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Detection of Repackaged Android Malware with
Code-Heterogeneity Features

Ke Tian, Danfeng (Daphne) Yao, Member, IEEE , Barbara G. Ryder, Gang Tan and Guojun Peng

Abstract—During repackaging, malware writers statically inject malcode and modify the control flow to ensure its execution.
Repackaged malware is difficult to detect by existing classification techniques, partly because of their behavioral similarities to benign
apps. By exploring the app’s internal different behaviors, we propose a new Android repackaged malware detection technique based
on code heterogeneity analysis. Our solution strategically partitions the code structure of an app into multiple dependence-based
regions (subsets of the code). Each region is independently classified on its behavioral features. We point out the security challenges
and design choices for partitioning code structures at the class and method level graphs, and present a solution based on multiple
dependence relations. We have performed experimental evaluation with over 7,542 Android apps. For repackaged malware, our
partition-based detection reduces false negatives (i.e., missed detection) by 30-fold, when compared to the non-partition-based
approach. Overall, our approach achieves a false negative rate of 0.35% and a false positive rate of 2.97%.

Index Terms—Android Security, Malware Detection, Repackaged Malware.
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1 INTRODUCTION

The ease of repackaging Android apps makes the apps
vulnerable to software piracy in the open mobile market.
Developers can insert or modify parts of the original app
and release it to a third party market as new. The mod-
ification may be malicious. Researchers found 80.6% of
malware are repackaged malware, which demonstrates the
popularity and severity of repackaged malware [2].

There are two categories of techniques for detecting
repackaged malware, i) similarity-based detection specific
to repackaged malware and ii) general purpose detection.
Specific solutions for repackaged Android apps aim at
finding highly similar apps according to various similarity
measures. For example, in ViewDroid [3], the similarity
comparison is related to how apps encode the user’s nav-
igation behaviors. DNADroid [4] compares the program
dependence graphs of apps to examine the code reuse.
MassVet [5] utilizes UI structures to compare the similarity
among apps. Juxtapp [6] and DroidMOSS [7] examine code
similarity through features of opcode sequences.

Although intuitive, similarity-based detection for
repackaged malware may have several technical limitations.
The detection typically relies on the availability of original
apps for comparison, thus is infeasible without them. The
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pairwise based similarity computation is of quadratic com-
plexity O(N2) in the number N of apps analyzed. Thus,
the analysis is extremely time-consuming for large-scale
screening.

General-purpose Android malware detection techniques
(e.g., permission analysis [8], dependence analysis [9], API
mining [10]) have a limited capability in detecting repack-
aged malware. The reason is that these analyses are per-
formed on the entire app, including both the injected mali-
cious code and the benign code inherited from the original
app. The presence of benign code in repackaged malware
substantially dilutes malicious features. It skews the classi-
fication results, resulting in false negatives (i.e., missed de-
tections). In a recent study [11], researchers found that most
missed detection cases are caused by repackaged malware.
Thus, precisely recognizing malicious and benign portions
of code in one app is important in improving detection
accuracy.

We aim to significantly improve repackaged malware
detection through designing and evaluating a new partition-
based classification technique, which explores code hetero-
geneity in an app. Repackaged malware is usually generated
by injecting malicious components into an original benign
app, while introducing no control or data dependence be-
tween the malicious component and the original app.

We examine Android programs for code regions that
seem unrelated in terms of data/control dependences. Re-
gions are formed through data/control dependence analysis
and their behavior is examined with respect to security
properties (e.g., calling sensitive APIs). We refer to code
in different regions as heterogeneous code if regions of the
program exhibit distinguishable security behaviors.

Recognizing code heterogeneity in programs has secu-
rity applications, specifically in malware detection. Repack-
aged Android malware is an example of heterogeneous
code, where the original app and injected component of
code have quite different characteristics (e.g., the frequency



2

of invoking critical library functions for accessing system
resources). We are able to locate malicious code by distin-
guishing different behaviors of the malicious component
and the original app.

Our main technical challenge is how to identify in-
tegrated coherent code segments in an app and extract
informative behavioral features. We design a partition-based
detection to discover regions in an app, and a machine-
learning-based classification to recognize different internal
behaviors in regions. Our detection leverages security het-
erogeneity in the code segments of repackaged malware.
Our algorithm aims to capture the semantic and logical
dependence in portions of a program. Specifically, we refer
to a DRegion (Dependence Region) as a partition of code
that has disjoint control/data flows. DRegion is formally
defined in Def. 3. Our goal is to identify DRegions inside an
app and then classify these regions independently. Malware
that is semantically connected with benign and malicious
behaviors is out of scope of our model and we explain how
it impacts the detection.

While the approach of classifying partitioned code for
malware detection appears intuitive, surprisingly there has
not been systematic investigation in the literature. The work
on detecting app plagiarism [12] may appear similar to
ours. It decomposes apps into parts and performs similarity
comparisons between parts across different apps. However,
their partition method is based on rules extracted from
empirical results, and cannot be generalized to solve our
problem. A more rigorous solution is needed to precisely
reflect the interactions and semantic relations of various
code regions.

Our contributions can be summarized as follows:

• We provide a new code-heterogeneity-analysis
framework to classify Android repackaged mal-
ware with machine learning approaches. Our pro-
totype DR-Droid, realizes static-analysis-based pro-
gram partitioning and region classification. It auto-
matically labels the benign and malicious compo-
nents for a repackaged malware.

• We utilize two stages of graphs to represent an app:
a coarse-grained class-level dependence graph (CDG)
and a fine-grained method-level call graph (MCG). The
reason for these two stages of abstraction is to satisfy
different granularity requirements in our analysis.
Specifically, CDG is for partitioning an app into
high-level DRegions; MCG is for extracting detailed
call-related behavioral features. CDG provides the
complete coverage for dependence relations among
classes. In comparison, MCG provides a rich context
to extract features for subsequent classification.

• Our feature extraction from individual DRegions (as
opposed to the entire app) is more effective under
existing repackaging practices. Our features cover a
wide range of static app behaviors, including user-
interaction related benign properties.

• Our experimental results show a 30-fold improve-
ment in repackaged malware classification. The av-
erage false negative rate for our partition- and
machine-learning-based approach is 30 times lower
than the conventional machine-learning-based ap-

proach (non-partitioned equivalent). Overall, we
achieve a low false negative rate of 0.35% when
evaluating malicious apps, and a false positive rate
of 2.96% when evaluating benign apps.

The significance of our framework is the new capability
to provide in-depth and fine-grained behavioral analysis
and classification on programs.

2 OVERVIEW AND DEFINITIONS

In this section, we present our attack model, technical
challenges associated with partitioning, and the definitions
needed to understand our algorithms.

Repackaged malware seriously threatens both data pri-
vacy and system integrity in Android. There are at least
two types of malware abuse through repackaged malware,
data leak and system abuse. The danger of repackaged
malware is that the malicious code is deeply disguised and
is difficult to detect. Repackaged malware appears benign
and provides useful functionality; however, they may con-
duct stealthy malicious activities such as botnet command-
and-control, data exfiltration, or DDoS attacks. Our work
described in this paper can be used to screen Android apps
to ensure the trustworthiness of apps installed on mission-
critical mobile devices, and to discover new malware before
they appear on app markets.

Assumption. Our security goal is to detect repackaged
malware that is generated by trojanizing legitimate apps
with a malicious payload, where the malicious payload
is logically and semantically independent of the original
benign portion. This assumption is reasonable because all
the repackaged malware in the existing dataset contains
disjoint code.

How to analyze the more challenging case of connected
graphs in repackaged malware is out of the scope of our
detection. Mitigations are discussed in Section 6. Our ap-
proach is focused on automatically identifying independent
partitions (DRegions) of an app, namely partitions that have
disjoint control/data flows. We perform binary classification
on each element of the DRegion.

