
A

Dependency Analysis for Traffic Anomaly Detection

HAO ZHANG, Virginia Tech
DANFENG (DAPHNE) YAO, Virginia Tech
NAREN RAMAKRISHNAN, Virginia Tech
ZHIBIN ZHANG, Chinese Academy of Sciences

This paper describes an approach to enforce dependencies between network traffic and user activities for
anomaly detection. We present a framework and algorithms that analyze user actions and network events
on a host according to their dependencies. Discovering these relations is useful in identifying anomalous
events on a host that are caused by software flaws or malicious code. To demonstrate the feasibility of
user intention-based traffic dependence analysis, we implement a prototype called CR-Miner and perform
extensive experimental evaluation of the accuracy, security, and efficiency of our algorithm. The results
show that our algorithm can identify user intention-based traffic dependence with high accuracy (average
99.6% for 20 users) and low false alarm rates. Our prototype can successfully detect several pieces of HTTP-
based real-world spyware. We show that user intention-based traffic dependency is a safety property along
with the corresponding security automaton as defined in Schneider’s EM-enforceable security framework.
This formalization demonstrates that dependency enforcement has useful characteristics for practical and
scalable deployment.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General; D.4.6 [Op-
erating Systems]: Security and Protection

General Terms: Design, Algorithms, Security

Additional Key Words and Phrases: anomaly detection, traffic dependency, user intention, enforceable policy

1. INTRODUCTION
Conventional intrusion detection approaches focus on detecting specific intrusive and
malicious patterns. They work well if the attack signatures or behaviors are known or
can be modeled a priori. Anomaly detection – a field pioneered by Denning [Denning
1987] – defines, specifies, and enforces normal traffic and interaction patterns in a
network or on a host. Anomalies or outliers refer to any activities that do not conform
to regular behaviors. Statistical techniques modeled under specific domain knowledge
have been proposed for anomaly detection [Denning 1987; Heberlein et al. 1990; Shieh
and Gligor 1997; Snapp et al. 1991]. For example, dynamic Bayesian networks can
be used to detect abnormal data access patterns by malicious insiders to a sensitive
database [An et al. 2006]. However, realizing general anomaly detection is challenging,
especially for complex and diverse behaviors involving activities spanning users, hosts,

This work has been supported in part by NSF grant CAREER CNS-0953638 and ARO grant STIR-450080.
A preliminary version of this work appeared in Proceedings of Workshop on Semantics and Security (WSCS),
in conjunction with the IEEE Symposium on Security and Privacy. San Francisco, CA. May 2012.
Authors’ addresses: H. Zhang, D. Yao, and N. Ramakrishnan, Department of Computer Science, Virginia
Tech, Blacksburg, VA 24060, {haozhang, danfeng, naren}@cs.vt.edu. Z. Zhang, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing, China, 100190, zhangzhibin@ict.ac.cn. Yao is the cor-
responding author.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 H. Zhang et al.

and networks. When the definitions for normal behaviors are restrictive, false positives
(i.e., false alarms) may be high; whereas broad definitions for normal behaviors may
result in high false negatives.

We describe a novel user intention-based anomaly detection approach that can be
used for detecting anomalous traffic on a host. Our solution aims at capturing depen-
dencies between a user’s input activities (e.g., clicking on a hyperlink of a webpage) and
system/network events (e.g., HTTP GET requests). We explore direct and indirect de-
pendencies in how a user interacts with applications and how applications respond to
the user’s requests following the specifications of the applications. By enforcing an ap-
plication’s correct responses to user activities, we are able to identify vagabond events.
Vagabond events refer to outbound network events that are not generated by any user
actions and may hence be due to anomalies. We do not require any knowledge or as-
sumption on the regularities of user behavior patterns.

Our work aims to demonstrate the feasibility of user intention-based dependence
analysis for detecting suspicious network connections of a host in a concrete web
browser setting. The traffic dependence analysis is a powerful technique for identify-
ing malware activities. We enforce correct system behaviors, as opposed to anomalous
characteristics. Our dependence-based anomaly detection has advantages over con-
ventional pattern-based solutions (such as [Chandola et al. 2009; Christodorescu et al.
2008; Denning 1987; Teng et al. 1990]), because it does not require a priori knowledge
or assumptions about the normal data patterns. Our contributions are summarized as
follows.

(1) We demonstrate the use of dependence analysis for detecting anomalous web traffic
in our CR-Miner (Causal Relation Miner) framework. Specifically, we describe how
to construct a concrete dependence analysis model for the web browser and use it for
predicting and enforcing allowable web traffic by specific user actions. We address
the underlying technical challenges by instrumenting the browser and operating
system for monitoring, inferring dependency patterns, and designing efficient algo-
rithms for real-time analyzing event hierarchies.
We describe a tree representation of dependencies existed in outbound traffic in a
traffic-dependency graph (TDG). We design an efficient breadth-first search based
algorithm for inferring dependencies of outbound requests, i.e., finding the event in
the TDG that causes the newly-observed outbound request. The inference inspects
the temporal, semantic, and process-related attributes of events and their depen-
dencies.

(2) We implement a prototype of CR-Miner in Windows and extensively evaluate its
performance in terms of its accuracy and feasibility in anomaly detection. We per-
formed a user study with 20 participants and analyzed CR-Miner’s false positive
rates. We also evaluate the accuracy of our dependency inference algorithm in noisy
traffic by combining the traffic of multiple users. Experimental results show that
our algorithm substantially outperforms the temporal-only dependence analysis,
which is mentioned in BINDER [Cui et al. 2005], in terms of the accuracy of de-
pendence prediction. We further demonstrate the use of CR-Miner to detect several
pieces of real-world and proof-of-concept spyware.
To prevent malware from spoofing legitimate traffic in order to circumvent our
anomaly detection, we further provide a lightweight cryptographic mechanism in
the Firefox browser to ensure the integrity of HTTP packet headers. Because fields
of the header are used by our dependence analysis, our message authentication code
improves the integrity of CR-Miner against stealthy malware’s tampering.

(3) In order to demonstrate the generality of traffic dependency analysis, we provide
theoretical modeling and analysis for CR-Miner. We give an abstract finite state

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:3

automaton model to represent the states, user-triggered transitions, and traffic re-
sponses in networked applications such as the browser. The FSAs allow us to further
define the security automata for enforcing traffic dependency property and formally
show that traffic dependency is an EM-enforceable security policy as defined in Ex-
ecution Monitoring (EM) framework [Schneider 2000]. Specifically, traffic depen-
dency has three properties: expressible as a predicate over executions, prefix closed,
and decision made within a finite period. This work is useful for systematically un-
derstanding and formalizing user intention-based dependency analysis.

Our user intention-based traffic dependence analysis produces structures in network
events. These structures across outbound requests enable improved context-aware se-
curity analysis. Dependence analysis on network flows builds a traffic dependency
graph based on the observed network events and user actions. This approach of in-
ferring and enforcing the logical dependencies among events is a general anomaly de-
tection technique, which can also be applied to detect anomalies in file-system events.

Besides the traffic dependencies studied in this paper, the approach of user
intention-based dependence analysis may be for anomaly detection in file-system
events. For example, it is desirable to enforce the dependencies between user input
events and file-system events on a host to detect unauthorized file-system activities,
such as download, read, or write. DeWare [Xu et al. 2011], BLADE [Lu et al. 2010],
and UIBAC [Shirley and Evans 2008] leverage user behaviors for certain file-access
regulation. Yet, more systematic study is needed for general user-centric dependence
analysis in file systems.

Our proposed traffic dependence solution cannot be realized by the conventional
(stateful) firewall, because our inference of dependencies requires complex algorithmic
computation on system events beyond simple rule-based filtering.

The rest of the paper is organized as follows. We give our traffic-dependency graph
model and definitions in the next section. The building blocks and algorithms are pre-
sented in Section 3. We formalize a finite state machine model for the browser traf-
fic dependency in Section 4 and show its connection with the enforceable mechanism
framework (EM) of Schneider [Schneider 2000]. We analyze the security issues in Sec-
tion 5.2. The prototype implementation of the CR-miner framework and experimental
evaluations are presented in Section 6. The related works are discussed in Section 7.
Conclusions and future work are described in Section 8.

2. TRAFFIC-DEPENDENCY GRAPH
Discovering user intention-based traffic dependencies is challenging, because modern
applications such as web browsers often automatically fetch content and generate re-
quests without explicit user actions. The dependencies of those legitimate requests
should be properly identified without triggering false alarms. In the HTTP protocol,
each object is retrieved in a separate outgoing HTTP request. For example, if a web
page has 10 images, then the browser issues 11 separate HTTP requests sequentially
to the web server. For persistent HTTP connections, all 11 HTTP requests may be
sent in one TCP connection between the server and the client, whereas for nonpersis-
tent HTTP connection, each HTTP request requires a separate TCP connection. One
needs to discover not only the dependencies among user actions and network events,
but also the layered dependencies of those network events. This paper focuses on out-
bound HTTP packets by the web browser, which can be generalized to other types of
applications and network-flow types.

Next, we give definitions used in our model and an example illustrating the traffic
dependence among the events. Then, we describe the application of dependency finding
in computer security.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 H. Zhang et al.

