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Abstract. This paper studies the notion of point-based policies fsttmanage-
ment, and gives protocols for realizing them in a disclosuneimizing fashion.

Specifically, Bob values each credential with a certain nemrdf points, and
requires a minimum total threshold of points before grantice access to a
resource. In turn, Alice values each of her credentials wifirivacy score that
indicates her reluctance to reveal that credential. Bolfgation of credentials
and his threshold are private. Alice’s privacy-valuatidrher credentials is also
private. Alice wants to find a subset of her credentials tichieves Bob’s re-
quired threshold for access, yet is of as small a value tohepasible. We give
protocols for computing such a subset of Alice’s credestigithout revealing
any of the two parties’ above-mentioned private informatio

Key words: Trust management, private multi-party computation, kaakproblem.

1 Introduction

A typical scenario for accessing a resource using digitadientials is for the client,
Alice, to send her request to Bob, who responds with the paliet governs access
to that resource. If Alice’s credentials satisfy Bob’s pglishe sends the appropriate
credentials to Bob. After Bob receives the credentials ardigs them, he grants Alice
access to the resource. Observe that, in this scenari iliens Bob's policy and Bob
learns Alice’s credentials. However, this mechanism iscaaptable if the credentials
or the access control policies are considered to be semsifiormation.

The motivation for hiding credentials is individual privae.g., if the credentials
are about one’s physical impairment or disability, finahdiatress, political or reli-
gious affiliation, etc. The motivation for hiding the poligg/not only security from an
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evil adversary, but simply the desire to prevent legitimesiers fromgamingthe system

— e.g., changing their behavior based on their knowledghepblicy (which usually

renders an economically-motivated policy less effectiVéjs is particularly important
for policies that are not incentive-compatible in econoteitns (they suffer from per-
verse incentives in that they reward the wrong kinds of benasuch as free-loading).
In yet other examples, the policy is simply a commercial seer e.g., Bob has pio-
neered a novel way of doing business, and knowledge of theypgbuld compromise

Bob's strategy and invite unwelcome imitators.

It is also important to point out that a process that treatsefd credentials as con-
fidential is ultimately not only to Alice’'s advantage but@ke Bob’s: Bob can worry
less about rogue insiders in his organization illicitlyKaey (or selling) Alice’s private
information, and may even lower his liability insuranceesaas a result of this. Privacy-
preservation is a win-win proposition, one that is appepdiven if Alice and Bob are
honest and trustworthy entities. This paper gives a trustagament model that quan-
titatively addresses degrees of sensitivity. Moreovergibgree of sensitivity of a given
credential is private to each user, and can vary from onetaserother.

1.1 Motivations

In a probing attack, Alice can engage in a protocol with Boltiple times using dif-
ferent credential sets each time (all of which are subsett®ptredentials) to gain in-
formation about Bob’s policy. In the case where Alice is resfing access to a service,
Bob will know whether she got access and can therefore atdoepiby using different
policies and observing their effect) to gain informatiomabAlice’s credentials.

One way of mitigating probing attacks is the one followedha trust negotiation
literature [5,37,38,44,45], in which the disclosure of ad®ntial is governed by an
access control policy that specifies the prerequisite ¢immdi that must be satisfied
in order for that credential to be disclosed. Typically, grerequisite conditions are a
subset of the set of all credentials, and the policies areateddusing propositional for-
mulas. A trust negotiation protocol is normally initiategldclient requesting a service
or a resource from a server, and the negotiation consistssefjaence of credential
exchanges: Trust is established if the initially requestice or resource is granted
and all policies for disclosed credentials are satisfied438

Although mitigating probing attacks, the requirementshef trust negotiation liter-
ature have some practical limitatiorf4) Probing is still possible when policies are not
treated as sensitive resources, and the client (or seraarjjame the system in many
ways. For example, if the client knows the access contraotiesl for the server’s cre-
dentials then she will know the path of least resistance toakrcertain credential$2)
Premature information leaking is difficult to prevent in ®iig trust negotiation pro-
tocols including the recent framework using cryptograpiredentials [32]. The pre-
mature information leaking refers to the situation when gotiation is not successful,
however sensitive credentials are already disclogdlhe service model in trust ne-
gotiation is usually limited, that is, the requested senigfixed and independent of
the amount of information released by the client at the enth@hegotiation session.
However, a client may end up disclosing more informatiomthdnat is required for



the initially requested service. The reward or service jgled by the server should be
dynamically adjustable with the amount of information esled from the client.

As will become clear soon, the approach presented in thisrpajtigates the above-
mentioned problems. The computation for determining wiredhuser satisfies a policy
is privacy-preserving, wheneeitherparty needs to disclose sensitive information. Of
the multiple ways of satisfying the policy, Alice will tend tise the one that utilizes the
credentials whose privacy she values least.

1.2 Overview

Quantitatively addressing trust establishment probleséxisted in several papers on
trust and reputation models [4, 17,42, 46]. These models applications in open sys-
tems such as mobile ad hoc networks, Peer-to-Peer netwbfksand e-trade systems.