2.1 Challenges and Requirements
We analyze dependence-based connectivity as the specific
heterogeneous property in code. Heterogeneous code can
then be approximated by finding disjoint code structures
in Android event relation/dependence graphs. We aim to
detect repackaged malware by identifying different behav-
iors in its heterogeneous code. Therefore, how to achieve an
efficient partition and to acquire representative behaviors of
each partition are key research questions.

Partition Challenges: One may analyze dependence rela-
tions for the purpose of code partition. A straightforward
approach is to partition an app into clusters of methods
based on function call relations [13]. However, this straight-
forward approach cannot solve the following challenges:

• Inaccurate representation of events. Method-level rep-
resentation is less informative than class-level repre-
sentation for profiling relations of events. An Android
app is composed of different types of events (e.g., ac-
tivities, services and broadcasts). An Android event
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Fig. 1: Workflow of our partition-based Android malware detection.

is implemented by extending an Java class. Class
information for events is scattered or lost in conven-
tional method-level graphs. Furthermore, method-
level call analysis cannot resolve the implicit calls
within a life-cycle of event methods (e.g., OnCreate,
OnStart, and onPause). There are no direct invoking
relations among event methods. (These methods are
managed by an activity stack by the Android sys-
tem.) Thus, method-level call partition would gener-
ate an excessive number of subcomponents, which
unnecessarily complicates the subsequent classifica-
tion.

• Incompleteness of dependence relations. Call relations
alone cannot accurately represent all possible de-
pendence relations. Dependences may occur through
data transformation. Android also has asynchronous
callbacks, where the call relations are implicit. Thus,
focusing on call dependence relations alone is insuf-
ficient.

Our approach for partitioning an app is by generating
the class-level dependence graph (CDG) through exploring
different categories of dependence relations. To partition an
app into semantic-independent regions, a class-level rep-
resentation is more suitable to measure the app semantic
dependence relations.

Classification Challenges: Extracting meaningful features
to profile each region is important for classification. In our
partitioned setting, obstacles during feature extraction may
include the following:

• Inaccurately profiling behaviors. Class-level depen-
dences are coarse-grained. They may not provide
sufficient details about region behaviors needed for
feature extraction and classification. For example, the
interactions among components within the Android
framework may not be included.

• Insufficient representative features. Features in most of
the existing learning based solutions are aimed at
characterizing malicious behaviors, e.g., overuse of
sensitive APIs. This approach fails to learn benign
properties in apps. This bias in recognition may
result in missed detection and evasion.

Our approach for achieving highly accurate classification
is by extracting semantic features from method-level call
graph (MCG). With the help of the MCG, we extract features

(e.g., sensitive APIs and permission usage in existing ap-
proaches [10], [14]) to monitor malicious behaviors. Further-
more, we discover new user interaction features with the
combination of graph properties to screen benign behaviors.

2.2 Definitions

We describe major types of class-level dependence relations
later in Def. 1. These class-level dependence relations em-
phasize on the interactions between classes.

Definition 1. We define three types of class-level dependence
relations in an Android app.

• Class-level call dependence. If method m′ in class C ′

is called by method m in class C , then there exists a class-
level call dependence relation between C and C ′, which is
denoted by C → C ′.

• Class-level data dependence. If variable v′ defined in
class C ′ is used by another class C , then there exists a data
dependence relation between C and C ′, which is denoted
by C → C ′.

• Class-level ICC dependence. If class C ′ is invoked
by class C through explicit-intent-based inter-component
communication (ICC), then there exists an ICC depen-
dence relation between C and C ′, which is denoted by
C → C ′.

The ICC dependence is specific to Android programs,
where the communication channel is constructed by using
intents [15]. For the ICC dependence definition, our cur-
rent prototype does not include implicit intent, which is
not common for intra-app component communication. The
dependence relations via implicit-intent based ICCs cannot
be determined precisely enough in static program analysis.

Definition 2. Class-level dependence graph (CDG) of an app
G = {V,E} is a directed graph, where V is the vertex set and
E is the edge set. Each vertex n ∈ V represents a class. The
edge e = (n1, n2) ∈ E, which is directed from n1 to n2, i.e.,
n1 → n2. Edge e represents one or more dependence relations
between n1 and n2 as defined in Definition 1.

The purpose of having our customized class-level de-
pendence graphs is to achieve complete dependence cov-
erage and event-based partition. The graph needs to cap-
ture interactions among classes. We define method-level
call dependence and how to build the method-level call



4

graph (MCG) based on this definition. We formally define
DRegions through class-level dependence connectivity. The
Figure 6 demonstrates the visualization of a CDG in an app
DroidKungFu1–881e*.apk.

Definition 3. Given class-level dependence graph G(V,E) of
an Android application, DRegions of the application are disjoint
subsets of classes as a result of a partition that satisfies following
two properties.

1) Dependence relations among the classes within the same
DRegion form a directed connected graph. Formally,
given a DRegions R, for any two classes (Ci, Cj) ∈ R, ∃
a path ~p = (Ci = C0, C1, . . . , Ck = Cj) that connects
Ci and Cj .

2) There exist no dependence relations between classes ap-
pearing in two different DRegions. Formally, given two
DRegions Ri and Rj , for any class Ci ∈ Ri and any
class Cj ∈ Rj , @ a path ~p = (Ci = C0, C1, . . . , Ck =
Cj) that connects Ci and Cj .

Definition 4. Method-level call dependence. If method m
calls method m′, then there exists a method-level call dependence
relation between m and m′, which is denoted by m → m′.
Method m and m′ may belong to the same or different classes
and one of them may be an Android or Java API.

The purpose of constructing method-level call graphs is
to extract detailed behavioral features for classifying each
DRegion. The method-level call graph contains the app’s
internal call relations, and the interactions with the Android
framework and users.

2.3 Workflow
Figure 1 shows the framework of our approach. Our ap-
proach can be divided into the following major steps:

1) IR Generation. Given an app, we decompile it into
the intermediate representations (IR), which may be
Java bytecode, Smali1 code, or customized represen-
tation. The IR in our prototype is Smali code.

2) CDG and MCG generation. Given the IR, we gen-
erate both class-level and method-level dependence
relations through the analysis on the Smali opcodes
of instructions. We use the obtained dependence
relations to construct the class-level dependence
graphs (CDG) and method-level call graphs (MCG).

3) App partition and mapping. Based on the CDG,
we perform reachability analysis to partition an app
into disjoint DRegions. We map each method in
MCG to its corresponding class in CDG by main-
taining a dictionary data structure.

4) Generating feature vectors. We extract three cat-
egories of features from each DRegion in MCG.
We construct a feature vector of each DRegion to
describe its behaviors.

5) Training and classification. We train classifiers on
the labeled data to learn both benign and mali-
cious behaviors of DRegions. We apply classifiers to
screen new app instances by individually classifying
their DRegions and integrating the results.

1. https://ibotpeaches.github.io/Apktool/

In order to determine the original app, from which
a flagged malware is repacked, similarity comparisons
need to be performed. Our comparison complexity O(mN)
would be much lower than the complexity (N2) of a
straightforward approach, where m is our number of
flagged malware and N is the number of total apps ana-
lyzed. m � N , as the number of malware is far less than
the total number of apps on markets.

3 GRAPH GENERATION AND PARTITION

In this section, we provide details of our customized class-
level dependence analysis and our partition algorithm.

3.1 Class-level Dependence Analysis
Our class-level dependence analysis is focused on Android
event relations. It obtains class-level dependence relations
based on fine-grained method- or variable-level flows. We
highlight the operations for achieving this transformation.

Data dependence. In the variable-level flow F , we trace the
usage of a variable v′ which is defined in class C ′. In case
v′ is used by another class C , e.g., reading the value from v′

and writing it into a variable v defined in class C , we add a
direct data dependence edge from C to C ′ in CDG.

ICC dependence. ICC dependence is the Android specific
data dependence, where data is transformed by intents
through ICC. An ICC channel occurs when class C ini-
tializes an explicit intent. Method m (generally OnCreate
function) in class C ′ is invoked from class C . By finding
an ICC channel between class C and C ′ through pattern
recognition, we add a direct ICC dependence edge from C
to C ′ in CDG.

