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Abstract. This paper studies the notion of point-based policies for trust manage-
ment, and gives protocols for realizing them in a disclosure-minimizing fashion.
Specifically, Bob values each credential with a certain number of points, and
requires a minimum total threshold of points before granting Alice access to a
resource. In turn, Alice values each of her credentials witha privacy score that
indicates her reluctance to reveal that credential. Bob’s valuation of credentials
and his threshold are private. Alice’s privacy-valuation of her credentials is also
private. Alice wants to find a subset of her credentials that achieves Bob’s re-
quired threshold for access, yet is of as small a value to her as possible. We give
protocols for computing such a subset of Alice’s credentials without revealing
any of the two parties’ above-mentioned private information.

Key words: Trust management, private multi-party computation, knapsack problem.

1 Introduction

A typical scenario for accessing a resource using digital credentials is for the client,
Alice, to send her request to Bob, who responds with the policy that governs access
to that resource. If Alice’s credentials satisfy Bob’s policy, she sends the appropriate
credentials to Bob. After Bob receives the credentials and verifies them, he grants Alice
access to the resource. Observe that, in this scenario, Alice learns Bob’s policy and Bob
learns Alice’s credentials. However, this mechanism is unacceptable if the credentials
or the access control policies are considered to be sensitive information.

The motivation for hiding credentials is individual privacy, e.g., if the credentials
are about one’s physical impairment or disability, financial distress, political or reli-
gious affiliation, etc. The motivation for hiding the policyis not only security from an
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evil adversary, but simply the desire to prevent legitimateusers fromgamingthe system
— e.g., changing their behavior based on their knowledge of the policy (which usually
renders an economically-motivated policy less effective). This is particularly important
for policies that are not incentive-compatible in economicterms (they suffer from per-
verse incentives in that they reward the wrong kinds of behavior, such as free-loading).
In yet other examples, the policy is simply a commercial secret — e.g., Bob has pio-
neered a novel way of doing business, and knowledge of the policy would compromise
Bob’s strategy and invite unwelcome imitators.

It is also important to point out that a process that treats Alice’s credentials as con-
fidential is ultimately not only to Alice’s advantage but also to Bob’s: Bob can worry
less about rogue insiders in his organization illicitly leaking (or selling) Alice’s private
information, and may even lower his liability insurance rates as a result of this. Privacy-
preservation is a win-win proposition, one that is appealing even if Alice and Bob are
honest and trustworthy entities. This paper gives a trust management model that quan-
titatively addresses degrees of sensitivity. Moreover, the degree of sensitivity of a given
credential is private to each user, and can vary from one userto another.

1.1 Motivations

In a probing attack, Alice can engage in a protocol with Bob multiple times using dif-
ferent credential sets each time (all of which are subsets ofher credentials) to gain in-
formation about Bob’s policy. In the case where Alice is requesting access to a service,
Bob will know whether she got access and can therefore also probe (by using different
policies and observing their effect) to gain information about Alice’s credentials.

One way of mitigating probing attacks is the one followed in the trust negotiation
literature [5, 37, 38, 44, 45], in which the disclosure of a credential is governed by an
access control policy that specifies the prerequisite conditions that must be satisfied
in order for that credential to be disclosed. Typically, theprerequisite conditions are a
subset of the set of all credentials, and the policies are modeled using propositional for-
mulas. A trust negotiation protocol is normally initiated by a client requesting a service
or a resource from a server, and the negotiation consists of asequence of credential
exchanges: Trust is established if the initially requestedservice or resource is granted
and all policies for disclosed credentials are satisfied [38, 43].

Although mitigating probing attacks, the requirements of the trust negotiation liter-
ature have some practical limitations.(1) Probing is still possible when policies are not
treated as sensitive resources, and the client (or server) can game the system in many
ways. For example, if the client knows the access control policies for the server’s cre-
dentials then she will know the path of least resistance to unlock certain credentials.(2)
Premature information leaking is difficult to prevent in existing trust negotiation pro-
tocols including the recent framework using cryptographiccredentials [32]. The pre-
mature information leaking refers to the situation when a negotiation is not successful,
however sensitive credentials are already disclosed.(3) The service model in trust ne-
gotiation is usually limited, that is, the requested service is fixed and independent of
the amount of information released by the client at the end ofthe negotiation session.
However, a client may end up disclosing more information than what is required for



the initially requested service. The reward or service provided by the server should be
dynamically adjustable with the amount of information released from the client.

As will become clear soon, the approach presented in this paper mitigates the above-
mentioned problems. The computation for determining whether a user satisfies a policy
is privacy-preserving, whereneitherparty needs to disclose sensitive information. Of
the multiple ways of satisfying the policy, Alice will tend to use the one that utilizes the
credentials whose privacy she values least.

1.2 Overview

Quantitatively addressing trust establishment problem has existed in several papers on
trust and reputation models [4, 17, 42, 46]. These models have applications in open sys-
tems such as mobile ad hoc networks, Peer-to-Peer networks [17], and e-trade systems.

We consider a new point-based trust management policy (rather than a Boolean ex-
pression) that is private and should therefore not be revealed to Alice: Bob associates a
number of points with every possible credential, and requires the sum of the points of
those credentials that Alice uses to reach a minimum threshold before he grants her ac-
cess to the resource. The resource owner, Bob, defines an admissible threshold, and that
threshold is itself private and should not be revealed to Alice. Alice needs to satisfy the
threshold requirement to gain access by using a subset of hercredentials that gives her
the required number of points, but there can be many such subsets: Alice is interested
in using the subset that has minimum privacy-value to her, according to her privacy-
valuation function; that valuation function is itself private and should not be revealed to
Bob. We give a protocol which determines which subset of Alice’s credentialsoptimally
satisfies Bob’s threshold, i.e., it has minimum privacy value to Alice among all subsets
that satisfy Bob’s threshold. Bob’s point-valuation of credentials, his thresholds, and
Alice’s privacy-valuation of her credentials are private and not revealed.

