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Abstract

Mashups are new Web 2.0 applications that seamlessly
combine contents from multiple heterogeneous data sources
into one integrated browser environment. The hallmark of
these applications is to facilitate dynamic information shar-
ing and analysis, thereby creating a more integrated and
convenient experience for end-users. As mashups evolve
from portals designed to offer convenient access to infor-
mation on critical domains, such as banking, shopping, in-
vestment, enterprise mashups, and web desktops, concerns
to protect clients’ personal information and trade secrets
become important, thereby motivating the need for strong
security guarantees. We develop a security architecture that
provides high assurance on the mutual authentication, data
confidentiality, and message integrity of mashup applica-
tions. In this paper, we describe the design and implementa-
tion of OpenMashupOS (OMOS), an open-source browser-
independent framework for secure inter-domain communi-
cation and mashup development.

1. Introduction

Mashup applications are emerging as a Web 2.0 tech-
nology to seamlessly combine contents from multiple het-
erogeneous data sources; their overall goal is to create a
more integrated and convenient experience for end users.
For example, http://mapdango.com is a mashup ap-
plication that integrates Google Maps data with relevant in-
formation from WeatherBug, Flickr, Eventful, etc. By en-
tering a location, the user is presented with an integrated
view of the weather of the location, events happening in sur-
rounding area, photos that others took in the area, and so on.
There are two main types of architectures for mashup ap-
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plications, namely, server-side and client-side architectures.
As the name indicates, server-side mashups integrate data
from different sources at the server-side, and return the ag-
gregated page to the client. For example, Facebook mashup
APIs are mainly based on server-side integration [8].

However, the main drawback of server-side mashups is
the requirement of complete trust on the mashup server by
the client. Typically, the client needs to delegate authoriza-
tion to the mashup server to act on its behalf.

In comparison, a client-side architecture, as illustrated
in Figure 1, enables consumers and service providers to
communicate within a browser, thus reduces the amount of
trust that one has to place on untrusted third-party integra-
tor. OpenSocial provides a client-side mashup API [17].
Throughout this paper, we focus on client-side mashup ar-
chitecture, as emerging mashup applications using AJAX
techniques hold the promise of the next technical wave of
the future [2]. AJAX, short for asynchronous JavaScript
with XML, is a technique that allows a Web page to retrieve
contents from the Web server and update the page asyn-
chronously using JavaScript. AJAX mashups are able to
present a rich user interface and interactive experience with
multiple data sources with minimal transmission delays.

Client-side mashup architectures allow information
mashup to happen within the client’s browser through the
use of JavaScript. A mashup application should be able
to access and integrate contents from different sources.
In general, there is a trade-off between the security and
functionality in today’s mashup applications. In order to
achieve higher security guarantees, a source should not be
allowed to access contents of another domain. The frame
or iframe element in the current browsers realizes this
separation by forbidding one frame from accessing another
frame with a different source domain. However, frame envi-
ronments make it awkward for cross-frame communication
and thus information integration in mashups.

To address this problem, several client-side mashup ar-
chitectures have recently been proposed, including Mashu-
pOS [19], Subspace [11] and SMash [13].The main goal of
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Figure 1. Client-side mashup architecture.
The rectangle represents the browser on the
client’s local computer where contents from
heterogeneous data sources such as a.com
and b.com are mashed up.

these solutions is two-fold: to isolate content from different
sources in sandboxes, such as frames, and to achieve frame-
to-frame communication.

SMash [13] uses the concepts in publish-subscribe sys-
tems and creates an event hub abstraction that allows the
mashup integrator to securely coordinate and manage con-
tent and information sharing from multiple domains. The
mashup integrator (i.e., the event hub) is assumed to be
trusted by all the web services. The event hub implements
the access policies that governs the communication among
domains.

MashupOS [19] introduces a sophisticated abstraction
that enables web components from different domains to se-
curely communicate. OMash [6], inspired by MashupOS,
tries to simplify the abstraction and remove the reliance on
same origin policy (explained in Section 2). However, im-
plementing these abstractions requires adding new elements
to the HTML standard and changing browsers to support
them.

Subspace [11] suggests an efficient techniques for
www .mashup.com to use a JavaScript Web service from
webservice.com by sandboxing the Web service in a
frame that is originated from a throwaway sub-domain (e.g.
webservice.mashup.com)and communicating with it

by shortening document.domain to a common suffix and
passing a JavaScript object that can be used for secure com-
munication. The main drawback of this approach is that,
due to the same origin policy, the Web service running from
webservice.mashup.com, cannot use XMLHTTPRe-
quest to communicate with its resources on backend site
(webservice.com) and this restriction limits the use of
AJAX Web services.