We consider a new point-based trust management policyefréthn a Boolean ex-
pression) that is private and should therefore not be reddal Alice: Bob associates a
number of points with every possible credential, and rezgiihe sum of the points of
those credentials that Alice uses to reach a minimum thtediedore he grants her ac-
cess to the resource. The resource owner, Bob, defines assidimihreshold, and that
threshold is itself private and should not be revealed toélAlice needs to satisfy the
threshold requirement to gain access by using a subset ofédentials that gives her
the required number of points, but there can be many suclewilice is interested
in using the subset that has minimum privacy-value to hammting to her privacy-
valuation function; that valuation function is itself paite and should not be revealed to
Bob. We give a protocol which determines which subset ofédicredentialgptimally
satisfies Bob’s threshold, i.e., it has minimum privacy el Alice among all subsets
that satisfy Bob’s threshold. Bob’s point-valuation of @eetials, his thresholds, and
Alice’s privacy-valuation of her credentials are privatelanot revealed.

1.3 Applications

In the point-based model, credentials are mapped with peiloes defined by the re-
source owner, therefore the client’s reward or service @dymamically adjusted ac-
cording to the amount of private information revealed. Thgillility makes the point-
based model attractive to the trust management in webessnand e-commerce ap-
plications in general, as users have the incentives to carthie computation for trust
establishment, which facilitates business transactions.

Another important type of applications for point-based ®ias privacy-aware pres-
ence systems [27, 39, 42], where presence data such asdltietoaf a user is collected
through devices such as GPS on a cellphone. The managenmesehce data is cru-
cial, because it concerns not only user privacy, but alsetgapresence data can be
used to track and profile individuals. In the meantime, thraey be emergency sit-
uations or extenuating circumstances when certain pafties emergency workers)
should have access to this kind of information, and friemdkralatives of a user might
be allowed to query his or her location information at anygtifiherefore, a desirable
feature of a location query system is that it provides déffelevels of precision based
on the requester’s trustworthiness or the context of theyqddis requires a flexible



authorization model for accessing the private locatiomadahich can be offered by the
point-based authorization model.

1.4 Our Contributions

1. We propose a point-based trust management model and malfpe the creden-
tial selection problem of the model into a knapsack probl@nor. point-based trust
management model enables users to quantitatively disshdhe sensitivities of
different credentials. It also allows a provider to quaatiitely assign values to
credentials held by clients. The point-based model hagakfeatures(i) Policy
specification is simple and easily allows dynamic adjustroéservices provided
based on released credentidiy; A user can proactively decide whether the poten-
tial privacy loss is worth the service without disclosing/aensitive information;
(iii) To satisfy a policy, a user can select to disclosedpemal credential set that
minimizes the privacy loss, based on his or her personaluneas

2. We give secure and private dynamic programming protdoolsolving the knap-
sack problem. Our solution, consisting of a basic protoodl @n improved proto-
col, allows the server and user to jointly compute the optsuen of privacy scores
for the released credentials, without revealing theirgieyarameters. The com-
plexity of our basic protocol i©(nT"), wheren is the total number of credentials
andT” is the (private)marginal thresholdwhich corresponds to the sum of the
points of the credentials that anet disclosed. The protocol uses homomorphic
encryptions, and is semantically secure against semist@oeersaries.

Our improved protocol, th&ngerprint protoco] is secure in an adversarial model
that is stronger than a semi-honest one (a.k.a honestbigtus). The improved
protocol prevents a participant from tampering with thereslused in the dynamic
programming computation. That is, while we cannot prevepagicipant from
lying about her input, we can foransistency in lyindpy preventing capricious
use of different inputs during the crucial solution-traaelbphase. The complexity
of our fingerprint protocol i) (n>T").

3. One contribution of this paper that goes beyond the spqmifiblem considered is
a generalndexing expansiomethod for recovering an optimal solution from any
value-computing dynamic programming computation, whééedting cheating by
the participants. Using this method, a participant is nquied to trust the other
party during the back-tracing phase. This is possible texthe participant is able
to efficiently identify whether the other party has tampendtth the computation.
For traceback in general dynamic programming problemsatgarithm not only
allows a participant to independently and easily recoveraptimal traceback so-
lution, once the computed optimal value is given, but alsabées the participants
to verify the integrity of the optimal value.

Organization of the Paper Our point-based trust management model is presented in
Section 2. The basic protocol for privacy-preserving cndid selection is given in
Section 3. Fingerprint protocol is given in Section 4. Welgnathe security in Section

5. We present an extension to the fingerprint protocol ini8ed. Related work is
given in Section 7.



2 Model

In this section, we describe a point-based trust managemed¢!, and define the cre-
dential selection problem in this model.

2.1 Point-Based Trust Management

In the point-based trust management model, the autharizgiblicies of a resource
owner defines aaccess thresholtbr each of its resources. The threshold is the min-
imum amount of points required for a requester to accesg#saurce. For example,
accessing a medical database requires fifty points. Thaimes@wner also defines a
point valuefor each type of credentials, which denotes the number aoftpair cred-
its a requester obtains if a type of credential is discloged.example, a valid ACM
membership is worth ten points. This means that a client ésrtade his or her ACM
membership credential in exchange for ten points. We c#l dhtrust management
model as opposed to an access control model, because thecesovner does not
know the identities or role assignments of requesiqrsori.

A requester has a set of credentials, and some of which magrisédered sensitive
and cannot be disclosed to everyone. However, in order @saacertain resource, the
requester has to disclose a number of credentials sucththattess threshold is met by
the disclosed credentials. Different clients have diffiéerspective on the sensitivity
of their credentials, even though the credentials are o#me type. For example, a
teenager may consider age information insensitive, wiseagaiddle-aged person may
not be very willing to tell his or her age.

