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Abstract—The leak of sensitive data on computer systems poses
a serious threat to organizational security. Statistics show that the
lack of proper encryption on files and communications due to hu-
man errors is one of the leading causes of data loss. Organizations
need tools to identify the exposure of sensitive data by screening
the content in storage and transmission, i.e., to detect sensitive
information being stored or transmitted in the clear. However,
detecting the exposure of sensitive information is challenging due
to data transformation in the content. Transformations (such as
insertion, deletion) result in highly unpredictable leak patterns.

In this work, we utilize sequence alignment techniques for
detecting complex data-leak patterns. Our algorithm is designed
for detecting long and inexact sensitive data patterns. This
detection is paired with a comparable sampling algorithm, which
allows one to compare the similarity of two separately sampled
sequences. Our system achieves good detection accuracy in rec-
ognizing transformed leaks. We implement a parallelized version
of our algorithms in graphics processing unit that achieves high
analysis throughput. We demonstrate the high multithreading
scalability of our data leak detection method required by a sizable
organization.

Index Terms—Data leak detection, content inspection, sam-
pling, alignment, dynamic programming, parallelism

I. INTRODUCTION

Reports show that the number of leaked sensitive data
records has grown 10 times in the last 4 years, and it reached a
record high of 1.1 billion in 2014 [3]. A significant portion of
the data leak incidents are due to human errors, for example, a
lost or stolen laptop containing unencrypted sensitive files, or
transmitting sensitive data without using end-to-end encryption
such as PGP. A recent Kaspersky Lab survey shows that
accidental leak by staff is the leading cause for internal data
leaks in corporates [4]. The data-leak risks posed by accidents
exceed the risks posed by vulnerable software.

In order to minimize the exposure of sensitive data and
documents, an organization needs to prevent cleartext sensitive
data from appearing in the storage or communication. A
screening tool can be deployed to scan computer file systems,
server storage, and inspect outbound network traffic. The tool
searches for the occurrences of plaintext sensitive data in
the content of files or network traffic. It alerts users and
administrators of the identified data exposure vulnerabilities.
For example, an organization’s mail server can inspect the
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content of outbound email messages searching for sensitive
data appearing in unencrypted messages.

Data leak detection differs from the anti-virus (AV) scanning
(e.g., scanning file systems for malware signatures) or the
network intrusion detection systems (NIDS) (e.g., scanning
traffic payload for malicious patterns) [5]. AV and NIDS
typically employ automata-based string matching (e.g., Aho-
Corasick [6], Boyer-Moore [7]), which match static or regular
patterns. However, data leak detection imposes new security
requirements and algorithmic challenges:

• Data transformation. The exposed data in the content may
be unpredictably transformed or modified by users or ap-
plications, and it may no longer be identical to the original
sensitive data, e.g., insertions of metadata or formatting
tags, substitutions of characters, and data truncation (partial
data leak). Thus, the detection algorithm needs to recognize
different kinds of sensitive data variations.
• Scalability. The heavy workload of data leak screening is

due to two reasons.
a) Long sensitive data patterns. The sensitive data (e.g.,

customer information, documents, source code) can be
of arbitrary length (e.g., megabytes).

b) Large amount of content. The detection needs to rapidly
screen content (e.g., gigabytes to terabytes). Traffic
scanning is more time sensitive than storage scanning,
because the leak needs to be discovered before the
message is transmitted.

Directly applying automata-based string matching (e.g., [6],
[8], [9]) to data leak detection is inappropriate and inefficient,
because automata are not designed to support unpredictable
and arbitrary pattern variations. In data leak detection sce-
narios, the transformation of leaked data (in the description
of regular expression) is unknown to the detection method.
Creating comprehensive automata models covering all possible
variations of a pattern is infeasible, which leads to O(2n)
space complexity (for deterministic finite automata) or O(2n)
time complexity (for nondeterministic finite automata) where
n is the number of automaton states. Therefore, automata
approaches cannot be used for detecting long and transformed
data leaks.

Existing data leak detection approaches are based on set
intersection. Set intersection is performed on two sets of n-
grams, one from the content and one from sensitive data.
The set intersection gives the amount of sensitive n-grams
appearing in the content. The method has been used to detect
similar documents on the web [10], shared malicious traffic
patterns [11], malware [12], as well as email spam [13]. The
advantage of n-grams is the extraction of local features of a
string, enabling the comparison to tolerate discrepancies. Some
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advanced versions of the set intersection method utilize Bloom
filter, e.g., [14], which trades accuracy for space complexity
and speed. Shu and Yao extended the standard use of n-grams
and introduced data-leak detection as a service. They proposed
the first solution for detecting accidental data leak with semi-
honest providers [15].

However, set intersection is orderless, i.e., the ordering of
shared n-grams is not analyzed. Thus, set-based detection
generates undesirable false alerts, especially when n is set
to a small value to tolerant data transformation. In addition,
set intersection cannot effectively characterize the scenario
when partial data is leaked, which results in false negatives.
Therefore, none of the existing techniques is adequate for
detecting transformed data leaks.

Our solution to the detection of transformed data leaks is
a sequence alignment algorithm, executed on the sampled
sensitive data sequence and the sampled content being in-
spected. The alignment produces scores indicating the amount
of sensitive data contained in the content. Our alignment-
based solution measures the order of n-grams. It also handles
arbitrary variations of patterns without an explicit specification
of all possible variation patterns. Experiments show that our
alignment method substantially outperforms the set intersec-
tion method in terms of detection accuracy in a multitude of
transformed data leak scenarios.

We solve the scalability issue by sampling both the sensitive
data and content sequences before aligning them. We enable
this procedure by providing the pair of a comparable sam-
pling algorithm and a sampling-oblivious alignment algorithm.
The comparable sampling algorithm yields constant samples
of a sequence wherever the sampling starts and ends. The
sampling-oblivious alignment algorithm infers the similarity
between the original unsampled sequences with sophisticated
traceback techniques through dynamic programming. The al-
gorithm infers the lost information (i.e., sampled-out elements)
based on the matching results of their neighboring elements.
Evaluation results show that our design boosts the perfor-
mance, yet only incurs a very small amount of mismatches.

Existing network traffic sampling techniques, e.g., [16], only
sample the content. Our problem differs from existing sam-
pling problems that both sensitive data and content sequences
are sampled. The alignment is performed on the sampled
sequences. Therefore, the samples of similar sequences should
be similar so that they can be aligned. We define a comparable
sampling property, where the similarity of two sequences is
preserved. For example, if x is a substring of y, then x′ should
be a substring of y′, where x′ and y′ are sampled sequences of
x and y, respectively. None of the existing sampling solutions
satisfies this comparable sampling requirement. Deterministic
sampling, e.g., [17], does not imply comparable sampling,
either. The key to our comparable sampling is to consider
the local context of a sequence while selecting items. Sample
items are selected deterministically within a sliding window.
The same sampled items are selected in spite of different
starting/ending points of sampling procedures.

Both of our algorithms are designed to be efficiently paral-
lelized. We parallelize our prototype on a multicore CPU and a
GPU. We demonstrate the strong scalability of our design and

the high performance of our prototypes. Our GPU-accelerated
implementation achieves nearly 50 times of speedup over
the CPU version. Our prototype reaches 400Mbps analysis
throughput. This performance potentially supports the rapid
security scanning of storage and communication required by
a sizable organization.

