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Abstract—Cryptographic implementation errors in popular
open source libraries (e.g., OpenSSL, GnuTLS, BotanTLS,
etc.) and the misuses of cryptographic primitives (e.g., as in
Juniper Network) have been the major source of vulnerabili-
ties in the wild. These serious problems prompt the need for
new compile-time security checking. Such security enforce-
ments demand the study of various cryptographic properties
and their mapping into enforceable program analysis rules.
We refer to this new security approach as cryptographic
program analysis (CPA). In this paper, we show how cryp-
tographic program analysis can be performed effectively and
its security applications. Specifically, we systematically inves-
tigate different threat categories on various cryptographic
implementations and their usages. Then, we derive various
security rules, which are enforceable by program analysis
tools during code compilation. We also demonstrate the capa-
bilities of static taint analysis to enforce most of these security
rules and provide a prototype implementation. We point out
promising future research and development directions in this
new area of cryptographic program analysis.

1. Introduction
In contrast to the multi-decade advancement of modern

cryptography, the practical task of securing cryptographic
implementation is still in its infancy. This gap became par-
ticularly alarming, after multiple recent high-profile discov-
eries of cryptography-related vulnerabilities in widely used
network libraries and tools (e.g., heartbleed vulnerability in
OpenSSL [1], seed leaking in Juniper Network [2]).

Surprisingly, most of these vulnerabilities occur due to
programming mistakes rather than their underlying crypto
algorithms [3]. For example, during the investigation of
Juniper incident in 2015 (CVE-2015-7756) [2], researchers
discovered that, Juniper Network code did not only contain
backdoor-able cryptographic primitives, but also a fatal pro-
gramming error that could leak PRNG seeds. In Listing 1,
we see that the logical error incorporated due to the shared
use of global variables (e.g.,prng_temporary and
prng_output_index) causes the leak of prng_seed
(Line 5 in prng_reseed) in immediate post-seed (Line
19) output of prng_generate function. In OpenSSL, a
memory disclosure vulnerability named heartbleed (CVE-
2014-0160) had the potential to leak sensitive informa-
tion (e.g., cryptographic keys, PRNG seeds, etc.). One
can observe that similar types of bugs (or vulnerabilities)
appear from time to time. Sometimes fixing one problem

leads to another [4]. In general, these vulnerabilities due to
simple programming errors in cryptographic implementa-
tions affect millions of devices, rendering millions of users
vulnerable to adversarial attacks.

Listing 1: The core ScreenOS 6.2 PRNG functions [2].
Here, prng_temporary and prng_output_index
are global variables. When prng_reseed is called (Line
19), the loop control variable (prng_output_index)
of function, prng_generate is set to 32, causing
prng_generate to output prng_seed from Line 5.
In Section 3, We show how static taint analysis can be
employed to detect these types of sensitive data leakage.

1 void prng_reseed(void) {
2 blocks_generated_since_reseed = 0;
3 if (dualec_generate(prng_temporary, 32) != 32)
4 error_handler("FIPS ERROR: PRNG failure, unable to reseed", 11);
5 memcpy(prng_seed, prng_temporary, 8);
6 prng_output_index = 8;
7 memcpy(prng_key, &prng_temporary[prng_output_index], 24);
8 prng_output_index = 32;
9 }

10
11 void prng_generate(int is_one_stage) {
12 int time[2];
13 time[0] = 0;
14 time[1] = get_cycles();
15 prng_output_index = 0;
16 ++blocks_generated_since_reseed;
17
18 if (!one_stage_rng(is_one_stage)) {
19 prng_reseed();
20 }
21
22 for (; prng_output_index <= 0x1F; prng_output_index += 8) {
23 // FIPS checks...
24 x9_31_generate_block(time, prng_seed, prng_key, prng_block);
25 // FIPS checks...
26 memcpy(&prng_temporary[prng_output_index], prng_block, 8);
27 }
28 }

