
1

DNS for Massive-Scale Command and Control
Kui Xu Member, IEEE, Patrick Butler, Sudip Saha, Danfeng (Daphne) Yao Member, IEEE

Abstract: Attackers in particular botnet controllers use
stealthy messaging systems to set up large-scale com-
mand and control. In order to systematically understand
the potential capability of attackers, we investigate the
feasibility of using domain name service (DNS) as a
stealthy botnet command-and-control channel. We de-
scribe and quantitatively analyze several techniques that
can be used to effectively hide malicious DNS activities
both at the host and network levels.

Our experimental evaluation makes use of a two-
month-long 4.6GB campus network dataset and 1 million
domain names obtained from alexa.com. We con-
clude that the DNS-based stealthy command-and-control
channel (in particular the codeword mode) can be very
powerful for attackers, showing the need for further
research by defenders in this direction. The statistical
analysis of DNS payload as a countermeasure has prac-
tical limitations inhibiting its large-scale deployment.

Keywords: DNS tunneling, command and control,
information theory.

I. INTRODUCTION

Botnet command and control (C&C) channel refers
to the protocol used by bots and botmaster (i.e., botnet
controller) to communicate to each other, e.g., for bots
to receive new attack commands and updates from
botmaster, or to submit stolen data. A C&C channel for a
botnet needs to be reliable, redundant, non-centralized,
and easily disguised as legitimate traffic. Many botnet
operators used the Internet Relay Chat protocol (IRC)
or HTTP servers to pass information. Botnet operators
constantly explore new stealthy communication mech-
anisms to evade detection. HTTP-based command and
control is difficult to distinguish from legitimate Web
traffic. The feasibility of email as a stealthy botnet com-
mand and control protocol was studied by researchers

The preliminary version of this work appeared in the 9th Interna-
tional Conference on Applied Cryptography and Network Security
(ACNS ’11), Lecture Notes in Computer Science 6715, pages 238-
254 [2]. This work has been supported in part by National Science
Foundation grants CNS-0831186, CAREER CNS-0953638, ARO
grant STIR-450080, and NSF S2ERC.

Yao is the corresponding author. Her email address is dan-
feng@cs.vt.edu and mailing address is 2202 Kraft Dr. KWII,
Virginia Tech, Blacksburg VA 24060. Xu, Butler, and Saha are Ph.D.
candidates at VT Department of Computer Science.

in [29]. In this paper, we systematically investigate the
feasibility of solely using Domain Name System (DNS)
queries for botnet command and control. DNS provides
a distributed infrastructure for storing, updating, and
disseminating data that conveniently fits the need for
a large-scale command and control system. The HTTP
protocol is for the end-to-end communication between a
client and a server. In comparison, DNS provides not
only a means of communication between computers,
but also systematic mechanisms for naming, locating,
distributing, and caching resources with fault tolerance.
These features of DNS may be utilized to fulfill a more
effective command-and-control system than what HTTP
servers may provide.

The decentralized nature of domain name systems
(DNS) with a series of redundant servers potentially
provides an effective channel for covert communication
of a large distributed system, including botnets. To
play the devil’s advocate, we focus on systematically
analyzing the feasibility of a pure DNS-based command-
and-control 1. Such a study has never been reported in the
literature. Our C&C system is compatible with existing
DNS infrastructure without enlisting any Web or special-
purpose servers. The DNS channel is aided by being a
high traffic channel such that data can be easily hidden.
As virtually anyone can create and register their own
domain names (if available) and DNS servers, it is a
system that can be easily infiltrated by hackers and botnet
operators.

DNS tunneling is a technique known for transmit-
ting arbitrary data via DNS protocol, e.g., DNScat and
DeNiSe. One application of DNS tunneling is to bypass
firewalls, as both inbound and outbound DNS connec-
tions are usually allowed by organizational firewall rules.
Because DNS is often overlooked in current security
measures, it offers a command-and-control channel that
is unimpeded. Because nearly all traffic requires DNS to
translate domain names to IP addresses and back, simple
firewall rules cannot easily be created without harming
legitimate traffic. Recently, Dietrich and colleagues re-
ported Feederbot that used DNS as a communication
channel for C&C traffic [5]. However, Feederbot fails

1Other C&C protocols (e.g., HTTP) also involve DNS queries for
name translation, but they do not use DNS for command and control.

2

to utilize any distributed storage and query mechanisms
offered by DNS. This botnet simply tunnels its command
and control traffic by sending it in DNS format for
the end-to-end communication between bots and the bot
master. The domains used by them are not registered and
cannot be resolved.

While using DNS tunneling for command and control
has been observed [13], it was still unclear how effective
and feasible to use DNS to maintain stealthy large
botnets. Specifically, three items to consider in order to
evade detection for attackers are

1) Query activities. When and how frequent do bots
issue DNS queries to pull updates from or submit
data to the bot master? How to modify the victim’s
operating system to implement automatic query
strategies?

2) Domain names. What domain names to use for
communication and how to synchronize the gener-
ation of new domain names between bots and the
bot master?

3) DNS payload. How to evade the detection through
deep packet inspection by defenders on DNS pay-
load?

Our work systematic addresses these questions using
system engineering, networking, and data mining tech-
niques. Our technical contributions are summarized as
follows.

• We describe techniques for hiding query activities,
including i) piggybacking query strategy – a bot
blends its (outbound) DNS queries with legitimate
DNS queries and ii) exponentially distributed query
strategy – a bot probabilistically distributes DNS
queries so that inter-arrival times follow an expo-
nential distribution. We demonstrate the ability for a
bot to send piggybacking DNS traffic through traffic
sniffing in Linux.

• For automatic domain flux, where the domain
names used for communications in the botnet are
changed frequently and in a synchronized fashion
across all bots and their controllers, we describe
a practical automatic domain flux method with
Markov chain, and experimentally evaluate it with
1 million domain names from alexa.com.

• Statistical methods can be used by defenders to
detect anomalies in the content of DNS packets,
through comparing the probability distributions of
normal DNS traffic and tunneling traffic. We evalu-
ate these methods as countermeasures and point out
the practical limitations that hinder the large-scale
deployment by defenders.

We perform comprehensive experiments to evaluate

the behaviors of proposed query strategies in terms of
how quickly new commands are disseminated to a large
number of bots. Our analysis utilizes a 4.6GB two-
month-long wireless network trace obtained from an
organization. We conclude that the DNS-based botnet
command-and-control channel is feasible, powerful, and
difficult to detect and block.

Organization We describe the basic DNS tunneling
mechanisms in Section II. We present new strategies for
improving the stealth of DNS-based command and con-
trol in Section III. Automatic domain flux is discussed in
Section IV. We describe a countermeasure that requires
examining the content of DNS packets and performing
statistical analysis in Section V. Related work is given
in Section VI. Conclusions and open problems are given
in Section VII.

