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Abstract—Extracting the protocol message format specifica-
tions of unknown applications from network traces is important
for a variety of applications such as application protocol parsing,
vulnerability discovery, and system integration. In this paper, we
propose ProDecoder, a network trace based protocol message
format inference system that exploits the semantics of protocol
messages without the executable code of application protocols.
ProDecoder is based on the key insight that the n-grams of
protocol traces exhibit highly skewed frequency distribution that
can be leveraged for accurate protocol message format inference.
In ProDecoder, we first discover the latent relationship among
n-grams by first grouping protocol messages with the same
semantics and then inferring message formats by keyword based
clustering and cluster sequence alignment. We implemented and
evaluated ProDecoder to infer message format specifications of
SMB (a binary protocol) and SMTP (a textual protocol). Our
experimental results show that ProDecoder accurately parses and
infers SMB protocol with 100% precision and recall. For SMTP,
ProDecoder achieves approximately 95% precision and recall.

I. INTRODUCTION

A. Motivation and Problem Statement

This paper concerns the automatic inference of protocol

message format specifications from the network traces of

unknown application protocols. This has many applications

in networking and security. For instance, application protocol

parsing requires protocol inference. Application protocol pars-

ing, the translation of raw packet flows into higher level flows

of semantic content, has a wide variety of current and future

networking and security services such as semantics aware

Intrusion Detection and Prevention Systems (IDSes/IPSes),

network monitoring, network measurement, application-aware

load balancing, application fingerprinting, tunnel detection,

Quality-of-Service (QoS), and content-aware caching and rout-

ing. Take its application in IDSes/IPSes as an example. Tradi-

tional IDSes/IPSes treat packet payload as a sequence of bytes

and match it against malware signatures represented as a set of

regular expressions. This coarse grained signature checking is

fundamentally limited due to its ignorance of the application

protocol structure in the packet payload. Modern IDSes/IPSes

become semantics aware by parsing packet payloads to get

the value for each application protocol field based on appli-

cation protocol message formats. Several application protocol

parsers, such as FlowSifter [25], UltraPAC [20], binpac [28],

and GAPA [4], have been proposed in prior literature.

All these application protocol parsers require protocol speci-

fications in order to generate parsers for the corresponding pro-

tocol. However, many application protocols on the Internet are

proprietary and have no publicly released specifications. Ac-

cording to the Internet2 NetFlow weekly reports on backbone

traffic, more than 40% of Internet traffic belongs to unidenti-

fied application protocols [27]. Communication protocols used

by malware and botnets do not have protocol specifications

from their designers. To parse a flow of unknown application

protocols, we first need to conduct protocol inference to get

the protocol message format. Network monitoring tools such

as Ethereal [1], NetDude [19], SNORT [31], and BRO [30]

also require application protocol parsers to implement their

functionalities.

Besides application protocol parsing, protocol inference

is useful for many other applications such as vulnerability

discovery and system integration. For vulnerability discovery,

to detect vulnerability in a deployed application, people often

perform penetration testing, which requires protocol specifi-

cation for that application. For system integration, to develop

applications that can work with proprietary protocols that have

no publicly known specifications, protocol inference is needed

to decode such protocols. For example, to develop an open

source client program that works with the proprietary Yahoo

Messenger protocol, one needs to first use protocol inference

to decode the message format of this protocol. Furthermore,

even for some application protocols with known specifications,

protocol inference is also needed sometimes for identifying978-1-4673-2447-2/12/$31.00 c© 2012 IEEE



implementation bugs and for identifying implementation de-

tails that are not unambiguously specified.

Inferring protocol specification from executable code is

extremely difficult. First, the executable code of these unidenti-

fied protocols, such as botnet command and control protocols,

are often not available for reverse engineering. Second, even

when such executable code is available, the reverse engineer-

ing process is labor intensive and error prone. For example,

manually reverse engineering the Microsoft Server Message

Block (SMB) protocol took 12 years in the open source

SAMBA project [34].

For the protocol inference problem addressed in this paper,

the input is a network trace of the target application protocol.

Note that an application protocol typically have multiple types

of messages where each message type has its own format. If

the executable code of an application protocol is available, it

can be run in a controlled environment to gather packet traces.

Else, prior traffic classification schemes (such as [16]) can be

used to separate network traffic of the target protocol from that

of others. As traffic classification schemes often do not have a

100% accuracy, we do not assume that the input network trace

contains only the packets of the target application protocol.