With the increase of computational power, fuzzing and
symbolic execution based approaches are being popular
to automatically discover vulnerabilities [5], [6]. In [7],
researchers presented a mechanism to infer client behaviors
by leveraging symbolic executions of client-side codes. The
work also demonstrated how such prediction can be used
to filter malicious traffics to the server. However, these
techniques are limited to find only the input guided vulner-
abilities with externally visible behaviors (e.g., triggering
program crashes [8] or anomalous protocol states [7], [9]).
It is still unclear how to use them to enforce security rules
in a code base, where the violations are not externally
visible. For example, guarding against buffer over-read
(Heartbleed), use of “improper” IVs in ciphers, “poor”
random number generation or use of legacy cryptographic



primitives, etc.
Although effort to close the gap between the theory

and practice of cryptography has been recognized previ-
ously [10], most of the work was on using and deploy-
ing provable cryptographic solutions in emerging applica-
tions, not on ensuring the correct implementation/use [11].
In [12], researchers presented an empirical study on An-
droid applications analyzing some cryptographic misuses
using lightweight control flow analysis. However, its capa-
bility is limited to detecting hard-coded seeds, keys, and
IVs, the use of AES in ECB mode and using too few
iterations for password-based encryption.

Static code analysis has been a central focus in scientific
studies regarding malware analysis [13], [14], vulnerability
discoveries [15], [16], [17], data leak detections [18], etc.
It also has the potential to check and report whether a
piece of code complies with certain rules or not [19],
[20]. In this paper, we describe our initial efforts towards
statically screening source code (namely C/C++ code) us-
ing static taint analysis to ensure the correct implemen-
tation of cryptographic properties (i.e.., secrecy, pseudo-
randomness, etc.). We refer to this new security approach
as cryptographic program analysis (CPA).

Although appearing intuitive, this effort requires the
challenging task of mapping abstract cryptography concepts
to concrete program properties. We illustrate how to close
this semantic gap by translating cryptographic concepts
into properties those can be verified by taint-based pro-
gram analysis tools. First, we study various state-of-the-art
vulnerabilities to derive different security rules those are
necessary to be complied by any cryptographic libraries,
protocol implementations and any code that uses these
cryptographic implementations. Then, we discuss static
taint analysis-based methodology to enforce these security
rules. We also provide a prototype implementation and
demonstrate the effectiveness of this approach. Unlike [12],
our static analysis tool is capable of path sensitive and
context sensitive analysis, hence capable of enforcing a rich
set of cryptographic properties.

Our technical contributions are summarized as follows.
• We provide a taxonomy of 25 types of exploitable

vulnerabilities on cryptographic implementations.
We categorize these vulnerabilities under 12 types
of attacks. We derived 25 enforceable rules from
this vulnerability analysis to defend 6 types of
security properties. We discuss how static analysis
can be useful to enforce these security properties.
Our analysis shows that 15 out of these 25 rules
are enforceable using static taint analysis.

• We design an LLVM-based toolset to facilitate
static taint analysis, that can be used to enable
security-aware testing to enforce various security
rules in C/C++ based cryptographic implementa-
tions. As a case study, we show that how such
security-aware testing can be realized in large-scale
libraries like OpenSSL. We also discuss what prob-
lems remain unsolved in the light of our analysis
and discuss future directions.

In order to perform complete automatic program anal-
yses on cryptographic libraries and their usages in appli-

cations with millions of lines of code, more development
work is still ahead. Our work reported in this paper ad-
dresses the fundamental challenge of mapping theoretical
cryptographic concepts to practical code structures, which
will guide future development effort of the community.

Our paper is organized as follows. In Section 2,
we present different genres of vulnerabilities appeared in
various cryptographic implementations. In Section 3, we
present how different security rules can be enforced using
static program analysis. We point out several promising
future research and development directions in Section 4.

2. Crypto Vulnerabilities
In this section, we present different state-of-the-art

cryptographic vulnerabilities. We also categorize them into
several broad groups. In Table 1, we present a set of
security rules those are needed to be enforced to defend
crypto implementations against these vulnerabilities.

2.1. Chosen-plaintext attacks on IVs

Electronic Codebook (ECB) mode encryption is not
semantically secured [3]. Bard et al. [21] showed that, the
determinism of IVs can make cipher block chaining (CBC)
mode encryption unsecured too. However, the vulnerability
was theoretical until late 2011. Doung and Rizzo [22]
demonstrated a live attack (known as BEAST) against
Paypal by exploiting the vulnerability. Row 1 in Table 1
corresponds to the security enforcement rule to avoid the
use of ECB mode cipher and Row 2 corresponds to the
attacks related to the predictability of IVs in CBC mode
encryption. In Section 3, we discuss static taint analysis
based mechanisms to detect these vulnerabilities.

