. By using the addr2line tool, we
could map line numbers and file names to return addresses (i.e., PC
values) that are collected in dynamic profiling phase. Subsequently,
we augment the event-driven information over the underlying FSA,
and finally construct the eFSA model.

Anomaly Detector with Event Verification. In our proto-
type, we implement a proof-of-concept near-real-time anomaly
detector using named pipes on Raspberry Pi, including both local
and distributed verifications (corroboration with single or multiple
external sources). We develop a sensor event library for Raspberry
Pi Sense Hat in C code, based on the sensor reading modules in
experix9 and c-sense-hat10. The event library reads pressure
7http://llvm.org/
8https://github.com/mchalupa/dg
9http://experix.sourceforge.net/
10https://github.com/davebm1/c-sense-hat

and temperature from the LPS25H sensor, and reads relative hu-
midity and temperature from the HTS221 sensor, with maximum
sampling rates at 25 per second. Our local event verifier calls the
same event functions as in the monitored program, and locally
check the consistency of event occurrence. In the distributed event
verifier, we deploy three Raspberry Pi devices in an indoor labo-
ratory environment. We develop a remote sensor reading module
which enables one device to request realtime sensor data from
neighbouring devices via the sockets communication.

6 EXPERIMENTAL VALIDATION

We conduct three real-world case studies of embedded control
and monitoring systems, and evaluate eFSA’s detection capability
against runtime data-oriented attacks. Our experiments aim to
answer the following questions:

• What is the runtime performance overhead of eFSA (Sec. 6.2)?
• Whether eFSA is able to detect different data-oriented attacks
(Sec. 6.3 and 6.4)? We also provide a video demo to demonstrate
eFSA’s detection capability11.

6.1 Case Studies of Embedded Control Systems

Solard
12
. It is an open source controller for boiler and house heat-

ing system that runs on embedded devices. The controller collects
data from temperature sensors, and acts on it by controlling relays
via GPIO (general purpose input/output) pins on Raspberry Pi. Con-
trol decisions are made when to turn on or off of heaters by periodi-
cally detecting sensor events. For example, CriticalTempsFound()
is a pre-defined binary event in Solard. When the temperature is
higher than a specified threshold, the event function returns True.
SyringePump

13
. It was developed as an embedded application for

Arduino platform. Abera et al. [11] ported it to Raspberry Pi. The
control program originally takes remote user commands via serial
connection, and translates the input values into control signals
to the actuator. SyringePump is vulnerable since it accepts and
buffers external inputs that might result in buffer overflows [11].
We modify the syringe pump application, where external inputs are
sent from the control center for remote control, and environmental
events drive the pump’s movement. Specifically, in the event that
the relative humidity value is higher than a specified threshold, the
syringe pump movement is triggered. In addition, the amount of
liquid to be dispensed is linearly proportional to the humidity value
subtracted by the threshold. Such sensor-driven syringe pumps are
used in many chemical and biological experiments such as liquid
absorption measurement experiment.
AR.Drone 2.0 UAV

14
. The Parrot AR.Drone 2.0 is a remote con-

trolled quadrocopter, where the control unit receives commands
from the remote ground station, monitors and controls the system
status to coordinate the flight. Rodday et al. [43] exploit security
vulnerabilities of the AR.Drone to inject malicious packets and
control the Drone. In our experiment, we reproduce the command
spoofing attacks to AR.Drone.

11https://youtu.be/-VEjidSgGIc
12https://github.com/mrpetrov/solarmanpi
13https://github.com/control-flow-attestation/c-flat
14https://www.parrot.com/us/drones/parrot-ardrone-20-elite-edition

6.2 Training and Runtime Performance

In the training phase, we collect execution traces of Solard and
SyringePump using training scripts that attempt to simulate possi-
ble sensor inputs of the control programs. By checking Solard and
SyringePump’s source codes, our training scripts cover all execu-
tion paths. Since AR.Drone allows a connection to the Telnet port
which leads to a root shell, we are able to deploy the strace tool
to collect system call traces of the UAV control program. We collect
execution traces of AR.Drone by running it using the public testing
script15, which sequentially sends different control commands to
the drone. The control program (i.e., program.elf) forks 31 child
processes, where we separate system call traces for each process.

We first measure the time taken for training models in our proto-
type, where the main overhead comes from the event dependence
analysis. In AR.Drone, the system call types involved in the process
that handles remote commands are quite limited and the program
logic is rather simple. Thus, we can easily construct the corre-
sponding eFSA model by taking advantage of network protocol
interactions (i.e., network API semantics [64]).