We have presented the basic idea and preliminary evaluation
results in our workshop paper [1]. In this paper, we formalize
and expand the description and analysis of our comparable
sampling algorithm and sampling-oblivious alignment algo-
rithm. We conduct new experiments in Section VI to system-
atically understand how sensitive our system is in response
to data transformation in various degrees. We also include the
effectiveness evaluation of our sampling design in Section VII.

Our solution detects inadvertent data leaks, where sensitive
data may be accidentally exposed. It is not designed for
detecting data leaks caused by malicious insiders or attackers.
The detection of data leaks due to malicious insiders remains
a challenging open research problem.

II. RELATED WORK

Existing commercial data leak detection/prevention solu-
tions include Symantec DLP [14], IdentityFinder [18], Glob-
alVelocity [19], and GoCloudDLP [20]. GlobalVelocity uses
FPGA to accelerate the system. All solutions are likely based
on n-gram set intersection. IdentityFinder searches file systems
for short patterns of numbers that may be sensitive (e.g., 16-
digit numbers that might be credit card numbers). It does not
provide any in-depth similarity tests. Symantec DLP is based
on n-grams and Bloom filters. The advantage of Bloom filter
is space saving. However, as explained in the introduction,
Bloom filter membership testing is based on unordered n-
grams, which generates coincidental matches and false alarms.
Bloom filter configured with a small number of hash functions
has collisions, which introduce additional unwanted false
positives.

Network intrusion detection systems (NIDS) such as
Snort [21] and Bro [22] use regular expression to perform
string matching in deep packet inspection [23]. Nondeter-
ministic finite automaton (NFA) with backtracking requires
O(2n) time and O(n) space, where n is the number of
automaton states. Deterministic finite automaton (DFA) has
a time complexity of O(n) and a space complexity of O(2n)
when used with quantification. Quantification is for expressing
optional characters and multiple occurrences in a pattern.
DFA’s space complexity can be reduced by grouping similar
patterns into one automaton [24], reducing the number of
edges [25], [26]. These improvements provide a coefficient
level of speedup.

However, existing string matching approaches based on
DFA or NFA cannot automatically match arbitrary and unpre-
dictable pattern variations. Modified data leak instances cannot
be matched or captured if the variation is not manually speci-
fied as a matching pattern. Enumerating all potential variation
patterns takes exponential time and space with respect to the
length of the pattern. Therefore, it is impractical.

In comparison, our sequence alignment solution covers
all possible pattern variations in long sensitive data without
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explicitly specifying them. Another drawback of automata is
that it yields binary results. In comparison, alignment pro-
vides precise matching scores and allows customized weight
functions. Our alignment gives more accurate detection than
approximate string matching (e.g., [27], [28]).

Alignment algorithms have been widely used in compu-
tational biology applications, and features such as privacy-
preserving sequence matching have been studied [29]. In
security literature, NetDialign based on the well-known Di-
align algorithms is proposed for network privacy [30]. It
performs differential testing among multiple traffic flows.
Kreibich and Crowcroft presented an alignment algorithm for
traffic intrusion detection systems such as Bro [31]. It is a
variant of Jacobson-Vo alignment that calculates the longest
common subsequence with the minimum number of gaps.
Researchers in [32] reported the use of dynamic program-
ming for computing the similarity of network behaviors and
presented a technique to handle behavioral sequences with
differing sampling rates. Masquerade attacks in the context
of user command sequences can be detected with semi-global
sequence alignment techniques [33], [34].

Our data leak detection differs from the above network
privacy and IDS problems, and it has new requirements as we
have explained in the introduction. Our alignment performs
complex inferences needed for aligning sampled sequences,
and our solution is also different from fast non-sample align-
ment in bioinformatics, e.g., BLAST [35].

Another approach to the detection of sensitive data leak is to
track the data/metadata movement. Several tools are developed
for securing sensitive information on mobile platforms [36]–
[38]. Nadkarni and Enck described an approach to control the
sharing of sensitive files among mobile applications [37]. File
descriptors (not the content) are stored, tracked and managed.
The access control on files is enforced through policies. Yang
et al. presented a method aiming at detecting the transmission
of sensitive data that is not intended by smartphone users
via symbolic execution analysis [38]. Hoyle et al. described a
visualization method for informing mobile users of informa-
tion exposure [36]. The information exposure may be caused
by improper setting or configuration of access policies. The
visualization is through an avatar apparel approach. Croft
and Caesar expand the data tracking from a single host to a
network and use shadow packets to distinguish normal traffic
from leaks [39]. The security goals and requirements in all
these studies are very different from ours, leading to different
techniques developed and used.

iLeak is a system for preventing inadvertent information
leaks on a personal computer [40]. It takes advantages of the
keyword searching utility present in many modern operating
systems. iLeak monitors the file access activities of processes
and searches for system call inputs that involve sensitive data.
Unlike our general data leak detection approach, iLeak is
designed to secure personal data on a single machine, and its
detection capability is restricted by the underlying keyword
searching utility, which is not designed for detecting either
transformed data leaks or partial data leaks.

Bertino and Ghinita addressed the issue of data leaks in
database from the perspective of anomaly detection [41].

Normal user behaviors are monitored and modeled in DBMS,
and anomalous activities are identified with respect to potential
data leak activities. Bertino also discussed watermarking and
provenance techniques used in data leak prevention and foren-
sics [41], which is investigated in details by Papadimitriou and
Garcia-Molina in [42].

Privacy is a well-known issue in the cloud. Lin and
Squicciarini proposed a generic data protection framework
to enforce data security in the cloud [43]. A three-tier data
protection framework was proposed by Squicciarini et al. to
deal with the data leak caused by indexing in the cloud [44].
Privacy-preserving data leak detection was proposed and
further developed in [45], [46], where data leak detection
operations are outsourced to a semi-honest third-party. The
solution is a specialized set intersection method. Therefore, it
is different from this paper.

III. MODELS AND OVERVIEW

In our data leak detection model, we analyze two types of
sequences: sensitive data sequence and content sequence.
• Content sequence is the sequence to be examined for leaks.

The content may be data extracted from file systems on
personal computers, workstations, and servers; or payloads
extracted from supervised network channels (details are
discussed below).
• Sensitive data sequence contains the information (e.g., cus-

tomers’ records, proprietary documents) that needs to be
protected and cannot be exposed to unauthorized parties.
The sensitive data sequences are known to the analysis
system.
In this paper, we focus on detecting inadvertent data leaks,

and we assume the content in file system or network traffic
(over supervised network channels) is available to the inspec-
tion system. A supervised network channel could be an unen-
crypted channel or an encrypted channel where the content
in it can be extracted and checked by an authority. Such
a channel is widely used for advanced NIDS where MITM
(man-in-the-middle) SSL sessions are established instead of
normal SSL sessions [47]. We do not aim at detecting stealthy
data leaks that an attacker encrypts the sensitive data secretly
before leaking it. Preventing intentional or malicious data leak,
especially encrypted leaks, requires different approaches and
remains an active research problem [48].

In our current security model, we assume that the analysis
system is secure and trustworthy. Privacy-preserving data-leak
detection can be achieved by leveraging special protocols
and computation steps [49]. It is another functionality of a
detection system, and the discussion is not within the scope
of this paper.

A. Technical Challenges

High detection specificity. In our data-leak detection model,
high specificity refers to the ability to distinguish true leaks
from coincidental matches. Coincidental matches are false
positives, which may lead to false alarms. Existing set-based
detection is orderless, where the order of matched shingles
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(n-grams) is ignored. Orderless detection may generate coin-
cidental matches, and thus having a lower accuracy of the
detection. In comparison, our alignment-based method has
high specificity. For example, a detection system can use 3-
grams to represent the sensitive data.