2.1. Dependencies in Browser Traffic
We introduce the terminology used in the CR-Miner framework, including traffic-
dependency graph, user and traffic events, subroot traffic, and the parent-child and
sibling relations on the traffic-dependency graph.

Definition 2.1. A traffic-dependency graph (TDG) is a forest of trees of arbitrary
depths with directed edges representing the dependencies among network events and
user actions. The root of each tree is a user event, and the internal and leaf nodes of
the trees are traffic events. A directed edge from event a to b represents that event b is
caused by a. The trees in the forest are chronologically ordered, so are the children of
a node.

A TDG satisfying the above definition is well formed. The tree-based TDG enables
us to apply breadth-first traversal when inferring dependencies, which is described in
Section 3.1.

User events refer to the user’s inputs to the application through input devices such
as the keyboard or mouse, which have attributes such as timestamp and ID of the
process notified by the event, event name, and content (e.g., the cursor’s coordinate and
the keystroke). A user event in TDG is legitimate if and only if it is not forged by any
malicious software. We give several practical techniques of ensuring the authenticity
and provenance of user events in Section 5.2. In the context of browser, we consider two
main types of traffic-inducing user events: mouse clicks on hyperlinks and keyboard
inputs to the textbox or address bar.

A traffic event refers to an outgoing HTTP request from the host, which includes
attributes such as the timestamp, process ID, source and destination IP addresses,
source and destination port numbers, and referrer header field in HTML. Traffic
events are further categorized into different levels according to their relative depen-
dencies. We use the phrases traffic event and network request interchangeably.

A subroot is a special type of traffic event. It refers to the traffic event that di-
rectly corresponds to the user’s request, e.g., fetching index.html from web server
www.example.com in response to a user’s mouse click on link www.example.com/index.html.
Each user event has at most one subroot on the traffic-dependency graph. For example
in Figure 1, the traffic events 1, 3, and 8 are subroots, which are caused by the user
events A, B, D, respectively.

The subroot traffic may cause the browser to fetch more objects by generating addi-
tional outgoing requests from the host, e.g., fetching the images or JavaScript referred
to by a HTML page. We define that those requests are the children of the subroot
events or secondary traffic, e.g., events 2, 4, and 6. Secondary traffic may cause the
browser to issue further requests, e.g., as a result of running JavaScript code. Thus,
tertiary traffic (e.g., events 5 and 7 in Figure 1) and lower-level traffic can be similarly
categorized. The resulting hierarchies form a forest of trees of arbitrary depths with
the user events being the roots.

Parent-child relation on TDG is between two traffic events that are at two adjacent
levels and one of them directly triggers the other. For example, the pairs (1, 2), (3, 4),
(3, 6), (4, 5), (6, 7) in Figure 1 have parent-child relations. Sibling relation describes
the two traffic events that are at the same level and are generated by the same parent
traffic. Events with the sibling relations share the same parent. Pair (4, 6) in Figure 1
has the sibling relation. However, events 5 and 7 are not siblings as they belong to
different parents.

Our definition of security in the CR-Miner is given below.

Definition 2.2. (Definition of security) In the user intention-based traffic depen-
dency model, a legitimate traffic event belongs to a tree in the traffic-dependency graph

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:5

Fig. 1. An example of a traffic-dependency graph of events with their attributes. Solid arrows indicate de-
pendency relations, and the dotted arrow indicates the breadth-first traversal in the dependency inference.

as defined in Definition 2.1 that is rooted at a legitimate user event. That is, the traf-
fic event p is either a subroot, i.e., the child node of a root user event, or p’s ancestor
node (e.g., parent, grand-parent) is a subroot. Otherwise, the outbound request is a
vagabond event and considered suspicious.

A TDG T has the following properties.

— Acyclic: T is a forest of trees in arbitrary height. For each individual tree in T , we
name it subtree, which is rooted by subroot. The directed edge in each subtree con-
nected between two nodes is unidirectional, which comes from the parent to its trig-
gered node.

— Expandable: The degree of node in a subtree can be expanded as it grows. One legit-
imate network request p∗ is appended to T , then new TDG still meets the security
definition.
Since p∗ is a legitimate packet, it can be categorized in one of the following cases: (i)
p∗ is a subroot node, then p∗ is appended as a new subroot node in T ; (ii) pi and p∗

have parent-child relation, where pi is an existing node in T , then p∗ is a dependent
node of pi in T . So, we show that p∗ is either a subroot or a dependent node of an
existing packet. Therefore, the security definition holds in new TDG.

— Attribute-based: Each node with multiple attributes, including network and ker-
nel information of each request. Attributes describe properties of user and network
events.

— Partial well-formed: We define crown of a tree in T as any connected subtree that
contains the root and the subroot of the tree. Partial well-formedness property states
that if T is well-formed, then any crown of T is also well-formed.

2.2. Applications and Threat Model
The traffic dependence analysis can be used to detect anomalous activities on a host,
which may include the detection of two specific types of threats: i) identifying the net-
work activities of stealthy malware (e.g., spyware on a user’s computer), and ii) identi-
fying inadvertent software flaws or intentional software errors (e.g., software behaviors

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 H. Zhang et al.

that deviate from specifications). Our study in this paper is focused on the first type of
anomalies.

— Stealthy malware that behaves as a user-level application on the host, certain in-
stances of spyware and malicious bots perform data exfiltration, spamming, botnet
command-and-control, or launch denial-of-service attacks. Specifically, we consider
two cases of malware in this paper as follows.
Case I: malware is an extension or add-on component of an existing legitimate ap-
plication, e.g., spyware as a malicious Firefox browser extension or parasitic mal-
ware [Srivastava and Giffin 2010]. Malware runs along with the host program and
has the same process ID as the host program. A specific example of such a type of
spyware is FFsniff, which secretly sends out victim’s ID along with the password to
the remote host.
Case II: malware is a stand-alone user-level application and runs with a unique pro-
cess ID, such as the malware Trojan.Brojack.A, which we test in Section 6.6.

— Software, which comes from unknown or untrusted developers, may perform undesir-
able and unauthorized network activities that are not causally related to the user’s
inputs due to errors or flaws. Identifying stealthy unwanted traffic is important, as
these packets may leak information of the user (e.g., [Jung et al. 2008]), consume
bandwidths, and cause further security vulnerabilities. Legitimate automated traf-
fic, such as system updates and RSS feeds, can be whitelisted (See also Section 6.2).

In this paper, we focus on analyzing the dependence in browser’s HTTP traffic and
experimentally demonstrate its effectiveness in detecting stealthy spyware activities.
CR-Miner performs the dynamic analysis of dependencies in network traffic, which
differs from the static dependence analysis, such as call graph construction in the
programming language paradigm or the work on dependencies of services [Bursztein
and Goubault-Larrecq 2007].

If malicious extensions can modify the existing DOM of a visited page loaded to a
browser, a user may be tricked to click malicious links, which sends outbound requests
for unintended objects. In order to detect this attack, one needs to utilize additional
techniques besides what is described in this work, such as strong browser security
policies, a parallel universe approach for predicting browser content [Xiong et al. 2009],
or user discretion in installing extensions on the host.

Our analysis requires the knowledge of certain specification of an application, in
particular how the application responds to a user’s inputs and actions (e.g. by generat-
ing particular types of system and network events). Based on these specifications, we
extract and enforce policies defining dependencies within the application. For example,
in the user’s browser case, our approach requires knowing how a browser responds to
the user’s requests.

Our solution described in the next section enforces the dependencies across user
actions and network events without modifying either the application or the kernel.
Yet, one may attempt to design an alternative approach through taint-tracking [Yin
et al. 2007] based techniques through modifying and instrumenting the application in
such a way that: i) the root of the traffic-dependency graph may be tainted; ii) the taint
bits can be further propagated throughout the application according to dependency
rules enforced; and iii) outbound traffic are required to have the valid taint proofs
which should be hard to forge or replay. However, such an alternative would require
substantial modification of the application (e.g., browser).

The work-flow in CR-Miner including data collection, dependency rule generation,
and causal relation analysis is illustrated in Figure 2.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:7

User events

Traffic events

Timeline

Applica'on	

2.	 Input	 sensor	

4.	 Causal	 rela'on	 analyzer	

3.	 Dependency	 rules	

1.	 Traffic	 sensor	

Fig. 2. An illustration of the system components and work-flow in CR-Miner.

3. CONSTRUCTION OF TDG
The goal of CR-Miner is to identify structured dependencies (or lack thereof) in net-
work traffic. CR-Miner can be used as a tool for detecting anomalous events. We de-
scribe the dependency inference procedure and its building blocks for constructing the
traffic-dependency graph (TDG).

A TDG may be constructed incrementally by inserting a new traffic event with un-
known dependency to a well-formed TDG, which is suitable for real-time monitoring
and is utilized by our CR-Miner. The construction of TDG relies on the attributes of
events and dependency rules derived from the specific application.
3.1. Dependency Inference Procedure
This section describes our breadth-first search (BFS) based algorithm for the TDG
construction. The algorithm utilizes the building blocks (namely Is Child, Is Sibling,
and Is Subroot), which are presented in the next section.