Event Dependence Analysis
Desktop Computer Raspberry Pi 2

Solard 0.745s 109.975s
SyringePump 0.0035s 1.726s

Table 1: Average delay overhead in training phase

Table 1 illustrates eFSA’s program analysis overhead in the train-
ing phase. For comparison purpose, we deploy the LLVM toolchain
and our event dependence analysis tool on both Raspberry Pi and
Desktop Computer (Intel Xeon processor 3.50GHz and 16GB of
RAM). From Table 1, Raspberry Pi takes much longer time (more
than 150 times) than desktop computer to complete the program de-
pendence analysis task. It only takes 0.745s and 0.0035s for event de-
pendence analysis of Solard (46.3 kb binary size) and SyringePump
(17.7 kb binary size) on a desktop computer, respectively. Since
Solard and SyringePump run in a continuous manner and thus
generate infinite raw traces. The model training overhead is mea-
sured by how much time it takes for training per MByte raw trace.
Results show that it takes less than 0.2s to process 1 MByte traces
on the desktop computer. The number of states in Solard’s and
SyringePump’s eFSA is 34 and 65, respectively.

Delay (Raspberry Pi 2) Mean Standard Deviation
FSA State Transition Checking 0.00013293s 0.00004684s

Local Event Verification 0.06279120s 0.00236999s
Distributed Event Verification 0.21152867s 0.03828739s

Table 2: Runtime overhead in the monitoring phase

Next, we measure the performance overhead incurred by eFSA’s
anomaly detector on Raspberry Pi. The system call tracing over-
head has no difference between FSA and eFSA, incurring 1.5x∼2x
overhead in our experiments. Table 2 reports the runtime detection
latency results. The average delay for each state transition (i.e.,
each intercepted system call) checking out of more than 1000 runs
is around 0.0001s. It takes 0.063s on average to perform the local
event checking. The end-to-end latency for the distributed event
checking from each co-located device can be broken down into
15https://github.com/felixge/node-ar-drone

two main parts: i) network communication around 0.042s, and ii)
sensor reading delay around 0.0582s. In our experiment, we de-
ploy two co-located devices, and thus the total distributed event
checking delay is around 0.212s. It is expected that the overhead of
distributed event checking is linearly proportional to the number
of event verification sources.

6.3 Detecting Attacks on Control Branch

In this experiment, we evaluate eFSA’s security guarantees against
control branch attacks. In Solard, our buffer overflow attack ma-
nipulates the temperature sensor values to maliciously prevent the
heater from being turned off. This cyber-physical attack is similar
to the recent real-world German steel mill attack [3], which may
result in a blast furnace explosion. In this experiment, we attach
the Raspberry Pi on an electric kettle (i.e., 1-Liter water boiler). The
control program keeps monitoring temperature values. When the
temperature is lower than 50◦C , it turns on the heater. Andwhen the
temperature is higher than 60◦C , where CriticalTempsFound()
is supposed to return True, it turns off the heater. In the monitoring
phase, when we detect an event-dependent state transition in eFSA
model, the local event verifier performs event consistency checking.
(Details of SyringePump case study against control branch attacks
can be found in our video demo)

Fig. 9 illustrates an instance of the Solard experiment. We cor-
rupt the temperature sensor values in the range of 40∼45◦C , which
falsifies the return value of CriticalTempsFound() to be always
False. In every scan cycle, eFSA observes a state transition de-
pendent on the not-happening of CriticalTempsFound() (i.e., an
implicit event), and thus the event verifier checks the instantaneous
temperature value. In our experiment, because the Raspberry Pi
does not physically interact with the electric kettle, the ground truth
temperature keeps increasing up to more than 80◦C in Fig. 9. How-
ever, eFSA successfully raises an alarm at the first moment when it
finds a mismatch between the execution semantics (temperature
exceeding 60◦C) and program behavior.

Elapsed Time (10 mins)

20

40

60

80

100

Te
m

pe
ra

tu
re

(◦
C

)

Temperature < 50◦C: turn on the heater

Temperature > 60◦C:
turn off the heater

Anomaly Detected by eFSA

Faulty Values

(Ground Truth) Temperature Measurements
by the Event Verifier

Values of Temperature Variable
Manipulated by an Attacker

Figure 9: An instance of Solard experiment

We did encounter sensor measurement failures, e.g., isolated
dots as shown in Fig. 9. On average, the false sensor measurement
rate is lower than 1% in our experiments. This means that the
detection rate and false positive/negative rate would depend on
sensors’ functional reliability in practice. Existing methods, such as
data fusion [15] can be applied to enhance the detection accuracy.