1.3 Applications

In the point-based model, credentials are mapped with pointvalues defined by the re-
source owner, therefore the client’s reward or service can be dynamically adjusted ac-
cording to the amount of private information revealed. The flexibility makes the point-
based model attractive to the trust management in web-services and e-commerce ap-
plications in general, as users have the incentives to carryon the computation for trust
establishment, which facilitates business transactions.

Another important type of applications for point-based model is privacy-aware pres-
ence systems [27, 39, 42], where presence data such as the location of a user is collected
through devices such as GPS on a cellphone. The management ofpresence data is cru-
cial, because it concerns not only user privacy, but also safety: presence data can be
used to track and profile individuals. In the meantime, theremay be emergency sit-
uations or extenuating circumstances when certain parties(like emergency workers)
should have access to this kind of information, and friends and relatives of a user might
be allowed to query his or her location information at any time. Therefore, a desirable
feature of a location query system is that it provides different levels of precision based
on the requester’s trustworthiness or the context of the query. This requires a flexible



authorization model for accessing the private location data, which can be offered by the
point-based authorization model.

1.4 Our Contributions

1. We propose a point-based trust management model and we formalize the creden-
tial selection problem of the model into a knapsack problem.Our point-based trust
management model enables users to quantitatively distinguish the sensitivities of
different credentials. It also allows a provider to quantitatively assign values to
credentials held by clients. The point-based model has several features:(i) Policy
specification is simple and easily allows dynamic adjustment of services provided
based on released credentials;(ii) A user can proactively decide whether the poten-
tial privacy loss is worth the service without disclosing any sensitive information;
(iii) To satisfy a policy, a user can select to disclose theoptimalcredential set that
minimizes the privacy loss, based on his or her personal measure.

2. We give secure and private dynamic programming protocolsfor solving the knap-
sack problem. Our solution, consisting of a basic protocol and an improved proto-
col, allows the server and user to jointly compute the optimal sum of privacy scores
for the released credentials, without revealing their private parameters. The com-
plexity of our basic protocol isO(nT ′), wheren is the total number of credentials
andT ′ is the (private)marginal threshold, which corresponds to the sum of the
points of the credentials that arenot disclosed. The protocol uses homomorphic
encryptions, and is semantically secure against semi-honest adversaries.
Our improved protocol, thefingerprint protocol, is secure in an adversarial model
that is stronger than a semi-honest one (a.k.a honest-but-curious). The improved
protocol prevents a participant from tampering with the values used in the dynamic
programming computation. That is, while we cannot prevent aparticipant from
lying about her input, we can forceconsistency in lyingby preventing capricious
use of different inputs during the crucial solution-traceback phase. The complexity
of our fingerprint protocol isO(n2T ′).

3. One contribution of this paper that goes beyond the specific problem considered is
a generalindexing expansionmethod for recovering an optimal solution from any
value-computing dynamic programming computation, while detecting cheating by
the participants. Using this method, a participant is not required to trust the other
party during the back-tracing phase. This is possible because the participant is able
to efficiently identify whether the other party has tamperedwith the computation.
For traceback in general dynamic programming problems, ouralgorithm not only
allows a participant to independently and easily recover the optimal traceback so-
lution, once the computed optimal value is given, but also enables the participants
to verify the integrity of the optimal value.

Organization of the Paper Our point-based trust management model is presented in
Section 2. The basic protocol for privacy-preserving credential selection is given in
Section 3. Fingerprint protocol is given in Section 4. We analyze the security in Section
5. We present an extension to the fingerprint protocol in Section 6. Related work is
given in Section 7.



2 Model

In this section, we describe a point-based trust managementmodel, and define the cre-
dential selection problem in this model.

2.1 Point-Based Trust Management

In the point-based trust management model, the authorization policies of a resource
owner defines anaccess thresholdfor each of its resources. The threshold is the min-
imum amount of points required for a requester to access thatresource. For example,
accessing a medical database requires fifty points. The resource owner also defines a
point valuefor each type of credentials, which denotes the number of points or cred-
its a requester obtains if a type of credential is disclosed.For example, a valid ACM
membership is worth ten points. This means that a client can disclose his or her ACM
membership credential in exchange for ten points. We call this a trust management
model as opposed to an access control model, because the resource owner does not
know the identities or role assignments of requestersa priori.

A requester has a set of credentials, and some of which may be considered sensitive
and cannot be disclosed to everyone. However, in order to access a certain resource, the
requester has to disclose a number of credentials such that the access threshold is met by
the disclosed credentials. Different clients have different perspective on the sensitivity
of their credentials, even though the credentials are of thesame type. For example, a
teenager may consider age information insensitive, whereas a middle-aged person may
not be very willing to tell his or her age.