Sensitive data abcdefg
3-grams abc, bcd, cde, def, efg

Then, consider the content streams 1 and 2 below. Stream
1 contains a true leak, whereas stream 2 does not.

Content stream 1 ....abcdefg...
Content stream 2 ....efg...cde...abc...

However, set intersection between 3-grams of the sensitive
data and the 3-grams of content stream 2 results in a significant
number of matching 3-grams (efg, cde, and abc), even
though they are out of order compared to the sensitive data
pattern. This problem is eliminated in alignment, i.e., the
content stream 2 receives a low sensitivity score when aligned
against the sensitive data.

Pervasive and localized modification. Sensitive data could be
modified before it is leaked out. The modification can occur
throughout a sequence (pervasive modification). The modifi-
cation can also only affect a local region (local modification).
We describe some modification examples:
• Character replacement, e.g., WordPress replaces every

space character with a + in HTTP POST requests.
• String insertion, e.g., HTML tags inserted throughout a

document for formatting or embedding objects.
• Data truncation or partial data leak, e.g., one page of a two-

page sensitive document is transmitted.

B. Overview of Our Approach
Our work presents an efficient sequence comparison tech-

nique needed for analyzing a large amount of content for
sensitive data exposure. Our detection approach consists of
a comparable sampling algorithm and a sampling oblivious
alignment algorithm. The pair of algorithms computes a quan-
titative similarity score between the sensitive data and the
content. Local alignment – as opposed to global alignment [50]
– is used to identify similar sequence segments. The design
enables the detection of partial data leaks.

Our detection runs on continuous sequences of n bytes (n-
grams). n-grams are obtained from the content and sensitive
data, respectively. Local alignment is performed between the
two (sampled) sequences to compute their similarity. The
purpose of our comparable sampling operation is to enhance
the analysis throughput. We discuss the tradeoff between
security and performance related to sampling in our evaluation
sections. Finally, we report the content that bears higher-than-
threshold similarity with respect to sensitive patterns. Given
a threshold T , content with a greater-than-T sensitivity is
reported as a leak.

IV. COMPARABLE SAMPLING

In this section, we define the sampling requirement needed
in data leak detection. Then we present our solution and its
analysis.

A. Definitions

One great challenge in aligning sampled sequences is that
the sensitive data segment can be exposed at an arbitrary
position in a network traffic stream or a file system. The
sampled sequence should be deterministic despite the starting
and ending points of the sequence to be sampled. Moreover,
the leaked sensitive data could be inexact but similar to the
original string due to unpredictable transformations. We first
define substring and subsequence relations in Definition 1
and Definition 2. Then we define the capability of giving
comparable results from similar strings in Definition 3.

Definition 1. (Substring) a substring is a consecutive segment
of the original string.

If x is a substring of y, one can find a prefix string (denoted
by yp) and a suffix string (denoted by ys) of y, so that y equals
to the concatenation of yp, x, and ys. yp and ys could be empty.

Definition 2. (Subsequence) subsequence is a generalization
of substring that a subsequence does not require its items to
be consecutive in the original string.

One can generate a subsequence of a string by removing
items from the original string and keeping the order of the
remaining items. The removed items can be denoted as gaps
in the subsequence, e.g., lo-e is a subsequence of flower
(- indicates a gap).

Definition 3. (Comparable sampling) Given a string x and
another string y that x is similar to a substring of y according
to a similarity measure M , a comparable sampling on x and
y yields two subsequences x′ (the sample of x) and y′ (the
sample of y), so that x′ is similar to a substring of y′ according
to M .

If we restrict the similarity measure M in Definition 3 to
identical relation, we get a specific instance of comparable
sampling in Definition 4.

Definition 4. (Subsequence-preserving sampling) Given x as
a substring of y, a subsequence-preserving sampling on x and
y yields two subsequences x′ (the sample of x) and y′ (the
sample of y), so that x′ is a substring of y′.

Because a subsequence-preserving sampling procedure is a
restricted comparable sampling, so the subsequence-preserving
sampling is deterministic, i.e., the same input always yields the
same output. The vice versa may not be true.

In Example 1 with two sequences of integers, we illustrate
the differences between a comparable sampling algorithm and
a random sampling method, where a biased coin flipping at
each position decides whether to sample or not. The input is a
pair of two similar sequences. There is one modification (9 to
8), two deletions (7) and (3), and suffix padding (1, 4) in the
second sequence. Local patterns are preserved in a comparable
sampling method, whereas the random sampling does not. The
local patterns can then be digested by our sampling-oblivious
alignment algorithm to infer the similarity between the two
original input sequences.

Example 1. Comparable sampling.
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Inputs:
1 1 9 4 5 7 3 5 9 7 6 6 3 3 7 1 6
1 1 9 4 5 7 3 5 8 6 6 3 7 1 6 1 4

Comparable sampling may give:
1 1 - 4 - - 3 5 - - - - 3 3 - 1 -
1 1 - 4 - - 3 - - 6 - 3 - 1 - 1 4

Random sampling may give:
1 - - 4 - - 3 5 - 7 - 6 - - 7 1 -
- 1 9 - 5 - - 5 - 6 - 3 7 - 6 1 -

B. Our Sampling Algorithm

We present our comparable sampling algorithm. The ad-
vantage of our algorithm is its context-aware selection, i.e.,
the selection decision of an item depends on how it compares
with its surrounding items according to a selection function.
As a result, the sampling algorithm is deterministic and
subsequence-preserving.

Our comparable sampling algorithm takes in S, an input list
of items (preprocessed n-grams of sensitive data or content1),
and outputs T , a sampled list of the same length; the sampled
list contains null values, which correspond to items that are
not selected. The null regions in T can be aggregated, and
T can be turned into a compact representation L. Each item
in L contains the value of the sampled item and the length
of the null region between the current sampled item and the
preceding one.
T is initialized as an empty list, i.e., a list of null items.

The algorithm runs a small sliding window w on S. w is
initialized with the first |w| items in S (line 2 in Algorithm 1).
The algorithm then utilizes a selection function to decide
what items in w should be selected for T . The selection
decision is made based on not only the value of that item,
but also the values of its neighboring items in w. Therefore,
unlike a random sampling method where a selection decision
is stochastic, our method satisfies the subsequence-preserving
and comparable sampling requirements.

In Algorithm 1, without loss of generality, we describe
our sampling method with a specific selection function f =
min(w,N). f takes in an array w and returns the N smallest
items (integers) in w. f is deterministic, and it unbias-
edly selects items when items (n-grams) are preprocessed
with the min-wise independent Rabin’s fingerprint [51]. f
can be replaced by other functions that are also min-wise
independent. The selection results at each sliding window
position determine what items are chosen for the sampled
list. The parameters N and |w| determine the sampling rate.
collectionDiff(A,B) in lines 10 and 11 outputs the
collection of all items of collection A that are not in collection
B. The operation is similar to the set difference, except that it
works on collections and does not eliminate duplicates.

1We preprocess n-grams with Rabin’s fingerprint to meet the min-wise
independent requirement of selection function f described next. Each item in
S is a fingerprint/hash value (integer) of an n-gram.