II. COMMUNICATION MODES

In this section, we describe protocols that pass mes-
sages over the DNS between distributed entities, and
illustrate the ease of setting up large-scale command-
and-control via DNS. We describe two forms of com-
munication modes: codeword mode and tunneled mode.
Codeword communication allows one-way communica-
tion from botmaster to a bot client, which is suitable
for issuing attack commands. Tunneled communication
allows for the transmitting of arbitrary data in both
directions between bot and botmaster, which may be
used for both issuing commands and collecting stolen
data. The former only requires the ability to set a
particular domain name response, this could be done via
any free DNS service, while the latter requires setting
up an authoritative domain server.

The controller of the botnet first needs to create a
domain or subdomain, which is administered from a
special DNS server. This DNS server waits for special
name lookups, which it then translates into incoming
data. The DNS server then responds with the appropriate
data using the agreed-upon semantics. We assume that
the botnet controller (i.e., botmaster) has access to the
authoritative domain name server for some domains or
sub-domains. Bots across the Internet frequently receive
commands and updates from a botmaster and launch
attacks accordingly, as well as submit stolen data to
the botmaster. We give brief background information on
DNS records.

DNS Resources Records The DNS system allows a
name server administrator to associate different types of
data with either a fully qualified domain name or an IP
address. To send a message to a bot, an adversary can
store data in any one of these types of records.

3

• A record specifies an IP address for a given host
name.

• CNAME and MX records can point to textual data
representing the alias or mailing host of a particular
host name.

• TXT records are designed to store arbitrary textual
data up to 255 characters.

• EDNS0 record allows storing up to a 1280 byte
payload [24]. EDNS0 was introduced in RFC261 in
order to extend the DNS protocol. When a capable
server or client encounters this field, it can decode
the packets, allowing several improvements to the
basic DNS protocol. These features include larger
UDP packet size, a list of attribute value pairs, and
several extra bytes for commonly used flags.

A. Codeword Mode

The codeword mode is a stealthy communication
mechanism. It requires a botnet operator to decide upon
a set of agreed upon codewords a priori. Each codeword
represents a specific type of commands or attacks. The
codeword appears in the DNS query as an innocent host-
name, for example codeword.domain.com. This
hostname may be stored as any type of record (e.g. A,
MX, CNAME). A request for an A or CNAME record tends
to be the most common and therefore a preference should
be given to these records types so that queries would
appear most like legitimate traffic. The client queries
codeword.domain.com, and waits for a particular
value in the server’s response. Upon receiving the query,
the DNS server (controlled by the botnet operator)
returns the pre-set response that contains command infor-
mation. If the codeword corresponds to denial-of-service
(DoS) attacks, then the response may represent a target
of DoS attacks. If the codeword corresponds to update,
the client may contact the IP address returned for updated
code or other instructions.

It is important to note that the codeword can be chosen
arbitrarily and does not need to correspond to a specific
host or service. The codeword method allows a stealthy
one-way commanding system. It can effectively evade
detection approaches based on non-conforming packet
sizes [13], i.e., DNS packets whose sizes are outside the
range of [28, 300] bytes. Codewords may be arbitrarily
generated, or may be common service names such as
www, mail, or ftp. In the latter case, packet statistics
cannot be performed to find anomalies.

B. Tunneled Mode

The purpose of tunneled mode is to allow the two-way
transfer of arbitrary binary data between a server and a

• Upstream: Ask CNAME for:
NBSWY3DPFQQHO33SNRSA000.domain.com

• Downstream: CNAME points to:
NBUSYIDCN5ZXG000.domain.com
3600
CNAME
NBSWY3DPFQQHO33SNRSA000.domain.com

Fig. 1. Example data packets sent to and from a server in tunneled
mode: To server: “hello, world”. From server: “hi, boss”. In this
example, the domain server for domain.com is the malicious server
and the response has one hour TTL.

client. This mode is referred to as tunneled mode, as one
can tunnel streaming data over this DNS communication
method.

• Upstream communication is for a client to submit
data to a (malicious) domain server. The client
submits the data as a CNAME query by i) encoding
the data using a base32 encoding, ii) using the
encoded string to construct a host name, and iii)
send a CNAME DNS query. An example is shown
in Figure 1.

• Downstream communication is for the server to
issue commands to clients. Upon receiving the
above query from the client on a hostname h, the
server i) encodes the response as base32 data, and
ii) constructs and returns a CNAME record for h. An
example is shown in Figure 1.

To prevent DNS caching from disrupting the commu-
nications, the server may set a short time-to-live (TTL).
This tunneling method gives an operator the most options
after implementation as the data stream can be arbitrary.
Because of the arbitrary payload, the distribution of
packet bytes may differ significantly from conventionally
DNS payload. We perform more analysis in Section V.

DNS protocol does not allow the server to initiate a
connection with the client, the client needs to continually
pull updates from the server. Both the tunneled mode
and codeword mode require clients to frequently pull up-
dates from name servers by querying the corresponding
botnet’s domain. Straightforward querying patterns are
easy to detect (e.g., periodically sending DNS queries)
and susceptible to simple aggregate analysis, such as
counting DNS queries for each unique domains and iden-
tifying domains with abnormally large query volume at
the host, local area network, or internet service provider
levels. We analyze several simple-yet-effective methods
for bots to hide their DNS traffic in the next section.

Were DNSSEC to become widespread it would pro-
vide both an advantage to, as well as a disadvantage to, a
potential attacker. In the attacker’s favor is the increased

4

usage of DNS over TCP and the extra packet size and
reliability provided. In return, the attacker would lose
easy access to many protected name servers that might
have otherwise been compromised. However, given that
an attacker can legally purchase their own domains and
that some DNS operators place their signing keys on the
DNS itself, it is unclear how much protection DNSSEC
would offer for stopping DNS based C&C channels.

III. QUERY STRATEGIES AND QUANTITATIVE

EVALUATION

In this section, we play the devil’s advocate and
describe and experimentally evaluate new techniques
for hiding DNS query activities on a host, in order to
defeat anomaly detection that targets abnormal temporal
patterns. The proposed strategies are useful for both
the tunneling and codeword modes. We quantitatively
analyze the detection countermeasures in Section V.

A. Exponentially Distributed Query and Piggybacking
Query

We describe an exponentially distributed query strat-
egy and a piggybacking query strategy, both can be
used to hide bot activities while communicating with
a botmaster in a timely fashion. In our experiments in
Section III-B, we provide an experimental evaluation on
both query methods.