Therefore, in point-based trust management model, each client defines aprivacy
scorefor each of their credentials. The privacy score representsthe inverse of the will-
ingness to disclose a credential. For example, Alice may give privacy score 10 to her
college ID, and 50 to her credit card. The client is granted access to a certain resource
if the access threshold is met and all of the disclosed credentials are valid. Otherwise,
the access is denied. From the requester’s point of view, thecentral question is how to
fulfill the access threshold while disclosing theleastamount of sensitive information.
In the next section, we define this as a credential selection problem. The credential se-
lection problem is challenging, because the requester considers his or her privacy scores
sensitive, and the server considers its point values and access threshold sensitive.
Where do point values come from?One approach to obtain point values is from rep-
utation systems [4, 36, 46]. Essentially the point value of acredential represents the
trustworthiness of the organization that issues the credential. If a resource owner thinks
organizationA is more reputable than organizationB, the resource owner specifies a
higher point value for a credential issued byA than the one issued byB. This idea
has been explored in a recent paper that quantitatively studies the connections between
computational trust/reputation models with point values in point-based trust manage-
ment. The paper also discusses the application of such models in privacy-preserving
location systems. The work in trust models and reputation systems [4, 36, 46] serve as
a starting point for demonstrating the applicability of point-based trust management.



2.2 Credential Selection Problem

Definition 1. The credential selection problem is to determine an optimalcombina-
tion of requester’s credentials to disclose to the resourceowner, such that the minimal
amount of sensitive information is disclosed and the accessthreshold of the requested
resource is satisfied by the disclosed credentials.

We formalize the credential selection problem as an optimization problem. Our
model assumes that the resource owner (or server) and the requester (or client) agree on
a set of credential types as the universe of credentials(C1, . . . , Cn). We define a binary
vector(x1, . . . , xn) as the unknown variable to be computed, wherexi is 1 if creden-
tial Ci is selected, and 0 if otherwise. Integerai ≥ 0 is theprivacy scoreof credential
Ci. It is assigned by the requestera priori. If the requester does not have a certain cre-
dentialCi, the privacy scoreai for that credential can be set to a large integer. Thus,
the (knapsack) algorithm avoids choosing that credential type, as the cost is high. The
server definesT that is theaccess thresholdof the requested resource. Integerpi ≥ 0 is
thepoint valuefor releasing credential typeCi. The requester considers all ofai values
sensitive, and the server considers the access thresholdT and all ofpi values sensitive.

The credential selection problem is for the requester to compute a binary vector
(x1, . . . , xn) such that the sum of points

∑n
i=1 xipi satisfiesT , and the sum of pri-

vacy scores
∑n

i=1 xiai is minimized. This is captured in the following minimization
problem. Compute a binary vector(x1, . . . , xn) such that the following holds:

min

n∑

i=1

xiai

subject to
n∑

i=1

xipi ≥ T

The above minimization problem can be rewritten into a knapsack problem with a
new variableyi = 1− xi ∈ {0, 1}. Fori-th credential,yi = 1 represents not disclosing
the credential, andyi = 0 represents disclosing the credential.

We define the marginal thresholdT ′, which coarsely correlates to the sum of the
points of the credentials that are not disclosed.

Definition 2. The marginal thresholdT ′ of the credential selection problem is defined
as

∑n
i=1 pi − T , wherepi is the point value for credential typeCi, T is the access

threshold for a requested resource, andn is the total number of credential types.

Let us first review the dynamic programming solution for the 0/1 knapsack prob-
lem [15]. Then, we describe our protocol for carrying out private dynamic programming
computation of the knapsack problem. The 0/1 knapsack problem is defined as follows.
Given items of different integer values and weights, find themost valuable set of items
that fit in a knapsack of fixed integer capacity. The dynamic programming solution is
pseudo-polynomial: the running time is inO(nT ′).

In the dynamic programming of knapsack problem, a table is made to track the opti-
mal selection of items so far. A column indicates the range ofvalues, which corresponds



to the target weight of the knapsack. A row corresponds to each item. The last table en-
try has the maximum capacity of the knapsack. The first columnand the first row are
initialized to zeros, i.e.M0,j andMi,0 are zeros, for alli ∈ [1, n] andj ∈ [0, T ′]. The
table is filled from top to bottom and from left to right. Usingthe notations defined
earlier, the recurrence relation is formally defined as follows. DenoteMi,j as the value
at i-th row andj-th column, andi ∈ [0, n], j ∈ [0, T ′].

Mi,j = Mi−1,j if j < pi

max{Mi−1,j, Mi−1,j−pi
+ ai} if j ≥ pi

Each entry of the table stores the total value of a knapsack, which is determined as
either the value of a knapsack without the current item (expressed as the value directly
to the top of the current entry), or the value of the knapsack with the current item added
into it. At the end of the computation, the entry at the lower right corner of the table
contains the optimal value of the knapsack. The selections of items can be obtained by
bookkeeping the information of where the value of an entry comes from.

For our credential selection problem, the above recurrencerelation can be inter-
preted as follows. If the point value of credential typeCi exceedsj, which is a value in
the range of[0, T ′], then thei-th credential is not selected and the privacy scoreMi,j

is kept the same asMi−1,j . Otherwise, the algorithm compares the scoreMi−1,j for
not selecting thei-th credential with the scoreMi−1,j−pi

+ ai for selecting thei-th
credential. The larger value is chosen to be the privacy scoreMi,j.

The standard dynamic programming computation requires valuesai andpi for all
i ∈ [1, n]. However, in our model, the requester considersai sensitive, and the server
considerspi sensitive. We present a protocol that allows the completionof the dynamic
programming computation without revealing any sensitive information. In addition to
protecting sensitiveai andpi values, the entries in the dynamic programming table are
also protected from both parties.

Once the client has selected the set of credentials to disclose, she reveals them to the
server. The server then verifies the validity of the credentials by checking the credential
issuers’ signatures.