6.4 Detecting Attacks on Control Intensity

In this experiment, we demonstrate that eFSA is able to detect con-
trol intensity attacks with only system call traces. In SyringePump,
we set the threshold that triggers the movement of syringe pump
to be 30rH . Our attack corrupts the humidity sensor value based
on a buffer overflow vulnerability [11] and thus could drive the
movement of syringe pump without receiving an external event or
environmental trigger (i.e., regardless the relative humidity value
is higher than 30rH). Meanwhile, the corrupted humidity value
also determines the amount of liquid to be dispensed, which equals
to the humidity value subtracted by 30rH . In the training phase,
through control intensity analysis, we know the number of system
calls with no event occurrence is 40 per scan cycle, and each loop
iteration (i.e., dispensing a unit of liquid) in the control intensity
loop corresponds to 3 system calls.

0 2 4 6 8 10 12 14

20

25

30

35

40

45

50

H
um

id
ity

Manipulated
Value

Manipulated
Values

0 2 4 6 8 10 12 14

Index of Execution Window
0

20

40

60

80

100

of
sy

st
em

ca
lls

(a) Humidity and system call traces

Elapsed Time (75 mins)

25

30

35

40

45

50

55

60

H
um

id
ity

Anomaly Detected by eFSA

Anomaly Detected by eFSA

Co-located Device 1
Co-located Device 2
Derived from Traces

(b) eFSA’s detection

Figure 10: An instance of SyringePump experiment with a

sampling rate of 5 minutes

Fig. 10(a) shows the value changes of the humidity variable and
system call amount per scan cycle of SyringePump. The normal
humidity value fluctuates between 34 rH and 38rH . As a result, the
amount of liquid to be dispensed is subsequently changed, which
is reflected by the number of system calls in each control loop. We
manipulate the humidity values to be 20rH and 48rH , respectively.
In the monitoring phase, by observing the number of system calls in
each control loop, we can reversely derive the changes of physical
environment based on our control intensity regression model as
shown in Fig. 10(b). In this test, if the difference between the derived
value and the sampled average value from event verifier is larger
than 3rH , we consider it an anomaly. By checking the humidity
measurements from two co-located devices (i.e., denoted as devices
1 and 2), our distributed event verifier detects that the program’s
runtime behaviors are incompatible with physical contexts. Thus,
eFSA successfully detects the control intensity attacks.

From Sec 6.3 and Sec. 6.4, we demonstrate that enforcing cyber-
physical execution semantics in control-program anomaly detection
is effective to detect both types of data-oriented attacks. As long
as the current execution context is incompatible with the observed
program state transitions, eFSA is able to detect potential anomalies.

6.5 Generalization of Events and Detecting

Command Injection Attacks

Control programs running on embedded devices may receive net-
work events from the control center, and then execute actuation
tasks. Though eFSA mainly detects software-exploit based envi-
ronmental event spoofing, we demonstrate it is also applicable to

network event-triggering scenarios by conducting an experiment
on AR.Drone. We consider each type of control command as a
specific event, and the eFSA model is augmented with command
events. To detect false command injection attacks, eFSA checks the
consistency of system call traces at a UAV and its ground control
station (GCS), ensuring their system call invocations conforming to
the network API semantics [64]. We use a laptop (as an attacker) to
send fake control commands to the AR.Drone. Meanwhile, we col-
lect system calls on both Drone and GCS. The event verifier could
find inconsistencies between eFSA’s state transitions and network
events (e.g., sendto or recvfrom) retrieved from GCS, and thus
detect this type of attacks. In this experiment, we do not intend to
use eFSA to raise an alarm at the time of intrusion, instead we aim
at detecting the anomalous behavior as a post-mortem analysis.

7 DEPLOYMENT DISCUSSION

Although ourwork is focused on providing new security capabilities
in control-program anomaly detection against data-oriented attacks,
in this section, we examine the limitations of our implementation
and discuss how our method can be deployed in the near future.