The output of protocol inference are protocol message formats

represented by regular expressions.

B. Limitation of Prior Art

Prior protocol message format inference methods fall into

two categories: reverse engineering based methods [5]–[8],

[21], [34], which infer protocol message format by reverse

engineering the executable code of protocols, and network

trace based methods [10], which infer protocol message format

by analyzing network traces that contain the messages of

a given protocol. Reverse engineering based methods are

only applicable to protocols for which the executable code

is available; however, the executable code of many unknown

protocols are typically not available for reverse engineering.

The only prior network trace based application protocol

message format inference method is Discoverer proposed

by Cui et al. [10]. Discoverer first reassembles IP packets

into application protocol messages; second, breaks up each

message into a sequence of tokens based on a set of predefined

delimiters such as space and tab; third, classifies messages into

various clusters based on each message’s token pattern; and

finally merges similar message formats. Discoverer has three

major limitations. First, Discoverer does not work for asyn-

chronous application protocols. Furthermore, even for syn-

chronous application protocols, it does not work with sampled

network traces. This is because it requires assembling packets

into application protocol messages. Discoverer treats each

maximum sequence of consecutive packets as an application

protocol message. This way of grouping packets into messages

is inappropriate for asynchronous protocols because two end

hosts may send packets to each other at the same time. Second,

Discoverer assumes that the first constant number of bytes of a

flow describe the complete structure of an application protocol.

However, this assumption often does not hold in reality. For

example, the Simple Mail Transfer Protocol (SMTP) indicates

the end of the mail data by sending a line containing only a “.”,

where “.” is an element of the message format and the email

message can be of any length. Third, Discoverer assumes the

existence of some delimiters for separating different fields in

protocols. However, unknown protocols may not use delimiters

and even if they use delimiters, such delimiters may not

available to the public.

C. Proposed Approach

In this paper, we propose ProDecoder, a semantics aware ap-

proach that takes network traces as the input and automatically

outputs the inferred protocol message format. ProDecoder

does not assume prior knowledge of protocol specifications

such as delimiters. It is applicable to both text and binary

protocols. Our approach is based on the key insight that the

n-grams of protocol traces exhibit highly skewed frequency

distribution that can be leveraged for accurate protocol mes-

sage format inference. ProDecoder has four major modules: n-

gram generation, keyword identification, message clustering,

and sequence alignment. We give an overview of each module

below.

1) n-gram Generation: The input to this module is a set

of packet traces that are of the same protocol. The process of

classifying raw network traffic into flows of different protocols

is called flow classification. The simplest flow classification

method is to classify flows based on the transport layer port

numbers. Of course, this simple method may misclassify traffic

carried by tunnels. There are more advanced flow classification

methods that have been proposed in prior literature [16], [18],

[29]. The output of this module is protocol messages where

each message is represented as a sequence of n-grams. An

n-gram is a subsequence of n elements contained in a given

sequence of at least n elements. For example, treating each

character as an element, the 3-grams generated from message

MAIL FROM are MAI, AIL, IL_, L_F _FR, FRO and ROM.

Given many packets of the same protocol, ProDecoder first

decomposes each message, denoted as a sequence of m bytes

b1b2 · · · bm, into a sequence of m− n+ 1 n-grams (n ≤ m):

b1b2 · · · bn, b2b3 · · · bn+1, · · · , bm−n+1bm−n+2 · · · bm.

2) Keyword Identification: This module uses a genera-

tive model from natural language processing to infer pro-

tocol keywords, which are used to define protocol message

formats. We identify a protocol keyword as a set of n-

grams that mostly show up together in protocol messages.

For example, the set of 3-grams {MAI, AIL, IL_, L_F,

_FR, FRO, ROM} can be a keyword because MAIL FROM

often show up together in SMTP messages. A message can

have multiple keywords. For example, an SMTP message

MAIL FROM: <alice@gmail.com> (RCPT TO: <bo

b@live.cn>)+ DATA have three keywords that corre-

sponds to MAIL FROM, RCPT TO, and DATA.

3) Message Clustering: This module clusters messages

based on their keywords using machine learning techniques.

