
Secure Coding Practices in Java: Challenges and Vulnerabilities∗

Na Meng Stefan Nagy Danfeng (Daphne) Yao Wenjie Zhuang Gustavo Arango Argoty
Department of Computer Science

Virginia Tech
Blacksburg, Virginia

{nm8247,snagy2,danfeng,kaito,gustavo1}@vt.edu

ABSTRACT
The Java platform and its third-party libraries provide useful fea-
tures to facilitate secure coding. However, misusing them can cost
developers time and effort, as well as introduce security vulnerabili-
ties in software. We conducted an empirical study on StackOverflow
posts, aiming to understand developers’ concerns on Java secure
coding, their programming obstacles, and insecure coding practices.

We observed a wide adoption of the authentication and autho-
rization features provided by Spring Security—a third-party frame-
work designed to secure enterprise applications. We found that
programming challenges are usually related to APIs or libraries,
including the complicated cross-language data handling of cryptog-
raphy APIs, and the complex Java-based or XML-based approaches
to configure Spring Security. In addition, we reported multiple se-
curity vulnerabilities in the suggested code of accepted answers on
the StackOverflow forum. The vulnerabilities included disabling
the default protection against Cross-Site Request Forgery (CSRF)
attacks, breaking SSL/TLS security through bypassing certificate
validation, and using insecure cryptographic hash functions. Our
findings reveal the insufficiency of secure coding assistance and
documentation, as well as the huge gap between security theory
and coding practices.

CCS CONCEPTS
• General and reference→ Empirical studies;

KEYWORDS
Secure coding, Spring Security, CSRF, SSL/TLS, certificate valida-
tion, cryptographic hash functions, authentication, authorization,
StackOverflow, cryptography
ACM Reference Format:
Na Meng Stefan Nagy Danfeng (Daphne) Yao Wenjie Zhuang

Gustavo Arango Argoty. 2018. Secure Coding Practices in Java: Chal-
lenges and Vulnerabilities. In ICSE ’18: ICSE ’18: 40th International Conference
on Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3180155.3180201

∗This work was supported by NSF Grant CCF-1565827 and ONR Grant N00014-17-1-
2498.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180201

1 INTRODUCTION
The Java platform and third-party libraries (e.g., BouncyCastle [9])
provide useful features to support secure coding. Misusing these
libraries and frameworks not only slows down code development,
but also leads to security vulnerabilities in software [19, 74, 80, 98].

Prior research has mostly focused on the specific topics of mis-
using cryptography and secure socket layer (SSL) APIs [23, 26, 29,
60, 72]. For example, Nadi et al. investigated the obstacles intro-
duced by Java cryptography APIs, developers’ usage of the APIs,
and desired tool support [68]. Lazar et al. manually examined 269
published cryptographic vulnerabilities in the CVE database, and
found that 83% of them were resulted from cryptography API mis-
use [60]. Fahl et al. [26] and Georgiev et al. [29] separately reported
vulnerable Android applications and software libraries that mis-
use SSL APIs and demonstrated how these vulnerabilities cause
man-in-the-middle attacks. Rahaman and Yao recently introduced
cryptographic program analysis (CPA) [72], which detects crypto-
graphic coding errors in C/C++ programs with static taint analysis.
All these studies on improving cryptography and SSL coding secu-
rity are timely and important.

In this work, we conducted an in-depth investigation on Java
secure coding problems. Our analysis is not limited to cryptography
or SSL APIs. We inspected 503 StackOverflow (SO) posts that are
related to Java security. The majority (87%) of the posts are about
non-crypto libraries. For each post, we thoroughly examined the
entire thread, including the question and all the responses. We
chose StackOverflow [91] because (1) it is an extremely popular
online platform for developers to share and discuss programming
issues and solutions, and (2) SO plays an important role in educating
developers and shaping their daily coding practices.

Our analysis was conducted at the code level, as code-level in-
vestigation has the potential to bring deeper insights. The technical
challenge is how to interpret the short and brief posts within the
appropriate programming context in order to understand the security
impact. To comprehend each post’s program context, we studied the
context related to the source code, configuration files, and execution
environments. We aimed to identify the root causes and solutions
of each problem. To comprehend each post’s security context, we
inferred developers’ implementation intents from their problem
descriptions and the involved security libraries. We also leveraged
our security expertise to assess whether the accepted solutions
fulfilled their original intents. These analysis and reasoning tasks
require expertise in both software engineering and cyber security.

In our analysis of the 503 StackOverflow posts, we investigated
the following three research questions (RQs):

RQ1 What are the common concerns in Java secure coding? We
aimed to identify the libraries and functionalities (e.g., [3,

https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1145/3180155.3180201

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden N. Meng et al.

32, 45, 47, 69, 85]) that were most frequently asked about
by developers. Our scope covers all topics related to Java
security, not limited to cryptography and SSL.

RQ2 What are the common programming challenges? We aimed
to identify the common obstacles that hinder secure cod-
ing. Such information can provide software engineering re-
searchers actionable insights for designing tools and help
close the gap between correct API usage and the practice.

RQ3 What are the common security vulnerabilities? The high popu-
larity of StackOverflowmay cause insecure code to be shared
and used in real-world implementations. This effort helps
raise the security awareness among software developers.

Our work provides empirical evidences for many significant
secure coding issues that have not been previously reported. The
major findings are summarized as follows.
• There were security vulnerabilities in the recommended code
of some accepted answers. For example, when encountering
errors during implementing Spring Security authentication,
developers were suggested a workaround to disable the de-
fault security protection against Cross-Site Request Forgery
(CSRF) attacks. Also for example, some posts advised devel-
opers to trust all incoming SSL/TLS certificates as a fix to cer-
tificate verification errors. Such a setup completely destroys
the security guarantees of SSL/TLS. Although this insecure
practice was reported by security researchers in 2012 [26, 29],
some SO users still view this option as acceptable. In addi-
tion, MD5 or SHA-1 algorithms was repeatedly suggested,
even though these cryptographic hashing algorithms are
weak and should not be used for hashing passwords. For the
17 problematic posts (5 on CSRF, 9 on SSL/TLS, and 3 on
password hashing), the total view count is 622,922 1.
• Various programming challenges were related to security li-
brary usage. For instance, developers became stuck with
using cryptography APIs due to clueless error messages,
complex cross-language data handling (e.g., encryption in
Python and decryption in Java), and delicate implicit API
usage constraints. When using Spring Security, developers
struggled with the two alternative ways of configuring secu-
rity: Java-based or XML-based.
• Since 2012, developers have increasingly relied on the Spring
Security for secure coding. 267 of the 503 examined posts (53%)
are about the Spring Security, specifically on the authentica-
tion and authorization operations in enterprise applications.
However, security and usability studies about Spring Secu-
rity have not been reported in the literature.

Developers have pragmatic goals (i.e., getting the code to run)
and security goals. Some of the choices made by developers indi-
cate that the pragmatic goals can take priority over security, if a
developer cannot satisfy both of them. In addition, cybersecurity
decisions may be influenced by the social factors (such as reputa-
tion scores, votes, and accept labels) on the StackOverflow forum.
We also found one instance of cyberbullying, where condescending
comments were directed at a security-conscious user [103]. We
briefly report the social behavioral findings in Section 4.3.4. Our
data set is available at http://people.cs.vt.edu/nm8247/icse18.xlsx.
1As of August 2017

2 BACKGROUND
The examined posts cover three topics on Java security: Java plat-
form security, Java EE security, and third-party frameworks. This
section introduces the key terminologies used throughout the paper.

2.1 Java Platform Security
The platform defines APIs spanning major security areas, including
cryptography, access control, and secure communication [54]. The
Java Cryptography Architecture (JCA) contains APIs for crypto-
graphic hashes, keys and certificates, digital signatures, and
encryption [47]. Nine cryptographic engines are defined to pro-
vide either cryptographic operations (encryption, digital signatures,
hashes), generators or converters of cryptographic material (keys
and algorithm parameters), or objects (keystores or certificates) that
encapsulate the cryptographic data. The access control architecture
protects the access to sensitive resources (e.g., local files) or sensi-
tive application code (e.g., methods in a class). All access control
decisions are mediated by a security manager. By default, the
security manager uses the AccessController class for access control
operations and decisions. Secure communication ensures that the
data traveling across a network is sent to the appropriate party,
without being modified during the transmission. The Java platform
provides API support for standard secure communication protocols
like SSL/TLS. HTTPS, or “HTTP secure”, is an application-specific
implementation that is a combination of HTTP and SSL/TLS.

2.2 Java EE Security
Java EE is a standard specification for enterprise Java extensions [59].
Various application servers are built to implement this specification,
such as JBoss or WildFly [104], Glassfish [31], WebSphere [101],
and WebLogic [4]. A Java EE application consists of components
deployed into various containers. Containers secure components
by supporting features like authentication and authorization.

Specifically, authentication defines how communicating enti-
ties (i.e., a client and a server), prove to each other their identities.
An authenticated user is issued a credential, which includes informa-
tion like usernames/passwords or tokens. Authorization ensures
that users have permissions to perform operations or access data.
When accessing a certain resource, a user is authorized if the server
can map this user to a security role permitted for the resource. Java
EE applications’ security can be implemented in two ways:
• Declarative Security expresses an application component’s
security requirements using either deployment descrip-
tors or annotations. A deployment descriptor is an XML
file external to the application. This XML file expresses an
application’s security structure, including security roles, ac-
cess control, and authentication requirements. Annotations
are used to specify security information in a class file. They
can be either used or overridden by deployment descriptors.
• Programmatic Security is embedded in an application and
is used to make security decisions, when declarative security
alone is not sufficient to express the security model.

2.3 Third-Party Security Frameworks
Several frameworks were built to provide authentication, authoriza-
tion, and other security features for enterprise applications, such as

http://people.cs.vt.edu/nm8247/icse18.xlsx

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Spring Security (SS) [82]. Different from the Java EE security APIs,
these frameworks are container independent, meaning that they
do not require containers to implement security. For example, SS
handles requests as a single filter inside a container’s filter chain.
There can be multiple security filters inside the SS filter. Devel-
opers can choose between XML-based and Java-based security
configurations, or a hybrid of the two. Similar to Java EE security,
the XML-based configuration implements security requirements
with deployment descriptors and source code, while the Java-based
approach expresses security with annotations and code.