AnomalyDetection as a Service: Embedded devices are resource-
constrained compared with general-purpose computers. To reduce
detection overhead, the anomaly detection may be performed at
a remote server. We envision deployment involving partnerships
between hardware vendors and security service providers (similar
to ZingBox IoT Guardian [8]), where the security provider is given
access to embedded platforms and helps clients to diagnose/con-
firm violations. The client-server architecture resonates with the
remote attestation in embedded systems, which detects whether a
controller is behaving as expected [11, 56]. For detection overhead
reduction, the remote server may choose when and how frequently
to send assessment requests to a control program for anomaly de-
tection. It is also possible to selectively verify a subset of events,
e.g., only safety-critical events specified by developers are involved.
While the event verifier implementation is not completely auto-
mated, our event identification and dependence analysis tool does
automate a large portion of event code extraction and eases the
developer’s burden. We leave automatically generating event veri-
fication functions for the anomaly detector as an important part of
our future work.

Embedded Devices Without OS: Our anomaly detection sys-
tem works on the granularity of system calls and it leverages dy-
namic tracing facilities such as the strace tool, which requires the
operating system support. An important reason behind our choice is
that, the new generation of embedded control devices on the market
are increasingly coming with operating systems [46, 52]. For exam-
ple, Raspberry Pi devices with embedded Linux OS have been used
as field devices in many CPS/IoT applications [6]. Linux-based PLCs
for industrial control have emerged to replace traditional PLCs [7]
for deterministic logic execution. However, embedded devices may
still operate in bare-metal mode [11], where we can not utilize ex-
isting tracing facilities to collect system call traces. For traditional
PLCs, our security checking can be added to the program logic. We
can also apply the event checking idea to an anomaly detection
system at the level of instructions. We may instrument the original
control program with event checking hooks by rewriting its binary,

e.g., inserting hooks at the entry of event-triggered basic blocks.
We consider it as the future work to extend our design paradigm
for fine-grained anomaly detection with binary instrumentation.

Tracing Overhead and Time Constraints: Though system
call traces are a common type of audit data in anomaly detection
systems, we would like to point out that the conventional software-
level system call tracing incurs unnegligible performance overhead
to the monitored process [23]. It holds for time-insensitive embed-
ded control applications, e.g., smart home automation, but would
be a technical challenge for time-sensitive applications. While we
employ the user-space strace software to collect system calls in
our prototype, tracing tools are orthogonal to our detection de-
sign. For performance consideration, alternative tracing techniques
may be adopted in replacing strace to improve the tracing perfor-
mance [48]. For example, it is possible to improve the performance
for system call interposition by modifying the kernel at the cost
of increased deployment effort. With the recently unveiled Intel’s
Processor Trace (PT) and ARM’s CoreSight techniques, hardware
tracing infrastructures are increasingly embedded in modern pro-
cessors, which can achieve less than 5% performance overhead [13].
The recent work, Ninja [41], offers a fast hardware-assisted trac-
ing on ARM platforms. The overhead of instruction tracing and
system call tracing are negligibly small. Therefore, we anticipate
that future tracing overhead will be significantly reduced as the
hardware-assisted tracing techniques are increasingly used.

8 RELATEDWORK

Our contribution in this work lies at the intersection of two areas:
anomaly detection for embedded systems software and program
behavior modeling. In this section, we briefly summarize related
works in these two research areas.

8.1 Anomaly Detection for Embedded Software

Our work focuses on anomaly detection for embedded control pro-
gramswith cyber-physical interactions, e.g., in CPS/IoT applications.
The majority of research efforts in this area thus far have concen-
trated on behavior model-based anomaly detection [55]. Since such
embedded control system is an integration of cyber and physical
components, previous anomaly detection works can be divided
into two lines of research: based on i) behavior models of physical
processes; or ii) behavior models of cyber programs/systems.

Due to the diversity of CPS/IoT applications, existing behav-
ior models are proposed to detect anomalies for specific appli-
cations, such as smart grid [51], unmanned aerial vehicles [39],
medical devices [14, 38], automotive [20, 44], industrial control pro-
cess [16, 37, 55]. The idea of using physical models to define normal
operations for anomaly detection is that, system states must follow
immutable laws of physics. For example, authors in [58] derived a
graph model to defeat false data injection attacks in the Supervisory
Control and Data Acquisition (SCADA) system, by capturing in-
ternal relations among system variables and physical states. Other
examples include fluid dynamics model for water system [30] and
electromagnetics model power grid [35]. These solutions mainly
monitor the behaviors of a specific physical system, and thus they
can not directly detect general software exploits.