Given a new request, dependency inference (DI) algorithm aims to identify its de-
pendence with respect to the known requests. We construct a forest structure to store
the network requests and organize them according to the definition of TDG. The re-
quests with known dependencies are chronologically organized into trees rooted by
user events in the existing traffic dependency graph. The subroots, thus, are also
chronologically ordered. Given a new network request, Is Subroot() routine determines
whether or not it is a subroot. If the request is of the type subroot, then there is no need
to traverse the traffic-dependency graph. Otherwise, the algorithm traverses the forest
of trees to identify the parent of this new request based on its attributes.

Our algorithm opts for a breadth-first traversal within a tree starting from the most
recent subroot for the following two reasons. Once subroot events are identified, one
needs to further identify the parent-child and sibling relations among observed net-
work requests based on their attributes according to dependency rules. We observe
from our experiments that i) the incoming new request is typically caused by recent
requests, and ii) the traffic dependency trees that we manually construct are shallow
and wide. Therefore, this BFS approach allows us to quickly identify the parent node
of the new request. As an example, the sequence of traversal for the TDG in Figure 1
is 8, 3, 6, 4, 7, 5, 1, 2.

In order to find the parent of a new request, the traversal starts at the most recent
subroot request (e.g., node 8) and runs Is Child to test the parent-child relationship
between this subroot and new request. If no dependence is found, then it compares the
new request with the child nodes of this subroot starting from the most recent one, as
well as their child nodes if needed. For each comparison, Is Child and Is Sibling tests
are run. If the dependence is not found after all nodes on the tree are compared, then

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 H. Zhang et al.

the next subroot (e.g., node 3 in Figure 1) and its descendant nodes are compared. In-
tuitively, the process terminates if either a dependence is found or all existing requests
have been compared. The worst-case complexity of such a basic dependency inference
algorithm requires traversing the entire TDG, and is O(n) where n is the total number
of traffic and user distinct nodes on the current TDG. At each node, comparisons of
event attributes as shown in sub-procedures are fast.

We further optimize the algorithm by skipping unnecessary comparisons. We achieve
the speedup by leveraging the underlying consistency among attributes (e.g., PID) of
dependent nodes on the same tree in TDG. We use a simple data structure to avoid
the unnecessary comparisons to obsolete nodes. Our dependency rule for parent-child
relation requires the timestamps of the two events fall within a threshold τ (details
in the next section). We consider the timestamp of the new request (p∗.timestamp)
with respect to the most recent traffic event (p̂.timestamp) on a tree. If p∗.timestamp
- p̂.timestamp > τ , then it is not necessary to compare p∗ with other nodes with older
timestamps in that tree or subtree. This speedup requires keeping track of the times-
tamps of the most recent nodes within subtrees. To realize this optimization, each
internal node p on a tree in TDG has an additional attribute that contains the times-
tamp of the most recent traffic event in the subtree rooted at p. This attribute needs to
be updated when the tree expands. Similarly, the process ID of a subroot is the same
as the PIDs of its descendants. Therefore, if a new request has a different PID than
the subroot, then there is no need to compare other nodes on the same tree. We use an
auxiliary queue to realize the breadth-first traversal. These optimizations improve the
average-case complexity of the algorithm. The pseudocode of our dependency inference
algorithm is shown in Algorithm 1. If the algorithm returns true on a new traffic event
p∗, then p∗’s parent exists in the current TDG. Otherwise, p∗ may be vagabond and
thus suspicious.

3.2. Details of Sub-Procedures
To instantiate the building blocks Is Child(), Is Sibling(), and Is Subroot() used in Al-
gorithm 1, we describe sets of rules and procedures to infer dependencies.

— Is Child() determines whether or not there is a parent-child relation between two
traffic events.

— Is Sibling() determines whether or not there is a sibling relation between two traffic
events.

— Is Subroot() determines whether or not there is any dependence between a user event
and its corresponding subroot traffic event.

Our rules are derived based on patterns of user interaction and attributes of HTTP
traffic from the browser including their system properties in order to capture the var-
ious dependencies. The rules are summarized and categorized by analyzing browser
behaviors together with our experimental observations. How to automatically extract
traffic-dependency features with machine learning techniques is our ongoing work.

Inputs to Is Child() are two traffic events pa and pb, where pa is a node on TDG with
known dependency and pb’s dependency is unknown. Event pa may or may not be a
subroot node. Traffic event pa is a parent of pb, if and only if the following conditions
are all satisfied.

(1) The interval between timestamps of pa and pb is within a threshold τ and event pa

proceeds pb.
(2) The two outbound network requests pa and pb share the same (non-null) process ID.
(3) The domain name in pb’s referrer is identical to that of pa. (Referrer is defined by

the HTTP standard as the URL of the previous request that leads to this request.)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:9

Algorithm 1 Dependency Inference Procedure in CR-Miner.
Require: A newly-observed traffic event p∗;

a forest F of chronologically ordered trees of events rooted by user events, which
are parents of subroots {T1, . . . , Tm} where subroot Tm is the most recent one; and
a threshold τ .

Ensure: True, if the parent node of request p∗ is found;
False, otherwise.

1: if Is Subroot(p∗) then
2: Tm+1 ← p∗

3: Append Tm+1 to forest F and update Tm+1.newestT imestamp← p∗.timestamp
4: return True
5: else
6: for i← m to 1 do
7: create Queue Q and enqueue the subroot Ti onto Q
8: while Q is not empty do
9: node n← dequeue(Q)

10: if n.pid 6= p∗.pid or p∗.timestamp− n.newestT imestamp > τ then
11: go to line 8
12: else if Is Child(n, p∗) then
13: p∗.parent ← n and update the newestT imestamp for nodes on the path

from p∗ to its subroot node
14: return True
15: else if Is Sibling(n, p∗) and !Is Subroot(n) then
16: p∗.parent ← n.parent and update the newestT imestamp for nodes on the

path from p∗ to its subroot node
17: return True
18: else
19: . Breadth-first traversal by an auxiliary queue
20: for all children of node n do
21: enqueue the child nodes onto Q
22: end for
23: end if
24: end while
25: end for
26: end if
27: return False

Is Sibling() procedure is used for the nodes whose parent nodes cannot be directly
determined; identifying the sibling relation of a request helps establish parent-child
relation by the transitivity. We are given two outbound HTTP requests pa and pb, where
pa’s parent node is known, pb’s parent is unknown, and pa proceeds pb. To determine
whether pb is a sibling node of pa, we define dependency rules as follows.

(1) The interval between timestamps of pa and pb is within a threshold τ and event pa

proceeds pb.
(2) The two outbound network requests pa and pb share the same (non-null) process ID.
(3) The referrers of both requests are non-null and identical.

Finding sibling relations is useful in identifying new parent-child relations in our
traffic dependence analysis. Transitivity helps constitute the parent-child relation af-
ter finding the sibling relation, and it defines as follows. If requests pa and pb are
siblings, and request pc is the parent of pa, then pc is also the parent of pb. Is Sibling()

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 H. Zhang et al.

complements the dependency test in Is Child(). Some requests are sent far later their
parents, as observed in our experiment. Is Sibling helps identify late-arriving child
nodes whose intervals of timestamps with respect to their parent are larger than the
specified threshold, yet whose intervals with respect to the (older) sibling are still
within the threshold.

The transitivity analysis above provides the comprehensive coverage in dependency
analysis. In Section 6.1, we show that the transitivity rule mitigates the problem of
missing attributes.

Is Subroot procedure is to identify the traffic events of the type subroot through ana-
lyzing the user events and the outgoing network requests by their attributes including
process IDs, timestamps, and the content of events.

In the context of the browser, traffic-inducing user events may include typing into
the address bar of the browser, clicking on a hyperlink or a bookmark, opening a new
window or tab, and reloading a webpage. Given a user event (of either a mouse click
or keyboard inputs), the corresponding subroot traffic event in CR-Miner is the first
immediate outgoing network request that has the identical process ID and with corre-
lating content. The content may be the URL of the hyperlink for a mouse click, which
needs to match the URL in the subroot request. Some keyboard inputs entered to text
fields (such as Google search box) are not associated with a specific URL. Therefore,
accurately identifying the subroot is technically complex in CR-Miner, and requires
comparing the timestamps and PIDs of user events collected at both the kernel level
and the application level. Subroot requests may contain referrers, e.g., mouse clicks
on hyperlinks of webpages. Some subroots may not contain referrers, e.g., entering a
URL directly in the address bar of a browser. Thus, the referrer attribute is not used
to identify subroots in the CR-Miner. More details on user-event processing are given
in Section 6.1.

Algorithm 1 shows how the three sub-procedures (namely Is Child, Is Sibling, and
Is Subroot) are used in constructing the traffic-dependency graph.

We formalize the traffic-dependency model based on the finite-state automaton and
its constraints in the next section. Such a formal dependency model allows one to
derive fine-grained requirements of legitimate event sequences, and is a specialized
Schneider’s execution monitor [Schneider 2000].

4. SECURITY AUTOMATA AND ENFORCEABILITY
In this section, we analyze properties of enforcing user intention-based traffic depen-
dency in a system, specifically on whether or not traffic dependency property is enforce-
able at real time according to requirements defined by the widely accepted execution
monitoring (EM) model [Schneider 2000]. We show that traffic dependency property is
a EM-enforceable security policy, and present the specific security automaton as the
recognizer or classifier for identifying abnormal event sequences.