3 METHODOLOGY
We used the open source python library Scrapy [77] to crawl posts
from the StackOverflow (SO) website. Figure 1 presents the format
of a typical SO post. Each post mainly contains two regions: the
question and answers.

1⃝Question region contains the question description and some
metadata. The metadata includes a vote for the question (e.g., 3), in-
dicating whether the question is well-defined or well-representative,
and a favorite count (e.g., 1) showing how many people liked the
question.

2⃝ Answer region contains all answer(s) provided. When one
or more answers are provided, the asker decides which answer to
accept, and marks it with (✓).

java class to trust all for sending file to https web service

…	

… 	
①  		

②  		

I	need	to	write	my	own	class	to	tell	mule	that	h3ps	connec5on	to	service		
(wsdl)	is	verified.	I	already	have	mule	project	nearly	finished	but	last	piece	is		
missing,	sending	file	at	specific	url.	
	
What	I	want	to	achieve:	

What	worked	for	me	is	to	set	the	TrustManagerFactory	on	the	HTTPS	
connector.	Here's	how	I	did	it.	
	
First,	create	a	keystore	that	contains	the	cer5ficate	of	the	SSL	server	you	
want	to	trust.	You	can	create	the	keystore	using	the	tools	included	with	the	

Figure 1: A highly viewed post (viewed 662 times as of Jan-
uary 16, 2018) asking about HTTPS workarounds to bypass
key checking and allow all host names [46]

We obtained 22,195 posts containing keywords “Java” and “secu-
rity”. After extracting the question, answers, and relevant metadata
for each post, we refined the data in three ways.

1) Filtering less useful posts. We automatically refined posts by
removing duplicated posts, posts without accepted answers, and
posts whose questions received negative votes (usually because the
questions were ill-formed or confusing).

2) Removing posts without code snippets. To better understand the
questions within the program context, we only focused on posts
containing code snippets. Since our crawled data did not include any
metadata describing the existence of code snippets, we developed
an intuitive filter to search for keywords “public” and “class” in
each post. Based on our observation, a post usually contains these
two keywords when it includes a code snippet.

3) Discarding irrelevant posts.After applying the above two filters,
we manually examined the remaining posts, and decided whether
they were relevant to Java secure coding, or simply contained the
checked keywords accidentally.

With the above three filters, we finally included 503 posts in
our dataset asked between 2008-2016. We manually characterized
relevant posts according to their security concerns, programming
challenges, and security vulnerabilities. Based on this characteriza-
tion, we classified the posts. We aim to answer the following three
research questions (RQs):

RQ1: What are the common security concerns of develop-
ers? We aimed to investigate: (1) what are the popular security
libraries or functionalities that developers frequently asked about,
and (2) how have developers’ security concerns shifted over the
years? Because we had no prior knowledge of developers’ security
concerns, we adopted an open coding approach to classify posts.
Specifically, Author 4 initially categorized posts based on the soft-
ware libraries and security concepts discussed. Author 1 (an SE
professor) then iteratively reviewed posts to create and adjust the
identified security concerns. Next, Author 2 examined around 150
posts suggested by Author 1 to identify security vulnerabilities in
their answers. To ensure high quality of the findings, the two au-
thors cross checked results, and resolved disagreement with Author
3 (a cybersecurity professor).

We also classified posts into three categories based on the number
of positive votes and favorite counts that their questions received:
• Neutral: A question does not have any positive vote or fa-
vorite count.
• Positive: A question receives at least one positive vote but
zero favorite count.
• Favorite: A question obtains at least one favorite vote.

Thus, the post in Figure 1 is classified as “Favorite”, because its fa-
vorite count is 1. By combining this categorization with the security
concerns, we inferred developers’ attitudes towards these coding
issues. Questions that are project-specific or seemingly complicated
may receive low favorite counts, as other developers may not learn
or benefit from them.

RQ2: What are the common programming challenges? For
each identified security concern, we further characterized each post
based on its problem (buggy source code, wrongly implemented
configuration files, improperly configured execution environment),
the problem’s root cause, and the accepted solution. We then clus-
tered posts that have similar characteristics. For the post in Figure 1,
we identified its problem as SSL verification workaround. The de-
veloper seemed unaware that SSL should not be bypassed. The
recommended solution was to first create a keystore that contains
the certificates of all trusted SSL servers, and then use this key-
store to instantiate a TrustManagerFactory for establishing (unverified)
connections.

RQ3:What are the common security vulnerabilities? To an-
alyze each post’s security impact, we inspected the entire thread,
including unaccepted answers and conversational comments be-
tween the question asker and others. Based on recommended se-
cure coding practices and the post’s security context, we decided
whether the accepted solution was vulnerable. The post shown in

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden N. Meng et al.

All	StackOverflow	posts	(503)	

Implementa:on	ques:ons	(478)	 Comprehension	ques:ons	(25)	

Java	plaEorm	security	(140)	 Java	EE	security	(58)	 Spring	Security	(267)	 Other	(13)	

Cryptography	(64)	
Access	control	(43)	

Secure	communica:on	(31)	

Other	(2)	

Authen:ca:on	(225)	

Authoriza:on	(16)	
Configura:on	(26)	

Figure 2: Taxonomy of StackOverflow posts

Figure 1 has a secure accepted answer, although the asker originally
asked for a vulnerable solution as an easy fix.

4 MAJOR FINDINGS
We present our investigation results for the research questions
separately in Section 4.1-4.3.

4.1 Common Concerns in Security Coding
Figure 2 presents our classification hierarchy among the 503 posts.
At the highest level, we created two categories: implementation
questions vs. comprehensionquestions. Themajority (478 posts)
were about implementing security functionalities or resolving pro-
gram errors. Only 25 questions were asked to understand why
specific features were designed in certain ways (e.g., “How does
Java string being immutable increase security?” [37]). Because our
focus is on secure coding practices, our further classification ex-
pands on the 478 implementation-relevant posts.

At the second level of the hierarchy, we clustered posts based
on the major security platforms or frameworks involved in each
post. Corresponding to Section 2, we identified posts relevant to
Java platform security, Java EE security, Spring Security, and
other third-party security libraries or frameworks.

At the third level, we classified the posts belonging to either
Java platform security or Spring Security, because both categories
contained many posts. Among the Java platform security posts, in
addition to cryptography and secure communication, we iden-
tified a third major concern – access control. Among the Spring
Security posts, the majority (225) are related to authentication,
with the rest on authorization and configuration.

Finding 1: 56%, 29%, and 12% of the implementation-
relevant posts are on Spring Security, Java platform security,
and Java EE security, respectively. This finding indicates that
developers need more help with Java Spring Security.

Based on the second- and third-level classifications, we identified
seven major security topics: cryptography, access control, secure
communication, Java EE security, authentication, authorization,
and configuration. The first three topics correspond to Java plat-
form security, while the last three correspond to Spring Security.
To reveal trends in developers’ security concerns over time, we
clustered posts based on the year each question was asked.

Figure 3 presents the post distribution among 2008-2016. The
total number of posts increased over the years, indicating that more

0	 20	 40	 60	 80	 100	 120	

2016	

2015	

2014	

2013	

2012	

2011	

2010	

2009	

2008	
Cryptography	
Access	control	
Secure	communica>on	
Java	EE	security	
Authen>ca>on	
Authoriza>on	
Configura>on	

Figure 3: The post distribution during 2008-2016

developers became involved in secure coding and encountered prob-
lems. Specifically, there was only 1 post created in 2008, whereas
107 posts were created in 2016. During 2009-2011, most posts were
about Java platform security. However, since 2012, the major se-
curity concern has shifted to securing Java enterprise applications
(including both Java EE security and Spring Security). Specifically,
Spring Security has taken up over 50% of the posts published every
year since 2013.

Neutral	 Posi-ve	 Favorite	

0%	 20%	 40%	 60%	 80%	 100%	

Configura-on	

Authoriza-on	

Authen-ca-on	

Java	EE	security	

Secure	communica-on	

Access	control	

Cryptography	

Figure 4: The post distribution among developers’ attitudes:
neutral, positive, and favorite

As shown in Figure 4, we also clustered posts based on devel-
opers’ attitudes towards the questions for each security concern.
The configuration posts received the highest percentage of neutral
opinions (50%). One possible reason is that these posts mainly fo-
cused on problems caused by incorrect library versions and library
dependency conflicts. Since such problems are usually specific to
software development environments, they are not representative or
relevant to many developers’ security interests. In comparison, se-
cure communication posts received the lowest percentage of neutral

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

opinions (16%), but the highest percentage of favorite (61%), indi-
cating that the questions were more representative, focusing more
on security implementation, instead of environment configuration.

Finding 2: Over time, developers’ major security concern
has shifted from securing Java platform to enterprise ap-
plications, especially the Spring Security framework. Secure
communication posts received the highest percentage (61%)
of favorite votes, indicating that these questions are both
important and representative.

4.2 Common Programming Challenges
To understand the common challenges developers faced, we exam-
ined the posts from the top five most popular categories, namely
authentication (225), cryptography (64), Java EE security (58), ac-
cess control (43), and secure communication (31). We identified
posts with similar questions and related answers, and further in-
vestigated why developers asked these common questions. This
section presents our key findings for each category.

4.2.1 Authentication. Most posts were related to (1) integrating
Spring security with different application servers (e.g., JBoss) [87]
or frameworks (e.g., Spring MVC) [83] (35 posts), (2) configuring
security in an XML-based [84] or Java-based method [42] (145
posts), or (3) converting XML-based configurations to Java-based
ones [15] (18 posts). Specifically, we observed three challenges.

Challenge 1: There is much variation in integrating Spring Se-
curity (SS) with different types of applications. Although SS can
be used to secure enterprise applications no matter whether the
applications are Spring-based or not, the usage varies with the
application settings [86]. What’s worse is that some SS-relevant im-
plementations may exhibit different dynamic behaviors in different
application contexts. As shown in Listing 1, by following a standard
tutorial example [100], a developer defined two custom authentica-
tion filters—apiAuthenticationFilter and webAuthenticationFilter—to
secure two sets of URLs of his/her Spring Boot web application.