Regarding the anomaly detection based on cyber models, Yoon et
al. [62] proposed a lightweight method for detecting anomalous
executions using a distribution of system call frequencies. The au-
thors in [9] proposed a hardware based approach for control flow
graph (CFG) validation in runtime embedded systems. C-FLAT [11]
is the most related work to our approach. Both C-FLAT and eFSA
target at designing a general approach for detecting anomalous
executions of embedded systems software. However, C-FLAT is in-
sufficient to detect data-oriented attacks due to the lack of runtime
execution context checking. In addition to profiling program behav-
iors based on control flows, several research works utilize timing
information as a side channel to detect malicious intrusions[61, 65].
ContexIoT [32] provides context identification for sensitive actions
in the permission granting process of IoT applications on Android
platforms. Though both ContextIoT and eFSA consider execution
contextual integrity, ContextIoT does not support the detection of
data-oriented attacks.

Distinctive from existing works in this area, our Orpheus focuses
on utilizing the event-driven feature in control-program anomaly de-
tection and our program behavior model combines both the cyber and
physical aspects. Consequently, physics-based models, which can be
inherently integrated into our approach to enhance security and effi-
ciency, do not compete but rather complement our scheme. Stuxnet
attack [33] manipulated the nuclear centrifuge’s rotor speed, and
fooled the system operator by replaying the recorded normal data
stream during the attack [28]. Since eFSA’s detection is independent
on the history data, it makes Stuxnet-like attacks detectable in eFSA
by detecting inconsistencies between the physical context (runtime
rotor speed) and the control program’s behavior.

8.2 Program Behavior Modeling

Program behavior modeling has been an active research topic over
the past decade and various models have been proposed for legacy
applications [50]. Warrender et al. [59] presented the comparison of
four different program behavior models, including simple enumer-
ation of sequences, sequence frequency-based (i.e., n-gram), rule
induction-based data mining approach, and Hidden Markov Model
(HMM). Sekar et al. [47] proposed to construct an FSA via dynamic
learning from past traces. Recently, Xu et al. [60] proposed a proba-
bilistic HMM-based control flow model representing the expected
call sequences of the program for anomaly detection. Shu et al.
[48, 49] proposed an anomaly detection approach with two-stage
machine learning algorithms for large-scale program behavioral
modeling. Different from these program behavior models for legacy
applications, in this paper, we propose a customized eFSA model
for detecting anomalies in embedded control programs.

It is interesting that the design paradigm of Orpheus, i.e., aug-
menting physical event constraints on top of a program behavior
model, can be applied to most of the aforementioned program behav-
ior models. For example, HMM-based models [60] can be enhanced
with event checking on event dependent state transitions. For the n-
grammodel [59], it is possible we identify event-dependent n-grams
in the training phase and apply the event checking when observing
any event-dependent n-gram in testing. In addition, control-flow
integrity [10, 52] can also be augmented with event checking before
executing control tasks.

Approaches Control-oriented
attacks

Data-oriented attacks
Control branch Control intensity

FSA [47], HMM [60], etc. ✔ ✕ ✕

C-FLAT [11] ✔ ✕ Limited
Our eFSA ✔ ✔ ✔

Table 3: Security guarantees of anomaly detection ap-

proaches

Table 3 summaries the security guarantees of different anom-
aly detection approaches. C-FLAT [11] instruments target control
programs to achieve the remote attestation of execution paths of
monitored programs, and the validity of control flow paths is based
on static analysis. It can only partially detect control intensity at-
tacks with the assumption of knowing legal measurements of the
target program. However, if the legal measurement covers a large
range of sensor values, attacks can easily evade its detection because
it does not check runtime consistency between program behavior
and physical context. Existing program anomaly detection models
(e.g., FSA [47] or HMM [60]) mainly focus on control flow integrity
checking, and thus can not detect runtime data-oriented attacks.
eFSA focuses on detecting data-oriented exploits, and the capability
for detecting control-oriented exploits inherits from the FSA.

9 CONCLUSION

In this work, we presented Orpheus, a new security mechanism
for embedded control programs in defending against data-oriented
attacks, by enforcing cyber-physical execution semantics. As an FSA-
based instantiation of Orpheus, we proposed the program behavior
model eFSA, which advances the state-of-the-art program behavior
modelling. To the best of our knowledge, this is the first anomaly
detection model that integrates both cyber and physical properties.
We implemented a proof-of-concept prototype to demonstrate the
feasibility of our approach. Three real-world case studies demon-
strated eFSA’s efficacy against different data-oriented attacks. As
for our future work, we plan to integrate physics-based models into
our approach, design robust event verification mechanisms, and
extend the Orpheus design paradigm to support actuation integrity
for fine-grained anomaly detection at the instruction level without
the need of tracing facilities.