Algorithm 1 A subsequence-preserving sampling algorithm.
Input: an array S of items, a size |w| for a sliding window w, a

selection function f(w,N) that selects N smallest items from
a window w, i.e., f = min(w,N)

Output: a sampled array T
1: initialize T as an empty array of size |S|
2: w ← read(S, |w|)
3: let w.head and w.tail be indices in S corresponding to the

higher-indexed end and lower-indexed end of w, respectively
4: collection mc ← min(w,N)
5: while w is within the boundary of S do
6: mp ← mc

7: move w toward high index by 1
8: mc ← min(w,N)
9: if mc 6= mp then

10: item en ← collectionDiff(mc,mp)
11: item eo ← collectionDiff(mp,mc)
12: if en < eo then
13: write value en to T at w.head’s position
14: else
15: write value eo to T at w.tail’s position
16: end if
17: end if
18: end while

T output by Algorithm 1 takes the same space as S does.
Null items can be combined, and T is turned into a com-
pact representation L, which is consumed by our sampling-
oblivious alignment algorithm in the next phase.

We show how our sampling algorithm works in Table I.
We set our sampling procedure with a sliding window of
size 6 (i.e., |w| = 6) and N = 3. The input sequence is
1,5,1,9,8,5,3,2,4,8. The initial sliding window w =
[1,5,1,9,8,5] and collection mc = {1,1,5}.

Sampling Algorithm Analysis
Our sampling algorithm is deterministic, i.e., given a fixed

selection function f : same inputs yield the same sampled
string. However, deterministic sampling (e.g., [17]) does not
necessarily imply subsequence preserving. One can prove
using a counterexample. Consider a sampling method that
selects the first of every 10 items from a sequence, e.g., 1-st,
11-th, 21-st, . . . It is deterministic, but it does not satisfy the
subsequence-preserving requirement. Some sampling methods
such as coresets [52], [53] do not imply determinism.

Our sampling algorithm is not only deterministic, but also
subsequence-preserving as presented in Theorem 1.

Theorem 1. Algorithm 1 (denoted by Ψ) is subsequence-
preserving. Given two strings x and y, where x is a substring
of y, then Ψ(x) is a substring of Ψ(y).

Proof: Let L[m : n] denote the substring of L starting
from the m-th item and ending at the n-th item. Consider
strings L1 and L2 and their sampled sequences S1 and S2,
respectively. We prove that the theorem holds in four cases.

Case 1: L2 equals to L1. Because our comparable sampling
algorithm is deterministic, the same string yields the same
sampled sequence. Thus, S2 is a substring of S1.

Case 2: L2 is a prefix of L1. The sampling of L1 can be
split into two phases.
Phase 1 The head of the sliding moves within
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TABLE I
ILLUSTRATION OUR SAMPLING PROCEDURE.

Step w mc mp en eo Sampled list

0 [1, 5, 1, 9, 8, 5] 1, 1, 5 N/A N/A N/A <-, -, -, -, -, -, -, -, -, ->
1 [5, 1, 9, 8, 5, 3] 1, 3, 5 1, 1, 5 3 1 <1, -, -, -, -, -, -, -, -, ->
2 [1, 9, 8, 5, 3, 2] 1, 2, 3 1, 3, 5 2 5 <1, -, -, -, -, -, -, 2, -, ->
3 [9, 8, 5, 3, 2, 4] 2, 3, 4 1, 2, 3 4 1 <1, -, 1, -, -, -, -, 2, -, ->
4 [8, 5, 3, 2, 4, 8] 2, 3, 4 2, 3, 4 N/A N/A <1, -, 1, -, -, -, -, 2, -, ->

L1[size(win) : size(L2)], i.e., from the start of L1

to the exact position in L1 where L2 ends. Since L2

is a prefix of L1, and the window only moves within
the scope of the prefix, the sample of L1 generated in
this subprocess is the same as S2, the final sample of
L2.

Phase 2 The head of the sliding window moves within
L1[size(L2) + 1 : size(L2) + size(win)]. The tail of
the sample window sweeps L1[size(L2)−size(win)+
1 : size(L2)] and yields zero or more sampled items
on S1[size(L2)− size(win) + 1 : size(L2)].

S1[1 : size(L2)−size(win)] is solely generated in Phase
1. Thus, it is the same as S2[1 : size(L2)− size(win)].
In Phase 2, we know that S1[size(L2) − size(win) +
1 : size(L2)] contains zero or more sample items
than S2[size(L2) − size(win) + 1 : size(L2)]. Thus,
S2[size(L2) − size(win) + 1 : size(L2)] is a substring
of S1[size(L2)− size(win) + 1 : size(L2)]. Thus, S2 is
a substring of S1.

Case 3: L2 is a suffix of L1. The proof is similar to Case 2.
The sampling of L1 can be split into two phases.
Phase 1 The tail of the sliding window moves within
L1[size(L1)− size(L2) + 1 : size(L1)− size(win)].
The generated sampled sequence is the same as S2,
which is the final sample of L2.

Phase 2 The tail of the sliding window moves
within L1[size(L1) − size(L2) − size(win) + 1 :
size(L1)−size(L2)]. The head of the window sweeps
L1[size(L1)− size(L2) + 1 : size(L1)− size(L2) +
size(win)] and yields zero or more sampled items on
L1[size(L1)− size(L2) + 1 : size(L1)− size(L2) +
size(win)].

S1[size(L1) − size(L2) + size(win) + 1 : size(L1) −
size(L2)] is the same as S2[size(L1) − size(L2) +
size(win) + 1 : size(L1) − size(L2)]. In addition,
S2[size(L1) − size(L2) + 1 : size(L1) − size(L2) +
size(win)] is a substring of S1[size(L1)−size(L2)+1 :
size(L1)−size(L2)+size(win)]. Thus, S2 is a substring
of S1.

Case 4: All others. This case is when L2 is a substring of
L1, but not a prefix or suffix, i.e., L2[1 : size(L2)] =
L1[m : n]. We align L1 and L2 and cut the two strings at
a position where they are aligned. Denote the position in
L2 by k. We obtain L2[1 : k] as a suffix of L1[m : m+k]
and L2[k+1 : size(L2)] as a prefix of L1[m+k+1 : n].
Based on the proofs in Case 2 and Case 3, we conclude
that S2[1 : k] is a substring of S1[m : m+k], and S2[k+

1 : size(L2)] is a substring of S1[m + k + 1 : n]. Thus,
S2 is a substring of S1.

In summary, Theorem 1 holds in every case.

Our algorithm is unbiased, meaning that it gives an equal
probability for every unit in the string to be selected. To
achieve bias-free property, we hash inputs using a min-
wise independent function, namely Rabin’s fingerprint [54].
It guarantees that the smallest N items come equally from
any items in the original string. This hashing is performed in
PREPROCESSING operation in our prototypes.

The complexity of sampling using the min(w,N) selection
function is O(n log |w|), or O(n) where n is the size of the
input, |w| is the size of the window, The factor O(log |w|)
comes from maintaining the smallest N items within the
window w.

Sampling rate α ∈ [ N
|w| , 1] approximates N

|w| for random
inputs, where |w| is the size of the sliding window, and N
is the number of items selected within the sliding window.
For arbitrary inputs, the actual sampling rate depends on the
characteristics of the input space and the selection function
used. The sampling rate in our evaluations on common Internet
traffic is around 1.2 N

|w| .
Sufficient number of items need to be sampled from se-

quences in order to warrant an accurate detection. Our em-
pirical result in Section VI-B shows that with 0.25 sampling
rate our alignment method can detect as short as 32-byte-long
sensitive data segments.