Execution Monitoring (EM) [Schneider 2000] is a formal language based security
model [Schneider et al. 2001]. It has been widely used in many security applications,
including mobile code [Sekar et al. 2001, 2003], program verification [Sun et al. 2008;
Langar et al. 2011], operating systems [Shieh et al. 2005], and access control [Naldurg
and Campbell 2003; Li et al. 2009; Irwin et al. 2008]. The model defines three require-
ments that a safety property needs to satisfy in order to be EM-enforceable [Schneider
2000]. Intuitively, EM-enforceability of a security policy means that the security pol-
icy can be applied to transactions observed as the system executes, specifically i) the
policy can be expressed as a predicate (i.e., an expression evaluated to true or false),
ii) the decision can be made based on observed transactions and does not depend on
any future transactions, and iii) the decision can be made after a finite period. Ligatti
et al. studied non-safety security policies in [Ligatti et al. 2005].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:11

THEOREM 4.1. User intention-based traffic dependency is a security policy that is
execution-monitoring enforceable or EM-enforceable.

Proof. We prove Theorem 4.1 below by showing that user intention-based traffic depen-
dency is a safety property satisfying the aforementioned three requirements (formally
in Equations 1, 2, and 3, respectively). Our notation used is shown in Table I.

— Our traffic dependency security policy can be expressed as a predicate as in Equa-
tion 1. Given the event σ and the current TDG G, we define the predicate P̂ to
evaluate whether or not the parent event of σ is in G. Specifically P̂ (σ) can be ex-
pressed as whether the parent of event σ can be found in the current TDG or not, i.e.,
parent(σ) ∈ TDG.

P (Π) : (∀σ ∈ Π : P̂ (σ)) (1)

— In our model, the dependency of each event is decided by its past events. The de-
pendency properties of events is not affected by any future events, which is formally
expressed in Equation 2. It guarantees that if the event τ does not have the well
formed dependency structure (i.e., ¬P̂ (τ)), then τ followed by event σ does not either
(¬P̂ (τσ)). In our traffic dependency model, τ denotes a vagabond traffic event. Such
an event is not included in the TDG being constructed.

∀τ ∈ Ψ− : ¬P̂ (τ)⇒ (∀σ ∈ Ψ : ¬P̂ (τσ)) (2)

— For a given event, our model can enforce the traffic dependency security and make
the decision within a finite period, by applying the predicate to the (finite) prefix of
each event. More precisely, the decision can be made within in a time period linear
to the number of observed events (within the temporal threshold), which is formally
expressed in Equation 3.

∀σ ∈ Ψ : ¬P̂ (σ)⇒ (∃i : ¬P̂ (σ[..i])) (3)

Therefore, user intention-based traffic dependency is EM-enforceable.
2

Table I. Notation Table.

Notation Definition

P The traffic dependency security policy.
P̂ The predicate that is enforceable on events.
σ Event (user/traffic event).
σ[..i] The prefix of σ involving its first i steps.
τσ The event τ followed by event σ.
Π, Ψ A set of events.
Ψ− The set of all finite prefixes of events in set Ψ.

The security automata in EM model [Schneider 2000] are similar to ordinary non-
deterministic finite-state automata, including state variables and transition functions.
They serve as the recognizers for sets of executions that satisfy safety properties. They
are the basis for enforcement mechanisms in EM. In this section, we describe the
security automaton for enforcing traffic dependency in a system. Given some input
symbol (e.g., a traffic event) and the current state (e.g., a well-formed TDG), the system
is only allowed to perform transitions according to its transition function defined by the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 H. Zhang et al.

security automaton. If the automaton cannot make a transition on an event, then the
system reports that event as an anomaly.

	 q0	

User	 or	 	
traffic	 event	 pi	

	 q1	 	 q2	

Dependency	
evalua4on	 on	 pi	 	 	

TDG	 expansion	
with	 pi	

Repor4ng	 pi	
as	 an	 anomaly	

ε	 ε	

Yes	 	 No	

Fig. 3. The security automaton in our model.

We define the security automaton M = (Q,Q0, I, δ) by defining its states Q, initial
state Q0, input symbols I, and transition function δ. See also Figure 3. M has three
states Q = {q0, q1, q2}. q0 represents the state where user events and traffic events
are consumed and their dependencies are analyzed. q0 is the initial state Q0 of the
system. q1 (normal state) is the state where the input has proper dependency. The
corresponding data structures such as TDG are augmented in q1. q2 (abnormal state)
is the state where the anomalies, specifically events that lack proper dependencies, are
found. Anomalies are logged and reported in q2.

The set of input symbols to state q0 is defined as the set of user events and traffic
events that can be observed on the system. The events are defined by their attributes,
whose values form finite sets. Inputs to states q1 and q2 are boolean variables, which
indicate whether or not the input to q0 possesses proper dependency.

The transition function δ is defined as follows. It is also illustrated in Figure 3. If the
input to state q0 is a user event or a traffic event with proper dependency, then transit
to state q1, otherwise (i.e., the input is a vagabond traffic event), then transit to state
q2. Both q1 and q2 transit back to state q0 with no input.

This formalization in EM framework on traffic dependency security policy is useful
for generalizing dependency analysis as a powerful and versatile execution monitoring
mechanism. Our work also demonstrates that dependency enforcement being a safety
property is practical to deploy.

5. DISCUSSION
In this section, we discuss the usability of CR-Miner under complex web scenarios,
such as requests to third-party hosts, redirection, AJAX calls, HTTPS traffic and auto-
matic updates. We also thoroughly analyze its security.

5.1. CR-Miner Under Complex Web Scenarios
Web browser is the most important and widely used application, with high extensi-
bility and supporting many dynamic features. A traffic dependence analysis needs to
properly handle complex web scenarios without generating false alarms. We explain
how CR-Miner addresses them.

— Requests to third-parties such as doubleclick or facebook are automatically issued
by the browser. The dependencies of these records can be recognized in our experi-
ments, because the referrer fields of the third-party traffic match the hosting domain.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:13

Alternatively, parsing and analyzing the content of proceeding webpages have been
used to predict future (legitimate) outbound requests in [Xiong et al. 2009]. We com-
pare our approach with [Xiong et al. 2009] in Section 7.

— Redirection allows the browser to issues a HTTP GET request from the URL A′ dif-
ferent from the user’s original request A. The dependency of redirected traffic can
be identified by CR-Miner as the request for A′ contains the original domain in its
referrer. Therefore, CR-Miner can successfully identify the causal relation between
A and A′.

— AJAX architecture allows users to retrieve information from the web server with-
out interfering the display of the current page. Our experiments (with AJAX traces)
confirm that CR-Miner handles the AJAX traffic, in terms of discovering the depen-
dencies.

— HTTPS traffic contains encrypted HTTPS packet which can be sniffed by a known
SSL proxying technique [proxy]. The technique allows to generate a certificate for the
server and signs it with its own root certificate, so that the client’s outbound traffic
is relied by the man-in-the-middle and can be sniffed inside the HTTPS packets.

— Automatic updates do not have explicit user actions that trigger them (e.g., system
updates and RSS feeds). One mitigation is to recognize the periodic automatic update
traffic with pre-defined or automatically learned whitelisting rules.

— Cached objects Browser caching does not affect CR-Miner. According to RFC2616 [
rfc2616], even when the html files are cached by the browser, it still needs to send
a request to the server with the freshness of that file. The server may return the
code 304 (Not Modified), or the new contents. Thus, CR-Miner still captures all the
necessary outbound requests for the dependence analysis.

— Social engineering attacks may allow an attacker to fool a user to click on a malicious
link and visit an attacker’s website, as a result the traffic to attacker’s website has
the proper traffic dependence and are not deemed suspicious. Therefore, CR-Miner
requires additional mechanisms to educate users about social engineering attacks.

5.2. Security Analysis
In this section, we answer the question Can CR-Miner be tricked? CR-Miner consists
of data collection and data analysis components. Once the data is collected, the de-
pendence analysis may be conducted on a separate trusted machine. Thus, the main
security threats come during the data collection phase. Our threat model (in Section 2)
considers application-level malware. Therefore, we analyze the security and defense
of CR-Miner against two types of attacks: i) forgery attack where an adversary mod-
ifies attributes of his network activities to make them appear legitimate, and ii) pig-
gybacking attack where an adversary strategically determines when to send outbound
requests and exploits CR-Miner’s temporal rules. We then summarize the effectiveness
of CR-Miner in realizing our security goal of identifying anomalous network activities.
Our dependence analysis relies on the integrity of the data collected and analyzed,
specifically the outbound HTTP header and the user event information.

5.2.1. Integrity of Traffic Information. Malware may attempt to spoof the header fields in
its outgoing request, e.g., forging its referrer field in the HTTP header so that it ap-
pears to be referred by a valid subroot. To prevent this problem, we equip the browser
with a signer, which implements a lightweight message authentication code to ensure
the integrity of the HTTP header created. Then, the signed headers are verified by a
trusted program called verifier on the same host. The signer and the verifier share se-
cret keys that are used for signing and verification. Traditional key distribution mech-
anisms, such as the Diffie-Hellman key exchange scheme, can be used to exchange and
set up the shared secret key as the operating system starts. Our cryptography-based

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 H. Zhang et al.

verification method effectively prevents this type of forgery, because the headers are
tamper-resistant once the browser creates them.