Privacy score of a credential set.In the current model, the privacy score of multi-
ple credentials is the sum of each individual privacy score.The summation is simple
to model, and represents the additive characteristic of privacy, i.e., the more personal
information revealed, the more privacy lost. Another advantage of the summation of pri-
vacy scores is the efficiency; the specification of privacy scores has a size linear in the
number of credentials. However, the client may want to explicitly specify an arbitrary
privacy score of a certain group of sensitive credentials. The group privacy score may
be higher or lower than the sum of individual privacy scores.The latter case can hap-
pen when one credential might subsume or include some information that is included
in the other credential(s). However, the dynamic programming solution is not clear for
the dynamic programming problem with arbitrary constraints. It remains an interesting
open question how to formulate the dynamic programming to support arbitrary privacy
score specifications.



3 Basic Protocol

We present the basic protocol, which is a secure two-party dynamic-programming pro-
tocol for computing the optimal solution of the credential selection problem. The basic
protocol has two sub-protocols: recursion and traceback, which represent the two phases
of dynamic programming. The protocol maintains the secrecyof sensitive parameters
of both parties. Furthermore, neither the server nor the client learns any intermediate
result. The main technical challenge is that the server doesnot want to reveal point
values{pi} and the client does not want to reveal privacy scores{ai}. As shown by
the recurrence relation in Section 2, it seems difficult to compute entryMi,j without
knowingpi andai. We overcome the challenge by designing a protocol that hides the
conditional testing from the client. The basic protocol is efficient and is secure in the
semi-honest adversarial model.

3.1 Building Blocks

In our protocol, we store values in a modularly additively split manner with a large
base calledL. The additively split manner means that the server and the client each
has a share of a value, and the value equals to the sum of their shares modularL. If
xS andxC represent the share of the server and the client, respectively, then the value
equals toxS + xC mod L. We useL − i to represent−i (and usei to representi).
This implies that the range of the values is between−L

2 and L
2 , andL must be chosen

so that it is larger enough to prevent accidental wrap-around. Secure two-party private
protocols were given in [20] that allow comparison of above described values, in which
the comparison result is additively split between the server and the client. It is easy to
modify these protocols to compute the maximum of the values in additively split format,
which we refer to as theprivate two-party maximum protocol. We use the private two-
party comparison and maximum protocols in our paper as a black box.

Our protocols use homomorphic encryption extensively. Recall that a cryptographic
scheme with encryption functionE is said to be homomorphic, if the following holds:
E(x) ∗ E(y) = E(x + y). Another property of such a scheme is thatE(x)y = E(xy).
The arithmetic performed under the encryption is modular, and the modulus is part of
the public parameters for this system. Homomorphic schemesare described in [16, 34].
We utilize homomorphic encryption schemes that are semantically secure. Informally,
a homomorphic scheme issemantically secureif the following condition holds. Given
the public parameters of a homomorphic schemeE, and the encryption of one of the
two messagesm, m′ wherem is from a specific message andm′ is chosen uniformly
random from the message space, then|(Pr(P (E(m))) = 1)− Pr(P (E(m′)) = 1)| is
negligible for any probabilistic polynomial time algorithm P .

3.2 Overview of Basic Protocol

The basic protocol consists of two sub-protocols: the basicrecursion sub-protocol and
the basic traceback sub-protocol.



– Basic recursion sub-protocol: the client and server compute a(n+1)×(T ′+1) ma-
trix M in an additive split form. LetMi,j denote the value stored at thei-th row and
j-th column. LetEC be the public encryption function of the client’s semantically-
secure homomorphic encryption scheme. The server learnsEC(Mi,j) values for
all i ∈ [1, n] andj ∈ [1, T ′]. From the security ofEC , a computationally-bounded
server gains no information from theEC(Mi,j) values. The server computes (with
the client’s help) the valueEC(Mi,j), when givenEC(Mi′,j′) for all values(i′, j′)
that are dominated by(i, j), for all i ∈ [1, n] andj ∈ [1, T ′]. M0,j andMi,0 are
zeros, for alli ∈ [0, n] andj ∈ [0, T ′].

– Basic traceback sub-protocol: once the dynamic programming table has been filled
out, the client discovers (with the server’s help) the set ofcredentials that have been
selected to disclose. The optimal selection is revealed to both parties.

Note that the basic recursion sub-protocol should unify theoperations in the two
cases (j < pi andj ≥ pi) of the recurrence relation. Otherwise, the client can learn
pi from the computation. We solve this by designing a generic and private maximum
function and by additively splitting intermediate resultsbetween the two parties.

3.3 Basic Recursion Sub-Protocol

The basic recursion sub-protocol is described in Figure 1.
Whenj > T ′ (recall thatT ′ =

∑n
i=1 pi − T ), the server terminates the protocol.

The last entryMn,T ′ of the dynamic programming matrix has been computed. The
client knows the marginal thresholdT ′, as she keeps her share of the matrix. Yet, the
client does not learn the individual point valuepi and access thresholdT from the
computation so far.

Lemma 1. The complexity of the basic recursion sub-protocol isO(nT ′), with O(1)
homomorphic encryptions or decryptions at each round, wheren is the total number of
credentials andT ′ is the marginal threshold.

The proof of Lemma 1 is in the full version of the paper [41].
The basic recursion sub-protocol runs inO(nT ′), where marginal thresholdT ′ or

the number of credentialsn can potentially be large. We point out that an important
advantage of our protocol compared to conventional boolean-based policies lies in the
privacy-preserving functionality offered. Our protocol not only computes the optimal
selection of credentials, but also does it in a privacy-preserving fashion for both the
server and client. For conventional policies, the latter aspect cannot be easily achieved
without having the server to publish or disclose unfairly its policies.