Call dependence. We briefly describe the operations for ob-
taining class-level call dependence when given the method-
level call graph. We first remove the callee functions that
belong to Android framework libraries. For the edge e =
{m,m′} that indicates method m′ is called by method m, in
case m belongs to a class C and m′ belongs to class C ′, we
add a direct call dependence edge from C to C ′ in CDG.

Pseudocode for generating the Class-level Dependence
Graph is shown in Algorithm. 1. Function FINDDEPEN-
DENTCLASS (mi

k) is used to find the class set S(mi
k)

that any Cj ∈ S(mi
k) contains dependence relations

with a class Ci (mi
k ∈ Ci) through control-/data-

flow in method mi
k. Functions ISDATADEPENDENT(Ci,Cj),

ISICCDEPENDENT(Ci,Cj), and ISCALLDEPENDENT(Ci,Cj)
are used to detect our defined dependence relations between
classes.

We give our implementation details to statically infer
these relations in Section 5.1. All four dependence relations
can be identified by analyzing instructions in IR. The com-
plexity of connecting the class-level call graph is O(N ),
where N is the total number of the instructions in the
IR decompiled from an app. We do not distinguish the
direction of the edges when partitioning the CDG.

3.2 App Partition and Mapping Operations
The goal of app partition operation is to identify logically
disconnected components. The operation is based on the
class-level dependence graph (CDG). We use reachability
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Algorithm 1 Class-level Dependence Graph Generation

Require: the class-set SC = {Ci, C2, . . . , Cn}, each class Ci

represents a list of methods. the Method-set of Ci: Si
m =

{mi
1, . . . ,m

i
k}, where mi

j ∈ Ci is a list of instructions in IR.
Ensure: class-level dependence graph CDG = {V,E}.

1: V = ∅, E =∅
2: function GEN CDG(CDG,SC )
3: for each Ci ∈ SC do
4: for each mi

k ∈ Si
m do

5: S(mi
k) = FINDDEPENDENTCLASS(mi

k)
6: for each Cj ∈ S(mi

k) do
7: if ISDATADEPENDENT(Ci,Cj) then
8: UPDATECDG(Ci,Cj ,CDG)
9: end if

10: if ISICCDEPENDENT(Ci,Cj) then
11: UPDATECDG(Ci,Cj ,CDG)
12: end if
13: if ISCALLDEPENDENT(Ci,Cj) then
14: UPDATECDG(Ci,Cj ,CDG)
15: end if
16: end for
17: end for
18: end for
19: return CDG
20: end function
21: function UPDATECDG(Ci,Cj ,CDG)
22: if Ci 6∈ V then
23: V ← V ∪ Ci

24: end if
25: if Cj 6∈ V then
26: V ← V ∪ Cj

27: end if
28: Edge e = {Ci, Cj}
29: if e 6∈ E′ then
30: E ← E ∪ e
31: end if
32: end function

analysis to find connected DRegions. Two nodes are re-
garded as neighbors if there is an edge from one node to the
other. Our algorithm starts from any arbitrary node in the
CDG, and performs breadth first search to add the neighbors
into a collection. Our algorithm stops when every node has
been grouped into a particular collection of nodes. Each
(isolated) collection is a DRegion of an app. In other words,
classes with any dependence relations are partitioned into
the same DRegion. Classes without dependence relations
are in different DRegions.

Our mapping operation projects a method m in method-
level call graph (MCG) to its corresponding class C in CDG.
Mapping is uniquely designed for our feature extraction.
Specifically, its purpose is to map extracted features to the
corresponding DRegion. The mapping operation is denoted
by Fmapping : Sc → PmSc = {G′c1, G′c2, ...}, where input
Sc is a DRegion in CDG, and output PmSc is a set of call
graphs in MCG. The mapping algorithm projects a method
in MCG to a DRegion in CDG by using a lookup table. We
refer to PmSc as the projection of Sc. Features extracted from
PmSc belong to the DRegion Sc. Suppose that a method mi

exclusively belongs to a class Ci, and a class Ci exclusively
belongs to a DRegion SC , thus we have the mapping as
mi ∈ Ci ∈ SC → PmSc . Figure 2 illustrates an example
of the mapping function. Property 1 demonstrates the non-
overlapping property of the mapping function.

Property 1. If DRegion Sα and DRegion Sβ are disjoint in
the class-level dependence graph (CDG), then their corresponding
projection PmSα and projection PmSβ are disjoint in the method-level
call graph (MCG).

Proof. We prove Property 1 by contradiction. Suppose that
two methods m in class C and m′ in class C ′ in two
DRegions, there exists a path p̂ = (m,n1, n2, ...,m

′). For
any two neighbor nodes ni, ni+1 on V , ni and ni+1 must
be dependent through data-/control- relations: 1) if ni, ni+1

are in the same class C1, C1 belongs to one DRegion. 2)
if ni, ni+1 are in different class C1 and C2, then C1 and
C2 are connected in CDG (through a dependence edge). C1

and C2 are categorized to one DRegion after the partition.
By induction, C and C ′ must belong to the same DRegion,
which contradicts to our assumption.

Our partition algorithm guarantees the non-overlapping
property during the mapping operation. Features extracted
from each MCG belong to exact one DRegion after partition.
By the app partition and mapping, we explicitly identify
each DRegion and its associated MCGs. We discuss more
details on how to extract features from MCG in the follow-
ing Section 4.

4 FEATURE VECTOR GENERATION

We analyze APIs and user interaction functions to approxi-
mate their behaviors. Our features differ from most existing
features by considering DRegion behavior properties. We
describe three types of features in this section.

Feature Engineering. Based on previous solu-
tions [8] [10] as well as our own observations, we
developed three feature types. Though our approach differs
from whole-program strategies in that we focus only on
DRegions, we too classify permissions and sensitive APIs
as representative features. We also introduce new user
interaction features, which until now have been ignored by
previous machine learning-based solutions. Though recent
rule-based approaches [11] monitor these user interaction
functions for triggers to sensitive APIs, we instead extract
and encode their frequencies into feature vectors. Lastly,
we introduce statistic features, or coverage rate (CR), which
we created after observing malware invoking numerous
sensitive APIs without any user involvement. We elaborate
these three types of features in Section 4.1.

4.1 Feature Extraction

Traditionally permission features analyze the registered per-
missions in Androidmanifest.xml as a complete unit [8].
Because our approach is focused on DRegions and differ-
ent DRegions may use different permissions for various
functionalities, we calculate the permission usage in each
DRegion.

Type I: User Interaction Features. Malicious apps may
invoke critical APIs without many user interactions [16].
User interaction features represent the interaction frequency
between the app and users. Android provides UI compo-
nents and each of them has its corresponding function for
triggering. For example, a Button object is concatenated with
onClick function, and a Menu object can be concatenated
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Fig. 2: An illustration of mapping operation that projects
a DRegion in CDG to a set of graphs in MCG. Sc and Sa
are two class-level DRegions in CDG. The projection of Sc
consists of three method-level call graphs {G′c1, G′c2, G′c3}.

with onMenu-ItemClick function. We record the frequen-
cies of 35 distinct user interaction functions and additional
2 features summarizing statistics of these functions. The
statistics features represent the total number of user inter-
action functions and the number of different types of user
interaction functions in a DRegion, respectively. We define a
feature called coverage rate (CR), which is the percentage of
methods directly depending on user-interactions functions.
We compute the coverage rate (CR) for a projection PmSc of a
DRegion Sc as:

CR(PmSc) =

⋃
U∈Vi

U.successors()

|V (PmSc)|
(1)

The CR rate statically approximates how closely the user
interacts with functions in a DRegion. In Equation (1), PmSc is
the projection for a DRegion Sc in CDG. Vi is the set of user
interaction methods in PmSc , where Vi ⊆ PmSc . U.successors()
is the successors vertices of method U in MCG. Any method
in U.successors() is directly invoked by U . |V (PmSc)| is the
total number of methods in PmSc . Figure 3 shows an example
to calculate the coverage rate.