Exponentially distributed query strategy The Poisson
process is previously believed to be a suitable model
for representing stochastic processes where arrivals are
independent on each other, i.e., memoryless. In [23],
client-side DNS request arrivals are modeled by Poisson
processes with exponential random variables with differ-
ent rates λ (e.g., 2.63 queries/hour for www.google.
com and 0.78 queries/hour for www.cnn.com). In our
exponentially distributed query strategy, a bot probabilis-
tically distributes DNS queries so that their intervals
follow an exponential distribution with a parameterized
arrival rate λb. Because of the memoryless feature of
the model, the bot does not need to store the previous
communication history. One simple way to implement
this query strategy is as follows.

1) The bot sends a DNS query;
2) It computes an interval t by drawing from an expo-

nential distribution with parameter λb (hardcoded
or dynamically generated);

3) The bot sleeps for t, and repeats from Step 1.
There is a trade-off between being stealthy and com-

munication efficiency. We study a bot’s strategy in find-
ing an optimal λb in Section III-B, given the host-wide
DNS query rates.

Piggybacking query strategy Many (legitimate) web-
sites contain content from multiple independent domains
due to third-party content delivery, advertisements, or
content mashup. Therefore, multiple DNS queries are
usually issued by a host with temporal proximity. The
composition of domains is usually dynamic. The pig-
gybacking query strategy leverages this fact. A bot
passively listens on the host’s DNS traffic or name-
translation related function calls and sends DNS queries
when legitimate DNS queries are being made. Thus, the
bot’s query is blended among a group of legitimate DNS
queries.

In the piggybacking query strategy, a bot’s com-
munication with the controller is constrained by the
host’s activities. Therefore, we focus on analyzing its
timeliness, in terms of the dissemination efficiency of
new command and data. We define time-to-communicate
(TTC), minimum TTC , and maximum TTC. Minimum
TTC is a threshold aiming to prevent a bot from sending
queries too frequently, whereas maximum TTC is a
threshold for keeping the liveliness of the communication
between the bot and the bot master in case of an inactive
host.

Definition 1: Time-to-communicate (TTC) is defined
as the time interval between two network connections
(DNS queries in our setting) of a bot for retrieving
information from or submitting data to the botmaster
server.

Definition 2: Minimum TTC (e.g., min-TTC) is the
lower bound of time-to-communicate, whereas maxi-
mum TTC (e.g., max-TTC) is the upper bound of time-
to-communicate. Let t and t′ be the timestamps of two
adjacent DNS queries that the bot sends. Then, t and t′

need to satisfy the following constraints.

min-TTC ≤| t− t′ |≤ max-TTC
In other words, a bot does not send any DNS query,
if the bot’s previous DNS query was sent within the
minimum TTC. At time t, a bot needs to send a DNS
query to check for update from the bot master, if the
interval between t and the time when the bot sends
the previous DNS query equals the maximum TTC.
These two parameters put constraints on the bot’s query
frequency.

In this piggybacking mode, bots need to know when
a legitimate DNS query is made. There are different
approaches for obtaining this information.

1) Traffic sniffing. Because DNS server runs on port
53, an outgoing packet from the host (client) to
a destination IP on port 53 is an indication of
an outbound DNS request. The bot may sniff the
network traffic to identify the right moment to

5

issue its DNS queries. The bot may either directly
program with pcap library or call existing tools
such as iftop (in Linux), which uses pcap. This
approach gives a cross-platform and system-wide
monitoring solution, which covers the DNS queries
from any application.
We have implemented this approach in Linux.
With the pcap library, the traffic sniffing is rel-
atively straightforward to realize with a small
piece of code. We attach the code to host
machine’s network devices, which usually re-
quires root privilege. In the code, function pcap
findalldevs() returns all available network
devices, pcap open live() opens a network
device, and pcap loop() performs the traffic
sniffing. The program needs root privilege to run. It
filters all TCP and UDP packets, both of which are
possible protocols for carrying DNS requests, and
reports the timestamps whenever a DNS request is
identified. It also distinguishes the bot’s own DNS
query from legitimate ones, so that piggybacking
is only performed on legitimate DNS queries. This
prototype demonstrates a feasible way for our
proposed piggybacking query strategy.

2) Process hooking. Another approach is to hook
DNS-related function. In Linux, bots can
watch the calls for DNS-related APIs such as
gethostbyname() function in libbind
library. gethostbyname looks up all IP
addresses associated with a host name and is
implemented in the resolver library. One way
of hooking into the API function is for bots
to register a .so file (shared library) to the
LD PRELOAD environmental variable, which
may or may not require root. In the registered
.so file, the target API function is replaced by
the attacker’s version which can notify the bot
whenever this function is called. Similarly, in
Windows [11] gives a solution, Detour, which
has the ability to perform function interception
and rewriting. Compared with traffic sniffing
approach above, this method is less desirable, as
it is process-specific. The hooking is done in the
process memory. The original shared library is
not changed, which is different from approach 3
below.

3) Rogue library. Alternatively, attackers may replace
the network related shared libraries in the OS with
an instrumented version (requiring root), so that
the shared library is changed permanently on the
hard disk. The rogue library is loaded by any
application. It reports every DNS request to the

bot. This approach is system wide, so the change
is once-and-for-all.

B. Experimental Evaluation

The goal of this evaluation is to understand how
effective the aforementioned stealthy query strategies
are. Specifically, how soon botmaster disseminates com-
mands to all or most bots; and how soon stolen data is
harvested bots by botmaster? We do not allow bots to
submit DNS queries at will, in order to avoid detection.
We only allow bots to either piggyback their queries with
legitimate DNS queries from the victim host, or follow
a special inter-query distribution.

Our implementation uses the Python Modular DNS
Server (pymds) and a specially designed plugin to
respond to DNS requests. PyMDS implements the full
DNS protocol while allowing the user to implement a
programmatic and dynamic backend to generate the DNS
records returned. Instead of returning records from a
static file, PyMDS allowed for the decoding of code-
words and the creation of appropriate responses.

To evaluate the piggyback query strategy, our dataset
is a two-month-long network trace obtained from a
university and collected with the IPAudit tool. The
trace covered users from three departments and several
research and education centers. (All machines were
connected to the Internet wirelessly, i.e., there was no
wired connection.) The raw dataset is 4.6GB. We identify
and analyze the DNS traffic on port 53 of remote desti-
nations. For data preprocessing, we select the most active
200 users from the our dataset by partitioning users by
their (static) MAC address and sorting users by their
traffic volume. We simulate the piggyback DNS-query
strategy by having a bot send outbound communication
whenever a host issues a UDP datagram on remote host
port 53. Figure 2 shows the percentage of packets whose
TTC is above the given minimum TTC in a 10-hour-
span. Three minimum TTC values are analyzed: 1, 30,
and 60 minutes.