2.2. Attacks on PRNG

Historically, random number generators have been a
major source of vulnerabilities [23], [24], [25]. This is
because many of the cryptographic schemes depend on
a cryptographically secure random number generator for
key and cryptographic nonce generation (Row 11), if a
random number generator can be made predictable (e.g.,
use of predictable seeds (Row 9), backdoor-able PRNG
(Row 10)), it can be used as a backdoor by an attacker
to break the security.

The NIST standard for pseudo-random number gen-
eration named “Dual EC PRNG” has been identified by
the security community as biased and backdoor-able [26].
In [2] authors showed that this backdoor-ability of Dual EC
PRNG was the main reason behind the Juniper incident in
2015. In [2], authors also showed that how the cascade
of multiple vulnerabilities due to programming errors lead
to the leak of seeds in Juniper Network (Row 19). In
Section 3, we show how static taint analysis can be utilized
to detect such vulnerabilities.

2.3. Using Legacy Ciphers

There are several attacks based on the use of legacy
ciphers, where cryptanalysis is feasible. For example, the



TABLE 1: Enforceable security rules in different cryptographic implementations. (*) indicates data integrity and (#)
indicates data secrecy protection.

Attack Type Serial
No Enforceable Rule Crypto property Static Analysis Tool

CPA
1 Should not use ECB mode in symmetric ciphers* Secrecy Taint Analysis

2 IVs in CBC mode, should be generated randomly* Secrecy Taint Analysis

CCA

3 Validity of ciphertexts should not be revealed in symmetric ciphers Secrecy Unknown

4 Validity of ciphertexts should not be revealed in RSA Authentication Unknown

5 Should not use export grade or broken asymmetric ciphers* Authentication Taint Analysis

6 Should not use 64 bit block ciphers (e.g., DES, IDEA, Blowfish)* Secrecy Taint Analysis

7 Should not have timing side channels Secrecy Unknown

8 Should not allow cache-based side channels Secrecy Unknown

Predictability

9 PRNG seeds should not be predictable* Randomness Taint Analysis

10 Should not use untrusted PRNGs* Randomness Taint analysis

11 Nonces should be generated randomly* Randomness Taint analysis

Mem. Corrup.

12 Should not allow double “free()” exploit* Deterministic behavior Taint Analysis

13 Should not have type truncations (e.g., 64 bit to 32 bit integers) Deterministic behavior Data Flow Analysis

14 Should not leave any wild or dangling pointers Deterministic behavior Data Flow Analysis

15 Should guard against Integer overflow* Deterministic behavior Taint Analysis

16 Should not write to a memory (buffer) beyond its length* Deterministic behavior Taint Analysis

Crash
17 Should Check return values of untrusted codes/libraries* Availability Taint Analysis

18 Division operations should not be exposed to arbitrary inputs* Availability Taint Analysis

Data. Leak 19 Should not leak sensitive data# Secrecy Taint Analysis

Key Leak 20 Should not use predictable/constant cryptographic keys Secrecy Data Flow Analysis

Mem. Leak 21 Should not leave allocated memory without freeing Availability Data Flow Analysis

Mem. Disclosure 22 Should not read to a memory beyond its length (heartbleed)* Secrecy Taint Analysis

Hash Collision 23 Should not use broken hash functions* Integrity Taint Analysis

Stack Overflow 24 Should not have cyclic function calls Availability Call Graph Analysis

State machine Vulnera-
bilities 25 Should detect illegal transitions in protocol state machines Authentication Unknown

Logjam attack [27] allows a man-in-the-middle attacker to
downgrade vulnerable TLS connections to 512-bit export-
grade cryptography. In [28] authors demonstrated the re-
covery of a secret session cookie by eavesdropping HTTPS
connections. In [29] authors demonstrated that the use of
weak hash functions such as MD5 or SHA-1 in TLS,
IKE, and SSH might cause almost-practical impersonation
and downgrade attacks in TLS 1.1, IKEv2 and SSH-2.
Row 5 (asymmetric cipher), 6 (symmetric cipher) and 23
(hash functions) corresponds to such attacks in Table 1. In
Section 3, we present static taint analysis based approach
to detect these vulnerabilities.

2.4. Padding Oracles

Padding Oracle vulnerabilities can be divided into
two groups: (1) padding oracles in symmetric ciphers (2)
padding oracles in asymmetric ciphers.