However, none of these solutions provide a flexible and
secure point-to-point inter-domain communication mecha-
nism that can be used in today’s browsers. In this paper, we
fill in this gap by considering the following design goals:

e To be compatible with all major browsers without any
change or extension to the browsers.

e To provide a powerful abstraction that is flexible and
easy to understand and use by mashup developers.

e To guarantee mutual authentication, data confidential-
ity, and message integrity in mashup applications. (De-
fined in Section 2.)

The novel features of our approach are as follows. First,
we present key-based protocol for secure asynchronous
point-to-pint inter-origin communication. Second, we sep-
arate communication layer from access control layer, there-
fore the framework can be used using different access con-
trol mechanism. Third, we present a layered communica-
tion abstraction for inter-frame communication fashioned
after the networking stacks that is both powerful to use and
easy to understand. Additionally, the framework does not
require any browser change, so it is a good candidate for
secure development of today’s mashup applications.

The following techniques, enable us to achieve all of our
design goals. Our key-based protocol satisfies the security
requirements and prevents attackers from phishing, forging,
tampering, and eavesdropping on cross-domain communi-
cations. Since we do not require new HTML elements,
OMOS is compatible with current browsers. The layered
abstraction hides implementation details from mashup de-
velopers and the API allows anyone to extend and improve
any part of the mashup framework. OMOS’ communica-
tion API and component-based development also make the
development of complex AJAX applications much easier.
(Reusable components are called mashlets in OMOS, Sec-
tion 2.)

An additional advantage gained by using our techniques
is that the mashup integrator (i.e., mashup site) need no
longer be trusted by all the content providers (i.e., web ser-
vices). This is possible because the frames from different
web services are able to directly and securely communicate
within the user’s browser. Therefore, with OMOS it is pos-
sible to create new types of mashup applications that may
involve and integrate sensitive and personal data without



fully trusting the mashup integrator. For example, bank-
ing, shopping, and financial planning applications contain
important personal information that users want to have high
assurance on the controlled sharing of data. Allowing dif-
ferent domains to communicate in a secure fashion mini-
mizes the potential risks of information exposure due to
corrupted websites such as compromised mashup integra-
tors, and untrusted contents from other data sources. We
have implemented and evaluated the performance of the
OMOS framework on four types of browsers. These initial
experiments show that the communication channels are able
to deliver high throughput without affecting the end user’s
browsing experience.

The paper is organized as follows. Basic concepts are de-
fined in Section 2. The architecture and implementation of
OMOS framework are presented in Section 3. The security
analysis is in Section 4. In Section 5, we describe the ex-
perimental results. Related work is explained in Section 6.
We give the conclusions and future work in Section 7.

2 Definitions

We define mashlets, gadgets and mashup applications.
A mashlet is recursively defined as a HTML frame host-
ing JavaScript service that contains zero or more mashlets.
The root mashlet is always visible and is usually called a
mashup container. Every mashlet is controlled by and loads
contents from its originating domain. Conceptually, mash-
lets are analogous to processes or daemons in the operat-
ing system, binary components (e.g COM/DCOM, DLL) in
component-based architectures or web service providers in
service oriented architectures (SOA). A gadget is a mash-
let that is visible in the browser. A mashup application is a
gadget that integrates data received from other mashlets .

Two most important aspects of mashup applications are
interaction and security. Interaction refers to the ability of
a mashlet to interact with its siblings, children, and parent
mashlets. Security requires that a mashlet should not be
able to access private information, such as DOM elements,
events, memory, and cookies, of any other mashlet that is
running under a different domain. In particular, a mash-
let should not be able to listen to the communication be-
tween two other mashlets running under different domains.
We call this requirement data confidentiality. In today’s
browsers, the same origin policy (SOP) [18] is designed to
protect data confidentiality of domains against each other;
in other words, SOP prevents documents or programs from
one origin to access or alter documents loaded from an-
other origin. SOP restrictions on JavaScript that govern the
access to inline frames (i frames) 2 forbid JavaScript in
one mashlet including the root mashlet to read or modify

I'This definition concentrates on client-side mashups
2Frames that can be inserted within a block of texts.

the contents in another mashlet. However, SOP is restric-
tive and rigid for mashup applications in general. Mashlets
from different domains are isolated and cannot communi-
cate or interact unless specifically allowed. Most of exist-
ing mashup applications circumvent this restriction either
by creating server-side mashups, which is a less flexible
approach, or by allowing complete access from other do-
mains. Recently, researchers also demonstrated the vulner-
abilities associated with carelessly attempting finer-grained
origins [10].