Using the keywords associated with each message as features,

we use the Information Bottleneck (IB) clustering algorithm to



group similar messages into a cluster based on their semantics

[33]. This module enables ProDecoder to distinguish among

similar keywords belonging to different protocol messages.

4) Sequence Alignment: For the messages in each cluster,

this module uses a well-known sequence alignment algorithm

to find the common byte sequences among them. For example,

given a set of SMTP messages, sequence alignment algorithms

can identify MAIL FROM as a common byte sequence. These

common byte sequences represent the stable part of protocol

messages and therefore can be used to represent the message

format of the protocol in the form of regular expressions.

D. Novelty and Advantages of Our Approach

The key novelty of ProDecoder lies in its exploitation of the

semantic information in protocol messages. It distinguishes the

different meanings of the same n-grams in different messages,

which may have different semantics and therefore should

be classified into different keywords. Consider the example

SMTP message in Figure 1, where the 3-gram “250” repre-

sents different semantic meanings for different occurrences.

In this example, we use numbers from 1 to 8 to indicate the

order of the 8 messages, letter “S” to indicate the message

from the email sender, and letter “R” to indicate the message

from the email receiver. However, prior network trace based

protocol message format inference methods cannot make such

distinctions as they rely on counting the occurrences of strings,

ignoring the context of each string. Furthermore, ProDecoder

discovers the correlation among n-grams. In protocol mes-

sages, multiple n-grams together may form an element in the

protocol message format. For example, in an SMTP message,

the 3-grams, “250” and “ OK” together, denote a protocol

element that is used to confirm the mail transaction. Using

keyword identification, our approach can group correlated n-

grams together to form a keyword. Keyword identification

in ProDecoder is inspired from natural language processing

literature, where a major research issue is to identify topics

from a corpus of documents consisting of a vector of words.

1 S: MAIL FROM:<alice@USC-ISIE.ARPA:JQP@MIT-AI.ARPA>

2 R: 250 OK

3 S: RCPT TO:<joe@BBN-VAX.ARPA>

4 R: 250 OK

5 S: DATA

6 R: 354 Start mail input; end with <CRLF>.<CRLF>

7 S: Received: from MIT-AI.ARPA by USC-ISIE.ARPA ;

2 Nov 81 22:40:10 UT

Date: 2 Nov 81 22:33:44

From: John Q. Public <JQP@MIT-AI.ARPA>

Subject: The Next Meeting of the Board

To: Jones@BBN-Vax.ARPA

...

8 R: 250 OK

Fig. 1. An example SMTP communication session

ProDecoder addresses the aforementioned three limitations

of Discoverer. First, ProDecoder works with asynchronous

application protocols and sampled network traces because it

does not assemble IP packets into application-level messages.

Second, ProDecoder does not assume that the first constant

number of bytes of a flow describe the complete structure of

an application protocol. Third, ProDecoder does not assume

the existence of delimiters for separating different fields in

protocols.

The rest of the paper proceeds as follows. In Section II,

we review related work. We provide the technical details of

ProDecoder in Section III. We present implementation details

and experimental results for ProDecoder in Section IV. Finally,

we conclude the paper in Section V.

II. RELATED WORK

A. Reverse Engineering Based Methods

Such methods infer protocol message format by reverse

engineering the executable code of protocols. Accurately re-

verse engineering protocols typically involves manual efforts,

as described in [7] and [34]. There are several proposals about

automating this process. Lim et al. proposed a method that au-

tomatically extracts the format from files and application data

output functions, which may not be available [21]. Caballero

et al. proposed a protocol reverse engineering method called

Polyglot that uses dynamic analysis of program binaries [5].

The methods proposed in [8] and [6] infer protocol message

formats by observing the dynamic execution of protocols. Lin

et al. [22] and Wondracek et al. [36] proposed tools to reverse

engineer network message formats based on observing how

a program processes protocol messages. Cui et al. proposed

Tupni, a protocol reverse engineering method for automatically

identifying record sequences and record types in input formats

[11]. In contrast to these methods, our approach does not

require the binary code of protocols.

B. Other Related Work

Kannan et al. proposed a semi-automated method for ex-

tracting session structures of an application protocol based on

the session logs between a pair of end hosts. Comparing Kan-

nan’s method with ProDecoder, first, the goals are different -

Kannan’s method aims at extracting session structures whereas

ProDecoder aims at extracting protocol message formats.