Padding oracles in symmetric ciphers. In [30], Vau-
denay et al. presented a decryption oracle out of the re-
ceiver’s reaction on a ciphertext in the case of valid/invalid
padding of CBC mode encryption. In SSL/TLS protocol,
the receiver may send a decryption failure alert, if invalid
padding is encountered. By using this information leaked
from the server and cleverly changing the ciphertext, an
attacker is able to decrypt a ciphertext without the knowl-

edge of the key. “POODLE” [31] is a padding oracle
attack that targets CBC-mode ciphers in SSLv3. “Lucky
Thirteen” [32] is also a padding oracle attack on CBC-
mode ciphers, exploiting the timing side channel due to
not checking the MAC for badly padded ciphertexts. In
Row 3 of Table 1, we summarize padding oracle attacks
on CBC mode encryptions.

Padding oracles in asymmetric ciphers. In [33], Ble-
ichenbacher presented a stealthy attack on RSA based SSL
cipher suites. Bleichenbacher utilized the strict structure of
the PKCS#1 v1.5 format and showed that it is possible to
decrypt the PreMasterSecret in a reasonable amount
of time. There are numerous examples of using “Bleichen-
bacher padding oracle” to recover the RSA private key in
different settings [34], [35], [36], [37], where some of them
uses timing side channels to distinguish between properly
and formed ciphertexts [38], [39]. Row 4 corresponds to
these Bleichenbacher padding oracle attacks in Table 1.

We believe that padding oracles due to obvious padding
errors might be detected using static program analysis (e.g.,
data flow analysis), while it is not clear that how static pro-
gram analysis can be feasible to detect more sophisticated
padding oracles (e.g., timing-based side-channels).



2.5. Side-channel Exploitations

The presence of side-channel attacks in cryptographic
implementations can be categorized as: (1) Timing-based
(2) Cache-based side-channel attacks.

Timing-based Side-channel attacks. In [40], Brumley
et al. presents a timing based side channel attacks on
OpenSSL’s implementation of RSA decryption. In [41], au-
thors presented a timing attack vulnerability in OpenSSL’s
ladder implementation for curves over binary fields. Using
the vulnerability, authors demonstrated stealing the private
key of a TLS server where the server authenticates with
ECDSA signatures. Row 7 corresponds to these timing-
based side-channel attacks in Table 1.

Cache-based Side-channel attacks. After the introduc-
tion of cache-based side-channels [42], researchers demon-
strated the existence of side-channels in various crypto-
graphic implementations (e.g., AES [43], DSA [4]). In [4],
authors presented a cache-based side-channel to compro-
mise the OpenSSL’s implementation of DSA signature
scheme and recover keys in TLS and SSH cryptographic
protocols. Row 8 in Table 1 corresponds to cache-based
side-channel attacks in cryptographic implementations.

Unfortunately, verifying constant-time implementations
to eliminate these side-channel exploitations is notoriously
difficult, because of its indirect/complex dependency on
program control flows [44]. As a result, building feasible
static program analysis based techniques to verify constant-
time implementation is still open.

2.6. State Machine Vulnerabilities

There are several attacks on exploiting the vulnerabil-
ities in the protocol state machines of different crypto-
graphic protocols [9], [45]. For example, CCS injection at-
tack [46] on OpenSSL’s ChangeCipherSpec processing
vulnerability allows malicious intermediate nodes to inter-
cept encrypted data and decrypt them while forcing SSL
clients to use weak keys which are exposed to the malicious
nodes. Different cipher-suits in TLS use different message
sequences. In SKIP-TLS [45], TLS implementations incor-
rectly allow some messages to be skipped even though they
are required for the selected cipher suite. FREAK [47]
leads to a server impersonation exploits against several
mainstream browsers (including Safari and OpenSSL-based
browsers on Android). Like most of the exploits from
this category, FREAK also targets a class of deliberately
chosen weak, export-grade cipher suites. Row 25 in Table 1
corresponds to such attacks.

Most of the techniques [8], [9], [45] to detect vul-
nerabilities due to state machine bugs use fuzzing-based
input generation mechanism to perform dynamic analyses.
However, building feasible static analysis based detection
mechanism is still open, because with the increase of the
protocol internal states the computational complexity will
rise exponentially.

2.7. Programming Errors

Programming errors in C/C++ environment has been a
major source of vulnerabilities in security software [48].
These vulnerabilities are ranged from improper memory
usages like, memory over-read (heartbleed attack [1]) (Row
22), memory over-write (buffer overflow [49] [50] (Row
16), integer overflow [48] (Row 15), type truncation (Row
13)), stack overflow1 (Row 24) to improper memory man-
agements like, malloc without free (Row 21), double
free [51] (Row 12), dangling pointers (Row 14), etc.