Type II: Sensitive API Features. We divide sensitive
APIs into two groups: Android-specific APIs and Java-
specific APIs. The APIs are selected based on their sensitive
operations [11]. For Android-specific APIs, we focus on
APIs that access user’s privacy information, e.g., reading
geographic location getCellLocation, getting phone infor-
mation getDeviceId. For Java-specific APIs, we focus on file
and network I/Os, e.g., writing into files Write.write(), and
sending network data sendUrgentData(). We extract 57 most
critical APIs and 2 features on their statistic information
(e.g., total count and occurrence of APIs) as features.

Type III: Permission Request Features. We analyze
whether a DRegion uses a certain permission by scan-
ning its corresponding systems calls or permission-related
strings (e.g., Intent related permissions) [17]. We specify a
total of 137 distinguished permissions and 2 features on
permission statistics (e.g., total count and occurrence of
permissions). The Android framework summarizes all the
permissions into 4 groups: normal, dangerous, signature
and signatureOrSystem. We record the permission usage in
each group and the statistics about these groups.

Coverage rate (CR) is new. It is obtained by our empir-
ical observation that malware invokes a large number of
sensitive APIs without user’s involvement. These complex

U1

U2

f2

f5

f3

f4

f1

Fig. 3: An example illustrating the computation of coverage
rate, U1 and U2 are two user interaction functions, f1 to f5
are five method invocations. f1, f2, f3 are successors of U1

and f4 is the successor of U2. The coverage rate for this
DRegion is 4

7 = 57%.

True Malicious True Benign
Detected as
Malicious TP FP

Detected as
Benign TN FN

TABLE 1: Semantics of true and false positive and true and
false negative in our model.

features cover the behaviors of DRegions from various per-
spectives. We expect these features to be more obfuscation
resilient than signature features extracted from bytecode or
structures of the control-flow graph.

4.2 Feature Vector Analysis
We generate a feature vector for each DRegion of an app. For
classification, each DRegion is independently classified into
benign or malicious.

We perform the standard 10-fold cross-validation to cal-
culate FNR (false negative rate), FPR (false positive rate),
TPR (true positive rate) and ACC (accuracy rate) for each
fold. These rates are defined as:

FNR =
FN

P
, FPR =

FP

N

TPR =
TP

P
, ACC =

TP + TN

P +N

where FN represents the number of false negative (i.e.,
missed detection), FP represents the number of false pos-
itive (i.e., false alerts), TP represents the number of true
positive (i.e., accuracy of detection), TN represents the
number of true negative (i.e., accuracy of identifying benign
apps), P represents the number of malicious apps and N
represents the number of benign apps.

Classification of Apps. Our classifiers can be used to
classify both single-DRegion and multi-DRegion apps. For
a multi-DRegion app after classification, we obtain a binary
vector showing each DRegion marked as benign or mali-
cious. We define the malware score rm as follows:

rm =
Nmali

Ntotal
(2)

In Equation (2), Nmali is the number of DRegions labeled
as malicious by classifiers, Ntotal is the total number of DRe-
gions and rm ∈ [0, 1]. If an app contains both malicious and
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benign DRegions, then we regard this app as a suspicious
repackaged app.

5 EVALUATION

The objective of our preliminary evaluation is to answer the
following questions:

• Q1) Can our approach accurately detect non-
repackaged malware that has a single DRegion (Sec-
tion 5.2)?

• Q2) How much improvement is our approach in
classifying repackaged malware that has multiple
DRegions (Section 5.3)?

• Q3) Can our approach distinguish the benign and
malicious code in repackaged malware (Section
5.3.1)?

• Q4) What is the false positive rate (FPR) and false
negative rate (FNR) of our approach in classifying
apps that have multiple DRegions (Section 5.3.2 and
Section 5.4)?

• Q5) What is the performance of DR-Droid (Section
5.5)?

• Q6) Can our approach discover new malware (Sec-
tion 5.6)?

We implement our prototype with Smali code analysis
framework Androguard 2, graph analysis library networkX,
and machine learning framework scikit-learn. Most existing
machine learning based approaches (e.g, [10], [18]) are built
on the intermediate representation with Smali code. Smali
code analysis achieves large scale app screening with low
performance overhead, because Smali code analysis is per-
formed on the assembly code representation. Our current
prototype is built on the Smali code for the scalability of
large-scale app analysis. Our prototype is implemented in
Python with total 4,948 lines of code 3.

We evaluated our approach on malware dataset Malware
Genome [2] and VirusShare database 4. We also screened
1,617 benign apps to compute false positive rate and 1,979
newly released apps to discover new malware.

5.1 Implementation Details
Building upon the method-level call graph construction [18]
from Smali code, we construct more comprehensive anal-
ysis to approximate the class-level dependence graph and
graph partitioning. We highlight how DR-Droid approxi-
mates various class-level dependence relations with intra-
procedure analysis (i.e., discovering dependence relations)
and inter-procedure analysis (i.e., connecting the edges).
Our experiment results indicate that our dependence re-
lations provide sufficient information for identifying and
distinguishing different behaviors in an app.
Inferring class-level call dependence. Opcodes beginning with
invoke represent a call invocation from this calling method
to a targeted callee method. Call dependence can be in-
ferred by parsing the call invocation. E.g., invoke-virtual
represents invoking a virtual method with parameters.

2. http://code.google.com/p/androguard.
3. https://github.com/ririhedou/dr droid
4. http://virusshare.com/

Cases FNR(%) FPR(%) ACC(%)
KNN 6.43± 5.22 6.50± 2.67 93.54± 3.33
D.Tree 4.78± 2.90 3.52± 1.57 95.79± 2.14

R.Forest 3.85± 3.27 1.33± 0.78 97.30± 1.96
SVM 7.42± 4.85 1.46± 0.58 95.28± 2.58

TABLE 2: 10-fold cross-validation for evaluating the classi-
fiers’ performance in classifying single-DRegion apps.

invoke-static represents invoking a static method with pa-
rameters and invoke-super means invoking the virtual
method of the immediate parent class. We identify each
instruction with invoke opcodes and locate the class which
contains the callee method. The class-level call dependence
is found, when the callee method belongs to another class
inside the app. Because we focus on the interactions among
classes, Android API calls are not included.
Inferring class-level data dependence. Opcodes such as iget,
sget, iput, and sput are related with data transformation.
For example, the instruction “iget-object v0, v0, Lcom/
geinimi/AdActivity;-〉d: Landroid/widget/Button;” repre-
sents reading a field instance into v0 and the instance is a
Button object named d, which is defined in another class
〈Lcom/geinimi/AdActivity;〉.

Furthermore, there is a subset of opcodes for each major
opcode, e.g., iget-boolean specifies to read a boolean in-
stance and iget-char specifies to read a char instance. By
matching these patterns, we obtain the data dependence
among these classes.
Inferring class-level ICC dependence. To detect an ICC through
an explicit intent, we identify a targeted class object that is
initialized by using const-class, then we trace whether it is
put into an intent as a parameter by calling Intent.setclass().
If an ICC is trigged to activate a service (by calling
startService) or activate an activity (by calling startActivity),
we obtain the ICC dependence between current class and
the target class.
Method-level call graph construction. Our method-level call
graph is constructed while we analyze call relations in the
construction of the CDG by scanning invoke opcode, which
is similar to the standard call graph construction [18]. We
store more detailed information including the class name,
as well as the method name for each vertex in MCG. For
example, 〈Landroid/telephony/SmsManager;〉 is the class
name for dealing with messages and sendTextMessage(...)
is a system call with parameters to conduct the behavior
of sending a message out. After the construction of MCG,
we use a lookup table structure to store the projection for
each DRegion in CDG and to maintain the mapping relation
between a method and a DRegion.

