
Detecting Infection Onset With Behavior-Based
Policies

Kui Xu Danfeng (Daphne) Yao
Department of Computer Science

Virginia Tech
Email: {xmenxk, danfeng}@cs.vt.edu

Qiang Ma Alexander Crowell
Department of Computer Science

Rutgers University
Email: {qma, acrowell}@cs.rutgers.edu

Abstract—A major vector of computer infection is through
exploiting vulnerable software or design flaws in networked
applications such as the browser. Malicious code can be fetched
and executed on a victim’s machine without the user’s permission,
as in drive-by download (DBD) attacks. In this paper, we describe
a new tool called DeWare (standing for Detection of Malware)
for detecting the onset of infection delivered through vulnerable
applications. DeWare enforces the dependencies between user
actions and system events, such as file-system access and process
execution. Our tool can be used to provide real time protection of
a personal computer, as well as for diagnosing and evaluating un-
trusted websites for forensic purposes. Our solution demonstrates
a usable host-based framework for controlling and enforcing the
access of system resources.

We perform extensive experimental evaluation, including a
user study with 21 participants, thousands of legitimate websites
(for testing false alarms), 84 malicious websites in the wild, as
well as lab reproduced exploits. Our results show that DeWare
is able to correctly distinguish legitimate download events from
unauthorized system events with a low false positive rate (< 1%).

I. Introduction
Malicious software (malware) downloaded from the Internet
has been the leading infection vector [5]. Malware may be
delivered stealthily through a networked application such as a
browser, a peer-to-peer file sharing client, or a chat application.
Web browser is the most common vehicle for a host to contract
malware. 10% of the websites were found to contain drive-
by-download exploits [21]. Drive-by-download (DBD) attacks
exploit software or design vulnerabilities in a browser or its
external components, and stealthily fetch executables from
remote malware-hosting server without any user permission.
Botnets often use DBD as the initial infection vector, e.g.,
Torpig [33]. Other networked applications besides the browser
may be vulnerable to drive-by-download attacks. For example,
a proof-of-concept Quicktime-based drive-by-download attack
has been demonstrated in Second Life [22]. Unauthorized web
download and process creation are among the symptoms of
malicious bots studied by Morales et al. in [18].

Conventional signature-based techniques may not be ef-
fective against zero-day exploits or code with sophisticated
obfuscation. In comparison, host-based detection approaches

This work has been supported in part by NSF grants CNS-0831186, CNS-
0953638, and ARO grant STIR-450080.

are much more feasible against drive-by download attacks and
the onset of infection in general. In this paper, we present
such a host-based monitoring framework that enforces policies
to control how processes are created and file systems are
accessed. We provide a tool named DeWare standing for
detection of malware, that guards a personal computer by
detecting signs of malware infection, specifically at the onset
of infection. Our solution can be used to detect any type of
drive-by downloads, including the browser-based exploits.

DeWare is a host-based security tool for detecting the onset
of malware infection through the novel use of rules that
enforce the correct dependency characteristics in operating
system. The dependency in our context refers to the relation
between user behaviors and corresponding system events.
DeWare is capable of performing host-wide monitoring be-
yond the browser. Its detection is based on observing stealthy
download-and-execution pattern, which is a behavior many
active malware exhibits at its onset, including the recent
Hydraq malware [3].

Among the challenges that we address in this paper, one is
how to distinguish drive-by downloads from legitimate down-
loads caused by human users. Our solution is to strategically
monitor file-system events and analyze them with observed
user actions. We aim to identify the dependency between
system events and user activities. Our knowledge about user
behaviors is further refined with additional application-specific
information. Another issue is how to efficiently handle the
voluminous application-triggered benign downloads, which
are not directly caused by user actions. We refer to these
downloads as indirectly caused by the user’s action. Our
solution is designing an access control component and policies
within the operating system that enforce and regulate behaviors
of applications in terms of accessing system resources. These
mechanisms enable us to largely reduce our file-system moni-
toring scope, reduce false alarms, and provide comprehensive
surveillance across the host.

Our contributions We summarize our technical contribu-
tions as follows.

• We present our design and implementation of a tool
called DeWare that detects the onset of infection in-
cluding drive-by downloads. DeWare identifies the in-
fection onset by detecting download-and-execute patterns
that most stealthy malware exhibits. Our work uniquely



incorporates user-behavior characteristics in generating
and evaluating policies used for detecting attacks. Our
behavior-based monitoring approach is general, and is
useful beyond the specific drive-by download problem
studied.

• We define rules for identifying dependency between the
system events and the user actions that initiate them.
Finding causal relations among multiple sets of events
typically requires sophisticated statistical inference tech-
niques [1], [8]. In operating system, however, system
events are artificially created in response to user actions.
We demonstrate that simple-yet-effective rules can be de-
fined for enforcing the correct system characteristics and
securing a host. Our approach can be generalized to other
paradigms of security such as enforcing dependencies
among user inputs and outbound traffic.