Therefore, in point-based trust management model, eaehtdliefines grivacy
scorefor each of their credentials. The privacy score repreghstiverse of the will-
ingness to disclose a credential. For example, Alice mag giwacy score 10 to her
college ID, and 50 to her credit card. The client is grantezkas to a certain resource
if the access threshold is met and all of the disclosed ctedsmre valid. Otherwise,
the access is denied. From the requester’s point of viewgeh&al question is how to
fulfill the access threshold while disclosing tleastamount of sensitive information.
In the next section, we define this as a credential selectiobl@m. The credential se-
lection problem is challenging, because the requesteidershis or her privacy scores
sensitive, and the server considers its point values aresad¢hreshold sensitive.
Where do point values come from?0ne approach to obtain point values is from rep-
utation systems [4, 36, 46]. Essentially the point value @fedential represents the
trustworthiness of the organization that issues the ctigleti a resource owner thinks
organizationA is more reputable than organizatiéh the resource owner specifies a
higher point value for a credential issued Hythan the one issued b#. This idea
has been explored in a recent paper that quantitativelyesttlde connections between
computational trust/reputation models with point valugpoint-based trust manage-
ment. The paper also discusses the application of such mauekivacy-preserving
location systems. The work in trust models and reputatictesys [4, 36, 46] serve as
a starting point for demonstrating the applicability of pebased trust management.



2.2 Credential Selection Problem

Definition 1. The credential selection problem is to determine an optictahbina-
tion of requester’s credentials to disclose to the resoaa®er, such that the minimal
amount of sensitive information is disclosed and the actteeshold of the requested
resource is satisfied by the disclosed credentials.

We formalize the credential selection problem as an opétion problem. Our
model assumes that the resource owner (or server) and thesteq (or client) agree on
a set of credential types as the universe of creder(tials. . ., C,,). We define a binary
vector(z1, ..., z,) as the unknown variable to be computed, wherés 1 if creden-
tial C; is selected, and O if otherwise. Integgr> 0 is the privacy scoreof credential
C;. Itis assigned by the requesegepriori. If the requester does not have a certain cre-
dential C;, the privacy score; for that credential can be set to a large integer. Thus,
the (knapsack) algorithm avoids choosing that credentia, tas the cost is high. The
server define§’ that is theaccess thresholdf the requested resource. Integee> 0 is
thepoint valuefor releasing credential typ@;. The requester considers all@fvalues
sensitive, and the server considers the access thregtand all ofp; values sensitive.

The credential selection problem is for the requester toprdma binary vector
(x1,...,2,) such that the sum of poin@jzl:1 x;p; satisfiesT’, and the sum of pri-
vacy scoresy ", z;a; is minimized. This is captured in the following minimizatio
problem. Compute a binary vectr, . . ., x,) such that the following holds:

n
min g T
i=1

n
subject toz zipi > T
=1

The above minimization problem can be rewritten into a kaakgproblem with a
new variabley, = 1 — z; € {0, 1}. Fori-th credentialy; = 1 represents not disclosing
the credential, ang; = 0 represents disclosing the credential.

We define the marginal threshaold, which coarsely correlates to the sum of the
points of the credentials that are not disclosed.

Definition 2. The marginal threshol@” of the credential selection problem is defined
as> ., p; — T, wherep; is the point value for credential typg;, T is the access
threshold for a requested resource, amdbs the total number of credential types.

Let us first review the dynamic programming solution for tt# knapsack prob-
lem [15]. Then, we describe our protocol for carrying ouvateé dynamic programming
computation of the knapsack problem. The 0/1 knapsack proid defined as follows.
Given items of different integer values and weights, findrttest valuable set of items
that fit in a knapsack of fixed integer capacity. The dynamagpemming solution is
pseudo-polynomial: the running time is@(nT"”).

In the dynamic programming of knapsack problem, a table idenatrack the opti-
mal selection of items so far. A column indicates the rangabfes, which corresponds



to the target weight of the knapsack. A row corresponds th #gam. The last table en-
try has the maximum capacity of the knapsack. The first colanththe first row are
initialized to zeros, i.eM, ; andM, , are zeros, for all € [1,n] andj € [0,7”]. The
table is filled from top to bottom and from left to right. Usitige notations defined
earlier, the recurrence relation is formally defined asfedl. Denotel/; ; as the value
ati-th row andj-th column, and € [0, 7], 5 € [0,7"].

M; ;= M;_1,; if 7 <pi
max{Mi,M, ]Vfiflyjfpi + ai} if _] Z Pi

Each entry of the table stores the total value of a knapsalichws determined as
either the value of a knapsack without the current item (esged as the value directly
to the top of the current entry), or the value of the knapsaittk the current item added
into it. At the end of the computation, the entry at the lowight corner of the table
contains the optimal value of the knapsack. The selectibiteros can be obtained by
bookkeeping the information of where the value of an entrpes from.

For our credential selection problem, the above recurreelegion can be inter-
preted as follows. If the point value of credential ty@egexceedg, which is a value in
the range of0, 7"], then thei-th credential is not selected and the privacy sdufig;
is kept the same a&/;_; ;. Otherwise, the algorithm compares the scbfg ; ; for
not selecting the-th credential with the scoré/;_; ;_,, + a; for selecting the-th
credential. The larger value is chosen to be the privacyeskfr;.

The standard dynamic programming computation requirasegal; andp; for all
€ [1,n]. However, in our model, the requester considgrsensitive, and the server
consider®; sensitive. We present a protocol that allows the compleatfahe dynamic
programming computation without revealing any sensitiMermation. In addition to
protecting sensitive; andp; values, the entries in the dynamic programming table are
also protected from both parties.