The signer resides in the browser and we implement it in Mozilla Firefox 4.0. We
modify the Firefox browser to add a message authentication code (MAC) field to the
HTTP header. The MAC prevents the header from being tampered by malware on the
host.

For implementation, we define a new HTTP atom MAC in nsHttpAtomList.h for storing
the keyed hash value of the HTTP header. Init() in nsHttpTransaction.cpp is used to
create the whole header. After the HTTP header is generated in Init(), we calculate
its keyed hash (MD5). Our keyed hash method takes two inputs: the original HTTP
header and the symmetric key. The output of the hash function is a 32-digit hexadeci-
mal value, which is stored in the MAC field of the header. Our experiment shows that
the overhead for the keyed hash mechanism is negligible.

The verifier is implemented as a stand-alone program on the host outside the
browser. HTTP packets that fail the integrity verification are logged. When collect-
ing the outbound traffic packets, the verifier obtains the HTTP headers and peels off
the MAC fields to recover the original headers. The verifier recomputes the keyed hash
of the original header. If the computed MD5 value is identical to the MAC value found
in the HTTP header, the verifier delivers the packet to the traffic module for further
processing. Otherwise, the verifier regards the packets as suspicious.

Case I malware spoofing is prevented as spoofed or tampered packets can be detected
due to missing valid MAC. Although Case II stand-alone malware is still capable of
forging referrers, as it operates independently from the browser and is not subject to
the cryptographic verification. Case II malware can be detected based on the rules in
previous sections specifying the correlation between the process information.

Our cryptographic operations are orthogonal to those provided by SSL, which is for
end-to-end security with a remote server, whereas the purpose of signer and verifier
is to guarantee the network packets are not tampered with by malware before leaving
the host. In our case, both the signer and verifier reside on the same host. Our above
integrity verification solution may bear superficial similarity with the web referral
architecture against DDoS [Wang and Reiter 2010]. However, our verification mecha-
nism is specific for web browsers and is designed to protect against stealthy malware
on the host.

5.2.2. Integrity of System Data. Because user input events are used for identifying sub-
root events, the integrity of user events is important. Our threat model considers
application-level stealthy malware. Therefore, the kernel-level system data, includ-
ing the process ID, keyboard and mouse events, is trusted. User events may be forged
or deleted by user-space application leveraging well-known APIs. To ensure the in-
tegrity of system data, advanced keystroke-integrity solutions such as the provenance
verification in [Gummadi et al. 2009; Hasan et al. 2009; Stefan et al. 2010] can be
incorporated in CR-Miner to further improve system-data assurance, which is a use-
ful fail-safe mechanism to guard against potential operational errors. These methods
provide provable assurance to the origin of user events and effectively prevent event
forgery (i.e., injection of fake user input events). Hasan et al. [Hasan et al. 2009] show
how to provide strong integrity and confidentiality assurances for data provenance
information at the kernel, file system, or application layer, which may be applied to
prevent the forgery of user events in CR-Miner. Existing solutions for detecting click-
jacking attacks (e.g., [Balduzzi et al. 2010]) also allow one to defeat fake mouse clicks.

Process information (such as PID) can be obtained through known APIs (Windows
Hook API and IP Helper API). The user-space malware cannot forge process informa-
tion without Administrator/Root privilege. Recent work on cryptographic identification

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:15

of natives applications in operating system prevents the forgery of process ID informa-
tion [Almohri et al. 2012]. Robust host-based rootkit prevention remains an active
research problem.

5.2.3. Defense Against Piggybacking Attack. In a piggybacking attack during the data col-
lection, the adversary sends outbound network requests (to the attacker’s server) im-
mediately after a legitimate traffic event. Such an attack would be effective in a naive
temporal-only analysis. However, our dependency rules inspect the context and prop-
erty of traffic such as domain names, referrers, and PIDs. Therefore, piggybacking
requests can be easily detected as vagabond events, as malware traffic lacks the re-
quired attributes. We compare our detection accuracy with the temporal-only analysis
in Section 6.3. Similar piggybacking attacks are discussed by Xu et al in [Xu et al.
2011] in the context of detecting drive-by-download attacks.

Summary The goal that we set for our technique in Section 2 is to be able to identify
vagabond outbound traffic events for anomaly detection. Stealthy malware typically
causes vagabond outgoing traffic that has no dependence on user activities. Our Algo-
rithm 1 provides an iterative mechanism to construct complete user intention-based
TDG, through which vagabond events can be identified.

Robustness and accuracy are the two complementary security properties in our con-
text. We have analyzed the robustness of CR-Miner above against several potential
circumvention attacks. The accuracy of CR-Miner relies on the accuracy of inferring
parent-child relations in Algorithm 1, which we extensively evaluate in our experi-
ments next, among which we demonstrate the effectiveness of our traffic dependency
based anomaly detection against stealthy malware activities.

6. IMPLEMENTATION AND EVALUATION
We describe the prototype implementation of CR-Miner in Section 6.1. The questions
we seek to answer through our experiments are:

— How accurate is our dependency inference algorithm in identifying dependencies in
outbound HTTP requests?

— How efficient is the BFS based dependency inference algorithm?
— How much better in accuracy is our algorithm compared to a temporal-only depen-

dence analysis?
— Does the inference accuracy suffer in noisy traffic?
— Can we detect real-world stealthy malware traffic using the traffic-dependency

graph?

6.1. Prototype Implementation
We develop a CR-Miner prototype in Windows 7 operating system. The detailed archi-
tecture of our prototype is shown in Figure 4. The CR-Miner prototype is easy to adopt
and does not require any modification to the browser in order to taint or track the de-
pendencies. We build CR-Miner (the darker parts in Figure 4) between the application
and the kernel layers.

There are three sensors deployed to collect data on the host. The causal relation an-
alyzer computes the dependencies based on the rules and algorithms in Section 3. The
Windows APIs (namely hook API, IPHelper API, and libpcap API) are used in the im-
plementation. Signer and verifier are a pair of tools in order to guarantee the integrity
of the HTTP headers, as we discussed in Section 5.2.1. Our implementation details are
described next, including process identification, i.e., identifying the process ID associ-
ated with an observed network flow, traffic monitoring, and user-action collection.

The traffic module implemented with the SharpPcap library filters the network pack-
ets to record outbound HTTP GET requests. We store the packet information in

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 H. Zhang et al.

System
services

(updates etc.)

Windows API

Hook API IP Helper API LIBPCAP API

Application Programs

Other App. Signer

 Causal relation analyzer

Process module Traffic module

Verifier

Hook module

Fig. 4. Architecture of CR-Miner prototype.

the quadruple <source IP, source port, destination IP, destination port>. The pro-
cess module obtains network and system (namely process) information about active
connections. We obtain the IP table, a kernel data structure in Windows, by using
GetExtendedTcpTable() in IPHelperAPI.dll and map TCP connections to corresponding
process IDs.

The hook module sets up system hooks in order to collect kernel-level user events to
the application. Our module, using the existing Windows Hook API, installs the hooks
to log keyboard and mouse events (including mouse click, mouse double click, mouse
wheel, and key press). Furthermore, we obtain the process ID of the current foreground
window by using GetWindowThreadProcessId(), so that we find out the corresponding
process for each user event. Repetitive user events that do not generate traffic such
as mouse movements are ignored. Key Down, Key Press, and Key Up events are repetitive
and only Key Press events are recorded.

We also record user events at the application level through the use of Tlogger. It is
a Firefox extension for capturing the information of mouse clicks during web brows-
ing [tlogger], including the navigation and tab events. The information gathered by
the Tlogger is complementary to the data recorded by the kernel hook module. Tlogger
provides the URL information associated with mouse-click events, which is unavail-
able at the hook level. Attributes of user events collected at the application level and
kernel level are both used for identifying the subroot nodes in the Is Subroot proce-
dure.

6.2. Accuracy of Dependency Inference
We conducted a user study with 20 participants to collect samples of HTTP traces.
Each participant was asked to actively browse the Internet for 30 minutes on a lap-
top installed with CR-Miner. Participants were asked not to reveal any sensitive per-
sonal data such as passwords during the study. The means and standard deviations of
the number of events that we collected are shown in Table II. The number of traffic-
generating user events is much fewer than the total user events observed. Because our
Is Subroot analysis is based on traffic-generating user events, it is quite efficient. We
use a SQL Server database to store the records. We measure the size of the database
BAK file for each user.

We define hit rate as the ratio of the number of legitimate requests identified by
CR-Miner to the total number of HTTP GET requests per user. A legitimate HTTP
GET request needs to belong to a valid tree in the traffic-dependency graph rooted by
a user event. The distribution of hit rates in our user studies is shown in the Table III.
For 85% of the users, their hit rates are above 99.0%, which indicates the high accu-
racy of our prediction. The average hit rate of the user studies is 99.6%. We manually
inspected the dependencies to ensure their correctness.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:17

Table II. Mean and standard deviations (SD) of statistics of records col-
lected in the user study for each user.