5.2 Non-repackaged Malware Classification

Our first evaluation is on a set of non-repackaged malicious
applications and a set of benign applications. Each of them
contains just a single DRegion. The DRegion is labeled as
benign if the app belongs to the benign app dataset, and the
DRegion is labeled as malicious if the app belongs to the
malicious app dataset. There are two purposes for the first
evaluation: 1) comparing the detection accuracy of different
machine learning techniques, 2) obtaining a trained classifier
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Fig. 4: Top ten important features with their ranking values,
which are computed by Random Forest classifier.

for testing complicated repackaged apps. The classification
result is binary (0 for benign and 1 for malicious) for single
DRegion apps. We evaluated four different machine learn-
ing techniques: Support Vector Machine (SVM), K-nearest
neighbor (KNN), Decision Tree (D.Tree) and Random Forest
(R.Forest) in non-repackaged (general) malware classifica-
tion. Our training set is broadly selected from 3,325 app
samples, among which 1,819 benign apps from Google Play,
and 1,506 malicious apps from both Malware Genome and
VirusShare.

Our feature selection step reduces the size of features
from 242 to 80. We choose the radial basis function as SVM
kernel, 5 as the number of neighbors in KNN, and 10 trees
in the Random Forest.

We used a standard measurement 10-fold cross-
validation to evaluate efficiency of classifiers. In 10-fold
cross-validation, we randomly split the dataset into 10 folds.
Each time, we use 9 folds of them as the training data
and the 1 fold left as the testing data. We evaluate the
performance of classifiers by calculating the average FPR,
FNR and ACC. Our 10-fold cross-validation results are
shown in Table 2, where each value is represented as the
average ± the standard deviation. Figure 4 shows the top
ten features with their types and ranking importance values,
where coverage rate (CR) ranks the ninth. We found four
of top ten important features belong to user interaction
features (Type I). The user interaction features are important
in our classification.

We conclude that: 1) to answer Q1, DR-Droid detects
non-repackaged malware with single DRegions with high
accuracies. 2) The Random Forest classifier achieves the
highest AUC value 0.9930 in ROC and accurate rate (ACC)
97.3% in two different measurements. 3) Our new user
interaction features have a significant influence on the im-
provement of classifiers.

5.3 Repackaged Malware Classification
We tested our approach on more complicated repackaged
malware which contains multiple DRegions. We calculate
malware score rm for each repackaged malware. Unlike bi-
nary classification in existing machine-learning-based ap-
proaches, rm is a continuous value in [0, 1] to measure
DRegions with different security properties.

There are no existing solutions on the classification of
multiple DRegions in an app. For comparison, we care-
fully implemented a control method called the non-partition-
based classification. To have a fair and scientific compar-
ison with the non-partition-based which does not consider
code heterogeneity, DR-Droid’s classification and the control
method’s classification use the same Random Forest classi-
fier and the same set of features from Section 5.2. The only
difference between our method and the control method
is that the control method treats an app in its entirety.
The control method represents the conventional machine-
learning-based approach.

We assessed several repackaged malware families: Gein-
imi, Kungfu (which contains Kungfu1, Kungfu2, Kungfu3,
Kungfu4) and AnserverBot multi-DRegion apps in these
families. The major reason for choosing these families is
that they contain enough representative repackaged mal-
ware for testing. Other malware datasets (e.g., VirusShare)
do not specify the types of malicious apps. It is hard to
get the ground truth of whether an app in the datasets
is repackaged or not. The classification accuracy results of
our partition-based approach and the non-partition-based
approach are shown in Table 3.

Our partition-based approach gives the substantial im-
provement by achieving a lower FNR in all three fami-
lies. Specifically, the non-partition-based approach misses 12
apps in Geinimi and 3 apps in AnserverBot family. In com-
parison, our approach accurately detects all the malicious
DRegions in Geinimi and AnserverBot families. The non-
partition-based approach misses 12 apps in Kungfu family.
In comparison, our approach misses 4 apps in Kungfu
family. The average FNR for our approach is 0.35%.

To answer Q2, our solution gives 30-fold improvement
over the non-partition-based approach on average false
negative rate in our experiment. This improvement is sub-
stantial. The control method without any code heterogeneity
analysis is much less capable of detecting repackaged mal-
ware.

5.3.1 Case Study of Heterogeneous Properties
For an app (DroidKungFu1--881e*.apk) in Kungfu family,
the malicious DRegion contains 13 classes whose names
begin with Lcom/google/ssearch/*. The app attempts to
steal the user’s personal information by imitating a Google
official library. The other DRegion whose name begins with
Lcom/Allen/mp/* is identified as benign by our approach.
There are some isolated classes such as R$attr, R$layout,
which are produced by R.java with constant values. The ma-
licious DRegion has its own life cycle which is triggered by a
receiver in the class Lcom/google/ssearch/Receiver. All the
processes run on the background and separately from the
benign code. The Figure 6 demonstrates the visualization of
CDG with DRegions in the app.

Table 4 shows the distribution of a subset of repre-
sentative features in two different methods. Particularly,
DRegion 1 contains many user interaction functions with
no sensitive APIs and permissions. However, DRegion 2
invokes a large number of sensitive APIs and requires
many critical permissions. In the experiment, DRegion 1 is
classified as benign and DRegion 2 is classified as malicious.
The different prediction results are due to the differences
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Malware Families Geinimi Kungfu AnserverBot Average
FN FNR(%) FN FNR(%) FN FNR(%) FNR(%)

Partition-based 0(62) 0 4(374) 1.07 0(185) 0 0.35
Non-partition-based 12(62) 19.36 12(374) 9.89 3(185) 1.62 10.29

TABLE 3: False negative rate for detecting three families of repackaged malware. Our partition-based approach reduces
the average false negative rate by 30-fold.
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Fig. 5: Prediction of malware score in different Malware families.

DroidKungfu1–881e*.apk Partition (ours) Non-partition
Feature Description DRegion1 DRegion2 N/A

Type III
READ PHONE STATE
permission 0 1 1

READ LOGS
permission 0 1 1

Type II

getDeviceId function in
Landroid/telephone/
telephoneManager

0 1 1

read function in
Ljava/io/InputStream 0 3 3

write function in
Ljava/io/FileOutput 0 1 1

Type I

onClick function
occurrence 16 2 18

# of distinct
user-interaction
functions

5 1 5

onKeyDown function
occurrence 3 0 3

Classification Benign Malicious Benign
Correctness !(Yes) %(No)

TABLE 4: Our method shows heterogeneous properties in
the repackaged app (DroidKungfu1–881e*.apk), where the
no-partition based cannot.

in DRegion behaviors, which originally comes from their
code heterogeneity. The non-partition-based approach fails
to detect this instance. The experiment results validate our
initial hypothesis that identifying code heterogeneity can
substantially improve the detection of repackaged malware.

To answer Q3, our approach successfully detects dif-
ferent behaviors in the original and injected components,
demonstrating the importance and effectiveness of code
heterogeneity analysis.

5.3.2 False Negative Analysis

We discuss possible reasons that cause false negatives
in our approach. 1) Integrated benign and malicious be-
haviors. Well integrated benign and malicious behaviors
in an app can cause false negatives in our approach.
Com.egloos.dewr.ddaycfgc is identified by Virus Total as
a trojan but is predicted as benign by our approach. The
reason is that the malicious behavior, which communicates

     -benign class
     -malicious class
     -R class

Fig. 6: A simplified class-level dependence graph for the
app DroidKungFu1–881e*.apk. Each node represents a class,
and the diameter of a node indicates the total degree of its
corresponding class.

with a remote server, is hidden under the large amount of
benign behaviors. The activities are integrated tightly and
several sensitive APIs are used in the app. 2) Low code
heterogeneity in malicious components. Low code hetero-
geneity means that malicious code does not exhibit obvious
malicious behaviors or is deeply disguised. To reduce false
negatives, a more advanced partition algorithm is required
to identify integrated benign and malicious behaviors. How
to detect low heterogeneity malicious code is still an open
question. We provide more discussion in Section 6.

