
Efficient and Secure Content Processing and
Distribution by Cooperative Intermediaries

Yunhua Koglin, Danfeng Yao, Member, IEEE, and Elisa Bertino, Fellow, IEEE

Abstract—Content services such as content filtering and transcoding adapt contents to meet system requirements, display capacities,

or user preferences. Data security in such a framework is an important problem and crucial for many Web applications. In this paper,

we propose an approach that addresses data integrity and confidentiality in content adaptation and caching by intermediaries. Our

approach permits multiple intermediaries to simultaneously perform content services on different portions of the data. Our protocol

supports decentralized proxy and key management and flexible delegation of services. Our experimental results show that our

approach is efficient and minimizes the amount of data transmitted across the network.

Index Terms—Data sharing, distributed systems, integrity, security.

Ç

1 INTRODUCTION

IN order to enhance the performance of content distribu-
tion networks (CDNs), several approaches have been

developed based on the use of content management services
provided by intermediary proxies. In most of these ap-
proaches, content caching is the main service provided by
proxies [1], [3], [15], [18]. That is, instead of asking a content
server for contents upon each client request, a proxy first
checks if these contents are locally cached. Only when the
requested contents are not cached or out of date are the
contents transferred from the content server to the clients. If
there is a cache hit, the network bandwidth consumption
can be reduced. A cache hit also reduces access latency for
the clients. System performance thus improves, especially
when a large amount of data is involved. Besides these
improvements, caching makes the system robust by letting
caching proxies provide content distribution services when
the server is not available.

With the emergence of various network appliances and
heterogeneous client environments, there are other relevant
new requirements for content services by intermediaries [2],
[10]. For example, content may be transformed to satisfy the
requirements of a client’s security policy, device capabilities,
preferences, and so forth. Therefore, several content services
have been identified that include but are not limited to
content transcoding [2], [5], [10], [13], in which data is
transformed from one format into another, data filtering, and
value-added services such as watermarking [7]. Other
relevant services are related to personalization, according to
which special-purpose proxies can tailor the contents based

on user preferences, current activities, and past access
history.

Many studies have been carried out on intermediary
content services [2], [5], [10], [13]; however, the problem of
data security in these settings has not caught much
attention. Confidentiality and integrity are two main
security properties that must be ensured for data in several
distributed cooperative application domains such as colla-
borative e-commerce [20], distance learning, telemedicine,
and e-government. Confidentiality means that data can only
be accessed under the proper authorizations. Integrity
means that data can only be modified by authorized
subjects. The approaches developed for securely transfer-
ring data from a server to clients are not suitable when data
is to be transformed by intermediaries. When a proxy
mediates data transmission, if the data is enciphered during
transmission, security is ensured; however, it is impossible
for intermediaries to modify the data. On the other hand,
when intermediaries are allowed to modify the data, it is
difficult to enforce security.

Much previous work has been done on data adaptation
and content delivery. The work by Lum and Lau discussed
the trade-off between the transcoding overhead and spatial
consumption in content adaptation [16]. CoralCDN, a peer-
to-peer CDN, was recently presented; it combines peer-to-
peer systems and Web-based content delivery [11]. Chi and
Wu [8] proposed a Data Integrity Service Model (DISM) to
enforce the integrity of data transformed by intermediaries.
In such a model, integrity is enforced by using metadata
expressing modification policies specified by content own-
ers. However, in DISM, every subject can access the data.
Thus, confidentiality is not enforced. Another problem with
DISM is the lack of efficiency. It does not exploit the
possible parallelism that is inherent in data relationships
and in the access control policies. In several applications
such as multimedia content adaptation [2] efficiency is
crucial. In the partial and preliminary version of this paper
[14], a protocol was proposed to ensure confidentiality and
integrity for XML document updates in distributed and
cooperative systems. In this paper, we present a general and
improved protocol to meet the high availability require-
ment for large-scale network services [10].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008 615

. Y. Koglin is with Cisco Systems, RCDN6/3/4, 2200 East President George
Bush Highway, Richardson, TX 75082-3550. E-mail: ykoglin@cisco.com.

. D. Yao is with the Department of Computer Science, Rutgers University,
110 Frelinghuysen Road, Piscataway, NJ 08854-8019.
E-mail: danfeng@cs.rutgers.edu.

. E. Bertino is with the Department of Computer Science, Purdue
University, 305 N. University Street, West Lafayette, IN 47907-2107.
E-mail: bertino@cs.purdue.edu.