• We perform extensive experiments including a user study
with 21 participants to evaluate DeWare’s ability to detect
DBD exploits both in a lab setting and 84 malicious
websites in the wild; the ability to accurately iden-
tify legitimate user downloads with low false positives
(<1%). DeWare generates zero false alarm when being
automatically tested on 2000 legitimate websites.

The rest of the paper is organized as follows. We give our
models in Section II. An overview of our design of DeWare
is in Section III. Our DeWare implementation in Windows
operating system is presented in Section IV. Experimental
evaluation is described in Section V. Related work is compared
in Section VI, and conclusions are given in Section VII.

II. Models And Definitions
We assume that the browser and its components are not secure
and may have software vulnerabilities. The operating system
is assumed trustworthy and secure, and thus the kernel-level
monitoring of system events and user inputs yields trusted
information. The integrity of file systems defined in our model
refers to the enforcement of user-intended or user-authorized
file-system activities; the detection and prevention of malware-
initiated tampering.

Our work targets application-level malware. We assume
that malware makes persistent changes to the target host’s
file system or attempts to execute its code by creating a new
process, which are commonly observed behaviors at the onset
of infection. Similar assumptions were also used in Strider
HoneyMonkeys [37].

We do not consider social engineering attacks in this paper.
For example, a user may be tricked to click on Web links
or links in email messages that result in the download of
malicious executables. (The recent Hydraq malware starts
with a personalized spam message with an embedded link to
attacker’s website [3].)

In our model, we define two types of events: user action
and system event. User actions include keyboard inputs and
mouse clicks. System events are any kernel-level transactions
such as file system events, network events (outbound and

incoming), process events. In this paper, for detecting drive-by
download we focus on two system events, namely file creation
and process creation.

DeWare runs at the background. Whenever Alice starts an
application such as the browser, all her actions and corre-
sponding system events are monitored. A normal system event
should be correlated to Alice’s inputs. When the browser
is compromised by a maliciously manipulated website, the
stealthy events such as executable downloading and execution
are detected.

IRP filtering for 
file creation 

Alert

High Risk?

No
User Behavior Correlation

Valid
Correlation?Alert

Execution
Monitor

Accessible
Area?

Executable
Gets 

Running? 

Yes

Download 
Area?

Yes

Yes

No

No

Semantic Data

Temporal Data

Fig. 1. Schematic drawing of the work flow for detecting the infection
onset on a host based on analyzing user-behaviors and file system/process
properties.

III. DeWare Design and Its Components
One technical challenge is the fact that many applications
(such as the browser) automatically fetch and create files that
make persistent changes to the file systems. Our solution is to
enforce fine-grained access policies on applications to control
and confine their access to the file systems. A temporary
file automatically downloaded by an application is considered
legitimate only if it appears in specified areas and is not
executed. Violations of the policies are likely caused by
malware infection and are reported.

Users’ intention is embodied by their mouse and keyboard
inputs, information of which such as timestamp, corresponding
PIDs, and content can be logged at the kernel level or at
the application level. Both approaches have different security
assumptions and yield user-input information with different
granularity. There are pros and cons associated with both
methods, which are discussed more in Section III-C. Given
the observed user activities and system events, we correlate
the two data streams, according to rules on their attributes,
e.g., empirically-defined time intervals and process IDs. In
our security model, the user inputs obtained are trustworthy,
i.e., they are not forged by malware. This assumption can
be eliminated if hardware-based attestation (e.g., with trusted
platform module) is enabled as described in [32].

DeWare includes three main components: file-system access
monitor, input recorder, and execution monitor. The work flow



in DeWare is shown in Figure 1.

• A file-system access monitor is for controlling the access
of processes to write to the file system. The policies are
defined and enforced through intercepting file-creation
related system calls.

• An input recorder is for collecting and interpreting user
behavior, in particular user actions regarding downloading
files via the browser. We investigate the recording of user
actions at both kernel-level and browser-level.

• An execution monitor is for inspecting a portion of the
file system for illegal process creation. This component
runs with pre-defined policies; it together with the file-
system access monitor ensures unauthorized download-
and-execute cases are detected at real-time.

A. File-System Monitor: Confining Applications’
Downloads
Content automatically downloaded by applications is benign,
provided that the application is not comprised. Because our
security model does not assume the trustworthiness of ap-
plications, it is necessary to examine all downloads on the
host. However, capturing all file-creation events related to
all processes generates an overwhelmingly large number of
records. For example, in a study that we performed, a user
indirectly triggers 482 file creations in Temporary Internet
Files folder and 47 in Cookies directory within 30 minutes.
Files created in those folders are usually benign.

We design and implement a framework that allows us to
specify policies to limit applications’ access to portion of the
file system. The access control framework is to reduce white
noise due to application triggered downloads. We define the
accessible area for an application in the file systems.