Once the client has selected the set of credentials to discéhie reveals them to the
server. The server then verifies the validity of the creddsmby checking the credential
issuers’ signatures.

Privacy score of a credential setln the current model, the privacy score of multi-
ple credentials is the sum of each individual privacy sc®fe summation is simple
to model, and represents the additive characteristic hpyi i.e., the more personal
information revealed, the more privacy lost. Another adaga of the summation of pri-
vacy scores is the efficiency; the specification of privacyss has a size linear in the
number of credentials. However, the client may want to eiplispecify an arbitrary
privacy score of a certain group of sensitive credentiatge group privacy score may
be higher or lower than the sum of individual privacy scofide latter case can hap-
pen when one credential might subsume or include some irfttomthat is included
in the other credential(s). However, the dynamic prograngnsolution is not clear for
the dynamic programming problem with arbitrary constraititremains an interesting
open question how to formulate the dynamic programming ppstt arbitrary privacy
score specifications.



3 Basic Protocol

We present the basic protocol, which is a secure two-pantyaayc-programming pro-
tocol for computing the optimal solution of the credentelestion problem. The basic
protocol has two sub-protocols: recursion and tracebablciwepresent the two phases
of dynamic programming. The protocol maintains the secensitive parameters
of both parties. Furthermore, neither the server nor trentliearns any intermediate
result. The main technical challenge is that the server doésvant to reveal point
values{p;} and the client does not want to reveal privacy scdieg. As shown by
the recurrence relation in Section 2, it seems difficult tmpate entryM; ; without
knowingp; anda;. We overcome the challenge by designing a protocol thatshite
conditional testing from the client. The basic protocolfiicent and is secure in the
semi-honest adversarial model.

3.1 Building Blocks

In our protocol, we store values in a modularly additiveljitsmanner with a large
base called.. The additively split manner means that the server and tleatokach
has a share of a value, and the value equals to the sum of Hagsmodular.. If
x5 andz® represent the share of the server and the client, respiggtiven the value
equals tar® + 2¢ mod L. We useL — i to represent-i (and usei to represent).
This implies that the range of the values is betwe*-éﬁandé, andL must be chosen
so that it is larger enough to prevent accidental wrap-ato8ecure two-party private
protocols were given in [20] that allow comparison of aboesatibed values, in which
the comparison result is additively split between the seanel the client. It is easy to
modify these protocols to compute the maximum of the valneslditively split format,
which we refer to as thprivate two-party maximum protocdlVe use the private two-
party comparison and maximum protocols in our paper as & blax.

Our protocols use homomorphic encryption extensivelyaRéeat a cryptographic
scheme with encryption functiof is said to be homomorphic, if the following holds:
E(z) « E(y) = E(x + y). Another property of such a scheme is thdt:) = E(zy).
The arithmetic performed under the encryption is modulad, the modulus is part of
the public parameters for this system. Homomorphic schemeedescribed in [16, 34].
We utilize homomorphic encryption schemes that are segelhjtisecure. Informally,
a homomorphic scheme s&mantically secur# the following condition holds. Given
the public parameters of a homomorphic scheheand the encryption of one of the
two messages:, m’ wherem is from a specific message and is chosen uniformly
random from the message space, thétr(P(E(m))) = 1) — Pr(P(E(m/)) = 1)|is
negligible for any probabilistic polynomial time algonithP.

3.2 Overview of Basic Protocol

The basic protocol consists of two sub-protocols: the basiarsion sub-protocol and
the basic traceback sub-protocol.



— Basic recursion sub-protocol: the client and server comp(t+1) x (T”+1) ma-
trix M in an additive split form. Led/; ; denote the value stored at théh row and
j-th column. LetE ¢ be the public encryption function of the client's semaritjca
secure homomorphic encryption scheme. The server |d8gid/; ;) values for
alli € [1,n] andj € [1,T"]. From the security oE¢, a computationally-bounded
server gains no information from tHe- (M, ;) values. The server computes (with
the client’s help) the valu€c (M ;), when givenE« (M, ;) for all values(i’, ;)
that are dominated b{, j), for all ¢ € [1,n] andj € [1,T']. My ; and M, o are
zeros, for alli € [0,n] andj € [0,T"].

— Basic traceback sub-protocol: once the dynamic programtainie has been filled
out, the client discovers (with the server’s help) the sereflentials that have been
selected to disclose. The optimal selection is revealedtio parties.

Note that the basic recursion sub-protocol should unifydperations in the two
cases{ < p; andj > p;) of the recurrence relation. Otherwise, the client cannear
p; from the computation. We solve this by designing a generét @ivate maximum
function and by additively splitting intermediate resuittween the two parties.

3.3 Basic Recursion Sub-Protocol

The basic recursion sub-protocol is described in Figure 1.

Whenj > T” (recall thatl” = >~ ; p; — T), the server terminates the protocol.
The last entryM,, 7~ of the dynamic programming matrix has been computed. The
client knows the marginal threshold, as she keeps her share of the matrix. Yet, the
client does not learn the individual point valpe and access thresholdl from the
computation so far.

Lemma 1. The complexity of the basic recursion sub-protocaDig:T"), with O(1)
homomorphic encryptions or decryptions at each round, hes the total number of
credentials and” is the marginal threshold.

The proof of Lemma 1 is in the full version of the paper [41].