Mutual authentication is another important security re-
quirement in cross-domain mashlet communication. We
define mutual authentication in mashup applications as the
requirement that two mashlets that are communicating with
each other must be able to verify each other’s domain name.

Mashup applications should also satisfy the message in-
tegrity requirement that means that any tampering of the
messages between two mashlets should be detected. OMOS
satisfies the three requirements of data confidentiality, mu-
tual authentication, and message integrity, by leveraging the
security restrictions available in current browsers and by de-
veloping a lightweight key establishment protocol.

3 Architecture and
OMOS

Implementation of

In this section, we first give an overview of OMOS, and
present its layered communication stack for inter-mashlet
communication. Finally, we present some important imple-
mentation details of our technique.

3.1 Overview

Our goal is to support secure, asynchronous, inter-
mashlet communication in browser environments. Much of
our design in OMOS is lead by existing inter-process com-
munications in networking, e.g., TCP. That is, we model
the cross-domain frame-to-frame interactions (i.e. a frame
communicating with another frame of a different domain) in
a manner similar to cross-domain process-to-process inter-
actions in networking paradigm. We develop a layered com-
munication model for the purpose of cross-domain frame-
to-frame communications that can be easily extended.

The OMOS framework can be viewed as a container for
mashlets that manages their construction, destruction and
resources, also provides them with services such as com-
munication, persistence, user interface, user authentication
and pub-sub messaging. Services that OMOS provides to
mashlets are analogous to services that operating systems
provide to desktop applications through well-defined APIs.
OMOS runs entirely in the browser, requires no browser
plug-in, and supports all main stream browsers, including



Firefox, Internet Explore, Safari, and Opera. Figure 2 illus-
trates how mashlets using OMOS interact.
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Figure 2. Interactions between mashlets in
OMOS framework. Each mashlet connects to
the integrator using a socket connection that
OMOS uses to provide services to mashlets.

OMOS uses iframes to implement mashlets. For each
mashlet loaded from a distinct domain, existing SOP restric-
tion guarantees the confidentiality and isolation of mash-
lets. Also OMOS provides mashlets with a flexible, reli-
able, asynchronous and secure communication service that
guarantees data confidentiality, data integrity, and mutual
authentication using a layered communication stack.

3.2 Layered Communication Stack

Our OMOS architecture abstracts the mashlet commu-
nication and provides mashup developers with a powerful
and flexible API. We borrow the concepts in networking
to design a communication stack in OMOS. The admin-
istrative communications between mashlet and the parent
mashlet (i.e., integrator) are done using a socket connec-
tion. Most of the OMOS service calls through JavaScript
APIs lead to a communication through this socket connec-
tion. As a result, we are able to support modularity and
transparency. Complex implementation details are hidden
from the outside. For example, the request to get the DOM
address of a specific domain name (or principal) is invisi-
ble to mashup developers. Figure 3 depicts the communi-
cation layers in OMOS architecture, namely from bottom
to top, Datalink layer, Mashup Datagram Protocol (MDP)
layer, and Mashup Hypertext Transfer Protocol (MHTTP)
layer.

At the Datalink layer, communications are realized in a
direct frame-to-frame fashion, which needs to be compliant
with restrictions imposed by browsers. For example, the
size of data to be transferred is limited depending on the
type of the browser and the communication method, and
DOM location of an iframe (e.g., parent.frame[3]) is used
for addressing. We further discuss the Datalink layer ser-
vices and implementation techniques in Section 3.4.