Listing 1: An example of code working unexpectedly in
Spring Boot applications [18]

1 @EnableWebSecurity
2 p u b l i c c l a s s S e c u r i t yC on f i g u r a t i o n {
3 @Conf igura t ion @Order (1)
4 p u b l i c s t a t i c c l a s s Ap iCon f i gu r a t i onAdap t e r
5 ex t ends WebSecur i t yCon f i gu re rAdap te r {
6 @Bean // define the 1st authentication filter
7 p u b l i c G e n e r i c F i l t e r B e a n
8 a p i A u t h e n t i c a t i o n F i l t e r () { . . . }
9 @Override
10 p r o t e c t e d vo id c on f i g u r e (H t t p S e c u r i t y h t t p)
11 throws Excep t i on {
12 h t t p . antMatcher (" / a p i / ∗ ∗ ") // URL pattern match
13 . a d d F i l t e r A f t e r (a p i A u t h e n t i c a t i o n F i l t e r () . . .)
14 . sess ionManagement () . . . ; } }
15 @Conf igura t ion @Order (2)
16 p u b l i c s t a t i c c l a s s WebSecu r i t yCon f i gu r a t i on
17 ex t ends WebSecur i t yCon f i gu re rAdap t e r {
18 @Bean // define the 2nd authentication filter
19 p u b l i c G e n e r i c F i l t e r B e a n

20 we bAu t h e n t i c a t i o n F i l t e r () { . . . }
21 @Override
22 p r o t e c t e d vo id c on f i g u r e (H t t p S e c u r i t y h t t p)
23 throws Excep t i on {
24 h t t p . antMatcher (" / ") // URL pattern match
25 . a d d F i l t e r A f t e r (w e bAu t h e n t i c a t i o n F i l t e r () . . .)
26 . a u t h o r i z e R e qu e s t s () . . . ; } } }

In Listing 1, lines 3-14 correspond to ApiConfigurationAdapter, a se-
curity configuration class that specifies apiAuthenticationFilter to
authenticate URLs matching the pattern “/api/**”. Lines 15-26 corre-
spond to WebSecurityConfiguration, which configures webAuthentication-
Filter to authenticate the other URLs. Ideally, only one filter is in-
voked given one URL, however in reality, both filters were invoked.
The root cause is that each filter is a bean (annotated with @Bean
on lines 6 and 18). Spring Boot detects the filters and adds them
to a regular filter chain, while SS also adds them to its own filter
chain. Consequently, both filters are registered twice and can be
invoked twice. To solve the problem, developers need to enforce
each bean to be registered only once by adding specialized code.
Unfortunately, this issue is not documented in the tutorial.

Challenge 2: The two security configurations (Java-based and XML-
based) are difficult to implement correctly. Take the Java-based con-
figuration for example. There are lots of annotations and APIs of
classes, methods, and fields available to specify different configu-
ration options. For example, HttpSecurity has 10 methods, each of
which can be invoked on an HttpSecurity instance and then produces
another HttpSecurity object. If developers are not careful about the
invocation order between these methods, they may get errors [40].
As shown in Listing 1, the method antMatcher("/api/**’’) must be
invoked before addFilterAfter(...) (lines 12-13), so that the filter
is only applied to URLs matching the pattern “/api/**”. Unfortu-
nately, such implicit constraints and subtle requirements are not
well documented.

Challenge 3: Converting from XML-based to Java-based configu-
rations is tedious and error-prone. The semantic conflicts between
annotations, deployment descriptors, and code implementations
are difficult to locate and resolve. Such problems become more seri-
ous when developers express security in a Java-XML hybrid form.
Since Spring Security 3.2, developers can configure SS in a pure
Java-based approach. There is documentation describing how to
migrate from XML-based to Java-based configurations [85]. How-
ever, manually applying migration rules is still time-consuming
and error-prone.

Finding 3: Spring Security authentication posts were mainly
about configuring security for various enterprise applications
in different approaches (namely, Java-based or XML-based),
and converting between them. The challenges were due to
incomplete documentation, as well as missing tool support
for automatic configuration checking and converting.

4.2.2 Cryptography. 45 of the 64 posts were about key genera-
tion and usage. For instance, some posts discussed how to create
a key from scratch [55], and how to generate or retrieve a key
from a random number [41], a byte array [17], a string [48], a cer-
tificate [30], BigIntegers [7], a keystore [6], or a file [97]. Other

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden N. Meng et al.

posts are on how to compare keys [14], print key information [96],
or initialize a cipher for encryption and decryption [52]. Specifi-
cally, we observed three common challenges of correctly using the
cryptography APIs.

Challenge 1: The error messages did not provide sufficient useful
hints about fixes. We found five posts on the same problem: “get In-
validKeyException: Illegal key size”, while the solutions were almost
identical: (1) download the “Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files”, “local_policy.jar”, and
“US_export_policy.jar”; and (2) place the policy files in proper fold-
ers [2]. Developers got the same exception because of missing either
of the two steps. Providing a checklist of these necessary steps in
the error message would help developers quickly resolve the prob-
lem. However, the existing error messages did not provide any
constructive suggestion.

Challenge 2: It is difficult to implement security with multiple
programming languages. Three posts were about encrypting data
with one language (e.g. PHP or Python) and decrypting data with
another language (e.g., Java). Such cross-language data encryption
& decryption is challenging, because the format of the generated
data by one language requires special handling in another language.
Listing 2 is an example to generate an RSA key pair and encrypt
data in PHP, and to decrypt data in Java [24].

Listing 2: Encryption in PHP and decryption in Java [24]
1 // *****keypair.php *****
2 i f (f i l e _ e x i s t s (' p r i v a t e . key ')) {
3 echo f i l e _ g e t _ c o n t e n t s (' p r i v a t e . key ') ; }
4 e l s e {
5 i n c l u d e (' Crypt / RSA . php ') ;
6 $ r s a = new Crypt_RSA () ;
7 $ r e s = $rsa −>c r ea t eKey () ;
8 $p r i v a t eKey = $ r e s [' p r i v a t ek ey '] ;
9 $pub l i cKey = $ r e s [' pub l i ckey '] ;
10 f i l e _ p u t _ c o n t e n t s (' pu b l i c . key ' , $ pub l i cKey) ;
11 f i l e _ p u t _ c o n t e n t s (' p r i v a t e . key ' , $ p r i v a t eKey) ; }
12 // *****encrypt.php *****
13 i n c l u d e (' Crypt / RSA . php ') ;
14 $ r s a = new Crypt_RSA () ;
15 $rsa −>se tEncryp t ionMode (CRYPT_RSA_ENCRYPTION_OAEP) ;
16 $rsa −>loadKey (f i l e _ g e t _ c o n t e n t s (' pu b l i c . key ')) ;
17 // *****MainClass.java *****
18 BASE64Decoder decoder =new BASE64Decoder () ;
19 S t r i n g b64P r i v a t eKey = ge tCon t en t s (
20 " h t t p : / / l o c a l h o s t / a p i / k eypa i r . php ") . t r im () ;
21 by te [] decodedKey=decoder . d e codeBu f f e r (b 64P r i v a t eKey) ;
22 Bu f f e r e dReade r br=new Bu f f e r edReade r (
23 new S t r i n gRe ad e r (new S t r i n g (decodedKey))) ;
24 PEMReader pr=new PEMReader (br) ;
25 KeyPa i r kp =(KeyPa i r) pr . r e a dOb j e c t () ;
26 pr . c l o s e () ;
27 P r i v a t eKey p r i v a t eKey =kp . g e t P r i v a t e () ;
28 Cipher c i p h e r =Cipher . g e t I n s t a n c e (
29 "RSA / None / OAEPWithSHA1AndMGF1Padding " , " BC ") ;
30 c i p h e r . i n i t (C ipher . DECRYPT_MODE , p r i v a t eKey) ;
31 by te [] p l a i n t e x t = c i p h e r . d o F i n a l (c i p h e r) ;

In this example, when a key pair is generated in PHP (lines 2-11),
the public key is easy to retrieve in PHP (lines 13-16). However,
retrieving the private key in Java is more complicated (lines 18-30).

After reading in the private key string (lines 19-20), the Java imple-
mentation first uses Base64Decoder to decode the string into a byte
array (line 21), which corresponds to an OpenSSL PEM encoded
stream (line 22-23). Because OpenSSL PEM is not a standard data
format, the Java code further uses a PEMReader to convert the
stream to a PrivateKey instance (lines 24-27) before using the key
to initialize a cipher (lines 28-30). Existing documentation seldom
describes how the security data format (e.g., key) defined in one
language corresponds to that of another language. Unless devel-
opers are experts in both languages, it is challenging for them to
figure out the security data processing across languages.

Challenge 3: Implicit constraints on API usage cause confusion. Two
posts were about getting “InvalidKeySpecException: algid parse
error, not a sequence”, when obtaining a private key from a file [44].
The problem is that the key should be in PKCS#8 format when used
to create a PKCS8EncodedKeySpec instance, as shown below:

Listing 3: Consistency between the key format and spec [44]
1 / / pr ivKey shou ld be in PKCS#8 format
2 by te [] pr ivKey = . . . ;
3 PKCS8EncodedKeySpec keySpec=
4 new PKCS8EncodedKeySpec (pr ivKey) ;

The tricky part is that a private key retrieved from a file always
has the data type byte[] even if it is not in PKCS#8 format. If devel-
opers invoke the API PKCS8EncodedKeySpec(...) with a non-PKCS#8
formatted key, they would be stuck with the clueless exception.
Three solutions were suggested to get a PKCS#8 format key: (1) to
implement code to convert the byte array, (2) to use an OpenSSL
command to convert the file format, or (3) to use the PEMReader class
of BouncyCastle to generate a key from the file. Such implicit con-
straints between an API and its input format are delicate.

Finding 4: The cryptography posts were mostly about key
generation and usage. Developers asked these questions
mainly due to clueless error messages, cross-language data
handling, and implicit API usage constraints.

4.2.3 Java EE security. 33 of the 58 posts were on authentication
and authorization. The APIs of these two security features were
defined differently on different application servers (e.g., WildFly
and Glassfish). Developers might use these servers in combination
with diverse third-party libraries [75]. As a result, these posts rarely
shared solutions or code implementation.

One common challenge we identified is the usage of declarative
security and programmatic security. When developers misunder-
stood annotations, they could use incorrect annotations that conflict
with other annotations [49], deployment descriptors [105], code
implementation [16], or file paths [71]. Nevertheless, existing error
reporting systems only throw exceptions. There is no tool helping
developers identify or resolve conflicting configurations.