Studies [3], [12] show that, other programming errors
due to careless handling cryptographic keys (i.e., hard
coding keys in the source) are also prevalent in the wild
(Row 25). In Section 3, we present how static program
analysis can be used to detect such vulnerabilities.

3. Static Taint Analysis-based Enforcement

In this section, we present various security rules those
are needed to be enforced in a code base to defend against
the vulnerabilities presented in Section 2. We discuss how
static taint analysis can be used to statically enforce most
of these security rules and present a system prototype
named TaintCrypt. Using OpenSSL as a case study, we
also demonstrate how static code analysis based security
enforcement mechanism can effectively help us achieve
various security goals.

3.1. Enforceable Security Rules.

By analyzing different genres of attacks, we have
identified 25 categories of vulnerabilities and inferred
corresponding security rules, those should be enforced in a
cryptographic implementation to ensure different security
properties. In Table 1, we present these security rules.
We identified that among them, 20 of the security rules
are possible to be enforced by static code analysis. Close
inspection shows that 14 of these rules (marked as (*) in
Table 1) advocates the protection of data “integrity” to
prevent untrusted values (produced by untrusted/vulnerable
functions) to reach certain program points and another
rule (marked as (#) in Table 1) advocates the prevention
of sensitive data propagation to the untrusted functions.
In this paper, we show that static taint analysis can
be effectively applied to model these 15 rules. In
particular, we show how security-aware testing can be
enabled to enforce these 15 rules using static taint analysis.

3.2. System Overview

We build a static taint analysis engine named
TaintCrypt. TaintCrypt is built on top of Clang Static
Analyzer [52]. In TaintCrypt, one can specify taint sources,
sinks, propagators and filters as functions to run static taint
analysis on a code base. Clang Static Analyzer internally

1. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0228



uses symbolic execution to perform path sensitive explo-
ration to detect vulnerabilities. It employs simple track-
ing based Satisfiability Modulo Theories (SMT) solver to
model symbolic execution.

Figure 1: Detection of using vulnerable functionality
(MD5) in OpenSSL (Row 23). Our taint analysis engine
reports the use of the vulnerable EVP_MD5() function.

Taint analysis is typically used to identify dangerous
flows of untrusted inputs into sensitive destinations [19].
Generally, a taint analyzer takes four types of inputs
(sources, propagators, filters and sinks) to run taint analysis.
sources are the statements, those generate of untrusted
inputs, propagators propagate untrustworthiness from one
variable to another, filters purify untrusted variables to
trustworthy ones and sinks are the sensitive destinations.
Using taint analysis one can ensure the integrity property
of whether untrusted values can reach and modify trusted
placeholders. One may also be interested in the dual prop-
erty like confidentiality, i.e., whether sensitive values can
leak to untrusted sinks. In static taint analysis, the taint
analysis is performed statically on source code without
actually executing it.

In the rest of this section, we discuss how static taint
analysis can be used to enforce the prescribed security
rules. As TaintCrypt is an ongoing effort, instead of ex-
tensive evaluation of the prototype, we demonstrate the
effectiveness on different coding examples from different
vulnerable versions of OpenSSL and Juniper Network.

Deprecating Vulnerable Functions. The enforcement of the
security rules in Row 1, 5, 6, 10 and 23 of Table 1 demands
programmers to avoid/deprecate vulnerable cryptographic
functionalities. For these case, one can list vulnerable
crypto functions as sources and any other functions those
might use the values produces from the listed functions are
listed as sinks. If there exists any path between a listed
source and its corresponding sink, our TaintCrypt engine
traces and reports it. In Figure 1, we show how the use of
MD5 is detected and warned in OpenSSL2.

Ensuring Certain Function Invocations. To enforce
the security rules in Row 2, 9 and 11, we need
to ensure the invocation of certain functions. To do
that, one can list those functions and use them as fil-
ters to trick the taint analysis engine, so that it re-
ports any dangerous path from source to sink that

2. This vulnerability existed before commit f8547f62

(a) Code snippet: source.

(b) Code snippet: filter and sink.