ACKNOWLEDGMENTS

This work has been supported by the Office of Naval Research under
Grant ONR-N00014-17-1-2498, and Security and Software Engineer-
ing Research Center (S2ERC), a NSF sponsored multi-university
Industry/University Cooperative Research Center (I/UCRC).

REFERENCES

[1] Arduino. www.arduino.cc/. [Accessed 09-12-2017].
[2] Cyber-Physical Systems. www.cpse-labs.eu/cps.php. [Accessed 09-12-2017].
[3] German Steel Mill Meltdown. securityintelligence.com/

german-steel-mill-meltdown-rising-stakes-in-the-internet-of-things/.
[Accessed 09-12-2017].

[4] GPIO access library for RPI. wiringpi.com/. [Accessed 09-12-2017].
[5] LLVM. http://llvm.org/. [Accessed 09-12-2017].
[6] Opto 22 connects real-world industrial devices to millions of Raspberry Pi.

www.prweb.com/releases/2016/11/prweb13853953.htm. [Accessed 09-12-2017].
[7] The REX Control System for Raspberry Pi. www.rexcontrols.com/. [Accessed

09-12-2017].

www.cpse-labs.eu/cps.php
securityintelligence.com/german-steel-mill-meltdown-rising-stakes-in-the-internet-of-things/
securityintelligence.com/german-steel-mill-meltdown-rising-stakes-in-the-internet-of-things/

[8] ZingBox: Enabling the Internet of Trusted Things. www.zingbox.com/. [Accessed
09-12-2017].

[9] F. A. T. Abad, J. V. D. Woude, Y. Lu, S. Bak, M. Caccamo, L. Sha, R. Mancuso, and
S. Mohan. On-chip control flow integrity check for real time embedded systems.
In 2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks,
and Applications, 2013.

[10] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In CCS, 2005.

[11] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-FLAT: control-flow attestation
for embedded systems software. In CCS, 2016.

[12] S. Adepu, S. Shrivastava, andA.Mathur. Argus: An orthogonal defense framework
to protect public infrastructure against cyber-physical attacks. IEEE Internet
Computing, 20(5):38–45, 2016.

[13] Verge Adrien, Ezzati-Jivan Naser, and Dagenais Michel R. Hardware-assisted
software event tracing. Concurrency and Computation: Practice and Experience,
2017.

[14] H. Almohri, L. Cheng, D. Yao, and H. Alemzadeh. On threat modeling and mitiga-
tion of medical cyber-physical systems. In IEEE/ACM International Conference on
Connected Health: Applications, Systems and Engineering Technologies (CHASE),
pages 114–119, 2017.

[15] M. Bahrepour, N. Meratnia, and P. J. M. Havinga. Sensor fusion-based event detec-
tion in wireless sensor networks. In Annual International Mobile and Ubiquitous
Systems: Networking Services, MobiQuitous, 2009.

[16] Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen
Huang, and Shankar Sastry. Attacks against process control systems: Risk as-
sessment, detection, and response. In ASIACCS, 2011.

[17] Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. Control-flow bending: On the effectiveness of control-flow integrity. In
USENIX Security, 2015.

[18] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brumley. Towards
automated dynamic analysis for Linux-based embedded firmware. In NDSS, 2016.

[19] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer.
Non-control-data attacks are realistic threats. In USENIX Security, 2005.

[20] Kyong-Tak Cho, Kang G. Shin, and Taejoon Park. CPS approach to checking
norm operation of a brake-by-wire system. In ICCPS, 2015.

[21] Mutz Darren, Valeur Fredrik, Vigna Giovanni, and Kruegel Christopher. Anoma-
lous system call detection. ACM Trans. Inf. Syst. Secur., 9(1):61–93, 2006.

[22] Patricia Derler, Edward A. Lee, Stavros Tripakis, and Martin Törngren. Cyber-
physical system design contracts. In ICCPS, 2013.

[23] H.H. Feng, J.T. Giffin, Yong Huang, S. Jha, Wenke Lee, and B.P. Miller. Formalizing
sensitivity in static analysis for intrusion detection. In IEEE S&P, 2004.