The purpose of Mashup Datagram Protocol (MDP) layer

JSON-RPC < JSON-RPC call > JSON-RPC
MHTTP o Request/Response > MHTTP
Mashup Datagram Protocol Mashup Datagram Protocol
(MDP) a Socket API > (MDP)

Datalink [4—postMessage/Proxy iframe—»| Datalink

acom b.com

Figure 3. Communication stack in OMOS. The
arrows and their texts are the communica-
tion methods for the layers. Note that all the
communications between two mashlets take
place within the end user’s browser.

is to abstract the Datalink layer details. MDP provides the
logical client-side communication between two mashlets, in
such a way that from a mashlet’s perspective, it is directly
sending arbitrary sized data to another mashlet. Yet, in re-
ality, the data may be fragmented, defragmented, and re-
ordered which are all handled in the lower Datalink layer.
Mashup applications use the logical communications pro-
vided by the MDP layer to send data to each other, without
worrying about the implementation details of browser types,
restrictions, etc. In MDP layer domain names and port num-
bers are being used for addressing. OMOS exposes ser-
vices provided by this layer using socket APIs that is very
similar to Java socket API for conventional TCP/IP com-
munication. OMOS uses socket connection for adminis-
trative communication between mashlets and their parents.
During the bootstrapping process, when a mashlet is first
loaded, it gets the communication parameters from the seg-
ment identifier of its URL provided by the integrator, i.e.,
parent mashlet. Then the mashlet creates a socket connec-
tion to the integrator service on port zero (dedicated for this
purpose). Through this bootstrapping process, the integra-
tor establishes connections to all the mashlets that it con-
tains. The integrator uses these connections to provide the
services that the mashlets need, e.g., finding the DOM loca-
tion of a specific mashlet, changing the width and height of
their iframes, or resolving domain names to frame address,
etc.

Mashup HyperText Transfer Protocol (MHTTP) is the
top layer in the communication stack of OMOS. MHTTP
provides stateless request and reply types of communica-
tion and abstracts all the details of socket programming. It
is very common for service consumers that need to send
a request to a service provider and get the corresponding
response. It is easy for service providers to define the inter-
face for these types of services with MHTTP.

We use JSON-RPC protocol on top of the MHTTP
layer [12]. JSON-RPC is a simple lightweight remote pro-



cedure call protocol that is very efficient in AJAX applica-
tions [2]. This layer makes it easy to use existing JavaScript
services. Instead of directly injecting JavaScript code, ser-
vice consumer includes the service in a sandbox mashlet
and hosts the mashlet in a safe throwaway subdomain. Then
the service consumer uses JSON-RPC to call the service
and retrieves the result without giving the script full access
to resources available in the main domain.

3.3 Implementation Details

In this section, we describe some important implemen-
tation details of OMOS. Our descriptions of our commu-
nication stack are bottom-up, starting from the Datalink
layer. More implementation details can be found at http:
//OpenMashupOS. com [16].

3.4 Datalink Layer

Datalink is the layer that does the actual transfer of data
from one frame to another. OMOS currently uses iframe
proxy or postMessage (if available) for cross-domain com-
munication between frames. Other communication mech-
anisms can be implemented and easily plugged into the
framework. In Opera and some especial configuration of
other browsers, frame navigation is restricted that prevents
two mashlets in different frame hierarchies from communi-
cating directly. In this case, if the integrator is not trusted
then the communication fails and OMOS will prompt the
user to use a browser with permissive navigation policy;
otherwise, the data link layer or the integrator mediates and
routes the data link packets to the destination.

3.4.1 iframe Proxy and Key Establishment Protocol

For inter-frame communication, if postMessage API is not
available, OMOS fails to iframe proxy techniques to do
inter-frame communication. Browsers enforce a write-only
policy on URL field of iframes, which means that a frame
can write to the URL field of a frame with a different ori-
gin domain, but not read. The URL field of a frame can
only be read by the frame itself or a frame of the same
origin. Therefore, in OMOS, if iframe A originated from
a.com wants to pass some data to iframe B from b . com,
iframe A creates an internal temporary hidden iframe that
points to a proxy page that is hosted on b.com and sets
the fragment identifier to carry data (for example, http:
//b.com/proxy.html#data). As part of its OnLoad
event, the proxy page reads the data from its URL and de-
livers that to iframe B. The iframe proxy gets removed af-
terward. This method has the following benefits over the
approach that is used in [13]; it is event driven and does

not require polling, therefore eliminates the delay between
each poll and improves the performance by eliminating un-
necessary timers. With this solution, we eliminate the click
sound problem that IE has in SMash 3.