5.3.3 Distribution of DRegions in Different Dataset
We evaluate the distribution of the DRegion number in three
different datasets: the Genome repackaged malware dataset,
the Virus-Share general malware dataset and the benign app
dataset. Figure 7 shows the distribution of the number of
DRegions in three datasets by randomly testing 1,000 apps.
We find 66.9% of apps in Genome has multiple DRegions,
in comparison, 6.5% of apps in Virus Share and 28.1% in
benign app dataset have multiple DRegions. Because of
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Fig. 7: The distribution of the number of DRegions in
different datasets, where X axis represents the number of
DRegions in an app and Y axis represents the count of apps
with a certain number of DRegions. Repackaged malware
tends to have more DRegions.

repackaged malware, the distribution of Genome malware
significantly differs from others in the others.

5.4 False Positive Analysis with Popular Apps
The purpose of this evaluation is to experimentally assess
how likely our detection generates false positives (i.e, false
alerts). We collect 1,617 free popular apps from Google Play
market, the selection covers a wide range of categories.
We evaluate a subset of apps (158 out of 1,617) that have
multiple large DRegions. Each app contains 2 or more class-
level DRegions with at least 20 classes in the DRegion. In the
158 apps, Virus Total identifies 135 of them as true benign
apps, that apps raise no security warnings.

The most common cause of multi-DRegions is the use
of ad libraries. A majority of multiple DRegion apps have
at least one ad library (e.g., admob). The ad library ac-
quires sensitive permissions, access information and mon-
itor users’ behaviors to send the related ads for profit.
Some aggressive ad libraries, e.g., Adlantis, results in a false
alarm in our detection. Adlantis acquires multiple sensitive
permissions, and it tries to read user private information.
The ad package involves no user interactions. We identify
ad libraries by matching the package name in a whitelist.
More effort is needed to automatically identify and separate
ad libraries. Table 5 presents the false positive rate with and
without ads libraries. The normal ad libraries do not affect
our detection accuracy, while the aggressive ads libraries
dilute our classification results and introduce false alerts
into our detection. When excluding aggressive ad libraries,
our detection misclassifies 4 out of 135 benign apps. To
answer Q4, our approach raises a false positive rate (FPR)
of 2.96% when classifying free popular apps and a false
negative rate (FNR) of 0.35% when classifying repackaged
malware.

5.5 Performance Evaluation
We evaluate the performance of our approach based on
the execution time. The detection of a repackaged malware

w/o Ads w/ Group 1 Ads w/ Group 2 Ads
% of Alerts 2.96% 2.96% 5.18%

TABLE 5: For 135 benign apps, how the percentage of alerts
changes with the inclusion of ad libraries. Group 1 Ads are
benign ad libraries, namely admob and google.ads. Group 2
Ads refer to the known aggressive ad library Adlantis. Group
1 does not affect our detection accuracy, whereas Group 2
increases the number of alerts.

Fig. 8: Time distribution for generating graphs and extract-
ing features.

includes graph generation, feature extraction and classifi-
cation of DRegions. We measure each step separately and
evaluate the runtime performance.

We focus on two aspects. One aspect is the graph gener-
ation time and features extraction time as the preprocess for
detecting malware. The other aspect is the machine learning
training and prediction time. The performance time can vary
a lot in different sizes of apps. We concentrate on the average
time for processing an app. We conducted our experiment
on an x86 64 system with 3GB memory.

From Figure 8, our average time for generating CDG
and MCG graphs is around 2.5 seconds. Our average time
for extracting features is 27.84 milliseconds. We felt the
average time is considerably short given a large number
of apps we examined. Our graph construction algorithm is
efficient by parsing instructions of an app. Table 6 shows
the runtime of our machine learning operations. We split
machine learning operations into the training operation
and the prediction operation. Our training operation is
used to identify machine learning classifier parameters. The
extracted feature vectors are feed into different classifiers
during the training operation. In the prediction, the classifier
predicts each DRegion separately. We measure the runtime
for classifying each DRegion. Our training time is very short
from Table 6. R.Forest takes 0.539 seconds for training, and
SVM takes 3.583 seconds for training. Our prediction time
is also negotiable. On average, D.Tree takes 0.51 seconds for
prediction, and R.Forest takes 1.38 seconds for prediction.

5.6 Discover New Suspicious Apps
We evaluate a total of 1,979 newly released (2015) apps. Our
approach raises a total of 127 alarms. Because of the lack of
ground truth in the evaluation of new apps, computing FP
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Time Training/Second Prediction/Millisecond
mean max min

R.Forest 0.539 1.38 9.66 0.94
KNN 0.534 1.09 13.81 0.67
D.Ttree 0.588 0.51 2.91 0.36
SVM 3.583 0.85 5.24 0.60

TABLE 6: Execution time analysis for machine learning

requires substantial manual efforts on all these flagged apps.
We performed several manual studies on the flagged apps.
The apps are randomly selected from different categories.

Manual Verification Our rule for labeling an app as
malware in our manual analysis is that the malware collects
privacy information and sends it out without user notifi-
cation. We identify an app as malware based on a two-
step validation: 1) Statistics of permissions and APIs. We
compare the frequency of permissions and APIs in the app
towards its description. If an app contains critical APIs that
do not match its description, e.g., a weather app contains
reading and sending SMS APIs, we regard the app is poten-
tially malicious. 2) Sensitive APIs that are not triggered by
user inputs. If there exists a secret and sensitive data flow
and the data flow path does not include user interaction
functions, we regard the app is malicious. In the manual
verification, we utilize static analysis and manual inspection
to verify the flagged apps. We decompile each app into
Smali intermediate representations (IR). We extract permis-
sions and APIs from Smali IR. We compare permissions
with app descriptions to find potentially malicious apps. We
manually analyze the methods that invoke sensitive APIs to
detect sensitive data flows. We report an app as malware if
it is confirmed by our manual analysis.

We list four of them which are identified as malicious by
our manual analysis. The first two suspicious apps are ver-
ified by our manual analysis, but are missed by Virus Total.
Virus Total does detect the latter two apps. To answer Q5,
our approach is capable of detecting new single-DRegion
and multiple-DRegions malware.

1) za.co.tuluntulu is a video app providing streaming TV
programs. However, it invokes multiple sensitive APIs to
perform surreptitious operations on the background, such
as accessing contacts, gathering phone state information,
and collecting geometric information.

2) com.herbertlaw.MortagageCaculator is an app for cal-
culating mortgage payments. It contains a benign DRegion
by the usage of the admob ad library. It also contains an
aggressive library called appflood in the malicious DRegion,
which collects privacy information by accessing the phone
state and then stores it in a temporary storage file.

3) com.goodyes.vpn.cn is a VPN support app with in-
app purchase and contains multiple DRegions. A malicious
package Lcom/ccit/mmwlan is integrated with a payment
service Lcom/alipay/* in one malicious DRegion. It collects
the user name, password, and device information. It exfil-
trates information to a constant phone number.

4) longbin.helloworld is a simple calculator app with
one DRegion. However, it requests 10 critical permissions.
It modifies the SharedPreferences to affect the phone’s
storage, records the device ID and sends it out through
executeHttpPost without any users’ involvement.

Summary.
Our results validate the effectiveness of code heterogene-

ity analysis in detecting Android malware. We summarize
major experimental findings as follows.

• Our prototype is able to identify malicious and
benign code by distinguishing heterogeneous DRe-
gions.

• Our partition-based detection reduces false negatives
(i.e., missed detection) by 30-fold, when compared to
the non-partition-based method.

• Our prototype achieves low false negative rate
(0.35%) and low false positive rate (2.96%).

Our tool can also be used to identify ad libraries and
separate them from the main app. These components can
be confined at runtime in a new restricted environment, as
proposed recently in [19].