The protocol presented here is secure in the semi-honest adversary model, which is
improved later by our indexing expansion method in Section 4. The detailed security
analysis is given in Section 5.

3.4 Basic Traceback Sub-Protocol

To support the back-tracking of the optimal solution (i.e.,the optimal credential set to be
disclosed), the basic recursion sub-protocol needs to be modified accordingly. At step 3



Setup: The client has published the public parameters of a semantically secure homomor-
phic schemeEC . We will use the base of this scheme as the modulus for the additively split
values.
Input: The server hasEC(Mi′,j′) for all values(i′, j′) that are dominated by(i, j), where
i ∈ [1, n] andj ∈ [0, T ′]. The sever also has point valuesp1, . . . , pn and the client has
privacy scoresa1, . . . , an.
Output: The server learnsEC(Mi,j).
Steps:

1. The server creates a pair of valuesα0 andα1, whereα0 = EC(Mi−1,j), andα1 =
EC(−∞) if pi > j, andα1 = EC(Mi−1,j−pi

) otherwise. Without loss of generality,
we assume thatai values defined by the client are always bounded by an integerB

that is known to the server, i.e.ai ≤ B for all i ∈ [1, n]. The server then uses−B − 1
as−∞. The server also chooses random valuesr0 and r1, and sends to the client
α0EC(r0) andα1EC(r1).

2. The client decrypts the values to obtainβ0 andβ1. The server sets its shares to−r0

and−r1 and the client sets its shares toβ0 andβ1 + ai. Note that the two candidate
values forMi,j are additively split between the client and the server.

3. The client and the server engage in a private maximum protocol to compute the maxi-
mum of these two values in an additively split format. Denotethe shares byxS andxC .

4. The client sendsEC(xC) to the server, and the server computesEC(xC + xS) and
sets this value as his output.

Fig. 1.Basic recursion sub-protocol.

in the basic recursion sub-protocol, not only the maximum but also thecomparison
result of the two candidate values forMi,j are computed for alli ∈ [1, n] and j ∈
[1, T ′]. During the computation, neither the server nor the client knows the result of
the comparison tests, as the result is split between them. From the recurrence relation
in Section 2, it is easy to see that the comparison result directly indicates whetherai

is contained inMi,j and thus whether credentialCi is selected. DenoteF as a matrix
that contains the result of the comparisons, we modify the previous basic recursion sub-
protocol so that the server learnsEC(Fi,j) for the entire matrix. In the basic traceback
sub-protocol, the server and the client work together to retrieve the plaintext comparison
results starting from the last entry of the table, followingthe computation path of the
optimal dynamic programming solution.

Figure 2 describes the basic traceback sub-protocol.

Lemma 2. The complexity of the basic traceback sub-protocol isO(n), with O(1) ho-
momorphic decryptions at each round, wheren is the total number of credentials.

The following theorem states the overall complexity of the basic protocol.

Theorem 1. The complexity of the basic protocol isO(nT ′), wheren is the total num-
ber of credentials andT ′ is the marginal threshold.

The proof of Theorem 1 is in the full version of this paper [41].



Input: The server has matrix entries{EC(Mi,j)} and {EC(Fi,j)} encrypted with the
client’s public key, for alli ∈ [1, n] andj ∈ [1, T ′]. The client has her private key.
Output: The client learns the optimal value of the dynamic programming computation of
knapsack. The server and the client learn the optimal selection of credentials, or nothing.
Steps:

1. The server sends the clientEC(Mn,T ′). The client decrypts the ciphertext to obtain
the resultMn,T ′ . Mn,T ′ represents the privacy score associated with the unselected
credentials. If this value is acceptable to the client according to some pre-defined pri-
vacy standard set by the client, then this sub-protocol continues. Otherwise, this sub-
protocol terminates.

2. The server reveals the entryEC(Fn,T ′) to the client.
3. The client decryptsEC(Fn,T ′ ) to obtainFn,T ′ ∈ {0, 1}. The client sends the plain-

text valueFn,T ′ to the server (The server then knows whetherCn is selected or not.)
If Fn,T ′ = 1, then credentialCn will not be disclosed.Fn,T ′ = 1 also means
that entryMn,T ′ is computed from entryMn−1,T ′ . Therefore, the server next re-
veals EC(Fn−1,T ′ ) to the client. If Fn,T ′ = 0, then the server next reveals
EC(Fn−1,T ′

−pn
), as the entryMn,T ′ is computed from entryMn−1,T ′

−pn
.

4. The revealed entries represent the computation path of the optimal knapsack dynamic
programming solution. The above process is repeated untiln reaches zero.

Fig. 2. Basic traceback sub-protocol

The basic traceback sub-protocol assumes that the server does not maliciously alter
the computation results. In the case of a malicious server, the server may sendEC(0)
instead of the real values to mislead the client to disclose all credentials. Although
the attack might be caught by the client (as the client may finda subset of credentials
that still satisfies the threshold constraint), we give a stronger traceback algorithm that
proactively prevents this type of attacks in the next section.

4 Fingerprint Protocol

In this section, we give an alternative protocol for privacy-preserving knapsack com-
putation. The new approach is inspired by thesubset sum problem, yet we stress that
this solution does not require the client to solve the general subset sum problem. The
main idea is to allow the client (not the server) to efficiently identify the selected cre-
dentials from the optimal privacy score. The new protocol, which we refer to as the
fingerprint protocol,4 is an important step towards a protocol that is secure against ma-
licious servers, because it can be extended to prevent the server from tampering the
computation during traceback.