Although this event-based communication mecha-
nism through iframe proxy has been documented else-
where [7], [5], it is not known previously how to achieve
mutual authentication in this communication method.
When frame A writes http://b.com/proxy.html#
data as the URL in the iframe proxy, A can make sure that
frame B can get the data only if its domain is b . com (be-
cause of SOP); however when frame B receives data, there
is no direct way to find out the origin of the received data.
We develop a key establishment protocol in OMOS that is
used by two frames to initiate a shared secret key. By lever-
aging the write-only property of frame URL, the key estab-
lishment protocol elegantly allows the two frames to verify
each other’s domain name (e.g., that iframe[A]’s domain is
a.com and iframe[B]’s domain is b . com).

OMOS key establishment protocol is as follows. Let say
frame[1] from a.com and frame[2] from b.com want to
exchange a shared secret key. Frame[l] generates the se-
cret key SK; and passes the key to frame[2] using a proxy
from b.com. Since frame[2] can get the key only if it is
originated from b . com, frame[2] can prove that its origin
is b . com by responding back with SK;. However, b . com
still needs to verify that the origin of frame[1] is a . com. To
do so, it generates a new secret key S Ko and passes it along
with SK; using a.com’s proxy then frame[2] can prove
that its origin is a . com by responding with SKj,. At this
point only a . com and b . com know S K> so they can use it
as a shared secret for the rest of communication. Note that
key establishment happens during three-way handshake in
MDP layer that is described in the next section. Using this
protocol, OMOS framework can provide mutual authenti-
cation capability in inter-mashlet communication.

Figure 4 illustrates this key establishment protocol. Data
fields shown on the arrows between the two frames rep-
resent Datalink packets, which encapsulate MDP pack-
ets. SK; and SK, are session secrets chosen by frame[1]
and frame[2], respectively for each communication session.
EID is an identifier needed by Datalink layer for addressing
destination object. Each frame also creates a serial number
in each Datalink packet.

3.5 Other Datalink Layer Services
Besides key establishment for mutual authentication,

the Datalink layer also provides services like reordering,
(de)fragmentation, and (un)piggybacking to enable effi-

3A click sound is usually made in IE when a frame is redirected, which
can be distracting if it occurs too frequently as the frames URL gets re-
peatedly updated for the data transfer purpose.
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Figure 4. Key establishment protocol be-
tween two mashlets, frame[1] from a.com and
frame[2] from b.com, through Datalink layer.

cient transfer of arbitrarily big data objects or frequent
events/small objects. We explain them as follows.

e Fragmentation: Each browser defines Maximum
Transfer Unit (MTU) size that specifies the maximum
amount of data a frame can carry in its URL field.
When the size of a MDP packet is larger than MTU,
the packet should be fragmented to smaller chucks
and then sent to the other end, which is called frag-
mentation. On the other side, the receiver’s DatalLink
layer assembles these fragments and sends the result-
ing MDP packet up to MDP layer, which is called de-
fragmentation. This service enables transfer of arbi-
trarily large data objects without interrupting respon-
siveness of user interface.

e Reordering: We observe that in some cases, de-
pending on how event handling is implemented in the
browser, packets sent using iframe proxy arrive out of
order. Reordering ensures that MDP packets are deliv-
ered to MDP layer in the order that they are sent by the
sender.

o Piggybacking: Piggybacking essentially refers to a
lazy-send approach for transferring small data objects.
OMOS needs to create a new iframe proxy for every
data transfer between two iframes. When the sender
has frequent small sized data objects, it is more effi-
cient to collect them and send them together using only

one iframe proxy, instead of sending them in multiple
iframe proxies. To do so, OMOS automatically detects
this case and keeps the small data objects in a queue
and piggyback them on an single iframe proxy. This
service dramatically improves the event rate.

3.6 MDP Layer

In OMOS, MDP (Mashup Datagram Protocol) is similar
to transport layer protocols in TCP/IP (or UDP/TCP). How-
ever, note that all of the frame-to-frame communications
occurred in OMOS take place in the end user’s browser
on the user’s local machine, as OMOS supports client-
side mashups. The inter-frame messages are represented
by the thick arrows in Figure 1. An MDP communication
has three phases: 1) Connection establishment (three-way
handshake) 2) Communication (transferring actual data) 3)
Disconnection (upon requests of one of the peers, closing
the connection and releasing the resources). Figure 5 illus-
trates these three phases. Note that all mashlet-to-mashlet
communications are asynchronous. Applications can com-
municate at the MDP layer using OMOS socket APIs. The
APIs are asynchronous meaning that actions are executed
in non-blocking scheme, allowing the main program flow
to continue processing. Programs pass callback functions
to handle events. Figure 5 shows a usual MDP communica-

tion scenario;
The following code illustrates how one can use OMOS
socket APIs. For the mashlet at the service provider side:

var serverSocket = OpenMashupOS.ServerSocket (1111);
var ssCallback =
{
onConnectionRequested: function (socket)
{ // define sCallback to handle events
// including onDataReceived,
// onTimeout,onError events
// set callback object for server-side
// socket endpoint
socket.setCallback (sCallback);
var currentTime = new Date();
//send data to client that is connected
//to this socket
socket.send(currentTime.getTime ()) ;
I
onError: function(exp) {/+handle exception =/}
}

serverSocket.accept (ssCallback) ;