Note that session logs are typically unavailable for unknown

application protocols. If we are given full logs of sessions

between many pairs of end hosts, it is straightforward to extend

ProDecoder to output session structures. Second, the level of

automation is different - Kannan’s method is semi-automated

whereas ProDecoder is fully automated.

Haffner et al. proposed ACAS, a method for the automated

construction of application signatures based on packet traces

[17]. The goal of ACAS is different from ProDecoder: ACAS

aims at obtaining application protocol signatures whereas

ProDecoder aims at obtaining message formats. Application

protocol message formats can be used as protocol signatures,

but not vice versa. A major limitation of ACAS is that it

assumes that the first 64 bytes of a flow completely describes

the structure of the application protocol carried by the flow.

This assumption often does not hold in reality especially

for binary protocols. Ma et al. proposed another protocol

identification method that uses statistical and structural content
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models based on flow content [23]. Similarly, this method also

assumes that a protocol is a distribution on sessions of length

at most n, where n is 64 in [23].

Wang et al. proposed Veritas, a system for automatically

inferring protocol state machines from network traces [35].

They use a Kolmogorov-Smirnov (K-S) test based method

to extract application protocol signatures, which is needed

in constructing protocol state machines. Veritas also differs

from ProDecoder in terms of goals - Veritas aims at obtaining

protocol state machines whereas ProDecoder aims at obtaining

protocol message formats. Furthermore, Veritas only analyzes

the first n bytes of each packet, where n is 12 in [35].

III. PRODECODER

In this section, we present details of ProDecoder, a se-

mantics aware approach that takes network traces as the

input and automatically outputs the inferred protocol message

format. ProDecoder has four major modules: n-gram genera-

tion, keyword identification, message clustering, and sequence

alignment. Figure 2 shows the architecture of ProDecoder. We

next provide details of each component below.

A. n-gram Generation

The input to ProDecoder is a set of packet traces that

are of the same application protocol. The trace of one flow

contains many packets. Each packet contains either a partial

or complete keyword, or multiple keywords defined in the

specification of the protocol. A keyword is essentially a byte

sequence of arbitrary length. For example, the keywords used

in the Simple Message Transfer Protocol (SMTP) include

“MAIL FROM”, “RCPT TO”, “250”, “OK”, etc. In addition

to text based protocols such as SMTP and HTTP, ProDecoder

is also aimed to decode binary protocols such as SMB.

Therefore, we need to further break down each keyword into

constituent elements. For example, the keyword “250” can

be decomposed into ”2”, “5”, and “0”. Note that we can

aggregate consecutive elements to create up-scaled elements.

For example, the three consecutive elements ”2”, “5”, and “0”

can be combined into the keyword “250”. These elements are

also known as tri-grams, where three consecutive elements can

be joined together. Similarly, this process can be generalized to

n-grams, where n denotes the number of consecutive elements

that are joined together.

The key technical question in this module is what value

should be used for n. We conducted a pilot study on the

distribution of n-grams in two well-known protocols, SMTP

and SMB, for varying values of n. Figure 3 shows the

distributions of n-grams in both SMTP and SMB. As ex-

pected, the distribution of n-grams in both protocols is highly

skewed. In Figure 3, x-axis denotes the rank of n-grams

in terms of their frequency on y-axis and both axes are

converted to logarithmic scale to emphasize the skewness in

their distribution. We observe that the distribution of n-grams

approximately follows a straight line on log-log scale, which is

a characteristic of Zifp distribution [24]. It is well-known that

for most natural languages, the word occurrences follow a Zipf

distribution. Furthermore, we observe that the goodness-of-fit

values improves for n = 3 compared to n = 2. However,

we also observe that the distribution becomes highly sparse

for values of n > 4. Using the these observations, we choose

n to be 4 for our method. On a related note, some binary

protocols may have keywords whose sizes are smaller than n.

Such keywords are combined with adjacent bytes to from n-

grams. Later in Section III-D, we show that ProDecoder can

identify these keywords by using sequence alignment.

B. Keyword Identification

The purpose of this module is to identify the protocol key-

words that appear in the given network trace of an application

protocol. The input to this module is a sequence of n-grams

generated by the previous module. The output of this module

is a sequence of protocol keywords identified by ProDecoder,

where each keyword is the concatenation of one or more n-

grams. These keywords will be used in the next module to

cluster messages.