Manuscript received 24 Feb. 2006; revised 10 May 2007; accepted 20 June
2007; published online 14 Aug. 2007.
Recommended for acceptance by K. Hwang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0039-0206.
Digital Object Identifier no. 10.1109/TPDS.2007.70758.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



Our contribution. We summarize our contributions as

follows:

1. We describe the security and content transformation
involved with cache proxies. We present a parallel
secure content service (PSCS) protocol for a cache
proxy and analyze the properties of intermediaries
with caching capacity.

2. We formalize the key management mechanism in
cooperative intermediaries. We introduce the inter-
mediary profile table for the data server to store
public keys of peer proxies (P-proxies), which are
proxies authorized to perform the same type of data
transformation. Our key management does not
require any preexisting public key infrastructure.
This is possible because the public keys of proxies
are endorsed by the data server in the control
information. Therefore, public-key certificates are
not required in our protocol, even though the
proxies do not need to know each other a priori.

3. We implement our protocol and report the experi-
ment results on data size, integrity check time, and
servicing time, including the effect of recovery. We
also compare and analyze the performance of our
protocol with a centralized implementation.

4. We describe and analyze the delegation of author-
ization among cooperative intermediaries. When an
intermediary is overloaded, our approach makes it
possible for the intermediary to delegate the execu-
tion of content services to another proxy without
violating security requirements. Our delegation
mechanism is simple to implement, yet it largely
improves the availability of proxies.

In our model (see Fig. 1), we distinguish three types of

entities:

1. Data Server. This is an entity that originally stores the
data requested by a client.

2. Client. This is any entity that requests data from a
data server. When a client submits a request, besides
the data it requests, it may also include some content
service requirements, arising from device limitations
and data format limitations [4]. If the client does not
specify any service requirements, a proxy that

represents the client may add these requirements.
Such a proxy may be an edge proxy [5].

3. Intermediary. This is any entity that is allowed by a
data server to provide content services in response to
requests by clients. Intermediaries include caching
proxies and transforming proxies.

Our solution uses standard cryptographic primitives,
including a collision-resistant hash function and digital
signatures. We also design a data structure, called control
information, for the data server to manage proxies and
authorizations. Each participant (intermediary or client)
uses control information for integrity checking and secure
communications. We present an algorithm for generating
control information.

The remainder of this paper is organized as follows:
Section 2 introduces preliminary notions that are needed
throughout the paper. Section 3 describes the PSCS
Protocol, and Section 4 presents the PSCScp protocol for a
cache proxy. The complexity and security analysis is given
in Section 5, and experimental results are presented in
Section 6. We conclude the paper in Section 7.

2 PRELIMINARIES

In this section, we introduce the notions and terminology
used in our paper.

2.1 Content Service Functions and Privileges

Each content service belongs to a service function. The
mapping from a content service to a service function is a
many-to-one mapping. For example, a content service may
compress images with less precision in order to reduce their
size, or a content service may perform media conversion
such as from text to audio or a format change such as from
PDF to HTML. All these services belong to a transcoding
function that changes the data from one format into
another. We summarize the basic content service functions
that intermediaries can perform in Fig. 2, which is an
extension of [17]. We include some important classes of
functions that are related to security services, such as the
function of virus scanning.

To ensure data security, an intermediary must have
certain privileges in order to access the data. Based on a
client request, the data server decides the privileges for each
participating proxy. For example, if a proxy needs to
transcode the data from text to audio, then it needs to have
certain privileges from the data server that authorizes this
proxy to perform this transcoding function. Based on
whether a service function needs to modify the requested
data or not, we identify two types of privileges that allow
intermediaries to perform content service functions: read
and update. The read privilege allows a proxy to read and
store the data. The update privilege allows a proxy to read
and modify the data, as, for example, a proxy needs to have

616 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 1. System architecture.

Fig. 2. Functions and corresponding privileges.



this privilege in order to execute a content filtering function.
It subsumes the read privilege. For each content service
function, the corresponding privilege types are listed in
Fig. 2.

2.2 Data Representation

We cast our approach in the framework of XML [9], [22]
because of its widespread use in Web services. XML can be
used to manage data, documents, graphics, and even
multimedia data. Also, XML organizes data according to
hierarchical nested structures, thus facilitating the paralle-
lization. It organizes data into tagged elements. We define
an atomic element (AE) as either an attribute or an element
including its starting and ending tags. A data segment is a
set of elements to which the same access control policy
applies. That is, if a proxy has a read (or write) privilege
over a segment, the proxy has a read (or write) privilege
over all the elements in the segment. We enforce con-
fidentiality by allowing a proxy to access only the segments
that are permitted by access control policies. We assume
that each segment is uniquely identified.