Finding 5: Java EE security posts were mainly about au-
thentication and authorization. One challenge is the complex
usage of declarative security and programmatic security, and
the complicated interactions between the two.

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

4.2.4 Access Control. 43 posts mainly discussed how to restrict
or relax the access permission(s) of a software application for certain
resource(s).

Specifically, 21 questions asked about restricting untrusted code
from accessing certain packages [53], classes [56], or class members
(i.e., methods and fields) [35]. Two alternative solutions were com-
monly suggested for these questions: (1) to override the checkXXX()

methods of SecurityManager to disallow invalid accesses, or (2) to
define a custom policy file to grant limited permissions. Another
nine posts were on how to allow applets to perform privileged
operations [79]. Applets are executed in a security sandbox by de-
fault and can only perform a set of safe operations. One commonly
recommended solution was to digitally sign the applet. Although
it seems that there exist common solutions to the most frequently
asked questions, the access control implementation is not always
intuitive. We identified two common challenges associated with
correctly implementing access control.

Challenge 1: The effect of access control varies with the program
context. We identified two issues that were frequently asked about.
First, the RMI tutorial [43] suggested that a security manager
is needed only when RMI downloads code from a remote ma-
chine. For the RMI program that does not download any code,
including a SecurityManager instance causes an AccessControlExcep-
tion [51]. Second, although a signed applet is allowed to perform
sensitive operations, it loses its privileges when being invoked
from Javascript [36]. As a result, the invocation to the signed applet
should bewrappedwith an invocation of AccessController.doPrivileged(...).

Challenge 2: The effect of access control varies with the execu-
tion environment. SecurityManager can disallow illegal accesses via
reflection only when the program is executed in a controlled envi-
ronment (i.e., on a trusted server) [10]. Nevertheless, if the program
is executed in an uncontrolled environment (e.g. on an untrusted
client machine), where hackers can control how to run the program
or manipulate the jar file, the security mechanisms become voided.

Finding 6: The access control posts were mainly about
SecurityManager, AccessController, and the policy file. Config-
uring and customizing access control policies are challenging.

4.2.5 Secure Communication. Among the 31 examined posts,
22 posts were about SSL/TLS-related issues, discussing how to cre-
ate [88], install [94], find [58], or validate an SSL certificate [90], how
to establish a secure connection [50], and how to use SSL together
with other libraries, such as JNDI [38] and PowerMock [102].

In particular, six posts focused on the problem of unable to find
a valid server certificate to establish an SSL connection with a
server [58]. Instead of advising to install the required certificates,
two accepted answers suggested a highly insecure workaround to
disable the SSL verification process, so that any incoming certificate
can pass the validation [89]. Although such workarounds effectively
remove the error, they fail to secure the communications. In Sec-
tion 4.3, we further explain the security vulnerability due to such
workarounds. Developers likely accepted the vulnerable answers
because they found it challenging to implement the entire process
of creating, installing, finding, and validating an SSL certificate.

Finding 7: Security communication posts mainly discussed
the process of establishing SSL/TLS connections. This process
contains somany steps that developers were tempted to accept
a broken solution to simply bypass the security verification.

4.3 Common Security Vulnerabilities
Among the five categories listed in Section 4.2, we identified security
vulnerabilities in the accepted answers of three frequently discussed
topics: Spring Security’s csrf(), SSL/TLS, and password hashing.

4.3.1 Spring Security’s csrf(). Cross-site request forgery (CSRF)
is a serious attack that tricks a web browser into executing priv-
ileged actions (e.g., transferring victim’s money to attacker’s ac-
count) in a web application (e.g., a bank website), without the
victim’s awareness [107]. The root cause is that the browser does
not attempt to distinguish the attacker’s forged requests from legit-
imate ones. It automatically appends the victim’s credential (e.g.,
session ID stored in a cookie) to all these outgoing requests. Thus,
forged requests can pass the authentication.

By default, Spring Security provides the CSRF protection by
defining a function csrf() and implicitly enabling the function invo-
cation. Correspondingly, developers should include the CSRF token
in all PATCH, POST, PUT, and DELETE methods to leverage the
protection [57]. However, among the 12 examined posts on csrf(),
5 posts discussed program failures, while all the accepted answers
suggested an insecure solution: disabling the CSRF protection by
invoking http.csrf().disable(). In one instance, after accepting the
vulnerable solution, an asker commented “Adding csrf().disable()
solved the issue!!! I have no idea why it was enabled by default” [62].
Unfortunately, the developer happily disabled the security protec-
tion without realizing that such workaround would expose the
resulting software to exploits.

Finding 8: In 5 of the 12 csrf()-relevant posts, developers
took the suggestion to irresponsibly disable the default CSRF
protection. Developers were unaware of the threats associated
with disabling CSRF tokens.

4.3.2 SSL/TLS. We examined the 10 posts on SSL/TLS, and ob-
served two important security issues.

Problem 1: Many developers opted to trust all SSL certificates and
permit all hostnames with the intent of quickly building a proto-
type in the development environment. SSL is the standard security
technology for establishing an encrypted connection between a
web server and browser. There are mainly four steps involved to
securely enable SSL connections [76]. First, a web service’s develop-
ers request for an SSL certificate for their website by providing the
website’s identity information (e.g., its public key and host name)
to a Certification Authority (CA). Second, the CA validates the
website’s information, and issues a digitally signed SSL certificate.
Third, when a client or browser attempts to connect the website, the
server sends over its certificate. Fourth, the client conducts several
checks, including (1) whether the certificate is issued by a CA the
browser trusts, (2) whether the requested hostname matches the

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden N. Meng et al.

hostname associated with the certificate, and (3) whether the server
has the knowledge of the private key corresponding to the certified
public key. If all these checks are passed, the SSL connection can
be established successfully.

The safest practice is to enable SSL after obtaining a signed cer-
tificate from a certificate authority (CA). However, many developers
implement and test certificate verification code before obtaining the
certificate. A common workaround without CA-signed certificates
is to create a local self-signed certificate for use in implementing
certificate verification [88]. However, 9 of the 10 examined posts
accepted an insecure solution to bypass security checks entirely by
trusting all certificates and/or allowing all hostnames, as demon-
strated by Listing 4.

Listing 4: A typical implementation to disable SSL certificate
validation [78]

1 // Create a trust manager that does not validate certificate chains
2 TrustManager [] t r u s t A l l C e r t s = new TrustManager [] {
3 new X509TrustManager () {
4 p u b l i c j a v a . s e c u r i t y . c e r t . X 5 0 9 C e r t i f i c a t e []
5 g e tA c c e p t e d I s s u e r s () { r e t u r n n u l l ; }
6 p u b l i c vo id c h e c kC l i e n tT r u s t e d (. . .) { }
7 p u b l i c vo id ch e ckS e r v e rT ru s t e d (. . .) { } } } ;
8 // Install the all-trusting trust manager
9 t r y {
10 SSLContext s c = SSLContext . g e t I n s t a n c e (" SSL ") ;
11 s c . i n i t (nu l l , t r u s t A l l C e r t s ,
12 new j a v a . s e c u r i t y . SecureRandom ()) ;
13 HttpsURLConnect ion . s e tD e f a u l t S S L S o c k e t F a c t o r y (
14 s c . g e t S o c k e t F a c t o r y ()) ;
15 } c a t ch (Excep t i on e) { }
16 // Access an https URL without any certificate
17 t r y {
18 URL u r l =new URL (" h t t p s : / / hostname / index . html ") ;
19 } c a t ch (MalformedURLExcept ion e) { }

Disabling the SSL certificate validation process completely de-
stroys the secure communication protocol, leaving clients suscepti-
ble toman-in-the-middle (MITM) attacks [29]. In the MITM at-
tack, by secretly relaying and possibly altering communication (e.g.,
through DNS poisoning) between client and server, an attacker can
fool the SSL-client to connect to an attacker-controlled server [29].
Although the insecurity of this coding practice was highlighted in
2012 [29], three examined posts that were created since then still
discussed this dangerous workaround [13, 46, 89]. This observa-
tion indicates a significant gap between security theory and coding
practices. A developer justified the verification-bypassing choice
by stating “I want my client to accept any certificate (because I’m
only ever pointing to one server)” [95]. 2 This statement indicates the
lack of understanding about the man-in-the-middle attack. Another
developer stated “Because I needed a quick solution for debugging
purposes only. I would not use this in production due to the security
concerns . . . ” [95]. However, as pointed by another SO user [95] and
demonstrated by prior research [26, 29], many of these implemen-
tations find their way into production software, and have yielded
radically insecure systems as a result.

2That is, in this developer’s application, a client only needs to communicate to one
server.

Problem 2: Developers were unaware of the best usage of SSL/TLS.
TLS is SSL’s successor. TLS is so different from SSL that the two
protocols do not interoperate. To maintain the backward compati-
bility with SSL 3.0, most SSL/TLS implementations allow protocol
version negotiation: if a client and a server cannot connect via TLS,
they will fall back to using the older protocol SSL 3.0. In 2014, Möler
et al. reported the POODLE attack which exploits the SSL 3.0 fall-
back [67]. Specifically, there is a design vulnerability in the way SSL
3.0 handles block cipher mode padding, which can be exploited by
attackers to decrypt ciphertext. With the POODLE attack, a hacker
can intentionally trigger a TLS connection failure and force to use
SSL 3.0.

Since 2014, researchers have recommended developers to disable
SSL 3.0 support and configure systems to prevent the SSL 3.0 fall-
back [67]. The US government (NIST) mandates ceasing SSL usage
in the protection of Federal information [33]. None of the 10 posts
mentioned this security issue. The most recent post [89] (created
in 2016) still discussed about the use of the obsolete SSL.

Finding 9: 9 of 10 SSL/TLS-relevant posts discussed insecure
code to bypass security checks. We observed two important
security threats: (1) StackOverflow contains a lot of obsolete
and insecure coding practices; and (2) developers are unaware
of the state-of-the-art security knowledge.