6 DISCUSSION AND LIMITATIONS

Graph Accuracy. Our current prototype is built on the Smali
code intermediate representation [20] for a low overhead.
Machine-learning based approaches require a large number
of apps for training. This graph generation is based on
analyzing patterns on the instructions of Smali code. Our
approach may miss detection of some data-dependence
edges (e.g. implicit ICCs [21] and onBind functions), be-
cause of a lack of flow sensitivity [22] [23]. Our analysis
under-approximates the dependence-related graph because
of the missing edges. Context- and flow-sensitive program
analysis improves the graph accuracy and increases analysis
overhead. To balance the performance and the accuracy
in constructing the graphs is one of our future directions.
We plan to extend our prototype to an advanced program
analysis technique without compromising the performance.

Our graph construction is based on the static code analy-
sis. The current static analysis is not sound because it cannot
represent the full app logic [24]. Advanced evasion tech-
niques (e.g., dynamic loading, code obfuscation, and drive-
by downloading) may result in the missing graph edges.
This poses challenges for detecting repackaged malware, as
our approach could not identify these dependence relations.
Drive-by download attacks, for example, could be carried
out by inserting simple logic to retrieve a malicious payload;
this payload could ultimately be isolated from app’s main
code, and thus, not easily detectable. A potential solution
would be to combine our static analysis with dynamic
monitoring. By extracting DRegions from the aggregation
of both the main app and downloaded payload, we can
construct dependence graphs depicting the apps full logic,
and partition accordingly.

To reduce under-approximation of dependence-related
graphs, we further plan to broaden the definitions of de-
pendence relations. Our current approach identifies three
types (call, data and ICC dependencies). Additional edge
dependences can include reflection-based call relations and
call relations from dynamically-loaded code. For each addi-
tional dependence relation, we aim to extend our approach
with more specific analysis techniques (e.g. dynamic mon-
itoring and string analysis) to achieve more robust graph
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construction. Our future work is to extend the dependence
relations for a more sound graph construction.

Dynamic Code. As our prototype employs static analy-
sis, the examining dynamic code is outside its scope. Static
analysis cannot precisely approximate dependence relations
only identifiable dynamically (e.g. calling through Java’s
native interface, and native code [25]). Ignoring dynamic
analysis results in missing graph edges and additional
DRegions, which may skew classification results because
of imprecision. Still, we believe the impact of dynamic
obfuscation bears little impact; AndroidLeaks [26] found
only 7% of apps containing native code. In our future work,
we plan to hybridize static and dynamic analysis to mitigate
these risks.

Code Obfuscation. Malware writers may utilize code
obfuscation to evade detection [27] through using tools such
as Google’s ProGuard5, which simply renames app classes
and methods. Our approach is resilient against renaming-
based obfuscation, since it does not modify data depen-
dencies or call relations among our graphs. However, our
static analysis approach will fall short when presented with
more advanced techniques such as reflection. Specifically,
reflection does away with direct call invocation, leaving the
callee defined as a string and thus, not identifiable in the
invocation instruction. The obfuscation introduces implicit
dependence relations, which cannot be directly resolved
in our analysis. For the future work, we aim to extend
our approach with advanced reflection-targeted analysis
techniques [28].

Integrated Malware. We plan to generalize our het-
erogeneity analysis by supporting complex code structures
containing unclear boundaries between code segments. Our
prototype is not designed to detect malicious DRegions
semantically connected and integrated with the remaining
app code. Integrated repackaged malware may be produced
through code rewriting techniques where malicious code is
triggered by hijacked execution [29]. In such cases, partition-
ing dependence graphs into DRegions would be challenging
because of their connectedness. However, to be successful,
attackers would need in-depth knowledge of the apps orig-
inal execution. For example, careful manipulation of the de-
pendence graphs would be needed to isolate (superficially)
connected componentss [24] [30] based on semantics and
functionality. Given the burden of expertise, we view this
scenario as unlikely.

Advanced Malware. There is a trend that malware writ-
ers tend to abuse packing services to evade malware screen-
ing [31] [32]. Malware adopts code packing techniques to
prevent the analyst from acquiring app bytecode. Typical
anti-analysis techniques include metadata modification and
DEX encryption. This advanced malware poses challenges
for our approach to construct CDG and MCG. Our approach
cannot construct the dependence graph without obtaining
the complete DEX code of an app. For instance, the DEX
file is encrypted and obfuscated to evade static analysis. An
efficient code unpacking system is needed as the pre-process
to extract DEX files for code heterogeneity analysis. The
code unpacking system needs to reconstruct the DEX file
in memory at runtime. DexHunter [31] instrumented both

5. https://developer.android.com/studio/build/shrink-code.html

ART and DVM virtual machines to recover the DEX files
from packed apps. DexHunter identified the location of DEX
files by instrumenting key functions in the virtual machines
and dumped DEX files in memory. AppSpear [32] proposed
another bytecode decrypting and DEX reassembling method
to recover protected bytecode without the knowledge of
packer techniques. AppSpear instrumented the DVM and
collected the Dalvik Data Struct (DDS) information to re-
assemble a normal DEX file. The extracted DEX file can
be applied for general program analysis, e.g., our code
heterogeneity analysis. These two approaches demonstrated
promising results for practical DEX code extraction from
packed apps.

To mitigate our approach’s limitation of analyzing
packed apps, one possible solution is to extend our ap-
proach with DexHunter or AppSpear to increase the re-
silience towards the advanced malware. We could apply
AppSpear as the pre-process to extract the legitimate DEX
code. The DEX files are dumped from memory at runtime.
The DEX code is then used as the input in our approach to
construct CDG and MCG for partition. Our future work will
generalize our heterogeneity analysis by supporting anti-
packing code extraction.

7 RELATED WORK

Repackaged Malware Detection. DroidMOSS [7] applied a
fuzzy hashing technique to generate a fingerprint to detect
app repackaging, the fingerprint is computed by hashing
each subset of the entire opcode sequences. Juxtapp [6]
examined code similarity through features of k-grams of
opcode sequences. ResDroid [33] combined the activity
layout resources with the relationship among activities to
detect repackaged malware. Zhou et al. [12] detected the
piggybacked code based on the signature comparison.

However, the code level similarity comparisons are vul-
nerable to obfuscation technique, which is largely used
in app repackaging. To improve obfuscation resilience,
Potharaju et al. [34] provided three-level detection of plagia-
rized apps, which is based on the bytecode-level symbol ta-
ble and method-level abstract syntax tree (AST). MassVet [5]
utilizes UI structures to compute centroid metrics for com-
paring the code similarity among apps.

Solutions have been proposed on the similarity compar-
ison of apps based on graph representations. DNADroid [4]
compared the program dependence graphs of apps to exam-
ine the code reuse. AnDarwin [35] speeds up DNADroid by
deploying semantic blocks in program dependence graphs,
and then deployed locality hashing to find code clones.
DroidSim [36] used component-based control flow graph to
measure the similarity of apps. ViewDroid [3] focused on
how apps define and encode user’s navigation behaviors
by using UI transition graph. DroidLegacy [37] detected a
family of apps based on the extracted signature.

Instead of finding pairs of similar apps, our approach
explores the code heterogeneity for detecting malicious code
and benign code. Our approach avoids the expensive and
often error-prone whole-app comparisons. It complements
existing similarity-based repackage detection approaches.

Machine-Learning-based Malware Detection. Peng et
al. [8] used the requested permissions to construct different
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probabilistic generative models. Wolfe et al. [38] used the fre-
quencies of n-grams decompiled Java bytecode as features.
DroidAPIMiner [10] and DroidMiner [39] extracted features
from API calls invoked in the app. Drebin [14] gathered as
many features including APIs, permissions, components to
represent an app, and then uses the collected information
for classification. Gascon et al. [18] transformed the function
call graph into features to conduct the classification. STILO
[40] and CMarkov [41] applied hidden Markov models to
detect anomaly behaviors. AppContext [42] adopted context
factors such as events and conditions that lead to a sensitive
call as features for classifying malicious and benign method
calls. DIALDroid [43] and MR-Droid [44] detected inter-
component communication vulnerabilities for a large scale
of Android apps. Crowdroid [45] used low-level kernel
system call traces as features.