Based on the above concepts, we introduce our approach
to data representation as follows:

Let D ¼ fae1; ae2; . . . ; aemg be the data to be transferred,
consisting of a set of AEs. Each AE is identified by an
identifier. Data D are partitioned into a set of segments
fSeg1; Seg2; . . . ; SegKg such that

1. 8i 2 f1; . . . ; Kg, Segi ¼ ði; faei1 ; aei2 ; . . . ; aeirgÞ, each
segment consists of a segment identifier ðiÞ and of a
set of AEs.

2. 8i 2 f1; . . . ; Kg and 8j 2 f1; . . . ; rg, ij 2 f1; 2; . . . ;mg,
each AE in a segment belongs to D.

3. 8i 2 f1; . . . ; Kg, 8k; z 2 f1; . . . ; rg, if k 6¼ z, then
ik 6¼ iz, AEs within the same segment are distinct.

4. 8i, k 2 f1; . . . ; Kg and i 6¼ k, Segi \ Segk ¼ ;, AEs
within disjoint segments are distinct.

5. For any aei 2 D, 9j 2 f1; . . . ; Kg such that aei 2 Segj,
if an AE aei belongs to D, then aei must belong in a
segment.

Properties 1, 2, and 4 ensure that there are a limited number
of segments for the data. Property 3 ensures that the size of
each segment is minimal. Property 5 ensures that the data is
included in the segments. These properties ensure that the
data is correctly represented by the set of segments.

To enforce authenticity and integrity, we rely on
standard cryptographic primitives such as RSA public keys
for digitally signing the data. Each segment has an
encrypted hash value associated with it. If a proxy has an
update privilege over a segment, when the proxy completes
updating the segment, it generates a hash value by applying
to the segment text, which also includes the segment
identifier, a one-way hash function and then encrypts the

value with its private key. Fig. 3 shows an example of data
segments, which includes the result for virus scan and the
data that is scanned. Attributes delegateKey and delegateHash
are defined in Section 2.3.

2.3 Data Provider (DP) and P-Proxy

A DP is any entity that can provide the data requested by a
client. Thus, a DP may be either a data server or a cache
proxy caching the data requested by clients. In order to
provide content services to clients, a DP has a group of
cooperative intermediaries that can perform different
content services.

A P-proxy is a list (size� 1) of proxies that perform certain
content services on the data on behalf of the DP. That is, for a
DP, there may exist more than one cooperative proxy that can
perform certain content services for it. Each DP maintains the
information about the services provided by each cooperative
proxy in an intermediary profile table. The intermediary
profile table stores the public keys and the authorizations of
proxies. Fig. 4 shows an example of such a table.

Because a proxy may provide several content services, it
may appear in several different P-proxies maintained by a
DP. In Fig. 4, proxy1 appears in both P-proxy1 and P-proxy4.

Even though a P-proxy may group several proxies, only
one proxy in such group performs the content service
associated with the P-proxy on each requested data. For
example, suppose that proxy1 is a virus scan proxy in P-
proxy1 and that P-proxy1 also includes proxy2. If proxy1 is
overloaded, it can delegate to proxy2 the execution of the
service. We refer to the proxy that is initially assigned to
execute the operation on the data as the primary proxy (prim) of
this P-proxy for the requested data. In the previous example,
even though proxy2 executes the virus scan, the primary
proxy is proxy1. The purpose of P-proxies is therefore to
enhance both the availability and the efficiency of the system.

When a primary proxy p delegates the execution of the
content services to another proxy q, where p and q belong to
the same P-proxy, attributes delegateKey and delegateHash
are required, where delegateKey is q’s public key, and
delegateHash is the digital signature of q signed with its
private key on the digest of processed content. Note that
q’s public key is endorsed by p in p’s signature.

2.4 Access Control System

Each DP has its own security policy related to its data. The
access control system of each DP (Fig. 5) enforces which
proxies and clients can access which data.

The inputs to the access control system include a client’s
request, the security policy and the intermediary profile
table by the DP, and the data store. The access control
system can return three possible access decisions:

1. Deny. This indicates that the DP does not have the
data requested by the client, the client is not allowed
to access the data according to the DP’s policy, or no
intermediaries in the DP’s intermediary profile table

KOGLIN ET AL.: EFFICIENT AND SECURE CONTENT PROCESSING AND DISTRIBUTION BY COOPERATIVE INTERMEDIARIES 617

Fig. 3. Example of data segments.