Results in Figure 2 show that the piggybacking query
strategy is quite effective – at least 80% of bots are
able to communicate with the botmaster within 2 hours.
Clearly, there is a trade-off between minimum TTC and
how soon bots communicate with the headquarter. For an
active botnet where commands may change every day,
minimum TTC may be set to 60 minutes.

Piggybacking case studies We select four hosts from
our dataset to simulate the piggybacking behaviors on
them and evaluate the mean time-to-communicate. The
four hosts are the first, 50-th, 100-th, and 200-th most
active hosts according to their total traffic volume during

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

P
er

ce
nt

 C
om

m
un

ic
at

ed

Actual Time to Communicate (Hours)

1 Minute
30 Minutes
60 Minutes

Fig. 2. Cumulative density function on the percentage of bots that
have successfully sent at least one DNS query by piggybacking after
a time period (X-axis). Each line corresponds to a different minimum
TTC (1, 30, and 60 minutes). The figure shows a 10-hour span.

Minimum	 Time	 to	 Communica.on	 (in	 hours)	

	 Ac
tu
al
	 M

ea
n	
Ti
m
e	
to
	 C
om

m
un

ic
at
e	
(in

	 h
ou

rs
)	

Fig. 3. Case studies on the time-to-communicate for four hosts with
varying active traffic volume, given minimum TTC values shown on
X-axis.

the 2-month period. Figure 3 plots how the mean TTC
changes with the minimum TTC in a piggybacking
query strategy, with the maximum TTC set to infinity.
The results show that bot’s communication efficiency is
higher on more active hosts as expected. A maximum
TTC (e.g., 48 hours) may be set to ensure periodic
communication of the bot. Mean time-to-communicate
grows with minimum TTC and is almost always greater
than minimum TTC. The relationships for the studied
are shown in Figure 4.

For the exponentially distributed query strategy, our
goal is to identify an optimal range for λb – bot’s
query arrival rate on a host. We analyze the difference
between two distributions: i) host-wide inter-arrival time
for regular DNS queries with arrival rate λ, and ii) inter-
arrival time for the bot-mixed DNS queries, i.e., new
arrival rate λ + λb, where λb is the bot’s query rate.

We use Kolmogorov-Smirnov (KS) test, which is

Minimum	 Time	 to	 Communica.on	 (in	 hours)	

	 Ac
tu
al
	 M

ea
n	
Ti
m
e	
to
	 C
om

m
un

ic
at
e	
(in

	 h
ou

rs
)	

Fig. 4. Mean TTC vs. minimum TTC for 200 hosts.

suitable for comparing unbinned distributions that are
functions of a single independent variable as in our
case [8]. In our KS test, a higher p value ([0, 1])
represents a higher resemblance between the normal
and the bot-mixed distributions. To simulate the Poisson
process, we use two estimated λ values – high arrival
rate of 131.5 queries/hour and low arrival rate of 39
queries/hour – based on results from [23].

Intuitively, a higher legitimate DNS query rate makes
it easier for a bot to blend in its traffic. Our results in
Figure 5 and Figure 6 confirm the intuition. High rate
λ = 131.5 is shown in Figure 5, and low rate λ = 39 in
Figure 6, where each line represents a different amount
of data collected: 10, 24, 48, and 100 hours. X-axis
is the varying λb value. The horizontal line represents
a 5% cut-off threshold that may be used for detecting
anomalies.

Our results show that longer traces make it easier
for defenders to discern data. Higher λ tolerates higher
λb, allowing bots to communicate more often. Given a
p value threshold, the KS test can be used to find a
suitable λb. The experiments show that even when data
is collected for long periods of time, such as 100 hours,
it can be difficult to detect bots using a small λb. In the
case of less active hosts, λb can be come undetectable at
4 requests per hour, and with more active hosts λb can
be as high as 10 requests per hour.

For the defender to run the KS test on DNS logs for
anomaly detection as shown above, one may need to
collect logs from the suspicious host for a substantial
amount of time (e.g., 100 hours). This procedure may be
performed periodically or as needed. The logs may be
discarded after the test. To save space, the information
to be logged by the defender can be represented as a
vector of timestamps when DNS queries are observed.

Summary The experiments suggest that both the pig-

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P-
Va

lu
e

of
 K

S-
Te

st

DNS Requests per Hour b

%5 Cutoff
48 Hours

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P-
Va

lu
e

of
 K

S-
Te

st

DNS Requests per Hour b

%5 Cutoff
10 Hours

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P-
Va

lu
e

of
 K

S-
Te

st

DNS Requests per Hour b

%5 Cutoff
24 Hours

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P-
Va

lu
e

of
 K

S-
Te

st

DNS Requests per Hour b

%5 Cutoff
100 Hours

(a)	 10	 hours	 (b)	 24	 hours	

(c)	 48	 hours	 (d)	 100	 hours	

Fig. 5. KS test results between queries with the arrival rate of
λ = 131.5 queries/hour and bot-mixed queries of λ + λb (X-axis).
Four runs of simulation lasting for 10, 24, 48, and 100 hours are
shown in (a), (b), (c), and (d), respectively.

(a)	 10	 hours	 (b)	 24	 hours	

(c)	 48	 hours	 (d)	 100	 hours	

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P-
Va

lu
e

of
 K

S-
Te

st

DNS Requests per Hour b

%5 Cutoff
10 Hours

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50

P-
Va

lu
e

of
 K

S-
Te

st

DNS Requests per Hour b

%5 Cutoff
24 Hours

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50

P-
Va

lu
e

of
 K

S-
Te

st

DNS Requests per Hour b

%5 Cutoff
48 Hours

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P-
Va

lu
e

of
 K

S-
Te

st

DNS Requests per Hour b

%5 Cutoff
100 Hours

Fig. 6. KS test results between queries with the arrival rate of
λ = 39 queries/hour and bot-mixed queries with λ + λb (X-axis).
Four runs of simulation lasting for 10, 24, 48, and 100 hours are
shown in (a), (b), (c), and (d), respectively.

gybacking and exponentially-distributed query strategies
can be effective in allowing the majority of bots to
communicate in a reasonable time frame without being
detected. The exponentially-distributed query strategy
gives the bot slightly more control over when to query.
On the other hand, the optimal query rate λb depends on
the host-wide query rate, which may change.

IV. DOMAIN GENERATION WITH MARKOV MODEL

Long-lived domain names are easy to manage and
cheaper to maintain, however, they are susceptible to

aggregate analysis. Domain flux refers to using short-
lived domain names in botnet C&C [20]. Domain flux
typically requires bots and botnet controller to inde-
pendently derive new domain names periodically. In
this section, we play the devil’s advocate and describe
methods that a botnet controller may use to generate
domain names for domain flux.