In addition to solving our credential selection problem (and thus the knapsack prob-
lem), the fingerprint protocol can be generalized to solve the traceback problem in a

4 The name is because of the similarities between fingerprinting in forensics and the indexing
technique that we use to uniquely identify a subset.



large variety of integer linear programming problems. It can be used for one party to se-
curely and privately trace the optimal solution from the final computed value, with very
little or no participation from the other party. The technique guarantees the correctness
of the traceback results, even though the other party cannotbe trusted during traceback.

4.1 Fingerprint Protocol Description

The key idea of the fingerprint protocol is to convert the client’s privacy scores{ai} into
another set of scores{Ai}, such that the following two conditions hold. (1) The optimal
credential selection computed with{Ai} should be the same as the optimal credential
selection computed with{ai}. (2) The privacy score computed with{Ai} should reveal
which set of credentials are used to obtain that score. Thus,this transformation process
requires the following two properties:

Property 1. Ordering consistency:For two setsS andR in 2{1,...,n}, if
∑

i∈S Ai <∑
i∈R Ai, then

∑
i∈S ai ≤

∑
i∈R ai.

Property 2. Uniqueness:For any two distinct setsS andR in 2{1,...,n},
∑

i∈S Ai 6=∑
i∈R Ai.

The ordering consistency property ensures that the set of revealed credentials com-
puted with the transformed scores is optimal even when the original scores are used. The
uniqueness property guarantees that traceback is possible, as only one set of credentials
can generate a specific score. Although the above propertiesdo not imply that an effi-
cient traceback is possible, our transformation leads to anefficient traceback method.
Our indexing expansionmethod transforms a privacy scoreai to Ai as follows.

Ai = ai ∗ 2n + 2i−1.

In binary representation, the indexing expansion shifts the binary form ofai to
the left byn positions, and gives zeros ton least significant bits except thei-th least
significant bit, which is given a one. For example, suppose there are four privacy scores
2, 3, 5, 8 or in binary form 010, 011, 101, 1000. Heren = 4. After the transformations,
the expanded scores have the binary form 010 0001, 011 0010, 101 0100, 1000 1000,
respectively. Readers can verify that the example satisfy the two required properties.
We now prove that the indexing expansion has the desired properties.

Lemma 3. The indexing expansion achieves the ordering consistency property.

Lemma 4. The indexing expansion achieves the uniqueness property.

Proofs of the above two lemmas are in the full version of this paper [41].
Hence, the indexing expansion method allows the client to compute the credentials

that are used to achieve a specific privacy score. Although the optimal value obtained
from the secure dynamic programming with theAi scores is different from the one
with the originalai scores, the set of credentials corresponding to the optimalprivacy
values are the same. We now describe the fingerprint protocol, which makes use of the
indexing expansion.



Input: The server has the marginal thresholdT ′ and point valuesp1, . . . , pn. The client
has privacy scoresa1, . . . , an.
Output: The client (not the server) learns the optimal selection of credentials.
Steps:

1. The client applies the indexing expansion to each of her privacy scores{ai} and ob-
tains the transformed scores{Ai}.

2. The server and the client carry out the basic recursion sub-protocol (in Figure 1) with
the transformed privacy scores{Ai}. Recall that at the end of the basic recursion
sub-protocol, the server has computedEC(Mn,T ′ ) in entry (n, T ′) of the dynamic
programming matrix.

3. The server sends the ciphertextEC(Mn,T ′) to the client.
4. The client decryptsEC(Mn,T ′) to obtainMn,T ′ .
5. The client expresses the optimal valueMn,T ′ in binary form and identifies the non-

zero bits in the lastn bits. The positions of such bits give the indices of credentials
that give the optimal solution5. Note that thei-th least significant bit ofMn,T ′ is true
if and only if credentiali was used to obtain the optimal value.

Fig. 3. Fingerprint protocol

The indexing expansion of privacy scores requiresn additional bits for each cre-
dential, wheren is the total number of credentials. In Lemma 5 below, we provethat in
order to satisfy the uniqueness property, the number of bitsrequired for the transformed
privacy scores is bounded byΩ(n).

Lemma 5. For any transformation of index to satisfy the uniqueness property, the num-
ber of additional bits introduced for a privacy score is lower-bounded byΩ(n), where
n is the number of credentials.

Theorem 2. The complexity of the fingerprint protocol isO(n2T ′), wheren is the total
number of credentials andT ′ is the marginal threshold.

The proofs of Lemma 5 and Theorem 2 are in the full version of this paper [41].

4.2 Detection of Value Substitution by the Server

In the method described above, although difficult, it is not impossible for a malicious
server to forge its share of the optimal value and thus mislead a client to disclose more
credentials. The probability of the server correctly guessing a credential’s privacy score
and its bit position in the indexing expansion may not be negligible. For example, the
server may have1/n probability of correctly guessing the bit position of a credential,
wheren is the total number of credentials. Also, it may have1/ max {ai} probability
of correctly guessing the privacy score, where{ai} represents the set of untransformed
privacy scores. In Section 6, we describe a simple checksum technique for preventing
the server from tampering with the traceback computation. This is done by appending
randomized information to privacy scores.