We now present our Latent Dirichlet Allocation (LDA)

based approach to keyword identification. Let m denote a

message consisting of a vector of words ~zm, where each

word z is a candidate protocol keyword and it consists of

a vector of n-grams ~wz . In the context of this paper, here a

message means a packet. To identify protocol keywords from

a corpus of messages, we use a generative model called LDA,

which has been widely used in natural language processing
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Fig. 3. n-gram distribution in SMTP and SMB protocols

[3], [9]. The counterpart of protocol keyword identification

in natural language processing is topic identification from

a corpus of documents, where each document consists of a

vector of words. In our approach, each message is treated as

a probability distribution of words, where each word is in

turn a probability distribution over n-grams. Given a corpus

of M messages, let p(w) be the marginal probability that

n-gram w appears in the corpus, let p(z = zk) be the

marginal probability that word zk appears in the corpus, and

let p(w|z = zk) be the conditional probability that n-gram

w appears in a message containing word zk in the corpus.

Therefore, for a corpus of M messages containing a total of

K unique words, the marginal probability of n-gram w is

defined as follows.

p(w) =
K
∑

k=1

p(w|z = zk)p(z = zk)

subject to:

K
∑

k=1

p(z = zk) = 1

(1)

The task of LDA is to use the given corpus of M mes-

sages to estimate two types of distributions: (1) the n-gram

distribution p(w|z = zk), denoted ϕk, for each word zk,

and (2) the word distribution p(z), denoted ϑm, for each

message m. We use two parameter sets, φ = {ϕk}
K
k=1 and

θ = {ϑm}Mm=1, where each is a matrix, to represent these two

types of distributions, respectively. Given φ and θ, the LDA

model can generate a set of n-grams wm,u, where u denotes

the index of this n-gram with respect to message m. This

generation process is dictated by two hyperparameters, α and

β, where α is the Dirichlet prior parameter of per-message

word distributions and β is the Dirichlet prior parameter of

per-word n-gram distribution. Specifically, for each message

m, a sample word distribution ~ϑm ∼ Dir(α) is drawn, where

Dir(α) is the Dirichlet distribution for parameter α. Based

on ~ϑm, a word indicator zm,u ∼ Mult(~ϑm) is sampled for

n-gram wm,u, where Mult(~ϑm) is the multinomial distribu-

tion with parameter ~ϑm. For each word indicator zm,u, the

corresponding n-grams wm,u ∼ Mult(ϕzm,u
) are generated.

Our goal is to identify the set of keywords used in the

application protocol message format. Towards this end, we

need to identify the n-gram distribution for each word and

the word distribution for each message in the given corpus.

This is a classic Bayesian inference problem, where the target

posterior distribution is defined as follows:

p(~z|~w) =
p(~z, ~w)

p(~w)
=

∏W

i=1 p(zi, wi)
∏W

i=1

∑K

k=1 p(wi, zi = k)
(2)

Our target distribution p(~z|~w) represents word distributions for

the given message corpus. The denominator p(~w) denotes the

marginal probability of generating n-grams and the numerator

p(~z, ~w) denotes the joint probability of generating words and

their corresponding n-grams. The solution to this problem

gives us K keywords and their associated W n-grams for the

given corpus. However, we cannot directly solve for the target

distribution because denominator p(~w) involves a summation

over KW items and it does not factorize [3], [12]. Therefore,

we cannot obtain a closed-form solution for the Bayesian

inference problem described in Equation 2.

To obtain an approximate solution for the Bayesian infer-

ence problem, there are three candidate strategies: (1) variation

Bayes, (2) expectation propagation, and (3) and Markov Chain

Monte Carlo (MCMC). Among these three strategies, we

choose MCMC because it is tolerant to local optima, requires

little memory, and is competitive in speed [14]. Specifically,

we use an MCMC algorithm called Gibbs sampling [15].