The basic recursion sub-protocol runs(nT”), where marginal thresholf’ or
the number of credentials can potentially be large. We point out that an important
advantage of our protocol compared to conventional boelesed policies lies in the
privacy-preserving functionality offered. Our protocatronly computes the optimal
selection of credentials, but also does it in a privacy-4néag fashion for both the
server and client. For conventional policies, the lattgreas cannot be easily achieved
without having the server to publish or disclose unfairbypblicies.

The protocol presented here is secure in the semi-honestsaty model, which is
improved later by our indexing expansion method in Sectiofihe detailed security
analysis is given in Section 5.

3.4 Basic Traceback Sub-Protocol

To support the back-tracking of the optimal solution (itlee, optimal credential set to be
disclosed), the basic recursion sub-protocol needs to lufified accordingly. At step 3



Setup: The client has published the public parameters of a senadigteEecure homomor
phic scheméZ . We will use the base of this scheme as the modulus for theiaslglisplit
values.

Input: The server ha&c (M, ;) for all values(i’, j) that are dominated bf, j), where
i € [1,n] andj € [0,7’]. The sever also has point valugs . . .,p. and the client has
privacy scoresi, . .., an.

Output: The server learn&c (M; ;).
Steps:

1. The server creates a pair of valuasandai, whereag = Ec(M;—1,5), anda; =
Ec(—o0)if p; > j,anda; = Ec(M;—1,;—p,) Otherwise. Without loss of generality,
we assume that; values defined by the client are always bounded by an intBger
that is known to the server, i.e; < B forall i € [1, n]. The server then usesB — 1
as —oo. The server also chooses random valugsind 1, and sends to the client
OcoEc(To) anda1Ec(T1).

2. The client decrypts the values to obtd@nand3;. The server sets its shares-te,
and—r; and the client sets its shares@g and 31 + a;. Note that the two candida
values forM; ; are additively split between the client and the server.

3. The client and the server engage in a private maximum @obto compute the max
mum of these two values in an additively split format. Derthteshares by andz©.

4. The client send®c(z°) to the server, and the server computgs(z© + =) and
sets this value as his output.

D

Fig. 1. Basic recursion sub-protocol.

in the basic recursion sub-protocol, not only the maximurndso thecomparison
result of the two candidate values fdv/; ; are computed for all € [1,n] andj €
[1,7"]. During the computation, neither the server nor the cliemivks the result of
the comparison tests, as the result is split between thesm FErne recurrence relation
in Section 2, it is easy to see that the comparison resulttiijrendicates whethet;
is contained inM; ; and thus whether credenti@} is selected. Denot& as a matrix
that contains the result of the comparisons, we modify tkgipus basic recursion sub-
protocol so that the server learBg: (F; ;) for the entire matrix. In the basic traceback
sub-protocol, the server and the client work together et the plaintext comparison
results starting from the last entry of the table, followthg computation path of the
optimal dynamic programming solution.

Figure 2 describes the basic traceback sub-protocol.

Lemma 2. The complexity of the basic traceback sub-protoc@l{g), with O(1) ho-
momorphic decryptions at each round, wheres the total number of credentials.

The following theorem states the overall complexity of tlasib protocol.

Theorem 1. The complexity of the basic protocol@§nT"), wheren is the total num-
ber of credentials and” is the marginal threshold.

The proof of Theorem 1 is in the full version of this paper [41]



Input: The server has matrix entrigsZc(M;,;)} and { Ec(F;,;)} encrypted with the
client's public key, for ali € [1,n] andj € [1,T]. The client has her private key.
Output: The client learns the optimal value of the dynamic prograngr@omputation of
knapsack. The server and the client learn the optimal sefecf credentials, or nothing.
Steps:

1. The server sends the clieBt(M,, 1+). The client decrypts the ciphertext to obtain
the resultM,, . M, r+ represents the privacy score associated with the unselecte
credentials. If this value is acceptable to the client adiogy to some pre-defined pri
vacy standard set by the client, then this sub-protocolicoes. Otherwise, this sub
protocol terminates.

2. The server reveals the entBy (F,, 1) to the client.

3. The client decrypt&ic (F, 1) to obtainF,, r» € {0,1}. The client sends the plain
text valueF;, 7 to the server (The server then knows whethigris selected or not.

If F,, 7+ = 1, then credential’;, will not be disclosed.F,, + = 1 also mean$
that entry M,, 1+ is computed from entny\f,,_, 7. Therefore, the server next re-
veals Ec(F,,_1,r+) to the client. If F,, 7+ = 0, then the server next revegls

Ec(Fn_1,1'—p, ), as the entryM,, 7 is computed from entry/,,_; 7, .
4. The revealed entries represent the computation patteafgtimal knapsack dynam
programming solution. The above process is repeatedwngihches zero.

o

Fig. 2. Basic traceback sub-protocol

The basic traceback sub-protocol assumes that the sergsemndd maliciously alter
the computation results. In the case of a malicious serversérver may senf¢(0)
instead of the real values to mislead the client to discldlseradentials. Although
the attack might be caught by the client (as the client maydiisdbset of credentials
that still satisfies the threshold constraint), we give argjer traceback algorithm that
proactively prevents this type of attacks in the next sectio

4  Fingerprint Protocol

In this section, we give an alternative protocol for privgmgserving knapsack com-
putation. The new approach is inspired by thdset sum problenyet we stress that
this solution does not require the client to solve the gdrserdaset sum problem. The
main idea is to allow the cliennpt the serverto efficiently identify the selected cre-
dentials from the optimal privacy score. The new protocdijolv we refer to as the
fingerprint protocof* is an important step towards a protocol that is secure agaias
licious servers, because it can be extended to prevent tkierdeom tampering the
computation during traceback.