Definition 3.1: Accessible area of an application is a set of
pre-defined directories on the file system where the application
is allowed to write to files. The application is not allowed to
create or write to files outside its accessible area.

For example, Temporary Internet Files folder is modifiable
by Internet Explorer, whereas system folders are not. The
directories to include in the accessible area can be learned
based on the software’s behaviors, which significantly reduces
the area to monitor for file creation, and the number of events
to record. With this file-system monitor, malware is confined to
the accessible area. Moving executables out of the accessible
area is also forbidden.

User download does not need to follow the same require-
ments. However, the user is not allowed to download files
anywhere on the file system, but to a specified downloadable
area, which is described in Section III-E. With the aforemen-
tioned file-system monitor, an attacker may download malware
executables to the accessible area of a rogue application, e.g.,
to the temp folder via a compromised browser. Thus, file-
system monitoring alone is not sufficient for detecting drive-
by download. We solve the problem by monitoring execution
patterns in these download areas, which is presented in the
next section.

B. Real-Time Execution Monitoring on Host
Although dormant malware (downloaded but not executed)
does not pose immediate threat to the host, it may get executed
later on. In our experiments with real-world malware, some
malware starts itself after a reboot. In DeWare, execution
monitor is to prevent malware stored at accessible area from
being run. Execution monitor inspects the accessible areas
granted to applications.

For a newly created process, we collect information in-
cluding process ID, image file name, parent process ID, and
timestamp. Once a new process is created, the execution
monitor is notified. It verifies that the image file is not in
the accessible area of any application. As our security model
assumes that the kernel is not compromised, the process
information collected is complete and trustworthy. We do not
consider the existence of rootkits that hide their presence in the
process table. As we aim to detect the onset of the infection
on an otherwise clean host, this assumption is valid.

C. Input Recorder
There are several approaches for obtaining user intention on
a computer: i) directly asking the user (e.g., through a pop-
up window) [38], ii) analyzing user’s transaction history and
extracting patterns [25], or iii) recording the events entered
through keyboard or mouse devices [32]. Each method has
pros and cons. For example, pop-up window may be intrusive
to user, but is easy to implement. In DeWare, we opt for the
third approach.

There are two levels of user-input monitoring: kernel level
and application level. Kernel-level input logging records user
inputs at their origin, as it is to collect events triggered by
activities on external input devices via device drivers. It inter-
cepts information about user inputs – coordinates, timestamp,
and content – by placing listeners or hooks in the kernel. The
inputs are consumed by the current foreground process, whose
ID can be identified. Kernel-level input logging is application-
independent, which makes the method general.

One can also record user inputs from the application. This
approach requires writing a plug-in specific to the application.
It also assumes the trustworthiness of the extension to ensure
the data integrity. The obvious advantage of application-level
input logging is the ability to semantically interpret certain
input events, such as the URL that a mouse clicks on. This
URL is application-specific data and cannot be easily obtained
outside the browser. At the kernel level, a user’s mouse click is
not associated with this semantic information. In our prototype
in Windows, we realize and compare both methods.

D. Dependency Rules
User event such as a left mouse click has specific semantic
meanings in the application that consumes the event. More
specifically in the context of download event, semantic prop-
erties of a mouse-click event include the information about
the file that the user intends to download, for example, source
URL, file name, type, size, destination directory, as well as
temporal information (i.e., timestamps of input events), and



properties of the process consuming the input event. Therefore,
our inference rules are defined to inspect and compare the
file, process, and temporal properties between user actions and
system events.

We formalize our dependency rules as follows. Consider a
file-creation system event e with attributes (fname, fpath,
ftype, T , pid, pname), where fname, fpath, ftype are
the name, path, and type of the file, respectively, T is the
corresponding timestamp, pid and pname are the process
ID and name of the application that creates the file, and
consider an user-download event e∗ with attributes (fname∗,
fpath∗, ftype∗, T ∗, pid∗, pname∗, intended dl URL,
actual dl URL), where fname∗, fpath∗, and ftype∗ are
the name, destination path, type of the file obtained through
parsing the user event, T ∗ is the corresponding timestamp,
pid∗ and pname∗ are the process ID and name of the
application that consumes the user event. intended dl URL
is the URL where user is attempting to download a file, while
actual dl URL is where the application actually makes the
download.

We define the dependency between events e and e∗ (i.e.,
file-creation event e is caused by a user mouse-click event e∗)
as the satisfaction of the following rules.

• Rule 1: File properties of events match: fname =
fname∗, fpath = fpath∗, and ftype = ftype∗. That
is, the file to be created should match the file that a user
intends to download.

• Rule 2: Process properties of events match: pid = pid∗

and pname = pname∗. Both events should be for the
same application.

• Rule 3: Temporal constraint is satisfied: 0 < T −T ∗ ≤ τ .
That is, a legitimate file-creation event is required to take
place within a short threshold τ after a valid user-input
event. Different τ values are experimentally evaluated in
our user study in Section V.