User Events Traffic
Events

Process
Record

DB File
Size (KB)Traffic- Totalgenerating

Mean 61 2761 2357 1178 3221
SD 28 1768 1204 686 608

Table III. The distribution of hit rates across 20 user
cases.

Hit Rate Frequency Percentage
0.98 ≤ r < 0.985 1 5%
0.985 ≤ r < 0.99 2 10%
0.99 ≤ r < 0.995 4 20%
0.995 ≤ r < 1.00 10 50%

r = 1.00 3 15%

We calculate the percentage of requests whose dependencies are inferred by
Is Subroot, Is Child, and Is Sibling, respectively. The result in Table IV shows that
most of the dependent relations (87.4%) are inferred by the Is Subroot procedure. We
also utilize a whitelist in our experiment. The whitelist is constructed based on four
categories: software-update traffic, requests for traffic analytics, trustworthy web por-
tals, and legitimate advertisement websites. Details are not shown due to space limit.
The construction of the whitelist reduces false alarms, as it allows the dependence
identification of outbound requests that may have incomplete attributes. However, our
algorithm cannot be replaced by a pure whitelist approach because of the diversity
nature of the Internet traffic.

Table IV. Percentages of requests inferred by differ-
ent subroutines for 20 user cases.

Category Percentage

Inferred
Dependency

Is Subroot 1.9%
Is Child 87.4%
Is Sibling 8.6%
Whitelisting 1.7%
Total 99.6%

Missing Dependency 0.4%

We further investigate the outbound requests with missing dependencies, which ac-
count for 0.4% of the total traffic as shown in Table IV. The main reason of having
these vagabond requests is missing referrer, which may be due to either the use of
dereferrer by a website for privacy purpose or an HTTP connection being referred by
an HTTPS site [H 1999]. Some of the vagabonds are legitimate requests, i.e., false
positives. Whereas, others are requests to known blacklisted websites [blocked], e.g.,
atwola.com, adadvisor.net, and pixel.quantserve.com.

6.3. Accuracy Comparison With Temporal-Only Analysis
We compare CR-Miner with a temporal-only dependence analysis that infers depen-
dencies based solely on the intervals and PIDs of requests. Such a temporal-only de-
pendence analysis is used in BINDER [Cui et al. 2005]. We filter non-subroot requests
by an interval threshold τ , instead of using Is Child and Is Sibling. We define preci-
sion as the ratio of the number of legitimate requests identified in the temporal-only
algorithm to that of CR-Miner. That is, it is the percentage of dependent relations that

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 H. Zhang et al.

can be successfully identified by the temporal-only method, out of the ones found by
CR-Miner. Our comparison results are shown in Figure 5. The longer the threshold τ
is, the larger the chance that a request can find its parent node, as observed in our
experiments. A low precision value means the low accuracy of temporal-only method
compared to CR-Miner.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

2 5 10 15 20 40 60

Average precision

User # 10

P
re

ci
si

o
n

Threshold (s)

Fig. 5. (Poor) dependency inference accuracy by the temporal-only analysis compared to our BFS based
algorithm, for a specific user (#10) and the averaged value from 19 other users.

When the actual delay between a request and its subroot is longer than the thresh-
old, which may be due to the AJAX technique, the temporal-only prediction suffers. For
example, a participant (user # 10) frequently visited Google map. That case yields the
lowest precision value as shown in Figure 5. Figure 5 also shows the averaged preci-
sions of the other 19 users. The results show that the temporal-only analysis is limited
in predicting traffic dependency, especially when the interval threshold is small. When
the actual delay between a request and its subroot is longer than the threshold – which
may be due to the AJAX technique – the temporal-only prediction suffers. CR-Miner
with a threshold of 15 seconds achieves the average hit rate as high as 99.6%. Hence,
our algorithm substantially outperforms temporal-only algorithm in terms of the ac-
curacy of identifying traffic dependencies.

6.4. Prediction Accuracy Under Multi-user Condition
Cross-user validation is to measure the accuracy of our analysis under the noisy traf-
fic. We arbitrarily introduce noises by merging two users’ records, and to infer traffic
dependencies in merged datasets.

We choose five independent user datasets, and create 10 cross-user data sets by
choosing independent records and merging them (5C2 = 10). Rather than shuffling
two user studies and combining them, we merge the two user studies without losing
their internal orders. The merging algorithm is similar to Merge Sort. We add a compo-
nent to merge two lists without changing the chronological ordering of events in each
list. We then run the BFS based DI algorithm on the mixed data. We define the er-
ror rate as the percentage of traffic events whose parent nodes in the cross-user study
are different from those found in the regular analysis. To compare the consistency of
dependencies in the two analyses, we recursively locate the subroot for each request.
We run ten cross-user tests which are composed from five independent user studies by

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:19

BFS based DI algorithms. The average error rate is 0.8%. The cross-user validation
shows a high prediction accuracy of CR-Miner even under multi-user condition.

6.5. Time Efficiency Comparison
In order to compare the run-time efficiency of our BFS based dependency inference
(DI) algorithm, we implement an alternative sequential traversal DI algorithm. The
sequential algorithm stores the outbound requests with known dependencies as a list,
and infers the new request’s dependency by scanning the list. This sequential traversal
algorithm serves as a baseline in our efficiency comparison.

We evaluate the BFS based and sequential traversal algorithms on a machine
equipped with Intel Core 2 Quad 2.40 GHz and 2GB system memory. Both algorithms
are used to analyze the traffic of 20 users. The running-time for each algorithm is pre-
sented in Figure 6. The sequential algorithm takes about 3 times as long as the BFS
based one. Thus, our BFS based DI algorithm runs significantly faster. The advantage
in run-time efficiency of our BFS based algorithm comes from its optimization for the
data structure and the order of comparison. We also confirm that for each user case
both algorithms yield the exact same hit rates.

0

10000

20000

30000

40000

50000

60000

70000

0 5 10 15 20

BFS based algorithm

Sequential traversal algorithm

R
u

n
n

in
g

ti
m

e
(m

s)

Experiments

Fig. 6. The run time of BFS based and sequential dependency inference algorithms for each of the 20 user
cases (X-axis).

6.6. Real-World Spyware Detection
We use our CR-Miner to detect two pieces of real-world malware, namely
Infostealer.Maximus and Trojan.Brojack.A, and a proof-of-concept malicious Firefox ex-
tension. Infostealer.Maximus sends out two requests at the same time to one host
(www.scieki.com.pl) to retrieve two executable files (/css/k2pac.exe and /css/w2pac.exe)
when it is active. The requested files are trojan downloaders, which can be downloaded
and installed without the user’s knowledge. Therefore, Infostealer.Maximus is case I
malware as defined in Section 2.

Trojan.Brojack.A [brojack] not only modifies the registry entries and captures all
links that are browsed by the user, but also sends out outbound traffic to a host
(watson.microsoft.com). The malware runs with an independent PID and sends out
outbound HTTP requests to a malicious host. Trojan.Brojack.A is case II malware. Nei-
ther piece of malware carries appropriate referrers. CR-Miner successfully detects both

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 H. Zhang et al.

malware. It flags the malware traffic as vagabond, as these requests are not rooted by
any user event in TDG.

We also wrote and evaluated a proof-of-concept malicious Firefox extension, which
is a piece of password-stealing spyware. When a user clicks on the Submit button of
any web form in the browser, the extension finds the non-blank password filled in
the form and sends out an outbound HTTP request with the password as a param-
eter to the attacker’s server. Our spyware is similar to the known spyware such as
FormSpy, FireSpyFox, and FFsniff. CR-Miner successfully identifies the traffic sent by
this malicious extension. Dependencies of events found by CR-Miner are partly shown
in Table V. The experiment procedure is described next.

Table V. Spyware traffic (with ID 23) is identified as it has -1 in its Parent ID field, indicating no dependence with existing traffic or user events.

ID Timestamp PID Parent ID Host Referrer Http Request

...
15 0:0:51.447 5668 0 mail.yahoo.com /
...
21 0:0:52.843 5668 15 view.atdmt.com http://www.yahoo.com/ /M0N/view/307963403/direct...
22 0:0:54.843 5668 15 mail.yahoo.com http://www.yahoo.com/ /; ylt=AsDjYtx1zxEscRUUSbl...
23 0:1:03.313 5668 -1 www.attacker.net /query?id=user&ps=password
...

The user types mail.yahoo.com (corresponding to record # 15) into the browser’s ad-
dress bar and the browser issues the request. The Parent ID, which is 0, indicates it
as a subroot. The requests for other objects from Yahoo and other providers (e.g., # 21
and # 22), which are legitimate requests issued by browser, have 15 in Parent ID fields.
The user then intends to log in the Yahoo Mail account by entering the user ID and
password. Due to the spyware, upon the user clicking on the submit button, a single
outbound HTTP GET request with the stolen login credential is sent to the attacker’s
server, www.attacker.net in our example. The CR-Miner detects the spyware activity
and identifies it (# 23) as vagabond, which has -1 in its Parent ID field. The spyware
activity is not qualified to be a subroot as its domain name does not match any valid
user event, and its domain name is not referred by any proceeding requests. By find-
ing dependencies in traffic, we show that our solution renders spyware and keyloggers
useless, as their outbound communication channels are blocked.