In addition to solving our credential selection problemd #tnus the knapsack prob-
lem), the fingerprint protocol can be generalized to soleetthceback problem in a

4 The name is because of the similarities between fingerpgniti forensics and the indexing
technique that we use to uniquely identify a subset.



large variety of integer linear programming problems. t ba used for one party to se-
curely and privately trace the optimal solution from the fc@mputed value, with very
little or no participation from the other party. The techugcguarantees the correctness
of the traceback results, even though the other party cdrentisted during traceback.

4.1 Fingerprint Protocol Description

The key idea of the fingerprint protocol is to convert therdfeprivacy scorega; } into
another set of scorgsd; }, such that the following two conditions hold. (1) The optima
credential selection computed wiftd;} should be the same as the optimal credential
selection computed witfu; }. (2) The privacy score computed wifidl; } should reveal
which set of credentials are used to obtain that score. Thisstransformation process
requires the following two properties:

Property 1. Ordering consistency:For two setsS andR in 2t1--m} if 3. A; <

ZieR Ai, thenzies a; < ZiGR a;.

Property 2. Uniqueness:For any two distinct sets' and R in 2{1-n}, S~ o 4;
ZieR A;.

The ordering consistency property ensures that the seveéled credentials com-
puted with the transformed scores is optimal even when tigenat scores are used. The
unigueness property guarantees that traceback is passstialy one set of credentials
can generate a specific score. Although the above propddiest imply that an effi-
cient traceback is possible, our transformation leads teffitient traceback method.
Ourindexing expansiomethod transforms a privacy scargto A; as follows.

€S

Ai = a; * 2™ + 21-71.

In binary representation, the indexing expansion shifes itnary form ofa; to
the left byn positions, and gives zeros toleast significant bits except theth least
significant bit, which is given a one. For example, supposestire four privacy scores
2, 3,5, 8 orin binary form 010, 011, 101, 1000. Here 4. After the transformations,
the expanded scores have the binary form 010 0001, 011 0013100, 1000 1000,
respectively. Readers can verify that the example satisfytwo required properties.
We now prove that the indexing expansion has the desireceptiop.

Lemma 3. The indexing expansion achieves the ordering consistelopepy.
Lemma 4. The indexing expansion achieves the uniqueness property.

Proofs of the above two lemmas are in the full version of thigey [41].

Hence, the indexing expansion method allows the client topzde the credentials
that are used to achieve a specific privacy score. Althougloftimal value obtained
from the secure dynamic programming with tHe scores is different from the one
with the originala; scores, the set of credentials corresponding to the oppnacy
values are the same. We now describe the fingerprint protatdth makes use of the
indexing expansion.



Input: The server has the marginal thresh@iiand point valueg;, . .., p.. The client
has privacy scoresi, .. ., an.

Output: The client fiot the serverlearns the optimal selection of credentials.

Steps:

1. The client applies the indexing expansion to each of heagy scoresa;} and ob-
tains the transformed scoré4; }.

2. The server and the client carry out the basic recursiofpsotocol (in Figure 1) with
the transformed privacy scorgsd;}. Recall that at the end of the basic recurdion
sub-protocol, the server has comput®d (M., 7 ) in entry (n,T") of the dynamig
programming matrix.

3. The server sends the cipherté&t (M, ) to the client.

. The client decrypt&c (M,, ) to obtainM,, 1.

. The client expresses the optimal valug, - in binary form and identifies the non-
zero bits in the last bits. The positions of such bits give the indices of creddsii
that give the optimal solution Note that the-th least significant bit o, 1 is true
if and only if credential was used to obtain the optimal value.

(S0

Fig. 3. Fingerprint protocol

The indexing expansion of privacy scores requiteadditional bits for each cre-
dential, where is the total number of credentials. In Lemma 5 below, we ptbagin
order to satisfy the uniqueness property, the number ofédipsired for the transformed
privacy scores is bounded B5y(n).

Lemma 5. For any transformation of index to satisfy the uniquenesgerty, the num-
ber of additional bits introduced for a privacy score is lawmunded by?2(n), where
n is the number of credentials.

Theorem 2. The complexity of the fingerprint protocold¥n>T"), wheren is the total
number of credentials anfl’ is the marginal threshold.

The proofs of Lemma 5 and Theorem 2 are in the full version isfplaper [41].

4.2 Detection of Value Substitution by the Server

In the method described above, although difficult, it is maypossible for a malicious
server to forge its share of the optimal value and thus nmdstedlient to disclose more
credentials. The probability of the server correctly girepsa credential’s privacy score
and its bit position in the indexing expansion may not be igdge. For example, the
server may havé/n probability of correctly guessing the bit position of a ceatlal,
wheren is the total number of credentials. Also, it may hayenax {a;} probability

of correctly guessing the privacy score, whéag} represents the set of untransformed
privacy scores. In Section 6, we describe a simple checksahnique for preventing
the server from tampering with the traceback computatidis & done by appending
randomized information to privacy scores.