[24] Aurélien Francillon and Claude Castelluccia. Code injection attacks on Harvard-
architecture devices. In CCS, 2008.

[25] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending embed-
ded systems against control flow attacks. In SecuCode, 2009.

[26] Debin Gao, Michael K. Reiter, and Dawn Song. On gray-box program tracking
for anomaly detection. In USENIX Security, 2004.

[27] Luis Garcia, Ferdinand Brasser, Mehmet H. Cintuglu, Ahmad-Reza Sadeghi,
Osama Mohammed, and Saman A. Zonouz. Hey, my malware knows physics!
attacking plcs with physical model aware rootkit. In NDSS, 2017.

[28] Luis Garcia, Ferdinand Brasser, Mehmet H. Cintuglu, Ahmad-Reza Sadeghi,
Osama Mohammed, and Saman A. Zonouz. Hey, My Malware Knows Physics!
Attacking PLCs with Physical Model Aware Rootkit. In NDSS, 2017.

[29] J. Habibi, A. Gupta, S. Carlsony, A. Panicker, and E. Bertino. MAVR: Code reuse
stealthy attacks and mitigation on unmanned aerial vehicles. In ICDCS, pages
642–652, 2015.

[30] Dina Hadžiosmanović, Robin Sommer, Emmanuele Zambon, and Pieter H. Hartel.
Through the eye of the PLC: Semantic securitymonitoring for industrial processes.
In ACSAC, 2014.

[31] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. Data-oriented programming: On the expressiveness of non-
control data attacks. In IEEE S&P, 2016.

[32] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Z. Morley Mao, and Atul Prakash. ContexIoT: Towards Providing Contextual
Integrity to Appified IoT Platforms. In NDSS, 2017.

[33] David Kushner. The real story of stuxnet. IEEE Spectrum, 50(3):48 – 53, 2013.
[34] Lap Chung Lam and Chiueh Tzi-cker. Automatic extraction of accurate

application-specific sandboxing policy. In RAID, 2004.
[35] Yao Liu, Peng Ning, and Michael K. Reiter. False data injection attacks against

state estimation in electric power grids. In CCS, 2009.
[36] Sixing Lu and Roman Lysecky. Analysis of control flow events for timing-based

runtime anomaly detection. In Proceedings of Workshop on Embedded Systems
Security, 2015.

[37] Stephen McLaughlin, Devin Pohly, Patrick McDaniel, and Saman Zonouz. A
trusted safety verifier for process controller code. In NDSS, 2014.

[38] R. Mitchell and I.-R. Chen. Behavior rule specification-based intrusion detection
for safety critical medical cyber physical systems. IEEE Transactions on Dependable
and Secure Computing, 12(1):16–30, 2015.

[39] Robert Mitchell and Ing-Ray Chen. Adaptive intrusion detection of malicious
unmanned air vehicles using behavior rule specifications. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 44(5):593–604, 2014.

[40] Robert Mitchell and Ing-Ray Chen. A survey of intrusion detection techniques
for cyber-physical systems. ACM Comput. Surv., 46(4):55:1–55:29, March 2014.

[41] Zhenyu Ning and Fengwei Zhang. Ninja: Towards transparent tracing and
debugging on arm. In USENIX Security, 2017.

[42] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, Andrew
Paverd, N. Asokan, and Ahmad-Reza Sadeghi. Hardscope: Thwarting DOP with
hardware-assisted run-time scope enforcement. CoRR, abs/1705.10295, 2017.

[43] N. M. Rodday, R. d. O. Schmidt, and A. Pras. Exploring security vulnerabilities of
unmanned aerial vehicles. In NOMS, 2016.

[44] Ishtiaq Rouf, Rob Miller, Hossen Mustafa, Travis Taylor, Sangho Oh, Wenyuan
Xu, Marco Gruteser, Wade Trappe, and Ivan Seskar. Security and privacy vul-
nerabilities of in-car wireless networks: A tire pressure monitoring system case
study. In USENIX Security, 2010.

[45] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In IEEE S&P, 2010.

[46] M. Schwartz, J. Mulder, A. R. Chavez, and B. A. Allan. Emerging techniques for
field device security. IEEE Security and Privacy, 12(6):24–31, 2014.

[47] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based method
for detecting anomalous program behaviors. In IEEE S&P, 2001.

[48] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. Unearthing stealthy pro-
gram attacks buried in extremely long execution paths. In CCS, 2015.