To have short-lived domains, a static approach is to
have a botmaster generate an ordered list of domain
names and pack the list in malware code for bot to
look up, which is similar to the use of a one-time
password pad for authentication. However, there are two
disadvantages for this method: large storage and high
code-homogeneity – long lists of domain names shared
by all bot code making the code susceptible to signature-
based malware detection. Having the botmaster sends to
all bots the next domain name during the current epoch
is not an acceptable solution, because a communication
failure may prevent the bots from learning the correct
name for the next epoch.

One simple approach is for bots and their controller
to independently compute the hash value of an incre-
mental counter and a shared secret at each epoch, i.e.,
H(counter‖secret), where H is a one-way collision-
resistant hash function. For example, the bot and bot-
master may share a secret, which is concatenated with
the current epoch, e.g., current date, to derive a hash
value for short-lived domain names, e.g., H(s, current-
date). The clocks on all bots and the bot master have
to be synchronized, especially when the epoch is short.
This timestamp-based domain-generation algorithm was
observed in several botnets such as Torpig [31] and Con-
ficker worm [21], [22]. An alternative domain-generation
mechanism is based on the Lamport one-time password
authentication scheme [15]. Technical issues associated
with hash-based domain names such as domain length,
collusion and unavailability of domain names can be
easily dealt with and are omitted.

We describe a useful technique that a botnet controller
may use for automatically generating realistic-looking
domain names, which is more sophisticated than the
previous hash-chain based method. We utilize techniques
for automatic text generation, such as the ones used by
SCIgen [25].

In automatic text generation or in applications such as
finding genes similar to a pool of genes, Markov Chain
models are often successfully used. Markov chain model
makes use of the probabilities with which one entity
follows another. We use the same Markov chain model
to model letter transitions in domain names. We use 1
million top visited domain names from alexa.com
collected on May 25, 2010 to generate the transition

8

probabilities and thereby the Markov chain of 37 char-
acters (26 alphabets, 10 digits, 1 hyphen - that occur in
domain names). To make the length of the generated
domain names to be consistent with legitimate ones
(in terms of their probability distributions), we take
the length from the legitimate length distribution. The
length distribution of 1 million domain name is shown
in Figure 7.

Fig. 7. Length distribution of 1 million legitimate domain names,
domain index on x axis, number of domains at y axis.

Given the Markov chain (MC) models and the length
distribution, new domain names can be generated. We
show some of them along with some hash based domain
names in Table I. Hash based names look random, and
have digits. MC-based names have English word patterns
in the names.

Fig. 8. A Markov chain example for a simple model with five
characters in the alphabet - a,b,c,1,2.

Figure IV shows a simple Markov chain(MC) for only
five characters – a, b, c, 1, and 2. Any generated domain
name of a given length corresponds to a random walk
of that length in this chain.

The domain generation has to be independent, con-
sistent, and synchronized. These can be achieved in this

Markov chain based Hash based
1 x-airnarienghy 93mp3com
2 islegawhosh qqdgdcom
3 cnewallonderc 58qqcomcn
4 yasesaug juegos666com
5 veadgeupot c8048com
6 iga-ngakhodo yishu666info
7 yarchma xinwen666com
8 ialeparteb z6zzcom
9 beatersashinehu nr33com

11 iyerishopes 2107665188
10 nollanguilcw9xb wwwli

TABLE I
COMPARISON OF DOMAIN NAMES GENERATED BY HASH

FUNCTION (RIGHT) AND MARKOV CHAIN (LEFT).

MC-based approach by using the same random number
generator and the same initial seed. Generators like
linear congruential generator may be used in this respect.
The botmaster has to communicate with the bots the
following items:

• the Markov probabilities for state transitions,
• parameters for random number generator,
• parameters for the initial seed and timing interval.
We compute the cosine similarity between MC-based

domains and 5,000 legitimate domains. We also apply
the same metric to new legitimate domains with respect
to the same 5,000 domains, in order to compare the
quality of MC-based domain names. The cosine simi-
larity is defined in the following manner. Each domain
name is represented as a vector X = [X1X2...X37]T

of 37 features; the feature set includes 26 letters in the
alphabet, 10 digits and the character ’-’. The cosine
similarity S between two domain names A and B,
represented as vectors, is defined as,

S(A,B) =
∑37

i=1 Ai ×Bi√∑37
i=1 A2

i ×
√∑37

i=1 B2
i

(1)

To compute the similarity of a particular domain name,
DomX to the available 5000 legitimate domain names
DomL1, DomL2, ..., DomL5000, we take the average of
the individual cosine similarities between DomX and
DomLi. We compare the quality of a MC based domain
name and a legitimate domain name with respect to
their similarity to the list of 5000 most visited domain
names. The results are shown in Figure 9. We observe
that the MC-based domains and legitimate domains have
comparable similarity values.

We also measure the cosine similarity for hash-based
domain names. Figure 10 shows the distinction between
Markov chain generated names and hash generated

9

Fig. 9. Cosine similarities between the 5,000 most visited domains
and 100 Markov chain generated domains (blue checks) vs. 1,000
legitimate domains (red dots), respectively.

names. Clearly, MC generated names have a higher
similarity to legitimate domain names than their hash
alternatives.

Fig. 10. Cosine Similarity to 5,000 most visited domains for
100 Markov chain generated domains (blue checks) vs. 100 hash
generated domains (red dots), respectively.

Botnets have been observed to use subdirectories
for communication, e.g., www.example.com/
products,www.example.com/home. However,
for a DNS-tunneling based channel, subdirectory
approach does not apply, as the botmaster does not run
a Web server and the communication is based solely
on domain name systems. Consider that botnets often
use third-level domains instead of subdirectories, Dagon
proposed to use the ratio between second-level domains
(SLD) and third-level domains (3LD) to identify botnet
traffic [3].

When using short-lived domain names, the bot-
master needs to consider whether to use the gen-
erated string for second-level or third-level domain
name. Using as 3LD makes it easy for botmaster
to update the DNS records of a domain, which is
static and long-lived. However, it may be detected by
the ratio-based method mentioned above. Using short-
lived SLDs (e.g., 1a735009.com,635b5790.net,
9e30f817.org) would likely render the ratio-based
detection ineffective. Its downside might be that the SLD
may not always be available, although automatically

generated domains may be less likely to collide with
existing domains.

From the attacker’s point view, while generating real-
istic looking domain names, it is reasonable to generate
only the SLD’s and pick some TLD suitably or randomly.
Compared to millions of SLD’s, the list of TLD’s is very
small. However, the SLD and TLD names are not entirely
independent; the character-pair distribution of the SLD’s
may vary, particularly when the TLD includes country
codes (ccTLD). For example, there are many words (in
pinyin 2) from Chinese language in SLD’s with .cn
TLD; the character-pair probabilistic distribution of these
SLD’s should be different from the general character-pair
distribution of SLD’s. The attacker can make use of this
dependency to generate more realistic looking domain
names. E.g., the attacker can construct an MC based
on Chinese character-pair distribution only to generate
Chinese word based SLD’s for .cn TLD, or an MC
based on Arabic character-pair distribution to generate
SLD’s for .om TLD (for Oman).