4.3.3 Password Hashing. We found 6 posts on hashing pass-
words with MD5 or SHA-1 to store user credentials in databases.
However, these cryptographic hashing functions were found inse-
cure [93, 99]. They are vulnerable to offlinedictionary attacks [22]
– after obtaining a password hashH from a compromised database, a
hacker can use brute-force methods to enumerate a list of password
guesses, until finding the password P whose hash value matches H .
Impersonating a valid user at login allows an attacker to conduct
malicious behavior. Researchers recommended key-stretching al-
gorithms (e.g., PBKDF2, bcrypt, and scrypt) as the best practice for
secure password hashing, as these algorithms are specially crafted
to slow down hash computation by orders of magnitude [8, 28, 92],
which substantially increases the difficulty of dictionary attacks.

Unfortunately, only 3 of the 6 posts (50%) mentioned the best
practice in their accepted answers. One post asked about using
MD5 hashing in Android [64]. Although subsequent discussion
between developers revealed recommendations of avoiding MD5,
the asker kept justifying his/her choice of using MD5. The asker
even shared a completely wrong understanding of secure hashing:
“The security of hash algorithms really is MD5 (strongest) > SHA-1 >
SHA-256 > SHA-512 (weakest)”, although the opposite is true, which
is MD5 < SHA-1 < SHA-256 < SHA-512. Among these posts, some
developers misunderstood security APIs and ignored the potential
consequences of their API choices. Such posts conveying incor-
rect information on such a popular platform can have a profound
negative impact on software security.

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Finding 10: 3 of 6 hashing-relevant posts accepted vulnera-
ble solutions as correct answers, indicating that developers
were unaware of best secure programming practices. Incorrect
security information may propagate among StackOverflow
users and negatively influence software development.

4.3.4 Social Aspects of StackOverflow. Among the 17 SO posts
that either discussed or recommended insecure coding practices
relevant to CSRF (5 posts described in Section 4.3.1), SSL/TLS (9
posts described in Section 4.3.2), or password hashing (3 posts
described in Section 4.3.3), we observed a few interesting facts.

The total view count of these posts is 622,922 3. Such a large
viewcount means that many developers have read these posts. It is
conceivable that some developers may have heeded the erroneous
advice and incorporated the vulnerable code in their projects.

Influential answers are not necessarily secure. In one post [39],
the insecure suggestion by a user with a higher reputation (55.6K
reputation score) was selected as the accepted answer, as opposed
to the correct fix by a user with a lower reputation (29K reputation
score). In another post [78], one insecure “quick fix” answer received
5 votes, probably because it indeed eliminated the error messages.
The positive indicators for insecure solutions (e.g., high reputation
and positive votes on StackOverflow) can mislead developers to
implement insecure practices.

Also for example, a user with zero reputation score pointed
out that trusting all certificates is very dangerous. Another user
with a higher reputation score (6.3K) made condescending and
discouraging remarks, such as “Once you have sufficient reputation,
you will be able to comment" [103].

Finding 11:Highly viewed posts may inadvertently promote
insecure coding practices. This problem may be further ag-
gravated by misleading indicators such as accepted answers,
answers’ positive votes, and responders’ high reputation.

5 RELATEDWORK
Wedescribe three categories of relatedwork on analyzing, detecting,
and preventing security vulnerabilities due to library API misuse.

5.1 Analyzing Security Vulnerabilities
Prior studies showed API misuse caused many security vulnera-
bilities [60, 63, 98, 106]. For instance, Long identified several Java
features (e.g., the reflection API) whose misuse or improper im-
plementation can compromise security [63]. Lazar et al. manually
examined 269 published cryptographic vulnerabilities in the CVE
database, and observed 83% of them were caused by the misuse
of cryptographic libraries [60]. Veracode reported that 39% of all
applications used broken or risky cryptographic algorithms [98].

Barua et al. automatically extracted latent topics in SO posts [5].
These topics are not specific to security. Nadi et al. reported the
obstacles of using cryptography APIs by examining 100 SO posts
and 48 developers’ survey inputs [68]. Acar et al. focused on the

3As of August 2017

vulnerabilities in Android code [1]. The studies by Yang et al. [106]
and Rahman [73] are the most relevant to our research. They auto-
matically extracted security-relevant topics from SO questions, and
identified high-frequency keywords like “Password” and “Hash” for
post categorization.

Our work belongs to this category of analyzing security vulner-
abilities. Compared with the prior research, our selection of posts
covers Java security, not limited to cryptography, SSL, or Android.
This broad coverage enables us to obtain new insights on secure
coding practices, including complex security configurations in Java
Spring Security and cross-language data handling (e.g., encryption
in Python and decryption in Java).

5.2 Detecting Security Vulnerabilities
Researchers have proposed tools to detect security vulnerabilities
caused by API misuse [12, 23, 26, 27, 29, 34, 61, 70, 72]. For instance,
Egele et al. implemented a static checker for six well-defined An-
droid cryptographic API usage rules (e.g., “Do not use ECB mode
for encryption”). They analyzed 11,748 Android applications for
any rule violation [23]. They found 88% of the applications violated
at least one checked rule. Fischer et al. extracted Android security-
related code snippets from SO, and manually labeled a subset of the
data as “secure” or “insecure” [27]. The labeled data is used to train
a classifier that determines whether or not a code snippet is secure.
The authors then searched for code clones of the snippets in 1.3
million Android apps, and found many clones of the insecure code.
In 2012, Fahl et al. [26] and Georgiev et al. [29] separately reported
vulnerable Android applications and software libraries that misuse
SSL APIs and demonstrated how these vulnerabilities cause man-
in-the-middle attacks. We found three posts created after 2012 that
still discussed the highly insecure practice of trusting all certificates
(in Section 4.3.2). He et al. developed SSLINT, an automatic static
analysis tool, to identify the misuse of SSL/TLS APIs in client-side
applications [34]. Rahaman and Yao presented a static taint analysis
approach to enforce a wide range of cryptographic properties in
C/C++ code [72].

5.3 Preventing Security Vulnerabilities
Researchers proposed approaches to prevent developers from im-
plementing vulnerable code and misusing APIs [20, 21, 25, 65,
66, 81]. For example, Mettler et al. designed Joe-E – a security-
oriented subset of Java – to support secure coding by removing
any encapsulation-breaking features from Java (e.g., reflection), and
by enforcing the least privilege principle [65]. Keyczar is a library
designed to simplify the cryptography usage, and thus to prevent
API misuse [21]. Below shows how to decrypt data with Keyczar:

Listing 5: Simple decryption with Keyczar APIs
1 Cryp te r c r y p t e r =new Cryp te r (" / r s a k ey s ") ;
2 S t r i n g p l a i n t e x t = c r y p t e r . d e c ryp t (c i p h e r t e x t) ;

Compared with the decryption code shown in Listing 2 (lines 18-31),
this implementation is much simpler and more intuitive. All details
about data format conversion and cipher initialization are hidden,
while a default strong block cipher is used to properly decrypt data.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden N. Meng et al.

Formal verification techniques can analyze the security prop-
erties of cryptographic protocol specifications [20, 66] and cryp-
tographic API implementations [25, 81]. For instance, Protocol
Composition Logic (PCL) is a logic for proving security proper-
ties, e.g., on network protocols that use public and symmetric key
cryptography [20]. The logic is designed around a process calculus
with actions for possible protocol steps, including generating new
random numbers and sending and receiving messages. The proof
system consists of axioms about individual protocol actions and
inference rules that yield assertions about protocols composed of
multiple steps.

6 OUR RECOMMENDATIONS
Our work reveals the gap between the intended use and the actual
use of Java security APIs. This gap may result in serious software
vulnerabilities. In addition, it also impacts the productivity. Some
developers reported spending substantial effort on learning about
the correct API usage (e.g., two weeks as mentioned in [83]). These
findings lead us to give the following recommendations.

For Developers. Conduct security testing to check whether the
implemented features work as expected. Do not disable security
checks (e.g., CSRF check) to implement a temporary fix in the testing
or development environment. Be cautious when following SO’s
accepted or reputable answers to implement secure code, because
some of these solutions may be insecure and outdated. For SO
administrators, they may consider adding warnings to the posts
with known vulnerable code, as these posts may mislead developers.

For LibraryDesigners. Deprecate theAPIswhose security guar-
antees are broken (e.g., MD5). Design clean and helpful error report-
ing interfaces which show not only the error, but also possible root
causes and solutions. Design simplified APIs with strong security
defenses implemented by default.

For Tool Builders. Develop automatic tools to diagnose security
errors, locate buggy code, and suggest security patches or solutions.
Build vulnerability prevention techniques, which compare peer ap-
plications that use the same set of APIs to infer and warn potential
misuses. Explore approaches that check and enforce the seman-
tic consistency between security-relevant annotations, code, and
configurations. Build new approaches to transform between the im-
plementations of declarative security and programmatic security.

7 THREATS TO VALIDITY
This study is based on our manual inspection of Java security posts,
so the observations may be subject to human bias. To alleviate the
problem, the first author of the paper conducted multiple rounds
of careful inspection of all the posts relevant to implementation
questions, and the second author examined the posts related to
security vulnerabilities (mentioned in Section 4.3) multiple times.

To remove the posts without any code snippets, we defined a
filter to search for keywords “public” and “class”. If a post does
not contain both words, the filter automatically removes the post
from our dataset. This filter may incorrectly remove some relevant
posts that contain code. One may improve the crawling technique
to keep the <code> tags around code snippets in the raw data, and

then use these tags to filter posts. One can also leverage Cerulo et
al.’s approach [11] to automatically extract source code from text.

We chose to report the posts whose accepted answers will cause
security vulnerabilities. There exist other posts whose accepted an-
swers could potentially be insecure andmight lead to vulnerabilities.
However, due to the limited program and environment information
in these posts, it is difficult for us to confirm the vulnerabilities.
Therefore, we decided not to report them.

8 CONCLUSION
Our work aimed at assessing the current secure coding practices,
and identifying the potential gaps between security theory and prac-
tice, and between specification and implementation. Our analysis of
hundreds of posts on the popular developer forum (StackOverflow)
revealed a worrisome reality in the software development industry.
• A substantial number of developers do not appear to un-
derstand the security implications of coding options, show-
ing a lack of cybersecurity training. This situation creates
frustration in developers, who sometimes end up choosing
insecure-but-easy fixes. Examples of such easy fixes include
i) disabling CSRF protection, ii) trusting all certificates to
enable SSL/TLS, iii) using obsolete cryptographic hash func-
tions, or iv) using obsolete communication protocols. These
insecure coding practices, if used in production code, will
seriously compromise the security of software products.
• We provided empirical evidence showing that (1) Spring Se-
curity usage is overly complicated and poorly documented;
(2) the error reporting systems of Java platform security APIs
cause confusion; and (3) the multi-language support for se-
curing data is rather weak. These issues seriously hinder
developers’ productivity, resulting in frustration and confu-
sion.
• Interestingly, we found that the social dynamics among
askers and responders may impact people’s security choices.
Highly viewed posts may wrongly promote vulnerable code.
Metadata like accepted answers, responders’ reputation scores,
and answers’ positive vote counts can further mislead devel-
opers to take insecure advices. We also found an instance
where cyberbullying comments were directed at a person
who pointed out the danger of trusting all certificates.
• Developers’ security concerns have shifted from cryptogra-
phy APIs to Spring Security over time. However, researchers
have not provided solutions to resolve the programming
challenges in this new framework.