V. ALIGNMENT ALGORITHM

In this section, we describe the requirements for a sample-
based alignment algorithm and present our solution.

A. Requirements and Overview

We design a specialized alignment algorithm that runs on
compact sampled sequences La and Lb to infer the similarity
between the original sensitive data sequence Sa and the
original content sequence Sb. It needs to satisfy the require-
ment of sampling oblivion, i.e., the result of a sampling-
oblivious alignment on sampled sequences La and Lb should
be consistent with the alignment result on the original Sa and
Sb.

Conventional alignment may underestimate the similarity
between two substrings of the sampled lists, causing misalign-
ment. Regular local alignment without the sampling oblivion
property may give inaccurate alignment on sampled sequences
as illustrated in Example 2.
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Example 2. Sampling-oblivious alignment vs. regular local
alignment

Original lists:
5627983857432546397824366
5627983966432546395

Sampled sequences need to be aligned as:
--2---3-5---2---3-7-2-3--
--2---3-6---2---3--

However, regular local alignment may give:
23523723

23623

Because values of unselected items are unknown to the
alignment, the decision of match or mismatch cannot be made
solely on them during the alignment. We observe that leaked
data region is usually consecutive, e.g., spans at least dozens
of bytes. Thus, our algorithm achieves sampling oblivion
by inferring the similarity between null regions (consecutive
sampled-out elements) and counts that similarity in the overall
comparison outcomes between the two sampled sequences.
The inference is based on the comparison outcomes between
items surrounding null regions and sizes of null regions. For
example, given two sampled sequences a--b and A--B, if
a == A and b == B, then the two values in the positions
of the null regions are likely to match as well. In case of
mismatch surrounding the null region, penalty is applied. Our
experimental results confirm that this inference mechanism is
effective.

We develop our alignment algorithm using dynamic pro-
gramming. A string alignment problem is divided into three
prefix alignment subproblems: the current two items (from
two sequences) are aligned with each other, or one of them
is aligned with a gap. In our algorithm, not only the sampled
items are compared, but also comparison outcomes between
null regions are inferred based on their non-null neighboring
values and their sizes/lengths. The comparison results include
match, mismatch and gap, and they are rewarded (match) or
penalized (mismatch or gap) differently for sampled items or
null regions according to a weight function fw().

Our alignment runs on sampled out elements. We introduce
i) extra fields of scoring matrix cells in dynamic programming,
ii) extra steps in recurrence relation for bookkeeping the
null region information, and iii) a complex weight function
estimating similarities between null regions.

Security Advantages of Alignment. There are three major
advantages of our alignment-based method for detecting data
leaks: order-aware comparison, high tolerance to pattern vari-
ations, and the capability of partial leak detection. All features
contribute to high detection accuracy.

• Order-aware comparison. Existing data leak filtering meth-
ods based on set intersection are orderless. An orderless
comparison brings undesirable false alarms due to coinci-
dental matches, as explained in Section III. In comparison,
alignment is order-aware, which significantly reduces the
number of false positives.

Algorithm 2 Recurrence relation in dynamic programming.
Input: A weight function fw, visited cells in H matrix that are

adjacent to H(i, j): H(i−1, j−1), H(i, j−1), and H(i−1, j),
and the i-th and j-th items La

i ,Lb
j in two sampled sequences La

and Lb, respectively.
Output: H(i, j)

1: hup.score← fw(La
i , -, H(i− 1, j))

2: hleft.score← fw(-,Lb
j , H(i, j − 1))

3: hdia.score← fw(La
i ,Lb

j , H(i− 1, j − 1))
4: hup.nullrow ← 0
5: hup.nullcol ← 0
6: hleft.nullrow ← 0
7: hleft.nullcol ← 0

8: hdia.nullrow ←

 0, if La
i = Lb

j

H(i− 1, j).nullrow
+ La

i .span + 1, else

9: hdia.nullcol ←

 0, if La
i = Lb

j

H(i, j − 1).nullcol
+ Lb

j .span + 1, else

10: H(i, j)← arg max
h.score


hup

hleft

hdia

11: H(i, j).score← max

{
0
H(i, j).score

• High tolerance to pattern variations. The optimal align-
ment between the sensitive data sequence and content
sequence ensures high accuracy for data leak detection. The
alignment-based detection tolerates pattern variations in the
comparison, thus can handle transformed data leaks. The
types of data transformation in our model include localized
and pervasive modifications such as insertion, deletion, and
substitution, but exclude strong encryption.
• Capability of detecting partial leaks. Partial data leak is

an extreme case of truncation in transformation. In set-
intersection methods, the size of sensitive data and that
of the inspected content are usually used to diminish the
score of coincidental matches, which incurs false negatives
when only partial sensitive data is leaked. Local alignment
searches for similar substrings in two sequences, thus it can
detect a partial data leak.

B. Recurrence Relation

We present the recurrence relation of our dynamic program
alignment algorithm in Algorithm 2. For the i-th item Li in
a sampled sequence L (the compact form), the field Li.value
denotes the value of the item and a new field Li.span denotes
the size of null region between that item and the preceding
non-null item. Our local alignment algorithm takes in two
sampled sequences La and Lb, computes a non-negative score
matrix H of size |La|-by-|Lb|, and returns the maximum
alignment score with respect to a weight function. Each cell
H(i, j) has a score field H(i, j).score and two extra fields
recording sizes of neighboring null regions, namely nullrow
and nullcol.

The intermediate solutions are stored in matrix H . For each
subproblem, three previous subproblems are investigated: i)
aligning the current elements without a gap, which leads to a
match or mismatch, ii) aligning the current element in La with
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 (b) Scoring Matrix View(a) Sampled Stream View

sens

traffic

Fig. 1. Illustration of the notation used in the weight function fw() for the match case (i. e., x.value = y.value) in the alignment view (a) and matrix view
(b). The milestone cell in (b) is for inference due to sampling.

a gap, and iii) aligning the current element in Lb with a gap.
A cell candidate h is generated for each situation; its score
h.score is computed via the weight function fw (lines 1 to 3
in Algorithm 2). The other two fields, nullrow and nullcol, are
updated for each candidate cell (lines 4 to 9). This update may
utilize the null region value stored in the span field of an item.
All three cell candidates hup, hleft, and hdia are prepared. The
cell candidate having the highest score is chosen as H(i, j),
and the score is stored in H(i, j).score.

C. Weight Function

A weight function computes the score for a specific align-
ment configuration. Our weight function fw() takes three
inputs: the two items being aligned (e.g., La

i from sensitive
data sequence and Lb

j from content sequence) and a reference
cell c (one of the three visited adjacent cells H(i − 1, j −
1), H(i, j − 1), or H(i − 1, j)). It then outputs a score of
an alignment configuration. One of La

i and Lb
j may be a

gap (−) in the alignment. The computation is based on the
penalty given to mismatch and gap conditions and reward
given to match conditions. Our weight function differs from
the one in Smith-Waterman algorithm [55] in its ability to infer
comparison outcomes for null regions. This inference is done
efficiently accordingly to the values of their adjacent non-null
neighboring items. The inference may trace back to multiple
preceding non-null items up to a constant factor.