Gibbs sampling is an iterative algorithm, where in each

iteration the value of each variable is updated by a value

drawn from the target distribution of that variable conditioned

on the rest of variables. For our problem, p(~z|~w) in Equation

2 is our target function from which we draw samples. Each

sample zi is replaced by a value drawn from the distribution

p(zi|~z−i, ~w), where zi represents the ith component of ~z and

~z−i represents zj for any j 6= i. By further simplification, the

conditional posterior distribution p(zi|~z−i, ~w) can be derived

from the following proportional relationship, where n
(t)
k is the

number of times that n-gram t is assigned to keyword k and

n
(k)
m is the number of times an n-gram from the message m



has been assigned to keyword k.

p(zi = k|~w) ∝
(n

(t)
k − 1 + β)(n

(k)
m − 1 + α)

(
∑W

i=1 n
(t)
k − 1 +Wβ)(

∑K

k=1 n
(k)
m − 1 +Kα)

,

(3)

After a sufficient number of iterations, MCMC converges and

we obtain keywords ~z, which are then used to estimate the

parameter sets θ and φ according to the following equations:

ϕk,t =
n
(t)
k + β

∑W

t=1 n
(t)
k +Wβ

(4)

ϑm,k =
n
(k)
m + α

∑K

k=1 n
(k)
m +Kα

(5)

To ensure that the Gibbs sampling algorithm has converged

and that the model with the estimated parameter sets θ and

φ is generalizable, we use perplexity to quantify the quality

of our estimation. Perplexity, which is defined as follows, is

a well-known measure of the ability of a model to generalize

to unseen data [2].

perplexity(Dtest) = exp

{

−

∑M

m=1 log p(~wm)
∑M

m=1 Nm

}

(6)

where Nm is the total number of n-grams in message m. We

use all training data to compute the perplexity score. A lower

perplexity score denotes better generalization performance in

practice, so we prefer a lower perplexity score in ProDecoder.

Perplexity also allows us to determine the right number of

keywords for the given corpus of messages.

C. Message Clustering

An application protocol has many types of messages where

each type of messages follow a particular format. To infer

the different message formats used by an application

protocol, we need to partition the given corpus of

messages into multiple clusters where the messages in

one cluster are of the same type following the same format.

For example, given a corpus of four SMTP messages,

MAIL FROM: <alice@gmail.com>, MAIL FROM:

<bob@live.cn>, RCPT TO:<smith@gmail.com>,

RCPT TO:<john@gmail.com>, we need to partition it

into two clusters, one containing the first two messages and

the other containing the last two messages. This message

clustering module accomplishes this task.

In this module, for each message, we use the K key-

words (and their corresponding probability) associated with

the message as its K features. After keyword identification,

each message m is labeled with K keywords where each

keyword k is associated a probability ϑm,k. Note that without

the keyword identification module, we can use the n-grams

generated from each message as its features; however, this

naive solution has serious disadvantages compared to our

method. First, keywords represent a high level abstraction

of n-grams and incorporate the correlation among multiple

n-grams. Directly using n-grams as features will lose such

correlation information. Second, for a corpus of messages, the

total number of keywords K is typically orders of magnitude

smaller than the total number of n-grams; thus, using key-

words as features significantly reduces the dimensionality of

the clustering problem compared to directly using n-grams as

features.

Using keywords and their corresponding probabilities as

features, we apply the standard hierarchical clustering method.

We use the Information Bottleneck (IB) [32] as the metric

for cluster validation because of two main reasons. First, IB

allows us to find a solution with suitable trade-off between

the complexity of the model and its precision. Second, IB

eliminates the need of defining similarity or distance measures

for clustering in advance.

Given a set of feature vectors X = x1, x2, ..., xM (where

M is the number of messages in the given corpus), IB allows

us to partition the set into C clusters. Towards this end, we

need to introduce another auxiliary random variable Y , which

incorporates relevant features of X . The objective of IB is to

cluster X into C clusters while preserving the relevant features

Y as much as possible. Formally, IB optimizes the following

expression:

ℓmax = I(C;Y )− γI(C;X), (7)

where γ works as a trade-off between I(C;Y ) and I(C;X).
Here I(C;Y ) denotes the mutual information between random

variables C and Y . Let p(C, Y ), P (C), and P (Y ) denote the

joint distributions of C and Y , the marginal distribution of C,

and the marginal distribution of Y , respectively. Thus, then

mutual information is defined as:

I(C;Y ) =
∑

∀c

∑

∀y

p(c, y) log
p(c, y)

p(c)p(y)
. (8)

Mutual information I lies in the range [0, 1]. The larger the

value of mutual information is, the more the two random

variables are dependent.

In ProDecoder, we heuristically set the number of clusters

to 1.5 times the optimal number of keywords K , identified ear-

lier. We also explored using Dunn index to select the suitable

number of clusters; however, it resulted in degraded accuracy.