We described several possible solutions to improve secure coding
practices in the paper. Efforts (e.g., workforce retraining) to correct
these alarming security issues may take a while to take effect. Our
future work is on building automatic or semi-automatic security
bug detection and repair tools.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their insightful comments.

REFERENCES
[1] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. You get

where you’re looking for: The impact of information sources on code security.

Secure Coding Practices in Java: Challenges and Vulnerabilities ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

In 2016 IEEE Symposium on Security and Privacy (SP), pages 289–305, May 2016.
[2] AES-256 implementation in GAE. https://stackoverflow.com/questions/

12833826/aes-256-implementation-in-gae.
[3] Apache Shiro documentation. https://shiro.apache.org/documentation.html.
[4] Application Server - Oracle WebLogic Server. https://www.oracle.com/

middleware/weblogic/index.html.
[5] A. Barua, S.W. Thomas, andA. E. Hassan. What are developers talking about? An

analysis of topics and trends in Stack Overflow. Empirical Software Engineering,
19(3):619–654, Jun 2014.

[6] Basic Program for encrypt/Decrypt : javax.crypto.BadPaddingException:
Decryption error. https://stackoverflow.com/questions/39518979/
basic-program-for-encrypt-decrypt-javax-crypto-badpaddingexception-decryption.

[7] BigInteger to Key. https://stackoverflow.com/questions/10271164/
biginteger-to-key.

[8] S. Boonkrong. Security of passwords. Information Technology Journal, 8(2):112–
117, 2012.

[9] Bouncy castle. https://www.bouncycastle.org.
[10] Can a secret be hidden in a ‘safe’ Java class offering ac-

cess credentials? https://stackoverflow.com/questions/5761519/
can-a-secret-be-hidden-in-a-safe-java-class-offering-access-credentials.

[11] L. Cerulo, M. D. Penta, A. Bacchelli, M. Ceccarelli, and G. Canfora. Irish: A
hidden Markov model to detect coded information islands in free text. Science
of Computer Programming, 105(Supplement C):26 – 43, 2015.

[12] A. Chatzikonstantinou, C. Ntantogian, G. Karopoulos, and C. Xenakis. Evalua-
tion of cryptography usage in Android applications. In Proceedings of the 9th
EAI International Conference on Bio-inspired Information and Communications
Technologies, pages 83–90, 2015.

[13] Communication with server that support SSL in
Java. https://stackoverflow.com/questions/21156929/
java-class-to-trust-all-for-sending-file-to-https-web-service.

[14] Compare two Public Key values in Java (duplicate). https://stackoverflow.com/
questions/37439695/compare-two-public-key-values-in-java.

[15] Configure Spring Security without XML in Spring 4. https://stackoverflow.com/
questions/20961600/configure-spring-security-without-xml-in-spring-4.

[16] @Context injection in Stateless EJB used by JAX-RS. https://stackoverflow.com/
questions/29132547/context-injection-in-stateless-ejb-used-by-jax-rs.

[17] Converted secret key into bytes, how to convert it back
to secret key? https://stackoverflow.com/questions/5364338/
converted-secret-key-into-bytes-how-to-convert-it-back-to-secrect-key.

[18] Custom Authentication Filters in multiple HttpSecurity objects us-
ing Java Config. https://stackoverflow.com/questions/37304211/
custom-authentication-filters-in-multiple-httpsecurity-objects-using-java-config.

[19] CWE-227: Improper fulfillment of API contract (API abuse). https://cwe.mitre.
org/data/definitions/227.html.

[20] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic (PCL).
Electronic Notes in Theoretical Computer Science, 172:311 – 358, 2007.

[21] A. Dey and S. Weis. Keyczar: A Cryptographic Toolkit.
[22] Dictionary Attacks 101. https://blog.codinghorror.com/dictionary-attacks-101/.
[23] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical study

of cryptographic misuse in Android applications. In Proceedings of the ACM
Conference on Computer and Communications Security, CCS, pages 73–84, New
York, NY, USA, 2013. ACM.

[24] Encryption PHP, Decryption Java. https://stackoverflow.com/questions/
15639442/encryption-php-decryption-java.

[25] L. Erkök and J. Matthews. Pragmatic equivalence and safety checking in Cryptol.
In Proceedings of the 3rd Workshop on Programming Languages Meets Program
Verification, PLPV ’09, pages 73–82, New York, NY, USA, 2008. ACM.

[26] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith.
Why Eve and Mallory love Android: An analysis of Android SSL (in)security.
In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS, pages 50–61, New York, NY, USA, 2012. ACM.

[27] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl.
Stack Overflow considered harmful? The impact of copy&paste on Android
application security. In 38th IEEE Symposium on Security and Privacy, 2017.

[28] C. Gackenheimer. Implementing security and cryptography. In Node. js Recipes,
pages 133–160. Springer, 2013.

[29] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. The
most dangerous code in the world: Validating SSL certificates in non-browser
software. In Proceedings of the ACM Conference on Computer and Communica-
tions Security, CCS, pages 38–49, New York, NY, USA, 2012. ACM.

[30] Get public and private key from ASN1 encrypted pem certificate.
https://stackoverflow.com/questions/30392114/get-public-and-private-
key-from-asn1-encrypted-pem-certificate.

[31] GlassFish. https://javaee.github.io/glassfish/.
[32] L. Gong and G. Ellison. Inside Java(TM) 2 Platform Security: Architecture, API

Design, and Implementation. Pearson Education, 2nd edition, 2003.
[33] Guidelines for the Selection, Configuration, and Use of Transport Layer Security

(TLS) Implementations. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-52r1.pdf.
[34] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R. Yang, and Z. Zhang.

Vetting SSL usage in applications with SSLINT. In 2015 IEEE Symposium on
Security and Privacy, pages 519–534, May 2015.

[35] Hiding my security key from Java reflection. https://stackoverflow.com/
questions/14903318/hiding-my-security-key-from-java-reflection.

[36] How can I get a signed Java Applet to perform privileged operations when
called from unsigned Javascript? https://stackoverflow.com/questions/1006674/
how-can-i-get-a-signed-java-applet-to-perform-privileged-operations-when-called.

[37] How does Java string being immutable increase se-
curity? https://stackoverflow.com/questions/15274874/
how-does-java-string-being-immutable-increase-security.

[38] How to accept self-signed certificates for JNDI/LDAP con-
nections? https://stackoverflow.com/questions/4615163/
how-to-accept-self-signed-certificates-for-jndi-ldap-connections.

[39] How to add MD5 or SHA hash to Spring security? https://stackoverflow.com/
questions/18581463/how-to-add-md5-or-sha-hash-to-spring-security.

[40] How to apply spring security filter only on secured end-
points? https://stackoverflow.com/questions/36795894/
how-to-apply-spring-security-filter-only-on-secured-endpoints.

[41] How to generate secret key using SecureRan-
dom.getInstanceStrong()? https://stackoverflow.com/questions/37244064/
how-to-generate-secret-key-using-securerandom-getinstancestrong.

[42] How to override Spring Security default configuration in
Spring Boot. https://stackoverflow.com/questions/35600488/
how-to-override-spring-security-default-configuration-in-spring-boot.

[43] Implementing a Remote Interface. http://docs.oracle.com/javase/tutorial/rmi/
implementing.html.

[44] InvalidKeySpecException : algid parse error, not a se-
quence. https://stackoverflow.com/questions/31941413/
invalidkeyspecexception-algid-parse-error-not-a-sequence.

[45] Java authentication and authorization service (JAAS) reference guide.
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/
JAASRefGuide.html.

[46] Java class to trust all for sending file to HTTPS web
service. https://stackoverflow.com/questions/21156929/
java-class-to-trust-all-for-sending-file-to-https-web-service.

[47] Java cryptography architecture. http://docs.oracle.com/javase/7/docs/technotes/
guides/security/crypto/CryptoSpec.html.

[48] Java - Edit code sample to specify DES key value. https://stackoverflow.com/
questions/22858497/edit-code-sample-to-specify-des-key-value.

[49] Java EE 7 EJB Security not working. https://stackoverflow.com/questions/
30504131/java-ee-7-ejb-security-not-working.

[50] Java Mail get mails with pop3 from exchange server, Exception in thread “main”
javax.mail.MessagingException. https://stackoverflow.com/questions/25017050/
java-mail-get-mails-with-pop3-from-exchange-server-exception-in-thread-main.

[51] Java RMI / access denied. https://stackoverflow.com/questions/36570012/
java-rmi-access-denied.

[52] Java security init Cipher from SecretKeySpec prop-
erly. https://stackoverflow.com/questions/14230096/
java-security-init-cipher-from-secretkeyspec-properly.

[53] Java Security Manager completely disable reflection. https://stackoverflow.com/
questions/40218973/java-security-manager-completely-disable-reflection.

[54] Java security overview. http://docs.oracle.com/javase/8/docs/technotes/guides/
security/overview/jsoverview.html.

[55] Java Security - RSA Public Key & Private Key Code
Issue. https://stackoverflow.com/questions/18757114/
java-security-rsa-public-key-private-key-code-issue.

[56] Java security: Sandboxing plugins loaded via URLClass-
Loader. https://stackoverflow.com/questions/3947558/
java-security-sandboxing-plugins-loaded-via-urlclassloader.

[57] Java - Simple example of Spring Security with
Thymeleaf. https://stackoverflow.com/questions/25692735/
simple-example-of-spring-security-with-thymeleaf.

[58] Java SSL - InstallCert recognizes certificate, but still “unable to find valid
certification path” error? https://stackoverflow.com/questions/11087121/
java-ssl-installcert-recognizes-certificate-but-still-unable-to-find-valid-c.