For the mashlet at the service consumer side:

var sCallback =
{

onConnected: function ()
{alert ("Connected to server");},
onDisconnected: function ()

{alert ("Disconnected.");},

onDataReceived: function(data)
{

alert ("Server’s time is "+data);

socket.disconnect () ;
by
function ()
{ /+handle timeout */ '},

onTimeout:
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Figure 5. Connection establishment (three-
way handshake), Communication, and Dis-
connection are three phases of a typical MDP
communication session.

onError: function (exp)
{ /*handle exception =%/ },
timeout: 1000
}
var socket = OpenMashupOS.socket ("time.example.com",

1111, sCallback);

3.7 MHTTP Layer

OMOS provides the main functionality of the MHTTP
layer through the versatile asyncRequest method that
abstracts the same-domain and cross-domain HTTP calls to
servers as well as the mashlet-to-mashlet communication.
The latter happens inside the browser on the client’s lo-
cal machine. The implementation of the asyncRequest
method is built on the existing XMLHttpRequest API
in JavaScript. Currently, XMLHttpRequest only han-
dles same domain mashlet-to-server interaction. Our
asyncRequest realizes cross-domain requests by cou-
pling XMLHttpRequest with our mashlet-to-mashlet com-
munication mechanism (described in previous sections).
Thereby, we are able to provide a nice and clean interface
for all three types of calls, which are shown in Figure 6. The
following code shows how we can use OMOS API to make

asyncRequest(“http://b.com”) /'
asyncRequest(“http://c.com”)

e
s
a.com b.com c.com
asyncRequest P 4
« i ” -
Java Script |} mhttp://a.com”) ava Script |, ~
Application Application
MHTTP MHTTP MHTTP
MDP MDP MDP

Figure 6. lllustration of the flexibility of asyn-
cRequest method in OMOS that can be used
to realize three types of requests from b.com:
same-domain mashlet-to-server communica-
tion (solid thin line), cross-domain mashlet-
to-server communication (dash line to server
at c.com), and mashlet-to-mashlet communi-
cation (solid thick line to mashlet at a.com).

a MHTTP call:

var callback =
{
onDataReceived: function (response)
{ /xconsume response */ },

onTimeout: function ()

{ /*handle timeout x/ '},
onError: function (exception)

{ /+handle exception */ },
timeout: 1000

}

OpenMashupOS.asyncRequest (' POST',
"mhttp:5555//socialnetwork.com/service",
callback,

JsonRpcRequest
)i

4 Security Analysis

We analysis the security of OMOS from three aspects:
data confidentiality, message integrity, and mutual authenti-
cation. We describe how frame phishing can be easily pre-
vented in our framework.

Data Confidentiality OMOS satisfies the data confi-
dentiality in inter-mashlet messaging by leveraging the
browser’s same origin policy and the write-only restriction
on the URL field of iframe. The sender passes data through
the URL of a proxy iframe from the domain of the intended
receiver. As the URL can be read only by proxy’s domain,
no man-in-the-middle can read the message.

Message Integrity In OMOS, message integrity is real-
ized by utilizing the browser’s restriction on partial change



of URLSs and the shared key between two frames. To mod-
ify any data carried on URL, a mashlet needs to know the
secret key, otherwise the packet is rejected and dropped at
the destination. Thus, an unauthorized mashlet is unable to
tamper with inter-frame messages.

Mutual Authentication Our key establishment protocol
in Figure 4 guarantees that the mutual authentication be-
tween two frames, say frame[1] from a . com and frame[2]
from b. com, is achieved in OMOS. Frame[2]’s origin is
successfully authenticated, if and only if it sends back the
secret key SK; sent by frame[1] through b . com’s proxy.
Similarly, frame[1] proves its origin by sending S K> back
to frame[2]. The confidentiality of communication ensures
that frame[1] and frame[2] are the only two mashlets that
know SKs.