Figure 2: Enforcing secured random number generation in
OpenSSL (Row 11). As there exists a path from source
to sink that avoids ssl_fill_hello_random, our
TaintCrypt generates a warning.

avoids the filter(s). In Figure 2, we see that the vari-
able s->s3->client_random3 is passed to the sink
WPACKET_memcpy and ssl_fill_hello_random is
used as the filter. We see that, there exists at least one
path from source to sink that avoids this filter. Since, the
existence of such path is unexpected, TaintCrypt generates
a warning. Close inspection shows that the reported path
actually reuses previously generated values. To whitelist
such special value propagations, one should mark them as
filter(s). Filtering Data From External Sources. Using data

from external sources is unavoidable. However, such data
should be filtered/sanitized before use. Hence, to enforce
these types security rules (Row 15, 16, 17, 18 and 22),
one should list three types of functions: (1) untrusted data
sources (source); (2) their corresponding sinks (sink); and
most importantly, (3) data filters/sanitizers (filter). If there
exists any path from source to sink that avoids filter(s) is
illegitimate and TaintCrypt reports it. In Figure 3, we show
that how heartbleed memory disclosure vulnerability can be
detected using this methodology, which could be avoided
with the incorporation of proper sanitizers.

Data Leak Detection. Using taint analysis we can also
model the use cases of data leaks such as Row 19 in
Table 1. We can list the sensitive data producers as sources
and potential mole functions (e.g., function writing data to

3. As the current version of our tool only accepts functions as sources,
we use a dummy call on the variable in order to taint it.



Figure 3: Our taintCrypt detects the memory disclosure
vulnerability in OpenSSL-1.0.1f (Row 22). Here, the use of
payload without proper sanitization causes a disclosure
of memory of arbitrary size.

the filesystem or network) as sinks, so that taint analysis
engine can detect and report if there exists any path from
sensitive sources to untrusted sinks. In [2], authors showed
that ScreenOS of Juniper network was leaking seeds due
to programming errors. In Figure 4 we show static taint
analysis can be used to prevent such leakage.

Double Free Detection. We define the double free()
incident of Row 12 as follows. If any data is passed
through free() function, it gets tainted and it becomes
unsafe to pass into any subsequent invocation of free()
function. In Figure 5, we show the detection of “double
free()” in OpenSSL4.

3.3. Limitations

In general, static code analysis offers trade-off among
soundness, scalability and false positive rates [53]. Similar
to most other static analysis-based approaches, our current
prototype has a number of limitations. In our prototype,
the symbolic execution based path sensitive analysis takes
computationally exponential time [54]. Consequently, the

4. This vulnerability existed till commit a34ac5b8

(a) Sensitive source.

(b) Untrusted sink.

Figure 4: Our TaintCrypt detects and reports the leak of
prng_seed as the first 8 bytes of prng_temporary
in Juniper Network (Row 19).

Figure 5: Detection of double free vulnerability in
OpenSSL (Row 12). Here, TaintCrypt reports the double
free incident of parms variable.



loop unrolling mechanism of the SMT solver used to model
symbolic execution is constant bounded. This means sound-
ness of the analysis will cause high computation complexity
with high false positive rates. Currently, our taint analysis
engine accepts sources, sinks, filters and propagators pa-
rameters as functions. As a result, in large code bases, the
prevalence of constraint-based filters (i.e., the use of if, else
to screen legitimate inputs from the illegitimate one) might
also cause false positives. The soundness of the analysis is
also dependent on the coverage of the specified parameters.
Lastly, our static analyzer based taint analysis does not
work across translational units, currently. As a result, it
cannot track taint propagation if the taint sources and taint
sinks are located in different translational units.

4. Conclusion and Future Work

In this paper, we show that static taint analysis holds
the promise to enforce a wide range of security properties
in large code bases. We systematically investigate various
threat categories on various cryptographic implementations
and discuss the capabilities of static taint analysis to enforce
various security rules to throttle these threats. By using our
prototype implementation, we demonstrate several exam-
ples of security enforcement in OpenSSL.

However, our analysis reveals several open problems in
this promising line of research. Making TaintCrypt work
across translational units in a scalable way is still open. In
Table 1, we see that taint analysis alone is not sufficient
to enforce all the security rules in static program analysis
settings. Hence, other mechanisms such as control flow
and/or data flow analysis techniques are also needed to
be explored to broaden the coverage. Although, memory
related errors (e.g., Row 12, 14, 16, 21, 22) are irrelevant
for high-level programming languages (e.g., Java, Python,
Ruby, JavaScript), still building similar tools for high-
level languages will be extremely useful to defend against
other misuses of cryptographic libraries or protocols by
mass developers. Building language/library specific sensi-
tive source and sink lists upon which the community can
agree upon for consistent evaluation and security guaran-
tees is also interesting to investigate.
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