Fig. 4. Intermediary profile table.



exist or are allowed to transform the data into the
version requested by the client.

2. Empty path. This indicates that the client’s request can
be satisfied without any intermediary’s involvement.

3. Path with ACIS. This indicates that the client’s
request can be satisfied with the involvement of
the P-proxies listed in the returned path. ACIS
denotes access control information structure, which
specifies the privileges over the data for each P-
proxy in the path.

We now provide details concerning paths and ACIS.
A path denotes a content service path and explicitly

defines the order according to which each P-proxy has to
receive the data. That is, a path is a list of P-proxies. Let
P ¼ hP-proxy0;P-proxy1;P-proxy2; . . . ;P-proxyðNþ1Þi b e a
path such that

1. P-proxy0 is the DP and P-proxyðNþ1Þ is the client.
2. P-proxyi ði 2 f1; . . . ; NgÞ corresponds to a content

service requested by the client.
3. If proxy p 2 P-proxyi ði 2 f1; . . . ; NgÞ, then p 2 PT ,

where PT is the P-proxy in the DP’s intermediary
profile table that performs the same content service
as P-proxyi. This requirement ensures that only
proxies in the intermediary profile table are allowed
to perform content services on the requested data.

4. If proxy p 2 PT and p is allowed by the DP’s security
policy to perform that content service on the data,
then p 2 P-proxyi.

This requirement ensures that each P-proxy in Path
includes all proxies that can perform that content service
and also satisfy the security policy over the requested data.

Example 1. Suppose the following operations are to be
performed on the requested data: virus scanning, logo
adding, and audio-to-text conversion. The DP has an
intermediary profile table as in Fig.4,anditssecuritypolicy
allows these intermediaries to perform content services.
The following content service path can be derived:
hP-proxy0;P-proxy3;P-proxy2;P-proxy1, P-proxy4i which
is illustrated in Fig. 6. As will be described in Section 3.1.2, a
proxy (or client) is responsible for the integrity checking of
the proceeding data transformation. Therefore, in Fig. 6, a
cheating Proxy4 or Proxy5 will be detected and corrected
by Proxy3. Note that for audio-to-text conversion, a
malicious proxy may insert arbitrary text into the data.
Because of the nature of the operation, it is very difficult for

the next proxy (or the client) to determine whether the
conversion is done honestly or some arbitrary text has been
attached. The defense against such attack is out of the scope
of this paper and remains an interesting open question.

The requirements for the content service path are that the
path should obey the same segment update-update order
and update-read order. That is, if a segment is updated by
content services i and j, the order of i and j is important.
For example, in the previous example (Fig. 6), if segment
seg is updated by both logo adding and audio-to-text
conversion, then only after audio-to-text conversion can the
logo be added to the segment. Thus, the content service
dealing with text conversion must be placed before logo
adding. Also, as the virus scan needs to read this segment,
the virus scan must be placed after the logo-adding service.

Any content service path that satisfies the security policy
and these order requirements can be used in our approach.
The presence of more than one content service path for a
request will not affect the control information (Section 2.5)
generated for each P-proxy and the client.

Next, we explain the properties of ACIS. Let K be the
total number of segments in the requested data. Let ACIS ¼
har0; . . . ; arN; arðNþ1Þi be the access control information
structure such that

1. ari ¼ ðreadSet; updateSetÞ, where i 2 ½1; N �; access
segments for P-proxyi in Path are split into read and
update segment sets.

2. readSet � f1; . . . ; Kg, updateSet � f1; . . . ; Kg; the
readSet (or updateSet) is a subset of the entire
segments.

3. readSet \ updateSet ¼ ;; if a segment is only read-
able for a P-proxy, then it cannot be in the updateSet
of this P-proxy. If a segment is updatable for a P-
proxy, then readability is implied, and there is no
need to include the segment in the readSet.

4. updateSet [ readSet � f1; . . . ; Kg; the union of the
sets is a subset of the entire segments.

For example, ar0 is the access information for the DP.
Thus, ar0:readSet ¼ ;, and ar0:updateSet ¼ f1; . . . ; Kg.
arðNþ1Þ is the access information for the client. Thus,
arðNþ1Þ:readSet ¼ f1; . . . ; Kg, and arðNþ1Þ:updateSet ¼ ;.

2.5 Control Information

The control information (CI, see Fig. 7) specifies which
segments the primary proxy of a P-proxy in a path will
receive and how the primary proxy can verify the integrity
of each received segment. It also includes information on
how to securely communicate with the P-proxy’s successors
ðsuccÞ and predecessor ðpredÞ. CI is a list. That is,
CI ¼ hCI0; . . . ; CIN; CIðNþ1Þi, where CI0 is the control

618 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 5. Access control system.