• Rule 4: User intention is ensured: intended dl URL =
actual dl URL. User’s download intention should be
correctly reflected by application’s action. For example,
a file creation of iTunesSetup.exe to the system can be
correlated back to the events of i) user clicks to initiate
and confirm the download from http://appldnld.apple.
com.edgesuite.net and ii) the browser goes to fetch the ex-
ecutable form http://appldnld.apple.com.edgesuite.net/.../
iTunesSetup.exe. It means that file should be downloaded
from the source URL that user intends.

Additional rules can be introduced to capture and specify
contextual properties of the download and file-creation events.
We note that temporal-constraint alone does not provide suf-
ficient security protection against infection onset. Consider
coincidental malware download as follows.

Definition 3.2: We define coincidental download as the
download of malware that coincidentally occurs immediately
after a user’s mouse click, more specifically the time interval
between the download event and its immediately preceding
mouse-click event is within threshold τ .

The problem of coincidental download only exists when
logging user’s mouse events at the kernel level, which lacks
semantic and contextual information of the events. For exam-
ple, a click on a URL cannot be distinguished from a click on
download-dialogue box. This problem is prevented when using
application-level input logging as described in Section III-C.

E. Piggybacking Download and its Detection
Piggyback download defined in [31] is where malware is
part of a piece of software downloaded with proper user
permission, e.g., spyware bundled with compression software.
Preventing piggybacking code from being downloaded to the
file system is difficult in our model. Thus, our approach is
to detect it when the downloaded malware is being executed.
The area that execution monitor inspects needs to be expanded
beyond the accessible areas of applications. The execution
monitor also inspects the area at which user-authorized down-
loads are stored, and seeks confirmation from the user if files
in that area get executed. We define downloadable area in
Definition 3.3 below.

Definition 3.3: Downloadable area of a user is a set of
pre-defined directories on the file system to which the user
downloads files from the Internet.

If piggybacking download in this area creates new pro-
cesses, the execution monitor prompts the user for additional
approval. Note that the user interaction is only needed for
files with download-and-execute patterns; not for each process
creation in the system. Thus, the required user interaction is
minimal. As stated in Section II, we assume that the host is
not infected with malware that is capable of eavesdropping on
user mouse events (and downloads immediate after the user
clicks the mouse). This assumption is valid, as DeWare aims
to detect the onset of infection on a clean host.

IV. Prototype Implementation in Win-
dows
We describe our implementation of DeWare prototype in
Windows XP utilizing some existing kernel driver and tools
for monitoring system events in Windows. The prototype is
easy to deploy and efficient to run.

A. File-System Monitor and Execution Monitor
Our file-system monitor consists of a kernel-space driver and
a user-space component. File-creation events are collected at
the kernel level and reported to the user space for filtering.
The kernel-space driver filters all IRP (I/O request packet)
calls issued by operating system to the low level I/O devices.
We specify the applications to be monitored and focus on
the FILE CREATE system call. Other file-related system
calls such as FILE OPEN and FILE OVERWRITE may be
recorded as well. For intercepting file-related system calls,
our prototype utilizes an existing kernel driver (Minispy) for
Windows OS that can monitor all system calls involving
opening a handle to a file object, including file creation.



TABLE I
USER INPUTS RECORDED THROUGH OUR FIREFOX EXTENSION.

Download Scenarios Recorded
Clicking on a link Yes
Typing a URL into address bar Yes
Using “Save Target As...” button Yes
Download initiated by page redirect Yes
Download from embedded plugin No

DeWare keeps track of targeted processes as well as their
child processes. We organize the directories in both accessible
and downloadable areas with the an array data structure for
each process. If a file is to be created outside the accessible
area of the process, then the event along with its attributes is
reported to the user space. This verification has low overhead
due to small search array sizes. In the downloadable area of
user, high-risk files as defined by [20] in that area are examined
in our dependency analysis. Certain low-risk downloads (e.g.,
TEXT files) can be safely ignored, but we monitor the area
for unauthorized execution.

Our execution monitor leverages the security-monitoring
features provided by Windows OS (XP and higher), which
comes with security settings for monitoring the local host, and
among those the AuditPolicy is able to track all the processes.
The execution monitor records all the process start and exit
events, and applies policies to inspect them for violations.

B. Collect and Correlate User Behavior Infor-
mation
DeWare implements two independent mechanisms for collect-
ing user inputs: one at kernel level and another within the
Firefox browser. The kernel-level logging records user inputs
through hooks SetWindowsHookex provided by Windows OS.
The choice of proper temporal parameters is discussed and
evaluated in Section V. We also develop a Firefox extension
(based on tlogger) which is capable of recording users’ clicks
that correspond to downloading activities. This extension pro-
vides semantic properties of user input as shown in Table I. We
note that if a user clicks on buttons within a browser plug-in
(e.g., Adobe Reader) to download, then the extension is unable
to record the event. With the gathered semantic properties, the
accuracy of dependency inference can be significantly boosted.