5 Security

We define our security model as a semi-honest (a.k.a. honest-but-curious) model. In-
tuitively, this means that adversaries follow the protocolbut try to compute additional
information other than what can be deduced from their input and output alone. A proto-
col is defined as secure if it implements a functionf , such that the information learned
by engaging in the protocol can be learned in an ideal implementation where the func-
tionality is provided by a trusted oracle. This definition follows the standard definitions
given by Goldreich [24] for private multi-party computation.

Let A be any one of the two parties in our protocol, we useviewA to represent
all of the information thatA sees during the protocol. A protocol is secure against
a semi-honestA, if and only if there exists an algorithm that can simulateviewA

when givenA’s inputs andA’s output. To be more precise, two probability ensem-

bles X
def
= {Xn}n∈N and Y

def
= {Yn}n∈N are computationally indistinguishable

(i.e., a polynomial bounded algorithm cannot distinguish the two distributions) if for
any PPT algorithmD, any positive polynomialp, and sufficiently largen it holds
that: |(Pr(D(Xn, 1n) = 1)) − (Pr(D(Yn, 1n) = 1))| < 1

p(n) . Let A’s input and
output be represented byAI andAO respectively. A protocol is secure in the semi-
honest model against adversaryA, if there is an algorithmSIMA such thatviewA and
SIMA(AI , AO) are computationally indistinguishable (i.e.,SIMA simulatesA’s view
of the protocol).

To prove the security of the basic protocol (in Figure 1), we state a lemma about the
security of the private two-party maximum protocol used in step 3 of the basic protocol.

Lemma 6. The private two-party maximum protocol is secure in the semi-honest model.

The above lemma states that there exists a private two-partymaximum protocol
such that when given the client’s inputsaC andbC , there is an algorithm that simulates
the client’s view of the maximum protocol.

Given such a private two-party maximum protocol, we show that the basic recursion
sub-protocol in Section 3 is secure.

Theorem 3. The basic recursion sub-protocol is secure in the semi-honest adversarial
model.

We have shown that each individual round is secure in the above protocol. The
composition follows from the composition theorem [9].

We show the basic traceback sub-protocol (in Figure 2) is secure. Note that the
basic traceback sub-protocol makes uses of a matrixF that is computed in the recur-
rence phase. Each entry of matrixF contains the selection decision of a credential. The
computation ofF is secure, which can be deduced from Theorem 3.

Theorem 4. The basic traceback sub-protocol is secure in the semi-honest adversarial
model.

Proofs of Theorem 3 and 4 are in the full version of this paper [41].
Given Theorem 3, the fingerprint protocol (in Figure 3) is secure, because once the

server givesEC(Mn,T ′) to the client, the client carries out the traceback computation
without any communication from the server.



Theorem 5. The fingerprint protocol is secure in the semi-honest adversarial model.

6 Extension

The checksum technique has applications beyond the specificproblem considered, and
is a general method for recovering an optimal solution from any value-computing dy-
namic programming computation, while detecting cheating by the participants. We dis-
cuss an extension to fingerprint protocol that is secure against an adversary who is
stronger than a semi-honest one. We consider an adversarialmodel as described fol-
lows. An adversary may tamper with private computation by modifying intermediate
results during the protocol, which is not allowed in a semi-honest model. An adversary
is curious as in a semi-honest model, in that she may store allexchanged data and try
to deduce information from it. An adversary is assumed to participate and follow the
protocol, which is a weaker assumption than a malicious model.

It is important to define the above adversarial model. While we cannot prevent a
participant from lying about her input, we can forceconsistency in lyingby prevent-
ing capricious use of different inputs during the crucial solution-traceback phase. For
complex functions such as the one being studied, lying aboutone’s input wrecks the
worthiness of the answer for both participants, and the participant who does so would
have been better off not engaging in the protocol in the first place (this is not true for
simple functions where the lier can still get the answer bycorrecting for her lie).

Note that our extension does not support a full malicious model, which would re-
quire expensive Zero Knowledge Proofs [26]. However, we do raise the bar on common
things that a malicious server may try in our model. When the server is not semi-honest,
a significant problem with our protocols is that the server hasEC(Mi,j) for all matrix
values. Thus, the server can replace any value of the matrix with another valueEC(v)
for any valuev. In the fingerprint protocol, the server has to guess the weights used for
each credential. The client can easily check if the proposedsum is created by a certain
set of credentials. However, as described earlier, the server may have a non-negligible
probability of successfully replacing these values. We nowdescribe a technique that
reduces the probability of a successful replacement by the server to a negligible value
in terms of a security parameter.

The idea is that the client performs transformations on his or her privacy scores.
The client creates a new set of valuêA1, . . . , Ân that satisfy the traceback properties
outlined in Section 4. For each value,Ai, the client chooses uniformly aρ-bit value
(whereρ is the security parameter), which we callri. The client setŝAi = Ai2

lg n+ρ+ri

(whereAi is the already transformed value for traceback). It is straightforward to show
that these values satisfy the properties outlined in Section 4. Furthermore, for the server
to substitute a value, it would have to guess aρ bit value, which it can guess successfully
with only negligible probability in the security parameterρ.

Another attack that the server can launch is that it can send any intermediate value
of the matrix to the client, and claim that it is the final result. Because an intermediate
value is well-formed, it cannot be detected by the above technique. However, the server
does not gain from this type of attacks. If the server choosesa value from a higher row
(with a smaller row index), then this attack can be achieved by setting the point values



of some credentials to zero (i.e., they are useless to the client and are never used). If
a different column is chosen, then this attack can be achieved by increasing the access
thresholdT . If the intermediate value is from a different row and a different column,
then the effect of this attack can be achieved by increasing the threshold and setting the
point values of some credentials to zero at the same time. Theserver may attempt to
form linear combinations of row entries, but there is a non-negligible chance of being
caught by the client because a repeated entry may be found.