[59] JSR-000366 Java platform, enterprise edition 8 public review specification. http:
//download.oracle.com/otndocs/jcp/java_ee-8-pr-spec/.

[60] D. Lazar, H. Chen, X. Wang, and N. Zeldovich. Why does cryptographic software
fail? A case study and open problems. In Proceedings of 5th Asia-PacificWorkshop
on Systems, APSys ’14, pages 7:1–7:7, New York, NY, USA, 2014. ACM.

[61] Y. Li, Y. Zhang, J. Li, and D. Gu. iCryptoTracer: Dynamic analysis on misuse
of cryptography functions in iOS applications. In M. H. Au, B. Carminati, and
C.-C. J. Kuo, editors, Proceedings of the 8th International Conference on Network
and System Security, pages 349–362, 2014.

[62] Logout call - Spring security logout call. https://stackoverflow.com/questions/
24530603/spring-security-logout-call.

https://stackoverflow.com/questions/12833826/aes-256-implementation-in-gae
https://stackoverflow.com/questions/12833826/aes-256-implementation-in-gae
https://shiro.apache.org/documentation.html
https://www.oracle.com/middleware/weblogic/index.html
https://www.oracle.com/middleware/weblogic/index.html
https://stackoverflow.com/questions/39518979/basic-program-for-encrypt-decrypt-javax-crypto-badpaddingexception-decryption
https://stackoverflow.com/questions/39518979/basic-program-for-encrypt-decrypt-javax-crypto-badpaddingexception-decryption
https://stackoverflow.com/questions/10271164/biginteger-to-key
https://stackoverflow.com/questions/10271164/biginteger-to-key
https://www.bouncycastle.org
https://stackoverflow.com/questions/5761519/can-a-secret-be-hidden-in-a-safe-java-class-offering-access-credentials
https://stackoverflow.com/questions/5761519/can-a-secret-be-hidden-in-a-safe-java-class-offering-access-credentials
https://stackoverflow.com/questions/21156929/java-class-to-trust-all-for-sending-file-to-https-web-service
https://stackoverflow.com/questions/21156929/java-class-to-trust-all-for-sending-file-to-https-web-service
https://stackoverflow.com/questions/37439695/compare-two-public-key-values-in-java
https://stackoverflow.com/questions/37439695/compare-two-public-key-values-in-java
https://stackoverflow.com/questions/20961600/configure-spring-security-without-xml-in-spring-4
https://stackoverflow.com/questions/20961600/configure-spring-security-without-xml-in-spring-4
https://stackoverflow.com/questions/29132547/context-injection-in-stateless-ejb-used-by-jax-rs
https://stackoverflow.com/questions/29132547/context-injection-in-stateless-ejb-used-by-jax-rs
https://stackoverflow.com/questions/5364338/converted-secret-key-into-bytes-how-to-convert-it-back-to-secrect-key
https://stackoverflow.com/questions/5364338/converted-secret-key-into-bytes-how-to-convert-it-back-to-secrect-key
https://stackoverflow.com/questions/37304211/custom-authentication-filters-in-multiple-httpsecurity-objects-using-java-config
https://stackoverflow.com/questions/37304211/custom-authentication-filters-in-multiple-httpsecurity-objects-using-java-config
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/227.html
https://blog.codinghorror.com/dictionary-attacks-101/
https://stackoverflow.com/questions/15639442/encryption-php-decryption-java
https://stackoverflow.com/questions/15639442/encryption-php-decryption-java
https://javaee.github.io/glassfish/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
https://stackoverflow.com/questions/14903318/hiding-my-security-key-from-java-reflection
https://stackoverflow.com/questions/14903318/hiding-my-security-key-from-java-reflection
https://stackoverflow.com/questions/1006674/how-can-i-get-a-signed-java-applet-to-perform-privileged-operations-when-called
https://stackoverflow.com/questions/1006674/how-can-i-get-a-signed-java-applet-to-perform-privileged-operations-when-called
https://stackoverflow.com/questions/15274874/how-does-java-string-being-immutable-increase-security
https://stackoverflow.com/questions/15274874/how-does-java-string-being-immutable-increase-security
https://stackoverflow.com/questions/4615163/how-to-accept-self-signed-certificates-for-jndi-ldap-connections
https://stackoverflow.com/questions/4615163/how-to-accept-self-signed-certificates-for-jndi-ldap-connections
https://stackoverflow.com/questions/18581463/how-to-add-md5-or-sha-hash-to-spring-security
https://stackoverflow.com/questions/18581463/how-to-add-md5-or-sha-hash-to-spring-security
https://stackoverflow.com/questions/36795894/how-to-apply-spring-security-filter-only-on-secured-endpoints
https://stackoverflow.com/questions/36795894/how-to-apply-spring-security-filter-only-on-secured-endpoints
https://stackoverflow.com/questions/37244064/how-to-generate-secret-key-using-securerandom-getinstancestrong
https://stackoverflow.com/questions/37244064/how-to-generate-secret-key-using-securerandom-getinstancestrong
https://stackoverflow.com/questions/35600488/how-to-override-spring-security-default-configuration-in-spring-boot
https://stackoverflow.com/questions/35600488/how-to-override-spring-security-default-configuration-in-spring-boot
http://docs.oracle.com/javase/tutorial/rmi/implementing.html
http://docs.oracle.com/javase/tutorial/rmi/implementing.html
https://stackoverflow.com/questions/31941413/invalidkeyspecexception-algid-parse-error-not-a-sequence
https://stackoverflow.com/questions/31941413/invalidkeyspecexception-algid-parse-error-not-a-sequence
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://stackoverflow.com/questions/21156929/java-class-to-trust-all-for-sending-file-to-https-web-service
https://stackoverflow.com/questions/21156929/java-class-to-trust-all-for-sending-file-to-https-web-service
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
https://stackoverflow.com/questions/22858497/edit-code-sample-to-specify-des-key-value
https://stackoverflow.com/questions/22858497/edit-code-sample-to-specify-des-key-value
https://stackoverflow.com/questions/30504131/java-ee-7-ejb-security-not-working
https://stackoverflow.com/questions/30504131/java-ee-7-ejb-security-not-working
https://stackoverflow.com/questions/25017050/java-mail-get-mails-with-pop3-from-exchange-server-exception-in-thread-main
https://stackoverflow.com/questions/25017050/java-mail-get-mails-with-pop3-from-exchange-server-exception-in-thread-main
https://stackoverflow.com/questions/36570012/java-rmi-access-denied
https://stackoverflow.com/questions/36570012/java-rmi-access-denied
https://stackoverflow.com/questions/14230096/java-security-init-cipher-from-secretkeyspec-properly
https://stackoverflow.com/questions/14230096/java-security-init-cipher-from-secretkeyspec-properly
https://stackoverflow.com/questions/40218973/java-security-manager-completely-disable-reflection
https://stackoverflow.com/questions/40218973/java-security-manager-completely-disable-reflection
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
https://stackoverflow.com/questions/18757114/java-security-rsa-public-key-private-key-code-issue
https://stackoverflow.com/questions/18757114/java-security-rsa-public-key-private-key-code-issue
https://stackoverflow.com/questions/3947558/java-security-sandboxing-plugins-loaded-via-urlclassloader
https://stackoverflow.com/questions/3947558/java-security-sandboxing-plugins-loaded-via-urlclassloader
https://stackoverflow.com/questions/25692735/simple-example-of-spring-security-with-thymeleaf
https://stackoverflow.com/questions/25692735/simple-example-of-spring-security-with-thymeleaf
https://stackoverflow.com/questions/11087121/java-ssl-installcert-recognizes-certificate-but-still-unable-to-find-valid-c
https://stackoverflow.com/questions/11087121/java-ssl-installcert-recognizes-certificate-but-still-unable-to-find-valid-c
http://download.oracle.com/otndocs/jcp/java_ee-8-pr-spec/
http://download.oracle.com/otndocs/jcp/java_ee-8-pr-spec/
https://stackoverflow.com/questions/24530603/spring-security-logout-call
https://stackoverflow.com/questions/24530603/spring-security-logout-call

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden N. Meng et al.

[63] F. Long. Software vulnerabilities in Java. Technical Report CMU/SEI-2005-TN-
044, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, 2005.

[64] MD5 hashing in Android. https://stackoverflow.com/questions/4846484/
md5-hashing-in-android.

[65] A. Mettler, D. Wagner, and T. Close. Joe-E: A security-oriented subset of Java.
In Network and Distributed Systems Symposium. Internet Society, 2010.

[66] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using Mur/spl phi/. In Proceedings of the 1997 IEEE Symposium on
Security and Privacy, SP ’97, pages 141–, Washington, DC, USA, 1997. IEEE
Computer Society.

[67] B. Möller, T. Duong, and K. Kotowicz. This POODLE bites: exploiting the SSL
3.0 fallback, 2014.

[68] S. Nadi, S. Krüger, M. Mezini, and E. Bodden. Jumping through hoops: Why do
Java developers struggle with cryptography APIs? In Proceedings of the 38th
International Conference on Software Engineering, ICSE, pages 935–946, New
York, NY, USA, 2016. ACM.

[69] S. Oaks. Java Security. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1998.
[70] L. Onwuzurike and E. De Cristofaro. Danger is my middle name: Experiment-

ing with SSL vulnerabilities in Android apps. In Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, WiSec ’15,
pages 15:1–15:6, New York, NY, USA, 2015. ACM.

[71] PicketLink / Deltaspike security does not work in SOAP (JAX-WS)
layer (CDI vs EJB?). https://stackoverflow.com/questions/32392702/
picketlink-deltaspike-security-does-not-work-in-soap-jax-ws-layer-cdi-vs-ej.

[72] S. Rahaman and D. Yao. Program analysis of cryptographic implementations for
security. In IEEE Security Development Conference (SecDev), pages 61–68, 2017.

[73] M. S. Rahman. An empirical case study on Stack Overflow to explore developers’
security challenges. Master’s thesis, Kansas State University, 2016.

[74] F. Y. Rashid. Library misuse exposes leading Java platforms
to attack. http://www.infoworld.com/article/3003197/security/
library-misuse-exposes-leading-java-platforms-to-attack.html, 2017.