Our extension captures user’s activities on a web page
and also the information from the common download-dialog
window, which asks the user for file-download confirmation.
We retrieve the download-event related attributes such as file
name, source, and file type. Within the XUL files which spec-
ify our additional extension functions, we include JavaScript
to listen for user’s behavior such as click on the OK button.
Once the user confirms her download in the dialog window,
our extension records the relevant attributes regarding this
download event into a log file.

In our prototype, the dependency analysis is performed off-
line, after data is collected. We also implement a real-time
system based on temporal correlation. Our solution does not
create any new privacy vulnerability. DeWare is a stand-alone

host-based solution that does not export the collected data
out of the user’s computer. Collected data is erased after the
analysis and does not need to be stored for a long term.

Limitations DeWare is capable of detecting a wide spectrum
of syndromes associated with infection onset. Our detection
assumes that malware either makes persistent changes to the
disk or creates its own new process. Thus, DeWare cannot
detect the infection onset where code or dynamic loadable
library (DLL) is injected into the memory of a legitimate
process [26], [27], [28]. This type of in-memory injection does
not need to touch the hard disk and the malicious code can
run in the context of the compromised process without the
creation of a new process.

An attacker may try to circumvent our detection by injecting
fake inputs, and the purpose is to bypass correlation and to
authenticate illegal downloads. This type of injections can be
identified with the help of a cryptographic hardware attester,
such as TPM [32].

V. Experimental Evaluation
We carry out extensive experiments to evaluate the effective-
ness and usability of our solution. We perform a user study
with 21 users to collect real-world user download behavior
data. We also use DeWare to evaluate a large number of both
legitimate and malicious websites for testing its accuracy.

A. Detecting Known DBD Exploits and Real-
World Malicious URLs
We test DeWare against real-world websites with drive-by
download exploits [16], [17]. The testing system is Windows
XP Version 5.1 (Service Pack 2) installed within VMware 7.0.
Internet Explorer Version 6.0.2900.2180 is used as the victim
application. We take a snapshot of the clean system and then
test DeWare with malicious websites. We give each URL one
minute to load and launch any attack and revert the system
to the initial clean state before each new test. During a two-
week period, we successfully detected 84 unique domains with
drive-by download exploits. Here are the observations.

• The malicious websites typically download executables
and .dll files onto the victim’s host, and then try to get the
executables running. The entire procedure is surreptitious.
In some cases, after reboot the browser is automatically
loaded and re-directed to pornography websites.

• There are several popular exploit kits, such as Phoenix
exploit kit and Eleonore exploits pack, which are widely
used by many malicious websites. They target at multiple
software vulnerabilities including Flash, PDF, Java and
browser.

• There are websites who track the incoming requests. In
that case, the first visit triggers the exploit, while during
the second visit no exploit is observed or the web server
refuses the connection.

• Some exploits attempt to download executables to direc-
tories such as
Documents and Settings\Administrator



\Local Settings\Temp\ to avoid detection, which
can be detected by DeWare.

We also produce several known drive-by-download exploits
in a lab environment shown in the following. DeWare can
successfully detect executables downloaded as a result of a
successful exploit.

• Heap Feng Shui attack
• HTML Object Memory Corruption Vulnerability
• Superbuddy exploits through AOL activeX control
• Adobe Flash player remote-code execution
• Microsoft Data Access Component API misuse
• DBD exploiting IE 7 XML library

B. User Study

 

0

20

40

60

80

100

120

140

[0,20) [20,40) [40,60) [60,80) [80,100) [100,∞)N
um

be
rs

 o
f <

U
se

r 
Cl

ic
k,

 F
ile

-C
re

at
io

n>
 P

ai
rs

Intervals between mouse clicks and file-creations in milliseconds

Fig. 2. Histogram on the interval in milliseconds of the user click events
and their corresponding file creation events.

21 users participated in our user study – all of them are
graduate or undergraduate students from a university. Each
user is asked to surf the web for 30 minutes and download at
least 10 files of her choice. In Figure 2, we give the histogram
of the observed intervals between a user’s mouse-click event
and the corresponding file-creation event. For this analysis, the
two types of events are correlated manually by the authors.
User’s click events are recorded at the kernel level through a
mouse hook to the input device driver, and the timestamps for
file-creation events are extracted from the intercepted system
calls. The majority of user-triggered download have a short
delay within 80 milliseconds.

The false positives based on the temporal correlation (i.e.,
comparing timestamps of events) are reported in Figure 3(a).
False positives in our user study may come from two sources.
i) File creation from user download in the downloadable
area of the user that has a high risk extension, but is
not within the required threshold, and ii) (legitimate) file
creation by the browser that is not in the accessible area.
During the user study, we have six such violations, e.g.,
\Program Files\NOS\bin\getPlusPlus_
Adobe.exe, which all result from a single installation of
getPlus (a download manager from NOS). getplus is piggy-
backing downloaded with Adobe Reader.