5 Security

We define our security model as a semi-honest (a.k.a. htéstirious) model. In-
tuitively, this means that adversaries follow the protdmatl try to compute additional
information other than what can be deduced from their inpdt@utput alone. A proto-
col is defined as secure if it implements a functjgrsuch that the information learned
by engaging in the protocol can be learned in an ideal impieation where the func-
tionality is provided by a trusted oracle. This definitiofidavs the standard definitions
given by Goldreich [24] for private multi-party computatio

Let A be any one of the two parties in our protocol, we wsew 4 to represent
all of the information thatd sees during the protocol. A protocol is secure against
a semi-honest, if and only if there exists an algorithm that can simulatew 4

when givenA’s inputs andA’s output. To be more precise, two probability ensem-

bles x & {Xntpen andy e {Y,},,cn are computationally indistinguishable

(i.e., a polynomial bounded algorithm cannot distinguisé two distributions) if for
any PPT algorithmD, any positive polynomiap, and sufficiently largen it holds
that: |(Pr(D(X,,1") = 1)) — (Pr(D(Y,,1") = 1))| < ﬁ. Let A’s input and
output be represented by; and Ao respectively. A protocol is secure in the semi-
honest model against adversatyif there is an algorithn$7M 4 such thaview4 and
SIMa (A5, Ao) are computationally indistinguishable (i.8.] M 4 simulatesA’s view
of the protocol).

To prove the security of the basic protocol (in Figure 1), tegesa lemma about the
security of the private two-party maximum protocol usedt@ps3 of the basic protocol.

Lemma 6. The private two-party maximum protocol is secure in the seoniest model.

The above lemma states that there exists a private two-pasaimum protocol
such that when given the client’s inputS andb®, there is an algorithm that simulates
the client’s view of the maximum protocol.

Given such a private two-party maximum protocol, we showtti@basic recursion
sub-protocol in Section 3 is secure.

Theorem 3. The basic recursion sub-protocol is secure in the semi-bioadversarial
model.

We have shown that each individual round is secure in the alpostocol. The
composition follows from the composition theorem [9].

We show the basic traceback sub-protocol (in Figure 2) isireed\ote that the
basic traceback sub-protocol makes uses of a méatrikat is computed in the recur-
rence phase. Each entry of matfixcontains the selection decision of a credential. The
computation off" is secure, which can be deduced from Theorem 3.

Theorem 4. The basic traceback sub-protocol is secure in the semi$tatbersarial
model.

Proofs of Theorem 3 and 4 are in the full version of this pagéf.|

Given Theorem 3, the fingerprint protocol (in Figure 3) iswge¢because once the
server givesEc (M, 1) to the client, the client carries out the traceback comjnrtat
without any communication from the server.



Theorem 5. The fingerprint protocol is secure in the semi-honest acareabmodel.

6 Extension

The checksum technique has applications beyond the speifitem considered, and
is a general method for recovering an optimal solution fram @alue-computing dy-
namic programming computation, while detecting cheatinthle participants. We dis-
cuss an extension to fingerprint protocol that is securenagan adversary who is
stronger than a semi-honest one. We consider an adversarg#l as described fol-
lows. An adversary may tamper with private computation bydifying intermediate
results during the protocol, which is not allowed in a semndést model. An adversary
is curious as in a semi-honest model, in that she may stoexelflanged data and try
to deduce information from it. An adversary is assumed tdigpate and follow the
protocol, which is a weaker assumption than a malicious hode

It is important to define the above adversarial model. Whigecannot prevent a
participant from lying about her input, we can forcensistency in lyindpy prevent-
ing capricious use of different inputs during the cruciduion-traceback phase. For
complex functions such as the one being studied, lying aboeats input wrecks the
worthiness of the answer for both participants, and thegypaint who does so would
have been better off not engaging in the protocol in the filste (this is not true for
simple functions where the lier can still get the answecbsrecting for her lig.

Note that our extension does not support a full malicious ehoslhich would re-
quire expensive Zero Knowledge Proofs [26]. However, weaiterthe bar on common
things that a malicious server may try in our model. When érees is not semi-honest,
a significant problem with our protocols is that the servexy Ba(M; ;) for all matrix
values. Thus, the server can replace any value of the maittixamother valueZ¢ (v)
for any valuev. In the fingerprint protocol, the server has to guess the ntgigsed for
each credential. The client can easily check if the propssedlis created by a certain
set of credentials. However, as described earlier, theesemay have a non-negligible
probability of successfully replacing these values. We ni@scribe a technique that
reduces the probability of a successful replacement byaheesto a negligible value
in terms of a security parameter.

The idea is that the client performs transformations on hikes privacy scores.
The client creates a new set of valdg, . .., A,, that satisfy the traceback properties
outlined in Section 4. For each valud,, the client chooses uniformly a-bit value
(Wherep is the security parameter), which we call The client setsl; = A, 28"+ 4,
(whereA; is the already transformed value for traceback). It is ghtiorward to show
that these values satisfy the properties outlined in Sedtié-urthermore, for the server
to substitute a value, it would have to guegstat value, which it can guess successfully
with only negligible probability in the security parameter

Another attack that the server can launch is that it can sepdhéermediate value
of the matrix to the client, and claim that it is the final résBlecause an intermediate
value is well-formed, it cannot be detected by the abovertiegte. However, the server
does not gain from this type of attacks. If the server choasedue from a higher row
(with a smaller row index), then this attack can be achiewedditing the point values



of some credentials to zero (i.e., they are useless to thatdind are never used). If
a different column is chosen, then this attack can be actiibyencreasing the access
thresholdT'. If the intermediate value is from a different row and a difet column,
then the effect of this attack can be achieved by increasiagitreshold and setting the
point values of some credentials to zero at the same times&h&r may attempt to
form linear combinations of row entries, but there is a negligible chance of being
caught by the client because a repeated entry may be found.