[75] Resteasy Authorization design - check a user owns a re-
source. https://stackoverflow.com/questions/34315838/
resteasy-authorization-design-check-a-user-owns-a-resource.

[76] RF 6101 - The Secure Sockets Layer (SSL) Protocol Version 3.0. https://tools.ietf.
org/html/rfc6101.

[77] Scrapy – A Fast and Powerful Scraping and Web Crawling Framework. https:
//scrapy.org.

[78] Security - Allowing Java to use an untrusted certificate for SS-
L/HTTPS connection. https://stackoverflow.com/questions/1201048/
allowing-java-to-use-an-untrusted-certificate-for-ssl-https-connection.

[79] Security exception when loading web image in jar. https://stackoverflow.com/
questions/2011407/security-exception-when-loading-web-image-in-jar.

[80] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie. Modeling analysis and
auto-detection of cryptographic misuse in Android applications. In Proceedings
of the IEEE 12th International Conference on Dependable, Autonomic and Secure
Computing, DASC, pages 75–80, Washington, DC, USA, 2014. IEEE Computer
Society.

[81] E. Smith and D. L. Dill. Automatic formal verification of block cipher imple-
mentations. In Formal Methods in Computer-Aided Design, pages 1–7, Nov
2008.

[82] Spring security. https://projects.spring.io/spring-security/.
[83] Spring Security 4 XML configuration UserDetailsService authentica-

tion not working. https://stackoverflow.com/questions/41321176/
spring-security-4-xml-configuration-userdetailsservice-authentication-not-workin.

[84] Spring security JDK based proxy issue while using @Secured annota-
tion on Controller method. https://stackoverflow.com/questions/35860442/
spring-security-jdk-based-proxy-issue-while-using-secured-annotation-on-control.

[85] Spring Security Reference. http://docs.spring.io/spring-security/site/docs/3.2.4.
RELEASE/reference/htmlsingle/#jc-httpsecurity.

[86] Spring Security Tutorial. http://www.mkyong.com/tutorials/
spring-security-tutorials/.

[87] Spring Security using JBoss <security-domain>. https://stackoverflow.com/
questions/28172056/spring-security-using-jboss-security-domain.

[88] SSL Certificate Verification: javax.net.ssl.SSLHandshakeException.
https://stackoverflow.com/questions/25079751/
ssl-certificate-verification-javax-net-ssl-sslhandshakeexception.

[89] SSL handshake fails with unable to find valid certification path
to requested target. https://stackoverflow.com/questions/40977556/
ssl-handshake-fails-with-unable-to-find-valid-certification-path-to-requested-ta.

[90] SSL Socket Connection working even though client is not send-
ing certificate? https://stackoverflow.com/questions/26761966/
ssl-socket-connection-working-even-though-client-is-not-sending-certificate.

[91] StackOverflow. https://stackoverflow.com.
[92] J. Steven and J. Manico. Password storage cheat sheet. https://www.owasp.org/

index.php/Password_Storage_Cheat_Sheet.

[93] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The first
collision for full SHA-1. Cryptology ePrint Archive, Report 2017/190, 2017.
https://eprint.iacr.org/2017/190.

[94] The Webserver I talk to updated its SSL cert and now my app
can’t talk to it. https://stackoverflow.com/questions/5758812/
the-webserver-i-talk-to-updated-its-ssl-cert-and-now-my-app-cant-talk-to-it.

[95] Trusting all certificates using HttpClient over HTTPS. https://stackoverflow.
com/questions/2642777/trusting-all-certificates-using-httpclient-over-https.

[96] Use of ECC in Java SE 1.7. https://stackoverflow.com/questions/24383637/
use-of-ecc-in-java-se-1-7.

[97] Using public key from authorized_keys with Java se-
curity. https://stackoverflow.com/questions/3531506/
using-public-key-from-authorized-keys-with-java-security.

[98] State of software security. https://www.veracode.com/sites/default/files/
Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf,
2016. Veracode.

[99] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD, 2004. http://eprint.iacr.org/2004/199.

[100] Web Security Samples. https://github.com/spring-projects/
spring-security-javaconfig/blob/master/samples-web.md#
sample-multi-http-web-configuration.

[101] WebSphere Application Server - IBM. http://www-03.ibm.com/software/
products/en/appserv-was.

[102] When a TrustManagerFactory is not a TrustManagerFac-
tory (Java). https://stackoverflow.com/questions/14654639/
when-a-trustmanagerfactory-is-not-a-trustmanagerfactory-java.

[103] When I try to convert a string with certificate, excep-
tion is raised. https://stackoverflow.com/questions/10594000/
when-i-try-to-convert-a-string-with-certificate-exception-is-raised.

[104] WildFly. http://wildfly.org.
[105] Wildfly 9 security domains won’t work. https://stackoverflow.com/questions/

37425056/wildfly-9-security-domains-wont-work.
[106] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun. What security questions

do developers ask? A large-scale study of Stack Overflow posts. Journal of
Computer Science and Technology, 31(5):910–924, Sep 2016.

[107] W. Zeller and E. W. Felten. Cross-site request forgeries: Exploitation and pre-
vention. https://www.cs.utexas.edu/~shmat/courses/library/zeller.pdf, 2008.

https://stackoverflow.com/questions/4846484/md5-hashing-in-android
https://stackoverflow.com/questions/4846484/md5-hashing-in-android
https://stackoverflow.com/questions/32392702/picketlink-deltaspike-security-does-not-work-in-soap-jax-ws-layer-cdi-vs-ej
https://stackoverflow.com/questions/32392702/picketlink-deltaspike-security-does-not-work-in-soap-jax-ws-layer-cdi-vs-ej
http://www.infoworld.com/article/3003197/security/library-misuse-exposes-leading-java-platforms-to-attack.html
http://www.infoworld.com/article/3003197/security/library-misuse-exposes-leading-java-platforms-to-attack.html
https://stackoverflow.com/questions/34315838/resteasy-authorization-design-check-a-user-owns-a-resource
https://stackoverflow.com/questions/34315838/resteasy-authorization-design-check-a-user-owns-a-resource
https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc6101
https://scrapy.org
https://scrapy.org
https://stackoverflow.com/questions/1201048/allowing-java-to-use-an-untrusted-certificate-for-ssl-https-connection
https://stackoverflow.com/questions/1201048/allowing-java-to-use-an-untrusted-certificate-for-ssl-https-connection
https://stackoverflow.com/questions/2011407/security-exception-when-loading-web-image-in-jar
https://stackoverflow.com/questions/2011407/security-exception-when-loading-web-image-in-jar
https://projects.spring.io/spring-security/
https://stackoverflow.com/questions/41321176/spring-security-4-xml-configuration-userdetailsservice-authentication-not-workin
https://stackoverflow.com/questions/41321176/spring-security-4-xml-configuration-userdetailsservice-authentication-not-workin
https://stackoverflow.com/questions/35860442/spring-security-jdk-based-proxy-issue-while-using-secured-annotation-on-control
https://stackoverflow.com/questions/35860442/spring-security-jdk-based-proxy-issue-while-using-secured-annotation-on-control
http://docs.spring.io/spring-security/site/docs/3.2.4.RELEASE/reference/htmlsingle/#jc-httpsecurity
http://docs.spring.io/spring-security/site/docs/3.2.4.RELEASE/reference/htmlsingle/#jc-httpsecurity
http://www.mkyong.com/tutorials/spring-security-tutorials/
http://www.mkyong.com/tutorials/spring-security-tutorials/
https://stackoverflow.com/questions/28172056/spring-security-using-jboss-security-domain
https://stackoverflow.com/questions/28172056/spring-security-using-jboss-security-domain
https://stackoverflow.com/questions/25079751/ssl-certificate-verification-javax-net-ssl-sslhandshakeexception
https://stackoverflow.com/questions/25079751/ssl-certificate-verification-javax-net-ssl-sslhandshakeexception
https://stackoverflow.com/questions/40977556/ssl-handshake-fails-with-unable-to-find-valid-certification-path-to-requested-ta
https://stackoverflow.com/questions/40977556/ssl-handshake-fails-with-unable-to-find-valid-certification-path-to-requested-ta
https://stackoverflow.com/questions/26761966/ssl-socket-connection-working-even-though-client-is-not-sending-certificate
https://stackoverflow.com/questions/26761966/ssl-socket-connection-working-even-though-client-is-not-sending-certificate
https://stackoverflow.com
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://eprint.iacr.org/2017/190
https://stackoverflow.com/questions/5758812/the-webserver-i-talk-to-updated-its-ssl-cert-and-now-my-app-cant-talk-to-it
https://stackoverflow.com/questions/5758812/the-webserver-i-talk-to-updated-its-ssl-cert-and-now-my-app-cant-talk-to-it
https://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https
https://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https
https://stackoverflow.com/questions/24383637/use-of-ecc-in-java-se-1-7
https://stackoverflow.com/questions/24383637/use-of-ecc-in-java-se-1-7
https://stackoverflow.com/questions/3531506/using-public-key-from-authorized-keys-with-java-security
https://stackoverflow.com/questions/3531506/using-public-key-from-authorized-keys-with-java-security
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf
http://eprint.iacr.org/2004/199
https://github.com/spring-projects/spring-security-javaconfig/blob/master/samples-web.md#sample-multi-http-web-configuration
https://github.com/spring-projects/spring-security-javaconfig/blob/master/samples-web.md#sample-multi-http-web-configuration
https://github.com/spring-projects/spring-security-javaconfig/blob/master/samples-web.md#sample-multi-http-web-configuration
http://www-03.ibm.com/software/products/en/appserv-was
http://www-03.ibm.com/software/products/en/appserv-was
https://stackoverflow.com/questions/14654639/when-a-trustmanagerfactory-is-not-a-trustmanagerfactory-java
https://stackoverflow.com/questions/14654639/when-a-trustmanagerfactory-is-not-a-trustmanagerfactory-java
https://stackoverflow.com/questions/10594000/when-i-try-to-convert-a-string-with-certificate-exception-is-raised
https://stackoverflow.com/questions/10594000/when-i-try-to-convert-a-string-with-certificate-exception-is-raised
http://wildfly.org
https://stackoverflow.com/questions/37425056/wildfly-9-security-domains-wont-work
https://stackoverflow.com/questions/37425056/wildfly-9-security-domains-wont-work
https://www.cs.utexas.edu/~shmat/courses/library/zeller.pdf