The results show that the number of false alarms that
temporal-comparison based DeWare generates in our user
study is small (< 1%) compared to the total number of file
creations. A larger threshold leads to a lower false positive
rate, but at the same time it also increases the likelihood
of false negatives as we show earlier. Given our results,
we recommend a threshold within 80-100 milliseconds. The
false positives are further reduced with the application-assisted
semantic comparison.

(a)

(b)

Fig. 3. (a) The averaged false positive rate vs. various threshold values
based on a total of 25,092 file-creation events including temporary files by the
browser. (b) Reduced false positives with semantic-based comparison between
user’s mouse-click events and downloaded files.

For eight participants in our user study, we also collected
application-level inputs using the Firefox extension described
in Section IV. It records users’ mouse-click activities within
webpages and on download-dialog windows, and obtains
semantic information of the user event such as file name,
type, size, source URL, timestamp, and destination directory.
Without applying any dependency rules, there are 34 false
positives for these eight participants in our dataset. With the
temporal constraint (Rule 3 in Section III-D) and process
constraint (Rule 2), our analysis generates 16 false positives.
The threshold τ is set to 100 milliseconds. With all rules
including the comparison with semantic properties of user-
input events, we further reduce the false positives from 16



to 6. Figure 3(b) shows that the semantics of user actions
helps reduce the false positive rate. These remaining six false
positives are due to JavaScript files that are bundled together
with a webpage a user downloaded.

False alarm evaluation with legitimate websites. Given
the pre-defined accessible area (consisting of 18 folders) of
Firefox, we test DeWare with legitimate websites to see if
there are any false alarms. A false alarm may be caused by a
website i) downloading files outside the accessible area, or ii)
creating new processes from files stored in the accessible area.
We automatically evaluate 2000 websites from Alexa.com on
August 20th, 2010. We give the browser 30 seconds to load
a webpage. We have zero false alarm in our experiment.
The result indicates that our pre-defined accessible area is
sufficient in containing the files that the browser and common
plug-ins create. We demonstrate the feasibility of confining a
process’ access to file system for reducing DeWare’s workload
of system-call monitoring. We are able to achieve it without
the need of modifying how browser operates.

VI. Related Work
Jaeger and colleagues did pioneering work in operating-system
security and security kernel architecture for OS-level control
of program behaviors, including regulating downloaded exe-
cutable content [11] and general-purpose policy enforcement
through intercepting inter-process communication in OS [10].
In comparison with existing OS-security work, our work is
more specific but not limited to the browser environment. The
novelty of our solution is the incorporation of user-behavior
characteristics and the leveraging of system-event dependency
in evaluating security policies.

Cova, Kruegel, and Vigna proposed a DBD detection solu-
tion [4] that abstracted and categorized commonly shared fea-
tures in the Javascripts that launch drive-by-download attacks.
Another DBD-detection solution was proposed based on mon-
itoring browser’s inter-module communication patterns [29].
The methods used in [4], [13], [23] are based on feature
extraction and classification from malicious code such as
existence of redirection and obfuscation. Careful preparation
and selection of features make this feature-based detection
robust against known threats. [19], [37] both utilize virtual
machine to load webpage, take records and perform post-
analysis. This class of behavior-based detection is better at
catching 0-day attack. Instead of implementing a client-side
protection, [19], [23] choose to place their detection on a
proxy as a network service, which helps reduce the client side
overhead and also increase efficiency. In [7], string buffers are
checked for executable instructions, which enables the solution
to detect the shellcode before an vulnerability can be exploited.
Egele, Kirda, and Kruegel [6] gave general introductions
to drive-by exploits and mentioned possible detection and
mitigation approaches (without concrete implementations).

The work that is conceptually close to ours is BLADE [15],
which is an effective host-based solution independently de-
veloped by Lu et al. for detecting drive-by downloads, in

particular unconsented-content execution [15]. The authors
performed extensive experiments in Windows OS environ-
ments. Although sharing the same goal, our technical ap-
proaches differ significantly, particularly on how to obtain
user behavior information and how file system is monitored.
DeWare treats applications as a black box – passively monitors
the operating system and does not change to how applications
access the existing file systems. BLADE performs redirections
on browsers’ I/O requests. Our solution is designed for general
applications, not specific for the browser; thus we provide
monitoring mechanisms in the kernel level, which are external
and independent of the application. DeWare functions well
even without the optional semantic comparison that involves
an application-level component. Our experimental evaluation
approach is also different, including a nontrivial user study
with 21 participants.