These solutions cannot recognize code heterogeneity in
apps, as they do not partition a program into regions. In
comparison, features in our approach are extracted from
each DRegion to profile both benign and malicious DRegion
behaviors.

8 CONCLUSIONS AND FUTURE WORK

We addressed the problem of detecting repackaged malware
through code heterogeneity analysis. We demonstrated its
application in classifying semantically disjoint code regions.
Our experimental results showed that our prototype is very
effective in detecting repackaged malware and Android
malware in general. For future work, we plan to improve
our code heterogeneity techniques by enhancing depen-
dence graphs with context and flow sensitivities.
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[28] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Droidra: Taming
reflection to support whole-program analysis of android apps,” in
Proc. ISSTA, 2016.

[29] B. Davis and H. Chen, “Retroskeleton: Retrofitting Android apps,”
in Proc. MobiSys, 2013.

[30] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “Edgeminer: Automatically detecting implicit control
flow transitions through the Android framework,” in Proc. NDSS,
2015.

[31] Y. Zhang, X. Luo, and H. Yin, “DexHunter: toward extracting hid-
den code from packed android applications,” in Proc. ESORICS,
2015.

[32] W. Hu and D. Gu, “AppSpear: Bytecode decrypting and DEX
reassembling for packed android malware,” in Proc. RAID, 2015.

[33] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a scal-
able resource-driven approach for detecting repackaged Android
applications,” in Proc. ACSAC, 2014.

[34] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang, “Pla-
giarizing smartphone applications: attack strategies and defense
techniques,” in Proc. ESSoS, 2012.



14

[35] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection
of semantically similar Android applications,” in Proc. ESORICS,
2013.

[36] X. Sun, Y. Zhongyang, Z. Xin, B. Mao, and L. Xie, “Detecting code
reuse in Android applications using component-based control
flow graph,” in Proc. IFIP SEC, 2014.

[37] L. Deshotels, V. Notani, and A. Lakhotia, “Droidlegacy: automated
familial classification of Android malware,” in Proc. PPREW, 2014.

[38] B. Wolfe, K. Elish, and D. Yao, “High precision screening for An-
droid malware with dimensionality reduction,” in Proc. ICMLA,
2014.

[39] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droid-
Miner: Automated mining and characterization of fine-grained
malicious behaviors in Android applications,” in Proc. ESORICS,
2014.

[40] K. Xu, D. D. Yao, B. G. Ryder, and K. Tian, “Probabilistic program
modeling for high-precision anomaly classification,” in Proc. CSF,
2015.

[41] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of
self: Probabilistic reasoning of program behaviors for anomaly
detection with context sensitivity,” in Proc. DSN, 2016.

[42] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppCon-
text: Differentiating malicious and benign mobile app behaviors
using context,” in Proc. ICSE, 2015.

[43] A. Bosu, F. Liu, D. D. Yao, and G. Wang, “Collusive data leak and
more: Large-scale threat analysis of inter-app communications,” in
Proc. AsiaCCS, 2017.

[44] F. Liu, H. Cai, G. Wang, D. D. Yao, K. O. Elish, and B. G.
Ryder, “MR-Droid: A scalable and prioritized analysis of inter-
app communication risks,” in Proc. MoST, in conjunction with the
IEEE Symposium on Security and Privacy, 2017.

[45] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for Android,” in Proc.
SPSM, 2011.

Ke Tian Ke Tian is a PhD student in Department
of Computer Science at Virginia Tech, Blacks-
burg. He received his bachelor degree majoring
information security from University of Science
and Technology of China. He received the Na-
tional Scholarship of China in 2012. His research
interests is in cybersecurity, Android security and
malware detection.

Danfeng (Daphne) Yao Daphne Yao is an asso-
ciate professor of computer science at Virginia
Tech. In the past decade, she has been work-
ing on designing and developing data-driven
anomaly detection techniques for securing net-
worked systems against stealthy exploits and
attacks. Her expertise also includes mobile se-
curity. Dr. Yao received her Ph.D. in Computer
Science from Brown University. Dr. Yao is an
Elizabeth and James E. Turner Jr. ’56 Faculty
Fellow and L-3 Faculty Fellow. She received the

NSF CAREER Award in 2010 for her work on human-behavior driven
malware detection, and the ARO Young Investigator Award for her
semantic reasoning for mission-oriented security work in 2014. She has
several Best Paper Awards (e.g., ICNP ’12, CollaborateCom ’09, and
ICICS ’06) and Best Poster Awards (e.g., ACM CODASPY ’15). She
was given the Award for Technological Innovation from Brown University
in 2006. She held multiple U.S. patents for her anomaly detection
technologies. Dr. Yao is an associate editor of IEEE Transactions on De-
pendable and Secure Computing (TDSC). She serves as PC members
in numerous computer security conferences, including ACM CCS. She
has over 85 peer-reviewed publications in major security and privacy
conferences and journals.

Barbara G. Ryder Dr. Barbara G. Ryder is a
emerita faculty member in the Department of
Computer Science at Virginia Tech, where she
held the J. Byron Maupin Professorship in Engi-
neering. She received her A.B. degree in Applied
Mathematics from Brown University (1969), her
Masters degree in Computer Science from Stan-
ford University (1971) and her Ph.D. degree in
Computer Science at Rutgers University (1982).
From 2008-2015 she served as Head of the De-
partment of Computer Science at Virginia Tech,

and retired on September 1, 2016. Dr. Ryder served on the faculty of
Rutgers from 1982-2008. She also worked in the 1970s at AT&T Bell
Laboratories in Murray Hill, NJ. Dr. Ryder’s research interests on stat-
ic/dynamic program analyses for object-oriented and dynamic program-
ming languages and systems, focus on usage in practical software tools
for ensuring the quality and security of industrial-strength applications.

Dr. Ryder became a Fellow of the ACM in 1998, and received the
ACM SIGSOFT Influential Educator Award (2015), the Virginia AAUW
Woman of Achievement Award (2014), and the ACM President’s Award
(2008). She received a Rutgers School of Arts and Sciences Computer
Science Distinguished Alumni Award (2016), was named a CRA-W
Distinguished Professor (2004), and was given the ACM SIGPLAN
Distinguished Service Award (2001). Dr. Ryder led the Department of
Computer Science team that tied nationally for 2nd place in the 2016
NCWIT NEXT Awards.She has been an active leader in ACM (e.g., Vice
President 2010-2012, Secretary-Treasurer 2008-2010; ACM Council
2000-2008; General Chair, FCRC 2003; Chair ACM SIGPLAN (1995-
97)). She serves currently as a Member of the Board of Directors of the
Computer Research Association (2014-2020,1998-2001). Dr. Ryder is
an editorial board member of ACM Transactions on Software Engineer-
ing Methodology and has served as an editorial board member of ACM
Transactions on Programming Languages and Systems, IEEE Transac-
tions on Software Engineering, Software: Practice and Experience, and
Science of Computer Programming.

Gang Tan Dr. Gang Tan is the James F. Will
Career Development Associate Professor in the
Department of Computer Science and Engineer-
ing at the Pennsylvania State University, Uni-
versity Park, PA. He leads the Security of Soft-
ware (SOS) Lab. His research is at the inter-
face between computer security, programming
languages, and formal methods. He received
his bachelors degree in Computer Science with
honors from Tsinghua University in 1999 and
his Ph.D. degree from Princeton University in

2005. He has received an NSF CAREER award, two Google Research
Awards, and a Francis Upton Graduate Fellowship. He is a member of
IEEE and ACM.

Guojun Peng Guojun Peng is an associate pro-
fessor in the School of Computer Science at
Wuhan University, China. He received BS, MS
and PhD degree from Wuhan University. He was
a visiting scholar in Virginia Tech from 2015 to
2016. His main research interests include in in-
formation system security and malware detec-
tion.