7 Related Work

In the access control area, the closest work to ours is the framework for regulating
service access and release of private information in web-services by Bonatti and Sama-
rati [5]. They study the information disclosure in open systems such as Internet using
a language and policy approach. In comparison, we design cryptographic solutions to
control and manage information exchange. In addition, we focus on solving the opti-
mality in selecting the set of credentials to disclose. Bonatti and Samarati considered
two data types in the portfolio of a user: data declaration (e.g., identity, address, credit
card number) and credential. Although we only consider credentials in the description
of our model, the protocols can be generalized to include data declarations as long as the
server and the client agree on their specifications. In general, credentials (e.g., driver’s
license and credit card) contain a set of data declaration information, which is usually
requested as a group. For example, the credit card number andthe expiration date are
usually asked for at the same time. Using credentials to represent private information
may be sufficient in some cases.

Our point-based trust management model quantitatively treats memberships or cre-
dentials, which is conceptually different from most existing access control models. Our
approach aims to address the fact that different individuals or groups of people have
different privacy concerns in terms of protecting sensitive information. This goal dif-
fers from conventional access control models. The flexibility provided by the point-
based model enables users to proactively protect their private information. Furthermore,
thresholds specified by resource owners prevent unqualifiedusers from accessing the
resource.

Anonymous credential and idemix systems have been developed [8, 10, 12] to allow
anonymous yet authenticated and accountable transactionsbetween users and service
providers. Together with zero-knowledge proof protocols,they can be used to prove
that an attribute satisfies a policy without disclosing any other information about the
attribute. The work in this paper focuses on finding the optimal credentials to disclose,
and can be integrated with anonymous credential systems. A zero-knowledge proof
protocol can be used when the necessary information to satisfy a policy is discovered.
We can apply anonymous credential techniques to implement membership credentials
in the point-based trust management model. These credentials are then used to prove
user’s memberships without revealing individual identity.

In hidden credentials system [7, 28], when a signature derived from an identity
based encryption scheme [6, 14, 35] is used to sign a credential, the credential con-
tent can be used as a public encryption key such that the signature is the corresponding



decryption key. Hidden credentials can be used in such a way that they are never shown
to anyone, thus the sensitive credentials are protected. Frikken et al. [21] give a scheme
that hides both credentials and policies. Most recently, a protocol [22] was proposed
that allows both the client and the server to defineprivateaccess policies of their cre-
dentials.

The setup of hidden credential protocols does not allow the computation of the
optimalselection of credentials. In addition, as explained in the recent work by Frikken,
Li, and Atallah [22], the server learns whether the client obtained access or not in some
environments even when hidden credential schemes are used.In this case, the server
can make inferences about the client’s sensitive credentials. For example, if the server’s
policy is one must have top secret clearance and be a FBI agent, then the server can
deduce a significant amount of information about the client when the access control
decision is made. Our proposed solution allows the client toestimate potential privacy
loss without leaking any sensitive information.

We have compared the trust negotiation protocols [37, 38, 44, 45] with our point-
based trust management model in the introduction. Li, Li, and Winsborough introduce
a framework for trust negotiation, in which the diverse credential schemes and proto-
cols including anonymous credential systems can be combined, integrated, and used as
needed [32]. The paper presents a policy language that enables negotiators to specify
authorization requirements. The research on trust negotiation that is closest to ours is by
Chen, Clarke, Kurose, and Towsley [13]. They developed heuristics to find an approxi-
mation of the optimal strategy that minimizes the disclosure of sensitive credentials and
policies [13]. Using their methods, when negotiation fails, premature information dis-
closure is still a problem. Our protocols prevent prematureinformation leakage, because
the computation does not disclose sensitive parameters. Because the selection computa-
tion is private, the minimization problem is simpler to define in our point-based model
than in trust negotiation frameworks. In addition, the solution computed by our basic
and fingerprint protocols, if exists, is the exact optimal solution, not an approximation.

Secure Multi-party Computation (SMC) was introduced in a seminal paper by Yao
[40], which contained a scheme for secure comparison. Suppose Alice (with inputa)
and Bob (with inputb) desire to determine whether or nota < b without revealing
any information other than this result (this is known asYao’s Millionaire Problem).
More generally, SMC allows Alice and Bob with respective private inputsa andb to
compute a functionf(a, b) by engaging in a secure protocol for public functionf .
Furthermore, the protocol is private in that it reveals no additional information. This
means that Alice (or Bob) learns nothing other than what can be deduced froma (or
b) andf(a, b). Elegant general schemes are given in [3, 11, 23, 25] for computing any
functionf privately.

Besides the generic work in the area of SMC, there has been extensive work on
the privacy-preserving computation of various functions.For example, computational
geometry [1, 18], privacy-preserving computational biology [2]. The private dynamic
programming protocol given by Atallah and Li [2] is the most relevant work to ours.
Their protocol compares biological sequences in an additively split format. Each party
maintains a matrix, and the summation of two matrices is the real matrix implicitly used
to compute the edit distance. Our protocols also carry out computation in an additively



split form. What distinguishes us from existing solutions is that we are able to achieve
efficiently a stronger security guarantee without using Zero-Knowledge Proofs [26].
Recently, there are also solutions for privacy-preservingautomated trouble-shooting
[29], privacy-preserving distributed data mining [30], private set operations [19, 31],
and equality tests [33]. We do not enumerate other private multi-party computation
work as their approaches significantly different from ours.
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