Domain name registration. We expect botnet con-
trollers to create and register the domains to be used,
which allows them to take advantage of the existing
and decentralized DNS infrastructure for scalability, fault
tolerance, and storage 3. In order to register a new
second level domain associated with a top level domain
(such as .com), a registrant (e.g., a botnet controller)
needs to apply to a domain name registrar and pay the
(annual) fees. The botnet controllers may specify their
own IP addresses of authoritative name servers to host
the domain’s resource records. This approach gives them
the flexibility in managing the command and control
operations and customizing the DNS traffic. There is
monetary cost associated with registering a new second
level domain name. A botnet controller may create new
third level domains (3LD) with a fixed SLD. Sites like
dyndns.org make it easy to create lots of domains of
the form x.dyndns.org. For defenders, it is difficult
to block SLD domains such as dyndns.org because
legitimate sites use them as well.

Summary on domain flux Markov-chain based do-
main names achieve an average cosine similarity of
0.138 which is very close to the similarity of legitimate
names evaluated. This value is much higher than the
similarity of 0.036 achieved by hash generated domains
under the same experimental condition. This observation
indicates that it is possible to generate near-realistic
looking domain names that closely follow legitimate byte

2Pinyin is for entering Chinese characters into computers.
3In contrast, domains used by Feederbot cannot be resolved by

public resolvers [5], as they were not registered.

10

distribution.

V. DEEP PACKET INSPECTION

In this section, we describe and experimentally eval-
uate a countermeasure against DNS-based stealthy mes-
saging systems that requires deep packet inspection and
statistical analysis. Deep packet inspection examines
packet payload beyond the packet header. Specifically,
we quantitatively analyze the probability distributions of
(bot’s) DNS-packet content.

We describe and evaluate a concrete countermeasure
against stealthy DNS channels through statistically ana-
lyzing traffic content. To compute the byte distribution in
normal and tunneling traces, we use the Jensen-Shannon
(JS) Divergence DJS , which is a common metric for
quantifying the difference between two probability dis-
tributions P and Q, and is a commutative version of
Kullback-Leibler divergence of Q from P . A lower
DJS value means a higher similarity in two probability
distributions. The JS Divergence is particularly suited in
situations where the random variable is discretized.

M =
1
2
(P + Q) (2)

DKL(P,Q) =
n∑

i=0

pi log
pi

qi
(3)

DJS =
1
2
(DKL(P,M) + DKL(Q,M)) (4)

We experimentally compare DNS packet traces
recorded on a host, specifically, on how different tun-
neling packets are from legitimate ones in terms of
the probability distribution of content. Such probability
measures may be taken on a per-host or per subnet basis,
however since a filter based on these methods must only
keep an probability distribution of the bytes in a packet,
no identifying information can be inferred. In this way
privacy concerns can be kept at a minimum.

In the following tests, three normal DNS traces were
recorded and one tunneling DNS trace via tunneled mode
was recorded. Each trace corresponds to an hour-long
network activities on a host. Sizes of our traces are
862KB for the tunneling trace, 823KB for normal trace
1, 699KB for normal trace 2, and 153KB for normal
trace 3. In addition, the tunnel trace contained 191 A
queries and 1433 TXT queries, while the normal trace
1 contained 1750 A queries and no TXT queries, and
normal trace 2 contained 2417 A queries and no TXT
queries. Tunneling trace contains encrypted Secure Shell
(SSH) activities, i.e., SSH traffic through DNS tunneling.

DNS or DNSSEC does not provide query confidential-
ity, i.e., the DNS query payload is not required to be
encrypted.

When the entire packet including header is analyzed,
we find that the divergence of normal traces (normal
1 and normal 3) is large (not shown). To get a more
stable comparison, we drop the UDP headers and only
observe the DNS payload. Figure 11 shows how the
Jensen-Shannon divergence changes as more tunneling
message carrying packets are mixed in. The X-axis is
the ratio of tunnel trace to normal trace 1.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Je
ns

en
-S

ha
nn

on
 D

iv
er

ge
nc

e

Ratio of Tunneled Data to Normal Data

Normal1 v. Normal1+Tunnel
Normal1 v. Normal2
Normal1 v. Normal3

Fig. 11. Divergence computed from the payload of UDP datagrams.
Horizontal lines represent the divergence of normal streams. The red
line is the divergence of mixed traces.

Our results show that in our experiments a divergence
threshold of 0.015 can sufficiently distinguish normal
traces from mixed traces containing more than 30%
bot queries. These results indicate that analyzing DNS
payload as a countermeasure is more effective than
analyzing the entire DNS datagram with JS divergence.
While DNSSEC does not specifically require DNS over
TCP, it is commonplace because DNSSEC adds to the
length of DNS packets and many deployed systems
cannot handle these larger UDP packets. Therefore the
data collection must be done with consideration to the
TCP protocol. The TCP protocol has a number of bytes
that iterate and change over each packet, so the defender
must take extra care to only analyze the DNS payload
and not the TCP headers as well as the key authentication
headers which may skew the distribution of the data.

However, there are practical issues and constraints
when executing the statistical detection by defenders in
large scale, besides the obvious storage and computation
overheads. For example, many legitimate applications
use DNS for storing non-IP data, such as public keys
in the DomainKeys protocols [6], [7]. The anomaly
detection analysis may result in false alarms.

Furthermore, traffic in our codeword mode described

11

in Section II-A is statistically indistinguishable from
legitimate DNS traffic. Thus, we conclude that DNS-
based botnet command-and-control is both feasible and
practical.

VI. RELATED WORK

Despite the fact that DNS tunneling is known for
bypassing firewalls and encapsulating arbitrary data such
as SSL traffic [9], [4], Exploring DNS protocol as
a practical command-and-control channel and identify-
ing its limitations have not been scientifically studied.
Various proof-of-concept botnet command and control
systems via unconventional media exist, such as via
bluetooth [28] and social networks [14]. In comparison,
our work is useful beyond the specific DNS-based com-
munication channel studied in two aspects.

• We present new quantitative techniques and eval-
uation regarding the detection and construction of
general-purpose distributed stealthy communication
systems, including temporal strategies for making
stealthy communication and statistical content anal-
ysis.

• We give a practical technique that is useful in
domain flux from the attacker’s perspective, namely
Markov chain based domain name generation.