In our fw(), r is the reward for a single unit match, m is
the penalty for a mismatch, and g is the penalty for a single
unit aligned with a gap. As presented in Section V-B, the
field value is the value of a sampled item (e.g., x.value or
y.value in fw() below), and the field span stores the length
of the null region preceding the item. For the input cell c, the
fields nr (short for nullrow) and nc (short for nullcol) record
the size of the accumulated null regions in terms of row and
column from the nearest milestone cell (explained next in our
traceback strategy) to the current cell. diff(m,n) = |m − n|.
Values p, q, l, k, and j serve as weight coefficients in our
penalty and reward mechanisms. We detail our weight function
fw() below and illustrate the lengths l, k and j for the match
case in Figure 1.

1) (Gap) hup

fw(x,−, c) = c.score+m× p+ g × q
where

p = min(c.nr + x.span+ 1, c.nc)

q = diff(c.nr + x.span+ 1, c.nc)

2) (Gap) hleft

fw(−, y, c) = c.score+m× p+ g × q
where

p = min(c.nr, c.nc + y.span+ 1)

q = diff(c.nr, c.nc + y.span+ 1)

3) (Mismatch) hdia|x.value 6= y.value

fw(x, y, c) = cell.score

4) (Match) hdia|x.value = y.value

fw(x, y, c) = cell.score

+ r × l
+m× k
+ g × j

where
l = min(x.span, y.span) + 1,

k = min(c.nr, c.nc)− l,
j = diff(c.nr, c.nc) + diff(x.span, y.span) + l

Traceback in our weight function is for inferring matching
outcomes based on preceding null regions, including the
adjacent one. Our traceback operation is efficient. It extends
to a constant number of preceding null regions. To achieve
this property, we define a special type of cells (referred
to as milestone cells) in matrix H with zero nullrow and
nullcol fields. These milestone cells mark the boundary for
the traceback inference; the subproblems (upper left cells) of
a milestone cell are not visited. A milestone cell is introduced
in either match or gap cases in fw.
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TABLE II
DATASETS IN ACCURACY & SCALABILITY EXPERIMENTS

Dataset Size Details

A. Enron [56] 2.6 GB 517,424 email (with full headers and bodies) of 150 users
B. Source-code 3.8 MB 288 source files in projects tar, net-tools, gzip, procps, and rsync
C. Outbound HTTP requests 12 MB HTTP requests of 20 users (30-minute Internet activities recorded for each user)
D. Outbound/inbound MiscNet 500MB Miscellaneous web traffic containing text and multimedia content

D. Algorithm Analysis

The complexity of our alignment algorithm is O(|La||Lb|),
where |La| and |Lb| are lengths of compact representations of
the two sampled sequences. The alignment complexity for a
single piece of sensitive data of size l is the same as that of a
set of shorter pieces with a total size l, as the total amounts
of matrix cells to compute are the same.

In a real-world deployment, the overall sensitive data se-
quence Sa is usually close to a fixed length, and more attention
is commonly paid to the length of the content sequence Sb. In
this case, the complexity of our alignment is O(|Lb|) where
Lb is the sampled list of Sb. We experimentally evaluate the
throughput of our prototype in Section VII, which confirms
the O(|Lb|) complexity in the analysis.

The correctness of our alignment is ensured by dynamic pro-
gramming and the recurrence relation among the subproblems
of string alignment. The preciseness of similarity inference
between sampled-out elements is achieved by our specifically
designed weight function. Empirical results show that the
alignment of sampled sequences La and Lb is very close to
the alignment of original sequences Sa and Sb, confirming the
sampling oblivion property.

Our alignment of two sampled sequences achieves a
speedup in the order of O(α2), where α ∈ (0, 1) is the
sampling rate. There is a constant damping factor due to the
overhead introduced by sampling. The expected value is 0.33
because of the extra two fields, besides the score field, to
maintain for each cell in H . We experimentally verify the
damping factor in our evaluation.

Permutation-based data transformation (e.g., position
swaps) affects the alignment precision and reduces the overall
detection accuracy.

VI. EVALUATION ON DETECTION ACCURACY

We extensively evaluate the accuracy of our solution with
several types of datasets under a multitude of real-world data
leak scenarios. Our experiments in this section aim to answer
the following questions.

1) Can our method detect leaks with pervasive modifications,
e.g., character substitution throughout a sensitive docu-
ment?

2) Can our method detect localized modifications, especially
partial data leaks?

3) How specific is our detection, that is, the evaluation of false
positives?

4) How does our method compare to the state-of-the-art col-
lection intersection method in terms of detection accuracy?

TABLE III
SEMANTICS OF TRUE AND FALSE POSITIVES AND TRUE AND FALSE

NEGATIVES IN OUR MODEL.

True Leak No Leak

Leak detected TP FP
No leak detected FN TN

A. Implementation and Experiment Setup

We implement a single-threaded prototype (referred to as
AlignDLD system) and a collection intersection method (re-
ferred to as Coll-Inter system), which is a baseline. Both
systems are written in C++, compiled using g++ 4.7.1 with
flag -O3. We also provide two parallel versions of our
prototype in Section VII for performance demonstration.
• AlignDLD: our sample-and-align data leak detection method

with sampling parameters N = 10 and |w| = 100. 3-grams
and 32-bit Rabin’s fingerprints2 are used.
• Coll-Inter: a data leak detection system based on collection

intersection3, which is widely adopted by commercial tools
such as GlobalVelocity [19] and GoCloudDLP [20]. 8-grams
and 64-bit Rabin’s fingerprints are used, which is standard
with collection intersection.
We use four datasets (Table II) in our experiments. A. Enron

and B. Source-code are used either as the sensitive data or
the content to be inspected. C. Outbound HTTP requests and
D. MiscNet are used as the content. Detailed usages of these
datasets are specified in each experiment.

We report the detection rate in Equation (1) with respect to
a certain threshold for both AlignDLD and Coll-Inter systems.
The detection rate gives the percentage of leak incidents that
are successfully detected. We also compute standard false
positive rate defined in Equation (2). We detail the semantic
meaning for primary cases, true positive (TP), false positive
(FP), true negative (TN), and false negative (FN), in Table III.

Detection rate (Recall) =
TP

TP + FN
(1)

False positive rate =
FP

FP + TP
(2)

We define the sensitivity S ∈ [0, 1] of a content sequence in
Equation (3). It indicates the similarity of sensitive data D and
content CD′ with respect to their sequences Sa and Sb after
PREPROCESS. ξ is the maximum score in the alignment, i.e.,
the maximum score calculated in the scoring matrix of our

2Rabin’s fingerprint is used for unbiased sampling discussed in Sec-
tion IV-B.

3Set and collection intersections are used interchangeably.
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dynamic programming alignment. r is the reward for one-unit
match in the alignment (details in Section V-C).

S =
ξ

r ×min (|Sa|, |Sb|)
(3)

We reproduce four leaking scenarios in a virtual network
environment using VirtualBox. We build a virtual network and
deploy the detection systems at the gateway of the virtual net-
work. The detection systems intercept the outbound network
traffic, perform deep packet inspection, and extract the content
at the highest known network layer4. Then the detection
systems compare the content with predefined sensitive data
to search for any leak.
1) Web leak: a user publishes sensitive data on the Internet

via typical publishing services, e.g., WordPress,
2) FTP: a user transfers unencrypted sensitive files to an FTP

server on the Internet,
3) Backdoor: a malicious program, i.e., Glacier, on the

user’s machine exfiltrates sensitive data,
4) Spyware: a Firefox extension FFsniFF [57] exfiltrates

sensitive information via web forms.
It is not a challenge to detect intact data leaks. Our

AlignDLD system successfully detects intact leaks in all these
leaking scenarios with a small sampling rate between 5% and
20%. In the following subsections, we analyze the detection
accuracy to answer the questions at the beginning of this
section.