The Alcatraz work [12], [34] also aims at malware defense,
but by detecting the kind of malware that infects victim
machines through user permitted installation. Botzilla [24],
on the other hand, detects malware at a later point after the
infection. Their approach is based on the analysis of traffic
pattern when a malware initiates contact with its maintainer.

There exist several system integrity solutions that may
bear superficial similarity to our work. Tripwire [30] is a
cryptographic-based solution that aims to detect tampering
in files by comparing the cryptographic hash values of file
systems. Baliga, Iftode, and Chen proposed a rootkit contain-
ment strategy Paladin [2] that is based on tracking processes’
hierarchical relationships and their corresponding file creation,
and using policies to restrict processes’ privileges to directories
and memory access. What sets our work apart is that i) we
correlation user inputs with file system monitoring; and ii) we
focus on distinguishing authorized and illegal file creation. It
is worth mentioning that in Paladin virtual machine monitor
(VMM) is used to enforce the integrity of the detection,
namely policy tables. VMM can be applied in our model to
relax the assumption of the trust on the operating system.

Many browser security solutions have been proposed, in-
cluding secure browsers and browser-as-an-OS [9], [36], se-
curing browser extensions [14], and browser mashup secu-
rity [35], [39]. Our work fundamentally differs from the
secure browser line of research, as our solution is completely
independent of the browser without any assumption on its or
its components’ integrity – yielding a more robust detection
technique.

VII. Conclusions and Future Work
We illustrated the analysis of user behaviors for protecting
the system integrity of a computer, in particular for detecting
the onset of malware infection via drive-by download. We
described the design, implementation, and use of DeWare
for host-based security protection against unauthorized system
events through enforcing dependency among events within the
operating system environments. We realized DeWare through
defining and enforcing access-control policies across multiple



domains (i.e., file system, process management, and user
inputs) within the operating-system environment. Our user-
behavior based policies are new and we demonstrated their
use in solving the practical DBD detection problem. DeWare
can be easily deployed and used in Windows.

Tracking the origin and provenance of critical system events
by enforcing the dependency between them and user actions
is a novel and effective approach for managing a secure host.
We envision that our system-level access control approach
can be generalized beyond file and process events within
OS environments. For example, the dependency between user
actions and outbound network traffic can be identified and
enforced for blocking stealthy malware in the future.

Acknowledgement We would like to thank the first author
of [15] for the information on malware websites.

References
[1] G. K. Baah, A. Podgurski, and M. J. Harrold. The probabilistic program

dependence graph and its application to fault diagnosis. In Proceedings
of the 2008 international symposium on Software testing and analysis,
ISSTA ’08, pages 189–200, New York, NY, USA, 2008. ACM.

[2] A. Baliga, L. Iftode, and X. Chen. Automated containment of rootkits
attacks. Computers & Security, 27(7-8):323–334, 2008.

[3] E. Chien. The new generation of targeted attacks, 2010. Keynote in
Recent Advances in Intrusion Detection (RAID).

[4] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-
by-download attacks and malicious javascript code. In Proceedings of
19th International World Wide Web Conference, 2010.

[5] M. Cruz. Most abused infection vector, 2008. Trend Micro. http://blog.
trendmicro.com/most-abused-infection-vector/.

[6] M. Egele, E. Kirda, and C. Kruegel. Mitigating drive-by download
attacks: Challenges and open problems. In Proceedings of the Open
Research Problems in Network Security(iNetSec), pages 52–62, 2009.

[7] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection
attacks. In Proceedings of the Sixth Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), 2009.

[8] D. A. Freedman. Statistical Models and Causal Inference: A Dialogue
with the Social Sciences. Cambirdge University Press, 2010.

[9] C. Grier, S. Tang, and S. T. King. Secure web browsing with the OP
web browser. In IEEE Symposium on Security and Privacy, May 2008.

[10] T. Jaeger, J. Liedtke, and N. Islam. Operating system protection for
fine-grained programs. In Proceedings of the 7th USENIX Security
Symposium proceedings, 1998.

[11] T. Jaeger, A. D. Rubin, and A. Prakash. Building systems that flexibly
control downloaded executable content. In Proceedings of the 6th
USENIX Security Symposium, July 1996.

[12] Z. Liang, W. Sun, V. N. Venkatakrishnan, and R. Sekar. Alcatraz: An
isolated environment for experimenting with untrusted software. ACM
Trans. Inf. Syst. Secur., 12:14:1–14:37, January 2009.

[13] P. Likarish, E. E. Jung, and I. Jo. Obfuscated malicious javascript detec-
tion using classification techniques. In Proceedings of 4th International
Conference on Malicious and Unwanted Software, 2009.

[14] M. T. Louw, J. S. Lim, and V. N. Venkatakrishnan. Enhancing web
browser security against malware extensions. Journal in Computer
Virology, 4(3):179–195, 2008.

[15] L. Lu, V. Yegneswaran, P. Porras, and W. Lee. Blade: An attack-agnostic
approach for preventing drive-by malware infections. In Proceedings
of 17th ACM Conference on Computer and Communications Security,
2010.