For DNS-based anomaly detection, Karasaridis et
al described the use of the Kullback-Leibler distance
to measure byte distribution in DNS datagrams [13].
Dagon [3] proposed to quantify how anomalous the num-
ber of queries for each domain name during an hour in a
day with Chebyshev’s inequality and distance measures
previously used for examining anomalous payloads.
DNS-based anomaly detection approaches are presented
in [32] for detecting botnet C&C activities. One method
is to detect dynamic domain names whose query rates are
abnormally high or temporally concentrated using outlier
detection metrics such as Chebyshev’s inequality. Our
work describes stealthy DNS behaviors whose querying
patterns are hard to distinguish with legitimate domains,
which make the counting based detection less effective.

Stone-Gross et al observed the use of domain flux in
Torpig botnet [31], where new communication domains
are generated periodically and registered by the C&C
server. Torpig bots communicated with the server over
HTTP, after resolving the domain name. Patterns of
fast-flux botnets are measured and analyzed in [10].
In comparison, we investigate the feasibility of solely
DNS-based command and control, without requiring
any additional Web servers. The work in [35] utilizes
machine learning techniques to identify domain names
that are algorithmically generated. Though it remains

unclear whether our MC-generated domain names can
be experimentally distinguished from legitimate domain
names by the techniques in [35], we conjecture that the
MC-generated domains would be difficult to distinguish
from legitimate ones. The work in [1] describes 15
features that can be used to detect anomalous DNS
traffic in wide area networks, including IPs (e.g., a do-
main mapped to multiple IPs across different countries),
TTL values (e.g., short TTL), temporal features (e.g.,
regularities in aggregated query patterns), and domain
name features (similar to [35]). The stealth techniques
on query pattern and domain name generation described
in this work may help evade the machine learning based
detection, showing the need for further research in this
direction.

Our piggybacking DNS queries should not be con-
fused with previously reported piggybacking methods
for reducing DNS traffic. Those techniques usually take
advantage of empty payload space in UDP datagrams.
For example, renewal using piggyback method was pro-
posed to piggyback cached DNS records to DNS queries
to refresh expired cached records [12]. Related domains
may also be piggybacked in DNS queries [26], e.g., to
include i.cnn.net in the DNS packet for www.cnn.
com as they are likely to be requested together by the
browser.

Millen did pioneering work on covert-channel analy-
sis [16], [17], in particular in a system (host) environ-
ment. Covert channel has been heavily analyzed in the
context of traffic-analysis prevention [19] and routing
anonymity [18]. Our work differs from them in that we
focus on designing practical covert channels across the
Internet.

Our work is complementary to host-based malware
detection and prevention solutions, such as the crypto-
graphic provenance verification technique [30], [33].

VII. CONCLUSIONS AND OPEN PROBLEMS

We conducted a systematic study on the feasibility
of solely using DNS queries for massive-scale stealthy
communications among entities on the Internet. Our
work shows that DNS – in particular the codeword mode
combined with advanced querying strategies – can be
used as an extremely effective stealthy command-and-
control channel. To address the open problem raised
in [2] on how to algorithmically generate short-lived
and realistic-looking domain names, we found that using
Markov chain produces realistic-looking domain names.

Our work points out the severity of DNS abuse for
massive-scale communications and the challenges as-
sociated with its detection. Understanding the capacity
of botnets communication power helps identify and

12

eliminate nefarious attacks launched from them. DNS-
based botnet command-and-control is more stealthy than
application-based command-and-control (e.g., email [29]
or social network [14]), and such a C&C system also
benefits from the decentralization of DNS. Some of our
anomaly detection analysis is useful beyond the specific
DNS tunneling problem studied.

We would like to point out the open research problems
related to DNS-based stealthy communication. Besides
command and control, DNS tunneling may also be
used for exfiltrating sensitive data by attackers including
rogue insiders. Payload inspection has been proposed
for detecting data leaks (e.g., privacy-preserving data-
leak detection in large TCP segments [27]). How ef-
fective these solutions are against leaks via small DNS
queries remains unclear. From defenders’ perspective,
the approach of user-intention based anomaly detection
has been demonstrated effective in detecting abnormal
system events such as unauthorized file creation [34] and
malware-triggered outbound traffic [36]. Because DNS
queries are usually automatically issued by applications
or the OS, the causal relations between user actions and
DNS traffic may not be obvious. How to extend the user-
intention based anomaly detection approach to identify
anomalous DNS traffic on a host is an open problem.

REFERENCES

[1] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure:
Finding malicious domains using passive DNS analysis. In
Proceedings of the 18th Annual Network and Distributed System
Security Symposium (NDSS), February 2011.

[2] P. Butler, K. Xu, and D. Yao. Quantitatively analyzing stealthy
communication channels. In Proceedings of the 9th Interna-
tional Conference on Applied Cryptography and Network Se-
curity (ACNS ’11), number 6715 in Lecture Notes in Computer
Science (LNCS), pages 238–254, 2011.

[3] D. Dagon. Botnet detection and response, the network is the
infection, 2005. Domain Name System Operations Analysis
and Research Center Workshop.

[4] DeNiSe. http://c0re.23.nu/c0de/snap/
DeNiSe-snap-20021026.tar.gz.

[5] C. J. Dietrich, C. Rossow, F. C. Freiling, H. Bos, M. van Steen,
and N. Pohlmann. On botnets that use dns for command and
control. In Proceedings of European Conference on Computer
Network Defense, September 2011.

[6] Yahoo! Anti-Spam Resource Center - DomainKeys.
http://antispam.yahoo.com/domainkeys, 2008. This is an
electronic document. Date retrieved: February 1, 2007.

[7] M. T. Goodrich, R. Tamassia, and D. Yao. Accredited Do-
mainKeys: a service architecture for improved email validation.
In Proceedings of the Conference on Email and Anti-Spam
(CEAS ’05), July 2005.

[8] M. Hollander and D. A. Wolfe, editors. Nonparametric Statis-
tical Methods. Wiley-Interscience, second edition, 1999.

[9] M. V. Horenbeeck. DNS tunneling. http://www.daemon.
be/maarten/dnstunnel.html.

[10] X. Hu, M. Knysz, and K. G. Shin. Measurement and analysis
of global IP-usage patterns of fast-flux botnets. In Proceedings
of International Conference on Computer Communications (IN-
FOCOM), 2011.

[11] G. Hunt and D. Brubacher. Detours: Binary interception of
Win32 functions. In Proceedings of the Third USENIX Windows
NT Symposium, 1999.

[12] B. Jang, D. Lee, K. Chon, and H. chul Kim. DNS resolution
with renewal using piggyback. Journal of Communications and
Networks, 11(4), August 2009.

[13] A. Karasaridis, K. S. Meier-Hellstern, and D. A. Hoeflin.
Detection of DNS anomalies using flow data analysis. In
GLOBECOM. IEEE, 2006.