7. RELATED WORK
The research on the interplay between human behaviors and system properties has
not been extensively studied in the context of anomaly detection, with a few excep-
tions [Cui et al. 2005; Gummadi et al. 2009; Lu et al. 2010; Shirley and Evans 2008;
Xu et al. 2011]. Our work was inspired by BINDER [Cui et al. 2005]. It is a host-based
solution that detects break-ins on personal computers through analyzing the depen-
dency of traffic events based on temporal and process information. In comparison, our
CR-Miner framework describes a more powerful user intention-based approach that
supports application-specific dependence analysis with a much finer granularity. The
advantage of our solution is its accuracy. For example, BINDER treats traffic events
equally without inspecting its content, consequently it does not defend against piggy-
backing attacks. Our analysis can semantically distinguish legitimate HTTP requests
from suspicious ones and can successfully detect piggybacking traffic.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:21

BLADE [Lu et al. 2010], UIBAC [Shirley and Evans 2008], and DeWare [Xu et al.
2011] leverage user behaviors for certain file-access regulation. In UIBAC (user
intention-based access control) Shirley and Evans proposed to analyze the correlation
between user actions and subsequent program events to extract rules, and enforce
these rules for controlling the access of system resources. BLADE prevents drive-by
download by enforcing the dependence between mouse clicks and the file creation of
a browser. DeWare describes a more general framework for enforcing the host-wide
file-system dependency, which can be used to detect the onset of infection. Our work
in CR-Miner is for analyzing traffic events, as opposed to file-system events in above
three solutions. Therefore, we address new technical challenges. Not-A-Bot (NAB) is a
system for authenticating traffic-generating user inputs such as mouse clicks on hy-
perlinks [Gummadi et al. 2009]. It can be used for defeating DDoS attacks as well
as click fraud. NAB does not analyze the dependencies among network packets for
anomaly detection as CR-Miner does. As explained in Section 5.2, CR-Miner can use
NAB and similar techniques (e.g., [Xu et al. 2012]) to ensure the integrity of user in-
puts collected.

Despite these recent advances toward user behavior inspired security, many im-
portant problems have not been studied, including general challenges, requirements,
models, theory, practical applications, and limitations for user intention based traffic
anomaly detection. Our work in this paper systematically and thoroughly addresses
these aspects, and our solutions will have high impact beyond the specific web anomaly
problem. We present not only a practical tool CR-Miner for building accurate and
fine-grained dependencies in HTTP traffic on a host, but also a powerful FSA-based
abstraction for representing and enforcing dependency rules for networked applica-
tions such as the browser. We further describe the enforceability property of traffic de-
pendency following Schneider’s powerful and well-known EM (execution monitoring)
framework. Our work aims at fully understanding and demonstrating the capabilities
of user intention-based dependency analysis as a general methodology for monitoring
and anomaly detection.

Below we survey recent related work on identifying malicious or anomalous net-
work traffic patterns including both host-based and network-based analysis through
graph analysis, statistics analysis, or system engineering approach. King et al. ana-
lyzed logs of intrusion detection systems (IDS) such as SNORT across multiple hosts
to track traffic dependence [King et al. 2005]. The dependence graphs are formed by
correlating IP addresses in IDS entries. Zhou et al. [Zhou et al. 2010] built a general-
purpose event correlation mining system and proposed failure correlation graphs to
inspect clustered systems. Our work differs from [King et al. 2005; Zhou et al. 2010] in
that our traffic dependence analysis is user-related and application-specific. Although
these solutions involve representing dependencies in directed graphs, our dependency
analysis is application-specific and fine-grained.

WebTap, developed by Borders and Prakash [Borders and Prakash 2004], is a tool
to anomalous patterns in outbound HTTP traffic. WebTap identifies anomalies in out-
bound HTTP traffic by monitoring the metrics such as request regularity, bandwidth
usage, inter-request delay time, and transaction size. The authors further improved
the detection accuracy by pruning repetitive information (e.g., header fields) in [Bor-
ders and Prakash 2009]. Their anomaly detection approaches aim to identify changes
and deviations in aggregated flow patterns in terms of usages with statistical metrics.
The main difference between our user intention-based anomaly detection approach
and theirs is that we do not require any knowledge of behavior patterns of any user
groups, and our rules are derived from the properties of applications.

Moshchuk et al. proposed the execution-based web content analysis in
SpyProxy [Moshchuk et al. 2007] that renders and observes active web content in a

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 H. Zhang et al.

disposable virtual machine before it is allowed to reach a user’s browser. Li et al. [Li
et al. 2011] designed WebShield, a middlebox framework hosted on a proxy of the
user for guarding against malicious JavaScripts. The above solutions are for detect-
ing server-side malicious web content, whereas our solution is focused on client-side
anomalies. CR-Miner only collects outbound requests and does not collect or analyze
incoming responses.

The anomaly detection approach in [Xiong et al. 2009] aims at predicting anticipated
outbound HTTP requests by parsing retrieved web pages that a user requests and pre-
fetching the objects. Their work aims at creating a tool that serves as a parallel uni-
verse to the browser, so that one can predict the legitimacy of outgoing HTTP requests.
The tool is for detecting corrupted browser or extensions. The discrepancies in traffic
events from the parallel universe and the browser are reported as anomalies. Because
the predictor needs to independently fetch webpages, it doubles the bandwidth over-
head. In comparison, our work does not parse or analyze web content and thus can
handle any types of websites. Our rule-based dependence-finding is more efficient in
network bandwidth usage.

Srivastava and Giffin [Srivastava and Giffin 2010] presented a technique for dis-
covering the origin of parasitic malware on a host through sophisticated OS-level di-
agnostic. It instruments sensors for collecting and reasoning about various types of
system data, and works with existing network IDS for identifying the malicious activ-
ities. Their solution can be used to pinpoint the origin of the malware, after CR-Miner
has identified its stealthy traffic. Malware detector [Christodorescu et al. 2008] is an
automatic technique to mine the malicious behavior from the known malware and use
the knowledge to detect the variants. This type of code-analysis solutions nicely com-
plements to the proposed network-based analysis method.

8. CONCLUSIONS AND FUTURE WORK
Analyzing the dependencies between network traffic and user activities has not been
systematically investigated as a general approach for anomaly detection. Our traffic-
dependency graph captures the causal relations of user actions and network events
for improving host integrity. We performed extensive experimental evaluation on CR-
Miner. Our results indicate the feasibility of enforcing HTTP traffic dependencies.

Currently, we are investigating how to generalize our approach to include the analy-
sis of outbound DNS traffic in the TDG. DNS traffic is involved in almost all networked
applications. Our current analysis is focused on outbound HTTP requests. One needs
to construct TDGs of requests of different types across multiple network layers and
applications. Another thrust of our research is on how to automatically extract depen-
dency rules using data-mining techniques, including basic techniques such as associ-
ation rule mining [Lee and Stolfo 1998] and frequent episode mining [Patnaik et al.
2010]. We also plan to explore redescription mining [Zaki and Ramakrishnan 2005]
and storytelling [Kumar et al. 2008] techniques for semantic modeling of application
characteristics.

REFERENCES

ALMOHRI, H. M. J., YAO, D. D., AND KAFURA, D. G. 2012. Identifying native appli-
cations with high assurance. In ACM Conference on Data and Application Security
and Privacy (CODASPY). ACM, 275–282.

AN, X., JUTLA, D. N., AND CERCONE, N. 2006. Privacy intrusion detection using
dynamic Bayesian networks. In International Conference on Electronic Commerce
(ICEC). 208–215.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:23

BALDUZZI, M., EGELE, M., KIRDA, E., BALZAROTTI, D., AND KRUEGEL, C. 2010. A
solution for the automated detection of clickjacking attacks. In ASIACCS. 135–144.

blocked. Top 10 Blocked URLs and Domains. http://us.trendmicro.
com/us/trendwatch/current-threat-activity/malicious-url-info/
top10-blocked-urls-domains/.

BORDERS, K. AND PRAKASH, A. 2004. Web Tap: Detecting covert web traffic. In
Proceedings of the 11th ACM Conference on Computer and Communication Security.
110–120.

BORDERS, K. AND PRAKASH, A. 2009. Quantifying information leaks in outbound
web traffic. In Proceedings of the IEEE Symposium on Security and Privacy.

brojack. Technical Details about Trojan.Brojack. https://www.symantec.com/en/uk/
security response/writeup.jsp?docid=2008-070310-5229-99.

BURSZTEIN, E. AND GOUBAULT-LARRECQ, J. 2007. A logical framework for eval-
uating network resilience against faults and attacks. In Computer and Network
Security, 12th Asian Computing Science Conference (ASIAN). 212–227.

CHANDOLA, V., BANERJEE, A., AND KUMAR, V. 2009. Anomaly detection: A survey.
ACM Comput. Surv. 41, 15:1–15:58.

CHRISTODORESCU, M., JHA, S., AND KRUEGEL, C. 2008. Mining specifications of
malicious behavior. In ISEC, G. Shroff, P. Jalote, and S. K. Rajamani, Eds. ACM,
5–14.

CUI, W., KATZ, Y. H., AND TIAN TAN, W. 2005. Binder: An extrusion-based break-
in detector for personal computers. In In Proceedings: USENIX Annual Technical
Conference. 4.