Detecting Frame Phishing Frame phishing refers to
where a malicious frame in a mashup can change which
frame is loaded in another part of the mashup [13]. For ex-
ample, an attacker’s frame can change bank . com’s frame
to point to attacker.com, which may mislead the end
user into disclosing sensitive information such as password
or banking data. The mashlet’s parent in OMOS can conve-
niently detect this type of frame phishing. A regular mashlet
has an on-going socket session with its parent for adminis-
trative commands. In a normal scenario, disconnection of
this session is initiated by mashlet or its parent and this ses-
sion should be closed before mashlet gets unloaded. There-
fore, if attacker.com redirects bank.com to a mali-
cious frame, since the administrative session is still alive,
bank . com mashlet, as part of its onunload even handler,
will send a phishing attack notification to its parent. There-
fore, parent mashlet can take the appropriate action and no-
tify the end user of the threat by prompting an alert window,
for example.

Access Control OMOS framework separates communi-
cation and access control mechanism. Therefore, differ-
ent access control techniques can be used to control com-
munications between mashlets. For example, a policy en-
forcement mashlet can govern communication of different
mashlets similar to central even hub in SMash, or in a dis-
tributed fashion, each mashlet can control access to its ser-
vices using a dynamic whitelisting technique. Due to the
space limit, we do not elaborate on this aspect here in this

paper.
S Experiments

The goal of the experiments is to test the performance
of OMOS library in various browsers, in particular, on how
fast data can be transferred from one frame to another frame
of a different origin. We are mostly interested in testing the
communication channel between two frames as it is the ba-
sic building block for mashup applications. We ran experi-

ments on a machine with the following configurations. Intel
Core 2 CPU, 980 MHz, 1.99 GB RAM, Microsoft Win-
dows XP 2002 SP2, Firefox v2.0.0.14, Internet Explorer
v7.0.5730.13, Opera v9.27, and Apple Safari v3.1.1. The
values reported are the averaged results over five runs.

Throughput (Proxy iframe)
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Figure 7. The figure shows the throughput
between two mashlets with iframe proxies in
FireFox, IE, and Safari. X-axis is the size of
MDP packets.
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Figure 8. The figure shows the throughput
between two mashlets with PostMessage in
Opera. X-axis is the size of MDP packets.

Figure 7 shows the throughput as the size of messages in-
creases in FireFox, IE, and Safari. FireFox and Safari have
similar performance in terms of throughput as they both can
achieve around 430 KB/s of transfer rate. Recall that MDP
layer can handle arbitrarily large data objects. The underly-
ing Datalink layer handles the URL limitation by fragmen-
tation and defragmentation. For IE, the throughput is much
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lower and can achieve the transfer rate of 50 KB/s. The
slowdown in IE is due to the URL limit (2KB) imposed by
IE, as there is overhead in the Datalink layer to fragment
and defragment large messages into small packets that can
be fit into 2KB URL. The mashlets communicate through
iframe proxies described in our protocol. In general, larger
message sizes give higher throughput for all three types of
browsers. Opera gives high throughput, due to the native
support of inter-frame messaging (i.e., postMessage [3]), it
is shown in a separate graph in Figure 8. Figure 8 shows
that Opera gives throughput as high as 2500 KB/s with mes-
sage sizes around 2MB. However, the performance then
degrades as the message sizes increase. The transfer rate
eventually drops to zero as the message size reaches around
2.6MB. The root cause of this poor performance of Opera
with larger message sizes is currently not clear to us. From
the throughput results, 2 MB seems to be the optimal mes-
sage size.

Even though using the larger message sizes (i.e., frame
URL) for transferring data leads to higher throughput, we
observed that using very large message sizes leads to less
responsive user interface and thus affects the surfing expe-
rience of the end user. Based on our experiences, the max-
imum message size should be around 100 KB to ensure re-
sponsive browser interface. Therefore, there is a trade-off
between performance and usability. IE’s URL limit affects
the rate of information transferred and significantly slows
down the data transfer. In comparison, for all the other
three browsers, the frame URL can be very large (> 2MB).
OMOS is able to find the suitable size of frame URL auto-
matically.