[14] E. Kartaltepe, J. Morales, S. Xu, and R. Sandhu. Social
network-based botnet command-and-control: Emerging threats
and countermeasures. In Proceedings of Applied Cryptography
and Network Security (ACNS), volume 6123 of Lecture Notes
in Computer Science, pages 511–528. Springer, 2010.

[15] L. Lamport. Password authentication with insecure communica-
tion. Communications of the ACM, 24(11):770–772, November
1981.

[16] J. K. Millen. Covert channel capacity. In IEEE Symposium on
Security and Privacy, pages 60–66, 1987.

[17] J. K. Millen. 20 years of covert channel modeling and analysis.
In IEEE Symposium on Security and Privacy, pages 113–114,
1999.

[18] I. Moskowitz, R. E. Newman, D. P. Crepeau, and A. R. Miller.
Covert channels and anonymizing networks. In In Workshop
on Privacy in the Electronic Society (WPES 2003, pages 79–
88. ACM, 2003.

[19] R. E. Newman, I. S. Moskowitz, P. Syverson, and A. Serjantov.
Metrics for traffic analysis prevention. In in Proceedings of
Privacy Enhancing Technologies Workshop (PET 2003, pages
48–65. Springer-Verlag, LNCS, 2003.

[20] G. Ollmann. Botnet communication topologies – understanding
the intricacies of botnet command-and-control. Available at
http://www.damballa.com/.

[21] C. P. Pfleeger. Crypto: Not just for the defensive team. IEEE
Security & Privacy, 8(2):63–66, 2010.

[22] N. Provos and P. Mavrommatis. All your iframes point to us.
In Proceedings of USENIX Security Symposium, 2008.

[23] M. A. Rajab, F. Monrose, A. Terzis, and N. Provos. Peeking
through the cloud: DNS-based estimation and its applications.
In S. M. Bellovin, R. Gennaro, A. D. Keromytis, and M. Yung,
editors, ACNS, volume 5037 of Lecture Notes in Computer
Science, pages 21–38, 2008.

[24] Extension Mechanisms for DNS (EDNS0). RFC 2671. The In-
ternet Society. August, 1999. http://tools.ietf.org/
html/rfc2671.

[25] SCIgen - an automatic CS paper generator. http://pdos.
csail.mit.edu/scigen/.

[26] H. Shang and C. E. Wills. Piggybacking related domain names
to improve DNS performance. Comput. Netw., 50(11):1733–
1748, 2006.

[27] X. Shu and D. Yao. Data-leak detection as a service. In
Proceedings of the 8th International Conference on Security
and Privacy in Communication Networks (SECURECOMM),
September 2012.

[28] K. Singh, S. Sangal, N. Jain, P. Traynor, and W. Lee. Evaluating
bluetooth as a medium for botnet command and control. In Pro-
ceedings of International Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), 2010.

[29] K. Singh, A. Srivastava, J. T. Giffin, and W. Lee. Evaluating
email’s feasibility for botnet command and control. In DSN,
pages 376–385. IEEE Computer Society, 2008.

13

[30] D. Stefan, C. Wu, D. Yao, and G. Xu. Cryptographic provenance
verification for the integrity of keystrokes and outbound network
traffic. In Proceedings of the 8th International Conference
on Applied Cryptography and Network Security (ACNS), June
2010.

[31] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szyd-
lowski, R. Kemmerer, C. Kruegel, and G. Vigna. Your botnet
is my botnet: Analysis of a botnet takeover. In Proceedings of
the 16th ACM Conference on Computer and Communications
Security (CCS), November 2009.

[32] R. Villamarı́n-Salomón and J. C. Brustoloni. Identifying botnets
using anomaly detection techniques applied to DNS traffic. In
Proceedings of the 5th IEEE Consumer Communications and
Networking Conference (CCNC), 2008.

[33] K. Xu, H. Xiong, D. Stefan, C. Wu, and D. Yao. Data-
provenance verification for secure hosts. IEEE Transaction on
Dependable and Secure Computing (TDSC), 9(2):173 – 183,
March/April 2012.

[34] K. Xu, D. Yao, Q. Ma, and A. Crowell. Detecting infection
onset with behavior-based policies. In Proceedings of the
Fifth International Conference on Network and System Security
(NSS), September 2011.

[35] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan.
Detecting algorithmically generated malicious domain names.
In Proceedings of the 10th annual conference on Internet
measurement, IMC ’10, pages 48–61, New York, NY, USA,
2010. ACM.

[36] H. Zhang, W. Banick, D. Yao, and N. Ramakrishnan. User
intention-based traffic dependence analysis for anomaly detec-
tion. In Proceedings of Workshop on Semantics and Security
(WSCS), May 2012. in conjunction with the IEEE Symposium
on Security and Privacy.

Kui Xu received the bachelor degree in com-
puter science from the University of Science
and Technology of China. He is a PhD candi-
date in the Department of Computer Science
at Virginia Tech, Blacksburg. He is interested
in cyber security research. In particular, he
focuses on utilizing user behavior information
in strengthening security. Major research top-
ics cover drive-by-download detection, user-

activity-based authentication, DNS tunneling analysis, and person-
alized anomaly detection. He is a student member of the IEEE.

Patrick Butler is a PhD candidate in the
Department of Computer Science at Virginia
Tech, Blacksburg. He received dual BS degrees
in Computer Science and Physics from Vir-
ginia Tech in 2005. He is currently working
in the realm of data mining, specifically tem-
poral data mining. His other research interests
include distributed data storage, Linux kernel
network stack, and network security.

Sudip Saha received BS in Computer Science
and Engineering from Bangladesh University
of Engineering and Technology (BUET) in
2006. He received MS in computer science
from University of Memphis in 2010. Cur-
rently he is pursuing Ph.D. in computer science
at Virginia Tech. His research interest lies in
social and complex networks, game theory, and
computer security.

Danfeng (Daphne) Yao is an assistant pro-
fessor in the Department of Computer Science
at Virginia Tech, Blacksburg. She received the
PhD degree in computer science from Brown
University. Before joining Virginia Tech, she
was a tenure-track assistant professor in the
Computer Science Department at Rutgers Uni-
versity for two years. Her research interests are
in network and information security, in partic-

ular user-centric security and privacy, social- and human-behavior
pattern recognition, insider threats, data privacy, and applied cryptog-
raphy. She received the US National Science Foundation CAREER
Award in 2010 for her work on human-behavior-driven malware
detection. She won the Best Student Paper Award at ICICS 2006 and
the Award for Technological Innovation from Brown in 2006, both for
her privacy-preserving identity management work, and the Best Paper
Award at CollaborateCom 2010 for keystroke security. In February
2012, she received the Outstanding New Assistant Professor Award
from VT. She is a member of the IEEE and the IEEE Computer
Society.