[16] www.malwaredomainlist.com.
[17] www.malwareurl.com.
[18] J. A. Morales, E. J. Kartaltepe, S. Xu, and R. S. Sandhu. Symptoms-

based detection of bot processes. In I. V. Kotenko and V. A. Skormin,
editors, MMM-ACNS, volume 6258 of Lecture Notes in Computer
Science, pages 229–241. Springer, 2010.

[19] A. Moshchuk, T. Bragin, and D. Deville. SpyProxy: Execution-based
detection of malicious web content. In Proceedings of the 16th USENIX
Security Symposium, 2007.

[20] Microsoft high-risk extensions. http://support.microsoft.com/kb/883260.
[21] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu.

The ghost in the browser analysis of web-based malware. In HotBots’07:
Proceedings of the first conference on First Workshop on Hot Topics in
Understanding Botnets, Berkeley, CA, USA, 2007. USENIX Associa-
tion.

[22] Apple QuickTime 7.3 RTSP Response Exploit, CVE-2007-6166, http:
//securityevaluators.com/content/case-studies/sl/.

[23] K. Rieck, T. Krueger, and A. Dewald. Cujo: efficient detection and
prevention of drive-by-download attacks. In Proceedings of the 26th
Annual Computer Security Applications Conference, ACSAC ’10, pages
31–39, New York, NY, USA, 2010. ACM.

[24] K. Rieck, G. Schwenk, T. Limmer, T. Holz, and P. Laskov. Botzilla:
detecting the ”phoning home” of malicious software. In Proceedings
of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages
1978–1984, New York, NY, USA, 2010. ACM.

[25] J. Shirley and D. Evans. The user is not the enemy: Fighting malware
by tracking user intentions. In Proceedings of New Security Paradigms
Workshop (NSPW), pages 22–25, September 2008.

[26] skape. Understanding windows shellcode. http://www.nologin.org/
Downloads/Papers/win32-shellcode.pdf, 2003.

[27] skape. Metasploit’s meterpreter. http://www.nologin.org/Downloads/
Papers/meterpreter.pdf, 2004.

[28] skape and J. Turkulainen. Remote library injection. http://www.nologin.
org/Downloads/Papers/remote-library-injection.pdf, 2004.

[29] C. Song, J. Zhuge, X. Han, and Z. Ye. Preventing drive-by download
via inter-module communication monitoring. In Proceedings of the
5th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), 2010.

[30] E. H. Spafford and G. Kim. The design and implementation of tripwire:
A file system integrity checker. In 2nd ACM Conf. on Computer and
Communication Security (CCS), 1994.

[31] A. Stamminger, C. Kruegel, G. Vigna, and E. Kirda. Automated spyware
collection and analysis. In P. Samarati, M. Yung, F. Martinelli, and
C. A. Ardagna, editors, ISC, volume 5735 of Lecture Notes in Computer
Science, pages 202–217. Springer, 2009.

[32] D. Stefan, C. Wu, D. Yao, and G. Xu. Cryptographic provenance
verification for the integrity of keystrokes and outbound network traffic.
In Proceedings of the 8th International Conference on Applied Cryptog-
raphy and Network Security (ACNS), June 2010.

[33] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. A.
Kemmerer, C. Kruegel, and G. Vigna. Your botnet is my botnet: analysis
of a botnet takeover. In E. Al-Shaer, S. Jha, and A. D. Keromytis,
editors, ACM Conference on Computer and Communications Security,
pages 635–647. ACM, 2009.

[34] W. Sun, R. Sekar, Z. Liang, and V. N. Venkatakrishnan. Expanding
malware defense by securing software installations. In Proceedings
of the 5th international conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, DIMVA ’08, pages 164–185,
Berlin, Heidelberg, 2008. Springer-Verlag.

[35] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
communication abstractions for web browsers in MashupOS. In ACM
Symposium on Operating Systems Principle (SOSP), pages 1–16. ACM
Press, 2007.

[36] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and
H. Venter. The multi-principal OS construction of the Gazelle web
browser. In Proceedings of the 18th Usenix Security Symposium, August
2009.

[37] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King. Automated web patrol with Strider HoneyMonkeys: Finding
web sites that exploit browser vulnerabilities. In Proceedings of the
Annual Symposium on Network and Distributed System Security (NDSS),
2006.

[38] H. Xiong, P. Malhotra, D. Stefan, C. Wu, and D. Yao. User-assisted
host-based detection of outbound malware traffic. In Proceedings of
International Conference on Information and Communications Security
(ICICS), December 2009.

[39] S. Zarandioon, D. Yao, and V. Ganapathy. OMOS: A framework for
secure communication in mashup applications. In ACSAC’08: Proceed-
ings of the 24th Annual Computer Security Applications Conference,
pages 355–364, December 2008.