After the number of clusters, denoted λ, is determined, we

recursively merge clusters to minimize the merger cost ℓmax

after initially treating each message in the corpus as a distinct

cluster. This recursive procedure continues till only λ clusters

are left.

D. Sequence Alignment

For each cluster of messages, the sequence alignment mod-

ule aims to infer the final protocol message formats for the

cluster by finding the invariant fields among messages, which

are in the form of regular expressions. For example, for the

following cluster of three messages:

1) MAIL FROM: <alice@microsoft.com>

2) MAIL FROM: <bob@berkeley.edu>

3) MAIL FROM: <carol@gmail.com>



our sequence alignment module will output the regular expres-

sion

MAIL FROM: <.*@.*..*>.

In ProDecoder, we use the Needleman-Wunsch algorithm

for sequence alignment [26]. The weight parameters of the

Needleman-Wunsch algorithm used in this study are match

= 2, mismatch = −2, and gap = 1. The basic Needleman-

Wunsch algorithm can only deal with two sequences at a time.

In ProDecoder, we extend it to handle multiple dimensions by

lining up N sequences along N 1-dimensional edges of an

N -dimensional hypercube. However, the computation of the

scoring function in this scheme requires O(2NLN ) operations,

where L represents the length of the final sequence after

alignment. To improve efficiency, we use a well-known heuris-

tic method called progressive alignment to perform multiple

sequence alignment [13].

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of ProDecoder in inferring

protocol formats of both textual and binary protocols. The

input to ProDecoder is the real-world traffic trace containing

packets of the target protocol and its output is the inferred cor-

responding protocol message formats. Below, we first describe

the data set used for evaluating ProDecoder, then define the

evaluation metrics, and finally present experimental results.

A. Data Set

We choose SMTP, which is used for email communication,

as the target textual protocol, and SMB, which is used for

file sharing, as the target binary protocol. For the traffic

classification algorithm used for network trace collection, we

simply use the TCP port numbers to filter traffic – port 25

for SMTP and port 445 for SMB. We collect both SMTP

and SMB traces from a backbone router of a major ISP on

the Internet. The payload of the SMTP (or SMB) packets in

our trace will constitute the corpus of the SMTP (or SMB)

messages. Our trace consists of 5,000 SMTP packets of a

total of 0.34 MB, 5,000 SMB packets of a total of 0.87

MB, and 5,000 non-SMTP and non-SMB packets of a total

of 1.21 MB. The overall size of our trace was limited due

to computational complexity of keyword identification and

message clustering modules. The average packet lengths are

also small for both SMTP and SMB protocols because they

mostly consist of command codes rather than payload data. We

use ninety percent of the packet traces for training ProDecoder

and the rest ten percent for measuring the precision and recall

of ProDecoder.

B. Evaluation Metrics for Effectiveness

Given a packet trace of one application protocol, we first

define the following three sets:

1) True Positives: the set of packets where each packet

matches a regular expression generated by ProDecoder

and indeed contains the application protocol fields that

correspond to the regular expression.

2) False Positives: the set of packets where each packet

matches a regular expression generated by ProDecoder

but does not actually contain the application protocol

fields that correspond to the regular expression.

3) False Negatives: the set of packets where each packet

does not match any regular expression generated by

ProDecoder but actually contains an application protocol

field.

Next, we define the following two metrics that we use to

quantitatively evaluate the effectiveness of ProDecoder:

precision =
|True Positives|

|True Positives|+ |False Positives|
(9)

recall =
|True Positives|

|True Positives|+ |False Negatives|
(10)

C. Effectiveness Results

The keyword identification process of ProDecoder uses the

following parameters

1) maximum iteration count L in Gibbs sampling algorithm

2) n-gram vocabulary size determined by P .

3) hyper-parameters α and β in LDA

Next, we first discuss how to select a suitable value for L, and

then present results for varying values of P , α, and β.

Recall that we use the Gibbs sampling algorithm to find

correlations in n-grams to identify protocol keywords. We

used perplexity as the metrics to ensure that the LDA model

estimated using Gibbs sampling is generalizable. As Gibbs

sampling is an iterative algorithm, it is important to select

an appropriate maximum iteration count, denoted by L, for

it to converge. To this end, we study how different values

of L affect the perplexity values for both SMTP and SMB

protocols. For both SMTP and SMB, we carry out experiments

for K = 20, 40, 60, and 80 and P = 40%, 60%, and 80%.