7 Related Work

In the access control area, the closest work to ours is theefnark for regulating
service access and release of private information in welieses by Bonatti and Sama-
rati [5]. They study the information disclosure in open eys$ such as Internet using
a language and policy approach. In comparison, we desigiagyaphic solutions to
control and manage information exchange. In addition, veeigoon solving the opti-
mality in selecting the set of credentials to disclose. Bo@ed Samarati considered
two data types in the portfolio of a user: data declaratiog.(é&dentity, address, credit
card number) and credential. Although we only consider@néédls in the description
of our model, the protocols can be generalized to include detlarations as long as the
server and the client agree on their specifications. In génenedentials (e.g., driver’s
license and credit card) contain a set of data declaratifmnrimation, which is usually
requested as a group. For example, the credit card numbeaharekpiration date are
usually asked for at the same time. Using credentials tcesgmit private information
may be sufficient in some cases.

Our point-based trust management model quantitativedtsnmemberships or cre-
dentials, which is conceptually different from most exigtaccess control models. Our
approach aims to address the fact that different indiveloalgroups of people have
different privacy concerns in terms of protecting sensiinformation. This goal dif-
fers from conventional access control models. The flexybprovided by the point-
based model enables users to proactively protect themtarimformation. Furthermore,
thresholds specified by resource owners prevent unqualiiets from accessing the
resource.

Anonymous credential and idemix systems have been dewt[8p#0, 12] to allow
anonymous yet authenticated and accountable transatt&wgen users and service
providers. Together with zero-knowledge proof protocthey can be used to prove
that an attribute satisfies a policy without disclosing attyeo information about the
attribute. The work in this paper focuses on finding the opltionedentials to disclose,
and can be integrated with anonymous credential systemsré-knowledge proof
protocol can be used when the necessary information tdsatjgolicy is discovered.
We can apply anonymous credential techniques to implementlvership credentials
in the point-based trust management model. These cretieat@athen used to prove
user’s memberships without revealing individual identity

In hidden credentials system [7,28], when a signature ddrivom an identity
based encryption scheme [6, 14, 35] is used to sign a credletite credential con-
tent can be used as a public encryption key such that thetsigria the corresponding



decryption key. Hidden credentials can be used in such alwayhey are never shown
to anyone, thus the sensitive credentials are protectédkdfret al. [21] give a scheme
that hides both credentials and policies. Most recently,atogol [22] was proposed
that allows both the client and the server to defingate access policies of their cre-
dentials.

The setup of hidden credential protocols does not allow traputation of the
optimalselection of credentials. In addition, as explained in doent work by Frikken,
Li, and Atallah [22], the server learns whether the cliertaaied access or not in some
environments even when hidden credential schemes are lustitds case, the server
can make inferences about the client’s sensitive credenfiar example, if the server’s
policy is one must have top secret clearance and be a FBI agkah the server can
deduce a significant amount of information about the cliehemvthe access control
decision is made. Our proposed solution allows the cliemistonate potential privacy
loss without leaking any sensitive information.

We have compared the trust negotiation protocols [37, 3813with our point-
based trust management model in the introduction. Li, Ldl Afinsborough introduce
a framework for trust negotiation, in which the diverse emtifl schemes and proto-
cols including anonymous credential systems can be cordpimegrated, and used as
needed [32]. The paper presents a policy language thatenabyotiators to specify
authorization requirements. The research on trust negwtitnat is closest to ours is by
Chen, Clarke, Kurose, and Towsley [13]. They developedikties to find an approxi-
mation of the optimal strategy that minimizes the disclesafrsensitive credentials and
policies [13]. Using their methods, when negotiation fgileemature information dis-
closure is still a problem. Our protocols prevent premaituficgmation leakage, because
the computation does not disclose sensitive parametecauBe the selection computa-
tion is private, the minimization problem is simpler to defin our point-based model
than in trust negotiation frameworks. In addition, the siolu computed by our basic
and fingerprint protocols, if exists, is the exact optimalison, not an approximation.

Secure Multi-party Computation (SMC) was introduced in mis&l paper by Yao
[40], which contained a scheme for secure comparison. Sgpbce (with inputa)
and Bob (with inputh) desire to determine whether or not< b without revealing
any information other than this result (this is known¥e'’s Millionaire Problen).
More generally, SMC allows Alice and Bob with respectivevate inputse andb to
compute a functionf(a,b) by engaging in a secure protocol for public functign
Furthermore, the protocol is private in that it reveals ndithal information. This
means that Alice (or Bob) learns nothing other than what aaddxzluced frona (or
b) and f(a, b). Elegant general schemes are given in [3, 11, 23, 25] for ctimgp any
function f privately.

Besides the generic work in the area of SMC, there has beemsxé work on
the privacy-preserving computation of various functidast example, computational
geometry [1, 18], privacy-preserving computational biylg2]. The private dynamic
programming protocol given by Atallah and Li [2] is the mostewvant work to ours.
Their protocol compares biological sequences in an addijtisplit format. Each party
maintains a matrix, and the summation of two matrices is¢hématrix implicitly used
to compute the edit distance. Our protocols also carry onpedation in an additively



split form. What distinguishes us from existing solutioashat we are able to achieve
efficiently a stronger security guarantee without usingoZ¢€nowledge Proofs [26].
Recently, there are also solutions for privacy-preserdntpmated trouble-shooting
[29], privacy-preserving distributed data mining [30]jvate set operations [19, 31],
and equality tests [33]. We do not enumerate other privathi4party computation
work as their approaches significantly different from ours.
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