B. Detecting Modified Leaks

We evaluate three types of modifications: i) real-world
pervasive substitution by WordPress, ii) random pervasive
substitution, and iii) truncated data (localized modifications).

1) Pervasive Substitution: We test AlignDLD and Coll-Inter
on content extracted from three kinds of network traffic.
1) Content without any leak, i.e., the content does not contain

any sensitive data.
2) Content with unmodified leak, i.e., sensitive data appearing

in the content is not modified.
3) Content with modified leaks caused by WordPress,

which substitutes every space with a “+” in the content.
The sensitive dataset in this experiment is English text, 50

randomly chosen email messages from the Enron dataset5. The
content without leak consists of other 950 randomly chosen
Enron email messages. We compute the sensitivities of the
content according to Equation (3).

We evaluate and compare our AlignDLD method with the
Coll-Inter method. The distributions of sensitivity values in all
6 experiments are shown in Figure 2. The table to the right of
each figure summarizes the detection accuracy under a chosen
threshold. The dotted lines in both Figure 2 (a) and (b) (on
the left) represent the content without leak. Low sensitivities
are observed in them by both systems as expected. The dashed
lines (on the right) represent the content with unmodified leak.
High sensitivities are reported by both systems as expected.

4The content is obtained at the TCP layer when unknown protocols are
used at higher network layers.

5Headers are included.
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Fig. 2. Detection comparison of leak through WordPress in AlignDLD (a)
and collection intersection (b). In each subfigure, each of the 3 curves shows
the distribution of sensitivity values under one of 3 scenarios: leak without
transformation, leak with WordPress transformation, or content without leak.
With a threshold of 0.2, AlignDLD detects all the leaks. In comparison,
collection intersection performs worse as shown in the table on the right.

The solid lines in Figure 2 represent the detection results of
leaks with WordPress modifications. Our AlignDLD method
(in Figure 2 (a)) gives much higher sensitivity scores to the
transformed data leak than the Coll-Inter method. AlignDLD
detects all transformed email leaks with a threshold of 0.2,
i.e., it achieves 100% recall. The false positive rate is low.
In contrast, Coll-Inter in Figure 2 (b) results in a significant
overlap of sensitivity values between messages with no leak
and messages with transformed leaks. Its accuracy is much
lower than that of AlignDLD, e.g., 63.8% recall and a 10 times
higher false positive rate. Further analysis of false positives
caused by coincidental matches (dotted lines on the left) is
given in Section VI-C.

2) Random and Pervasive Substitution: The sensitive data
in this experiment is the same as above, i.e., randomly
chosen 50 Enron emails (including headers). For the content
sequences, we randomize one byte out of every m bytes, where
m ∈ {8, 12, 16}. The smaller m is, the harder the detection
is, as the similarity between the content and sensitive data
becomes lower. The detection results with respect to various
thresholds are shown in Figure 3.

The recall values decrease as the substitution frequency
increases for both the alignment and collection intersection
methods as expected. Our alignment method degrades more
gracefully under the pervasive substitution scenario. For
example, under threshold 0.3, the detection rate is over 80%
even when one out of every 8 bytes is substituted. The
collection intersection cannot detect the leak (0% detection
rate) in the same scenario.

3) Data Truncation: In data truncation or partial data leak
scenarios, consecutive portions of the sensitive data are leaked.
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Fig. 3. Sensitivity values of the content under various transformation ratios
with A. Enron dataset. Transformation ratio (X-axis) denotes the fraction of
leaked sensitive data that is randomized.
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Fig. 4. The detection success rate of AlignDLD in partial data leaks under
various detection thresholds. Each content sequence contains a consecutive
portion of a 1KB sensitive text, ranging from 32 bytes to 1KB. AlignDLD
achieves 100% detection rates when the threshold is equal or smaller than
0.6.

In this experiment, a content sequence contains a portion of
sensitive text. The total length of the sensitive text is 1KB. The
size of the leaked portion appearing in the content sequence
ranges from 32 bytes to 1KB. Each content sequence is 1KB
long with random padding if needed.

We measure the unit sensitivity S̃ ∈ [0, 1] on segments
of content sequences. Unit sensitivity S̃ is the normalized
per-element sensitivity value for the aligned portion of two
sequences. It is defined in Equation (4), where ξ̃ is the
maximum local alignment score obtained between aligned
segments S̃a and S̃b, which are sequence segments of sensitive
data D and content CD′ . The higher S̃ is, the better the
detection is. Threshold l is a predefined length describing
the shortest segment to invoke the measure. l = 16 in our

TABLE IV
SAMPLING RATES OF ALIANDLD ON A.ENRON AND B.SOURCE-CODE

DATA SETS. |w| = 100

N 2 3 5 10 20 40

Enron 2.83% 4.14% 6.67% 12.32% 22.78% 43.1%
S.Code 2.81% 4.01% 6.30% 11.81% 22.33% 43.04%

experiments.

S̃ =
ξ̃

r ×min (|S̃a|, |S̃b|)
where min (|S̃a|, |S̃b|) ≥ l (4)

The detection results are shown in Figure 4, where X-axis
shows the threshold of sensitivity, and Y-axis shows the recall
rates of AlignDLD. Content with longer sensitive text is easier
to detection as expected. Nevertheless, our method detects
content with short truncated leaks as small as 32 bytes
with high accuracy. The detection rate decreases with higher
thresholds. We observe that high thresholds (e.g., higher than
0.6) are not necessary for detection when 8-byte shingles are
used; false positives caused by coincidental matches are low
in this setup. These experiments show that our detection is
resilient to data truncation.

C. Low False Positive Rate

The purpose of this experiment is to evaluate how specific
our alignment-based data leak detection is, i.e., reporting leaks
and only leaks. We compute and compare the amount of coin-
cidental matches (defined in Section III) found by our method
and the collection intersection method. We conduct two sets
of experiments using A. Enron and B. Source-code datasets.
In A. Enron, we use 50 random email messages (including
headers) as the sensitive data and other 950 messages as the
content. In B. Source-code, we use 5 random files as the
sensitive data and other 283 files as the content. None of
the contents contain any intentional leaks. Sensitivity scores
are computed for each email message and source code file.
Small amounts of coincidental matches are expected in these
two datasets, because of shared message structures and C/C++
code structures.

We test the impact of sampling in this experiment. We
chose screen size N = 2, 3, 5, 10, 20, 40 and window size
|w| = 100. The sampling rates (Table IV) on the two datasets
are similar when rounded to percentages. This is because
Rabin’s fingerprint maps any n-gram uniformly to the item
space before sampling.

We measure the signal-to-noise ratios (SNRdB) between
sensitive scores of real leaks and sensitive scores of non-leak
traffic. We calculate SNRdB as in Equation 5, where the signal
value is the averaged sensitivity score of traffic containing
leaks, and the noise value is the averaged sensitivity score of
regular traffic with no leaks.

SNRdB = 10 log10

Signal
Noise

(5)

Our results in Figure 5 show that the sensitivities are equal
or less than 0.1 for almost all detection using our AlignDLD
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Fig. 5. Capability of differentiating real leak from coincidental matches of our AlignDLD approach with different sampling rates and Coll-Inter.

system. With a reasonable threshold (e.g., 0.2), none of these
coincidental matches triggers a false alarm. The detection
capability of our approach is generally stable with respect to
different sampling rates. We observe that sampling rates have
a noticeable but insignificant impact on the results. SNRdB
slightly increases when the sampling rate is small, e.g., 3%.