6 Related Work

The authors of MashupOS recognized that existing
browser has a limited all-or-nothing trust model and pro-
tection abstractions suitable only for a single-domain sys-
tem [19]. They proposed new abstractions for the content
types and trust relationships in the current browser envi-
ronments. In MashupOS, new native HTML tags are in-
troduced to HTML page. These tags can be added and
removed dynamically using JavaScript, so mashups with
dynamic layout are possible. To demonstrate the feasibil-
ity, the authors have implemented their abstraction using
browser plug-in for IE in such a way that browser at compile
time converts them to standard HTML tags and simulates
their functionality. The main difference between Mashu-
pOS and OMOS is that MashupOS provides a modified
browser, whereas we create library supports that applica-
tions can use within current browsers. In Subspace [11],
JavaScript web services are placed into iframes that are
originated from “throw-away” subdomains of mashup in-
tegrator. This approach is not flexible in general, as web

services need to run under the subdomain of the integrator,
and cannot directly perform XMLHtmIRequest calls to their
backends.

Keukelaere et al. developed SMash that is a secure com-
ponent communication model for cross-domain mashups
called SMash [13]. In SMash, all of the communications
are through the mashup integrator, which is also called hub.
The hub mediates and coordinates all the communications
via tunnel frames among the participating frames. The
hub also enforces access policies. It prevents frames from
eavesdropping on or tampering the others’ communication
channels. SMash inter-frame communication is supported
through a tunnel frame pointing to the integrator’s domain
that each frame needs to create in order to communicate
with the integrator.

In comparison to SMash where a tunnel frame exists in
every mashlet, we create an iframe for every round of com-
munication and send the information encoded in the frag-
ment identifier during an onLoad event. Therefore, unlike
SMash, we do not need a polling mechanism and the com-
munication in OMOS is event-driven. Polling creates nega-
tive impacts on the performance of single-threaded browser.
We support mutual authentication in our inter-mashlet com-
munication that prevents an attacker from frame spoofing.
In our OMOS, cross-domain frames can communicate di-
rectly without the participation of the mashup integrator.
Therefore, the trust assumption put on the mashup integra-
tor can be relaxed.

Recently, a secure postMessage method is proposed by
Barth, Jackson, and Mitchell [3]. They have proposed
a protocol to fix an authentication vulnerability in sev-
eral (polling-based) inter-frame communication protocols
including SMash, and Windows Live communication proto-
col [15]. The communication protocol used in OMOS dose
not have this issue, as is explained in Section 4.

Cross-site request forgery (XSRF), which is also known
as the confused deputy attack against a Web browser [1],
is a malicious attack again websites by exploiting browser
vulnerabilities. In a XSRF attack, a malicious website can
launch an iframe to make requests on behalf of the user to
another website with which the user’s authenticated session
is still valid. For example, the request may be to transfer
funds from the user’s bank or to change the user’s Gmail
configuration. A secure browser OP browser that prevents
and detects XSRF was presented by [9]. Simple alternatives
are for websites to set a short expiration period on authen-
ticated sessions, and to educate users to close authenticated
sessions upon finishing.

Singh and Lee presented a browser design inspired by
p-kernel based OS [14] that allows flexible and finer cus-
tomization. The main design difference between Singh-Lee
browser and OP browser is that OP browser is process-
based whereas Singh-Lee browser is within the same ad-



dress space that makes it possible for the browser to provide
memory isolation for browser components. As with other
mashup solutions (SMash and MashupOS), OMOS depends
on the security of browser to correctly operate. Therefore, a
secure browser such as OP would be complementary to our
techniques in realizing web security.

7 Conclusions and Future Work

We presented our design and implementation of a se-
cure and efficient communication framework OMOS for
mashup applications. OMOS works in unmodified browsers
and ensures the message authentication, integrity, and con-
fidentiality in cross-domain inter-frame communications.
We gave a detailed security analysis of our communica-
tion mechanism based on iframe proxies. We demonstrated
through experiments that OMOS gives high data transfer
rates in most types of browsers.

For future work, we would like to design and support
more service abstraction in OMOS. We would like to en-
able identity management in OMOS by supporting secure
single sign-on authentication for users. Different service
provider mashlets require user authentication and autho-
rization. Having a protocol for single sign-on will relieve
user from entering username and password multiple times.
In this case, user provides his or her identification to a
trusted mashlet in the container and then the mashlet pro-
vides that information to other web services’ mashlets as
needed. We will investigate the user-defined delegation
problems in mashup environments addressed by Close [4]
who proposed a simple Web-Key solution. We also plan to
provide efficient services to mashlets similar to the services
that operating systems provide to applications such as the
management of persistence and resources.
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