DENNING, D. E. 1987. An intrusion-detection model. IEEE Transactions on Software
Engineering SE-13, 2.

GUMMADI, R., BALAKRISHNAN, H., MANIATIS, P., AND RATNASAMY, S. 2009. Not-
a-Bot: Improving service availability in the face of botnet attacks. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implementation
(NDSI).

H 1999. Hypertext transfer protocol – http/1.1. http://tools.ietf.org/html/
rfc2616#section-15.1.3.

HASAN, R., SION, R., AND WINSLETT, M. 2009. Preventing history forgery with secure
provenance. TOS 5, 4.

HEBERLEIN, L. T., DIAS, G. V., LEVITT, K. N., MUKHERJEE, B., WOOD, J., AND WOL-
BER, D. 1990. A network security monitor. In Proceedings of the 1990 IEEE Sympo-
sium on Research in Security and Privacy. 296–304.

IRWIN, K., YU, T., AND WINSBOROUGH, W. H. 2008. Enforcing security properties in
task-based systems. In Proceedings of the 13th ACM symposium on Access control
models and technologies. SACMAT ’08. ACM, New York, NY, USA, 41–50.

JUNG, J., SHETH, A., GREENSTEIN, B., WETHERALL, D., MAGANIS, G., AND KOHNO,
T. 2008. Privacy oracle: a system for finding application leaks with black box differ-
ential testing. In Proceedings of Computer and Communications Security (CCS).

KING, S. T., MAO, Z. M., LUCCHETTI, D. G., AND CHEN, P. M. 2005. Enriching intru-
sion alerts through multi-host causality. In Proceedings of Network and Distributed
System Security (NDSS).

KUMAR, D., RAMAKRISHNAN, N., HELM, R. F., AND POTTS, M. 2008. Algorithms for
storytelling. IEEE Trans. Knowl. Data Eng. 20, 6, 736–751.

LANGAR, M., MEJRI, M., AND ADI, K. 2011. Formal enforcement of security policies
on concurrent systems. J. Symb. Comput. 46, 9, 997–1016.

LEE, W. AND STOLFO, S. J. 1998. Data mining approaches for intrusion detection.
In Proceedings of the 7th conference on USENIX Security Symposium - Volume 7.
SSYM’98. USENIX Association, Berkeley, CA, USA, 6–6.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 H. Zhang et al.

LI, N., WANG, Q., QARDAJI, W., BERTINO, E., RAO, P., LOBO, J., AND LIN, D. 2009.
Access control policy combining: theory meets practice. In Proceedings of the 14th
ACM symposium on Access control models and technologies. SACMAT ’09. ACM,
New York, NY, USA, 135–144.

LI, Z., TANG, Y., CAO, Y., RASTOGI, V., CHEN, Y., LIU, B., AND SBISA, C. 2011. Web-
shield: Enabling various web defense techniques without client side modifications.
In NDSS. The Internet Society.

LIGATTI, J., BAUER, L., AND WALKER, D. 2005. Enforcing non-safety security policies
with program monitors. In Proceedings of the 10th European conference on Research
in Computer Security. ESORICS’05. Springer-Verlag, Berlin, Heidelberg, 355–373.

LU, L., YEGNESWARAN, V., PORRAS, P., AND LEE, W. 2010. BLADE: An attack-
agnostic approach for preventing drive-by malware infections. In Proceedings of
17th ACM Conference on Computer and Communications Security.

MOSHCHUK, A., BRAGIN, T., DEVILLE, D., GRIBBLE, S. D., AND LEVY, H. M. 2007.
Spyproxy: Execution-based detection of malicious web content. In Proceedings of the
16th Annual USENIX Security Symposium (USENIX Security 2007). Boston, MA.

NALDURG, P. AND CAMPBELL, R. H. 2003. Dynamic access control: preserving safety
and trust for network defense operations. In Proceedings of the eighth ACM sympo-
sium on Access control models and technologies. SACMAT ’03. ACM, New York, NY,
USA, 231–237.

PATNAIK, D., LAXMAN, S., AND RAMAKRISHNAN, N. 2010. Discovering excitatory re-
lationships using dynamic Bayesian networks. Knowledge and Information Systems,
1–31. 10.1007/s10115-010-0344-6.

proxy. An SSL proxying technique to sniff HTTPs packets. http://www.charlesproxy.
com/documentation/proxying/ssl-proxying/.

rfc2616. RFC 2616. Caching in HTTP. http://www.w3.org/Protocols/rfc2616/
rfc2616-sec13.html#sec13.1.1.

SCHNEIDER, F. B. 2000. Enforceable security policies. ACM Transactions on Informa-
tion and System Security (TISSEC) 3, 1, 30–50.

SCHNEIDER, F. B., MORRISETT, J. G., AND HARPER, R. 2001. A language-based ap-
proach to security. In Informatics - 10 Years Back. 10 Years Ahead. Springer-Verlag,
London, UK, UK, 86–101.

SEKAR, R., RAMAKRISHNAN, C. R., RAMAKRISHNAN, I. V., AND SMOLKA, S. A. 2001.
Model-carrying code (mcc): a new paradigm for mobile-code security. In Proceedings
of the 2001 workshop on New security paradigms. NSPW ’01. ACM, New York, NY,
USA, 23–30.

SEKAR, R., VENKATAKRISHNAN, V., BASU, S., BHATKAR, S., AND DUVARNEY, D. C.
2003. Model-carrying code: a practical approach for safe execution of untrusted ap-
plications. SIGOPS Oper. Syst. Rev. 37, 5, 15–28.

SHIEH, A., WILLIAMS, D., SIRER, E. G., AND SCHNEIDER, F. B. 2005. Nexus: a new
operating system for trustworthy computing. In Proceedings of the twentieth ACM
symposium on Operating systems principles. SOSP ’05. ACM, New York, NY, USA,
1–9.

SHIEH, S.-P. AND GLIGOR, V. D. 1997. On a pattern-oriented model for intrusion
detection. IEEE Transactions on Knowledge and Data Engineering 9, 4.

SHIRLEY, J. AND EVANS, D. 2008. The user is not the enemy: Fighting malware by
tracking user intentions. In NSPW ’08: Proceedings of the 2008 workshop on New
security paradigms. 33–45.

SNAPP, S. R., BRENTANO, J., DIAS, G. V., GOAN, T. L., GRANCE, T., HEBERLEIN,
L. T., HO, C.-L., LEVITT, K. N., MUKHERJEE, B., MANSUR, D. L., PON, K. L.,
AND SMAHA, S. E. 1991. A system for distributed intrusion detection. COMPCOM
Spring ’91 Digest of Papers, 170–176.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Dependency Analysis for Traffic Anomaly Detection A:25

SRIVASTAVA, A. AND GIFFIN, J. T. 2010. Automatic discovery of parasitic malware. In
Recent Advances in Intrusion Detection (RAID). 97–117.

STEFAN, D., WU, C., YAO, D., AND XU, G. 2010. Cryptographic provenance verifica-
tion for the integrity of keystrokes and outbound network traffic. In Proceedings
of the 8th International Conference on Applied Cryptography and Network Security
(ACNS).

SUN, W., SEKAR, R., LIANG, Z., AND VENKATAKRISHNAN, V. N. 2008. Expanding
malware defense by securing software installations. In Proceedings of the 5th in-
ternational conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. DIMVA ’08. Springer-Verlag, Berlin, Heidelberg, 164–185.

TENG, H. S., CHEN, K., AND LU, S. C.-Y. 1990. Adaptive real-time anomaly detec-
tion using inductively generated sequential patterns. Security and Privacy, IEEE
Symposium on 0, 278.

tlogger. TLogger – An Firefox Extension. http://dubroy.com/tlogger/.
WANG, X. AND REITER, M. K. 2010. Using web-referral architectures to mitigate

denial-of-service threats. IEEE Trans. Dependable Sec. Comput. 7, 2, 203–216.
XIONG, H., MALHOTRA, P., STEFAN, D., WU, C., AND YAO, D. 2009. User-assisted

host-based detection of outbound malware traffic. In Proceedings of International
Conference on Information and Communications Security (ICICS).

XU, K., XIONG, H., WU, C., STEFAN, D., AND YAO, D. 2012. Data-provenance verifi-
cation for secure hosts. IEEE Transactions on Dependable and Secure Computing 9,
173–183.

XU, K., YAO, D., MA, Q., AND CROWELL, A. 2011. Detecting infection onset with
behavior-based policies. In Proceedings of the Fifth International Conference on Net-
work and System Security (NSS).

YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA, E. 2007. Panorama: Cap-
turing system-wide information flow for malware detection and analysis. In In Pro-
ceedings of the 14th ACM Conferences on Computer and Communication Security
(CCS).

ZAKI, M. J. AND RAMAKRISHNAN, N. 2005. Reasoning about sets using redescription
mining. In KDD, R. Grossman, R. J. Bayardo, and K. P. Bennett, Eds. ACM, 364–373.

ZHOU, W., ZHAN, J., MENG, D., XU, D., AND ZHANG, Z. 2010. Logmaster: Mining
event correlations in logs of large scale cluster systems. CoRR abs/1003.0951.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