Our previous experiments in Section VI-B show that thresh-
olds ≥ 0.2 give a strong separation between true leaks
and coincidental matches. Thus, the evidence shows that our
method achieves high recall with zero or low false positive
rate. In comparison, the collection intersection method reports
higher sensitivity scores for the content without any leak, e.g.,
62% for Enron emails. High sensitivity scores in coincidental
matches lead to a high false positive rate for the collection
intersection method as illustrated in Figure 2.

Summary. The experimental results provide strong evi-
dences supporting that our method is resilience against various
types of modifications evaluated. Our alignment algorithm
provides a high specificity (i.e., low number of coincidental
matches), compared to the collection intersection method. Our
approach is capable of detecting leaks of various sizes, ranging
from tens of bytes to megabytes.

VII. PARALLELIZATION AND EVALUATION

In order to achieve high analysis throughput, we parallelize
our algorithms on CPU as well as on general-purpose GPU
platforms. In this section, we aim to answer the following
questions:
1) How well does our detection scale? (Sections VII-B

and VII-C)
2) What is the speedup of sampling? (Section VII-D)

A. Parallel Detection Realization

We implement two parallel versions of our prototype on
a hybrid CPU-GPU machine equipped with an Intel Core i5
2400 (Sandy-Bridge micro-architecture) and an NVIDIA Tesla
C2050 GPU (Fermi architecture with 448 GPU cores):
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Fig. 6. Parallel realization of our alignment algorithm. La
i and Lb

j are the
current items to be aligned. All cells on the concurrent diagonal of (La
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can be computed simultaneously.
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Fig. 7. High scalability of parallel sampling and alignment algorithms.

1) a multithreading AlignDLD program on CPU 6,
2) a parallel AlignDLD program on GPU 7.

6The multithreaded CPU version is written in C, compiled using gcc 4.4.5
with flag -O2.

7The GPU version is written in CUDA compiled using CUDA 4.2 with
flag -O2 -arch sm 20 and NVIDIA driver v295.41.
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Fig. 8. Speedup of multithreading alignment and GPU-accelerated alignment over the single thread version on different combinations of sensitive data and
traffic data.

Smith-Waterman alignment was parallelized in OpenGL [58]
and CUDA [59]. Our parallel alignment algorithms differ from
the existing ones, as we address several implementation issues
in parallel computing due to our complex weight function.

In the multithreading CPU version, we parallelize both the
SAMPLING and ALIGNMENT procedures with the pthread
library. We parallelize the SAMPLING operation by loading
different strings onto different threads. Long streams are split
into multiple substrings. Substrings are sampled in parallel by
different threads and then assembled for output. ALIGNMENT
is the most time-consuming procedure and is made parallel on
both CPU and GPU.

We use a parallelized score matrix filling method to compute
a diagonal of cells at the same time. Our parallel matrix filling
strategy is illustrated in Figure 6. The scoring matrix is filled
from the top left corner to the bottom right corner. At any stage
of the process, cells on the concurrent diagonal (dashed lines
in Figure 6) can be computed simultaneously. Our strategy is
a variant of the standard Smith-Waterman parallelism [60].
Dependent cells in our algorithm include traditional three
adjacent cells as well as all previous cells on the diagonal
that is orthogonal to the concurrent diagonal.

The alignment between a sampled sensitive data sequence
and a sampled content sequence is assigned to a block of
threads on the GPU, and every thread in the block is respon-
sible for an element on the moving diagonal. This method
consumes linear space and is efficient. It allows us to fully
utilize the memory bandwidth, putting reusable data into fast
but small (32KB in our case) shared memory on GPU.

B. Scalability

In this experiment, we parallelize SAMPLING and ALIGN-
MENT in AlignDLD through various numbers of threads. The
times of speedup in analyzing A. Enron dataset are reported
in Figure 7. The results show the close-to-ideal scalability
for SAMPLING when parallelized onto an increasing number
of threads. Our unoptimized multithreaded CPU ALIGNMENT
scales up less well in comparison, which we attribute to poor
memory cache utilization. The score matrices are too large
to fit into the cache for some alignments. The interaction

between threads may evict reusable data from the cache. These
operations in turn may cause cache misses. An optimized
program should possess better data locality to minimize cache
misses, and the optimization can be achieved in real-world
detection products.

C. GPU Acceleration

We evaluate the performance of the most time-consuming
ALIGNMENT procedure on a GPU with 448 cores grouped
in 14 stream multiprocessors and a quad-core CPU. Times
of speedup in detecting sensitive data of types txt, png, or
pdf8 against A. Enron or D. MiscNet traffic, respectively, are
shown in Figure 8. The result shows that the GPU-accelerated
ALIGNMENT achieves over 40 times of speedup over the
CPU version on large content datasets (for both A. Enron and
D. MiscNet). GPU speedup with A. Enron data is nearly 50
times of the CPU version.

Due to the limited bandwidth between CPU and GPU, data
transfer is the bottleneck of our GPU implementation and
dominates the execution time. A common strategy to solve
the issue is to overlap data transfer and kernel execution or to
batch the GPU input [61]. Another possible approach from
the hardware perspective is to use a CPU-GPU integrated
platform, such as AMD APU or Intel MIC, which benefits
from the shared memory between CPU and GPU [62].

We report the throughput of ALIGNMENT in our GPU
implementation under various parameters. Other procedures –
that are faster than alignment – can be carried out in parallel
with ALIGNMENT in real-world deployment. We randomly
generate sensitive data pieces, 500 bytes for each, and run the
detection against 500MB misc network traffic (D. MiscNet).
The results in Table V show that we can achieve over 400Mbps
throughput on a single GPU. This throughput is comparable
to that of a moderate commercial firewall. More optimizations
on data locality and memory usage can be performed in real-
world detection products.

843KB txt data, 21KB png data, and 633KB pdf data.
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TABLE V
THROUGHPUT (IN MBPS) OF THE ALIGNMENT OPERATION ON GPU

Sensitive data size (KB) 250 500 1000 2500

Sampling rate
0.03 426 218 110 44
0.12 23 11 5 2
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Fig. 9. Alignment speedup through sampling.

D. Sampling Speedup

We measure the performance gain brought by sampling and
compare the empirical results with the theoretical expectation.
Measurements are performed on A. Enron, C. HTTP, and D.
MiscNet datasets. Figure 9 shows the speedup of ALIGNMENT
through different sampling rates α (0.5, 0.25, 0.125, . . . ).
− log2 α is shown on the X-axis. The well fitted lines (R2

at 0.9988, 0.9977 and 0.9987) from the results have slope
coefficients between 1.90 and 2.00, which confirms the α2

speedup by our sampling design. We calculate the damping
factor 0.33 from intercept coefficients of fitted lines.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a content inspection technique for detecting
leaks of sensitive information in the content of files or network
traffic. Our detection approach is based on aligning two
sampled sequences for similarity comparison. Our experimen-
tal results suggest that our alignment method is useful for
detecting multiple common data leak scenarios. The parallel
versions of our prototype provide substantial speedup and
indicate high scalability of our design. For future work, we
plan to explore data-movement tracking approaches for data
leak prevention on a host.
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