[49] Xiaokui Shu, Danfeng (Daphne) Yao, Naren Ramakrishnan, and Trent Jaeger.
Long-span program behavior modeling and attack detection. ACM Transactions
on Privacy and Security, 20(4):1–28, September 2017.

[50] Xiaokui Shu, Danfeng (Daphne) Yao, and Barbara G. Ryder. A formal framework
for program anomaly detection. In RAID, 2015.

[51] S. Sridhar, A. Hahn, and M. Govindarasu. Cyber-physical system security for the
electric power grid. Proceedings of the IEEE, 100(1):210–224, 2012.

[52] J. Tan, H. J. Tay, U. Drolia, R. Gandhi, and P. Narasimhan. PCFIRE: Towards
provable preventative control-flow integrity enforcement for realistic embedded
software. In 2016 International Conference on Embedded Software (EMSOFT), pages
1–10, 2016.

[53] R. Tan, H. H. Nguyen, E. Y. S. Foo, X. Dong, D. K. Y. Yau, Z. Kalbarczyk, R. K. Iyer,
and H. B. Gooi. Optimal false data injection attack against automatic generation
control in power grids. In ICCPS, 2016.

[54] Blase Ur, ElyseMcManus, Melwyn Pak Yong Ho, andMichael L. Littman. Practical
trigger-action programming in the smart home. In CHI, 2014.

[55] David I. Urbina, Jairo A. Giraldo, Alvaro A. Cardenas, Nils Ole Tippenhauer, Junia
Valente, Mustafa Faisal, Justin Ruths, Richard Candell, and Henrik Sandberg.
Limiting the impact of stealthy attacks on industrial control systems. In CCS,
2016.

[56] Junia Valente, Carlos Barreto, and Alvaro A. Cárdenas. Cyber-physical systems
attestation. In DCOSS, 2014.

[57] D. Wagner and D. Dean. Intrusion detection via static analysis. In IEEE S&P,
2001.

[58] Yong Wang, Zhaoyan Xu, Jialong Zhang, Lei Xu, Haopei Wang, and Guofei Gu.
Srid: State relation based intrusion detection for false data injection attacks in
scada. In ESORICS, 2014.

[59] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: alternative data models. In IEEE S&P, 1999.

[60] Kui Xu, D.D. Yao, B.G. Ryder, and Ke Tian. Probabilistic program modeling for
high-precision anomaly classification. In CSF, 2015.

[61] Man-Ki Yoon, S. Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. Securecore: A
multicore-based intrusion detection architecture for real-time embedded systems.
In RTAS, 2013.

[62] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, and Lui Sha.
Learning execution contexts from system call distribution for anomaly detection
in smart embedded system. In IoTDI, 2017.

[63] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic slicing algo-
rithms. In ICSE ’03, 2003.

[64] Yanyan Zhuang, Eleni Gessiou, Steven Portzer, Fraida Fund, Monzur Muham-
mad, Ivan Beschastnikh, and Justin Cappos. Netcheck: Network diagnoses from
blackbox traces. In USENIX NSDI, pages 115–128, 2014.

[65] Christopher Zimmer, Balasubramanya Bhat, Frank Mueller, and Sibin Mohan.
Time-based intrusion detection in cyber-physical systems. In ICCPS, 2010.

	Abstract
	1 Introduction
	2 Model and Design Overview
	2.1 New Detection Capabilities
	2.2 System Model and Definition of Events
	2.3 Attack Model and Assumptions
	2.4 Design Overview and Workflow

	3 eFSA Construction with Static Analysis and Dynamic Profiling
	3.1 Event Identification
	3.2 Event Dependence Analysis
	3.3 Formal Description of eFSA
	3.4 Security Policies in eFSA
	3.5 Control Intensity Analysis

	4 EFSA-based Detection
	4.1 Runtime Monitoring and Detection
	4.2 Event Verification Strategies

	5 Implementation
	6 Experimental Validation
	6.1 Case Studies of Embedded Control Systems
	6.2 Training and Runtime Performance
	6.3 Detecting Attacks on Control Branch
	6.4 Detecting Attacks on Control Intensity
	6.5 Generalization of Events and Detecting Command Injection Attacks

	7 Deployment Discussion
	8 Related Work
	8.1 Anomaly Detection for Embedded Software
	8.2 Program Behavior Modeling

	9 Conclusion
	Acknowledgments
	References