Figure 4 shows the perplexity values for the above values of

K and P for SMTP and SMB, respectively. For SMTP, we

observe that the perplexity values typically converge by 8, 000
iterations. For SMB, we observe that the perplexity values

typically converge by 1, 000 iterations. For the final evaluation

of ProDecoder, we select conservative values of L = 10, 000
for SMTP and L = 2, 000 for SMB protocol to ensure that

we achieve convergence. The keywords identified using Gibbs

sampling algorithm are then used as features to cluster mes-

sages into groups. Figure 5 shows the dendrogram structure

of hierarchical clustering for SMTP and SMB protocols. After

clustering messages, we finally use sequence alignment to infer

the final protocol message formats.

Next, we present the precision and recall results of ProDe-

coder for varying values of P , α, and β for both SMTP and

SMB packet traces. In our evaluations, we vary the ranges

of α ∈ {0.1, 0.5, 0.9}, β ∈ {0.005, 0.01, 0.05, 0.1, 0.5}, and

P ∈ {0.4, 0.6, 0.8}. Figures 6 and 7 show the plots of both

precision and recall for varying values of α, β, and P for SMB
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(c) SMB: P = 80%
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(e) SMTP: P = 60%
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Fig. 4. Selection of L for SMTP and SMB protocols
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Fig. 5. Dendrograms of hierarchical clustering for SMTP and SMB protocols

protocol. We observe that ProDecoder achieves 100% preci-

sion for all possible values of α, β, and P . Furthermore, the

recall values of ProDecoder vary in the range of 60%− 100%
for different parameter settings. The recall of ProDecoder

degrades for higher values of α and β, and lower values of

P . For SMB protocol, the optimal values of ProDecoder’s

parameters are α = 0.1, β = 0.005, and P = 0.8 and

the corresponding precision and recall values are both 100%.

TABLE I
SUMMARY OF RUNNING TIME OF PRODECODER’S MODULES

n-gram Keyword Message Sequence

Generation Inference Clustering Alignment

SMTP 3 seconds 172 minutes 148 minutes 10 minutes

SMB 7 seconds 48 minutes 15 minutes 3 minutes

Figures 8 and 9 show the plots of both precision and recall for

varying values of α, β, and P for SMTP protocol. For SMTP,

we observe a different trend for the precision of ProDecoder.

Specifically, the precision of ProDecoder decreases for higher

values of P and lower values of β, whereas it is unrelated

for α. The recall values of ProDecoder generally decrease

for higher values of α and β, and lower values of P . Note

that the trend observed for recall of ProDecoder is similar

for both SMTP and SMB protocol. For SMTP, the optimal

values ProDecoder’s parameters are α = 0.1, β = 0.01, and

P = 0.6 and the corresponding precision and recall values are

both approximately 95%.

D. Efficiency Results

We evaluated the computational efficiency of difference

modules of ProDecoder. The results are in Table I. Our

experiments were executed on a cluster machine where each

node had 4 quad-core Xeons processors running at 2.13GHz

with 16GB RAM. We note that keyword identification and

message clustering modules consume at least an order of

magnitude more time than the n-gram generation module and

the sequence alignment module. Note that ProDecoder runs

offline for a given network trace.
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Fig. 6. Precision of ProDecoder for SMB protocol
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Fig. 7. Recall of ProDecoder for SMB protocol
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Fig. 8. Precision of ProDecoder for SMTP protocol
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Fig. 9. Recall of ProDecoder for SMTP protocol



V. CONCLUSIONS

This paper represents the first attempt that leverages the

semantic information (such as the relationship among multi-

ple common byte sequences) in protocol messages to infer

their format specifications. ProDecoder is a novel multidisci-

plinary approach, which draws upon theories and techniques

from natural language processing, machine learning, and bio-

informatics literature. It is purely based on raw network

packet traces and does not require protocol executable code.

ProDecoder works with asynchronous application protocols

and sampled network traces and does not assume any prior

knowledge about protocol message formats (such as the delim-

iters used in protocol messages). Our evaluations on real-world

network traces of two well-known textual and binary protocols

showed that ProDecoder can accurately and efficiently infer

protocol message format specifications.
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