Fig. 6. Content service path example.



information associated with the DP and CIðNþ1Þ is the
control information associated with the client. In Fig. 7, HðxÞ
and WðyÞ are the numbers of components in the seg of px and
suy, respectively.

The control information CIi for P-proxyi in a path also
contains the corresponding incoming package templates and
outgoing package templates. An incoming package template
ðpxÞ contains the P-proxy’s predecessor, which is P-proxyx in
the path, and the set of segments ðsegÞ that it will receive from
this predecessor. The incoming package template also
contains a symmetric key ðskxiÞ for the receiver to decrypt
the incoming package. For each segment R ðR 2 segÞ in the
received package, the corresponding incoming package
template includes the public keys ðR:sÞ of the last P-proxy
that modified this segment (that is, the ðR:rÞth segment). A P-
proxy uses the information contained in the incoming
package template to verify that the received package is from
a specified sender and that the data in the package is authentic
up to that point. An outgoing package template ðsuyÞ includes
the successor, which is P-proxyy in the path, a symmetric key
ðskiyÞ, and the set of segments ðsegÞ to be sent to this successor.
The receiver can then organize a package for the successor
and encipher it with the symmetric key.

Each incoming package template has a predecessor ID
(pid) associated with it. If a receiver receives from the same
sender several packages at different times, the pid will help
the receiver to determine which packages are referred to in its
control information received from the DP. Each participant
(intermediary or client) can use its control information for
integrity checking and secure communications.

3 PARALLEL SECURE CONTENT SERVICE

PROTOCOL

Before presenting the PSCS protocol, we give the security
assumptions in our model:

. Each DP has a group of P-proxies that are cooperative
with the DP in order to provide content services to
clients.

. All proxies in a P-proxy are equal. That is, there is no
proxy considered more trustworthy than another by
the DP.

. All P-proxies that can perform the content services
requested by a client are operative.

. They will execute their permitted update privileges
correctly and will not collude with each other.

. If a P-proxy in a path cannot correctly perform the
required content service, which involves updates,
the request from the client cannot be satisfied.

. A P-proxy may attempt to access data without
permission, thus violating data confidentiality, or it
may attempt to modify data without permission,
thus violating data integrity.

The PSCS protocol is a suite of protocols. It includes the
PSCS Data Server ðPSCSdsÞ Protocol, which is responsible
for handling requests by a data server, and the PSCS Cache
Proxy ðPSCScpÞ Protocol, which is responsible for handling
requests by a cache proxy (CProxy) when it has a cache hit.

3.1 Parallel Secure Content Service Data Server
Protocol

In the following, we discuss each participant’s protocol and

recovery protocol in detail.

3.1.1 Data Server Protocol

The data server sends the client’s request to its access
control system (a graph representation of the protocol is
shown in Fig. 8). If the access decision on the request is
deny, the data server notifies the client of the result. If the
output is an empty path, the data server computes and
signs the hash value of the data. Then, the data is
transferred to the client using SSL/TLS [19], [21]. Both
integrity and confidentiality are trivially satisfied in this
case. We focus on a more complex case where the outputs
from the access control system are a path and an ACIS.

Control information generation. The purpose of the
control information is to help the P-proxies and the client to
verify the integrity of the data and to securely communicate
with each other. Based on the content service path and ACIS
generated by the access control system, the data server uses
the algorithm in Fig. 10 to generate the control information.

The algorithm is organized according to the following

main phases:

KOGLIN ET AL.: EFFICIENT AND SECURE CONTENT PROCESSING AND DISTRIBUTION BY COOPERATIVE INTERMEDIARIES 619

Fig. 7. Control information specification.



Initialization. First, for each participating P-proxy, the
data server randomly orders the proxies in each P-proxy.
The first one in the list is the primary proxy for this P-proxy.
This random ordering avoids making certain proxies
overloaded, especially when a proxy is being used in many
P-proxies in a data server or a proxy appears in many DPs’
intermediary profile table. This step also initializes each P-
proxy’s predecessors ðpredÞ, successors ðsuccÞ and segments
ðsegÞ that this P-proxy is authorized to access. See Fig. 7 for
the notation used for pred and succ.

Segment labeling. For each P-proxy in Path, this step labels
each segment that this P-proxy is authorized to access with
a list of public keys of the P-proxy that can modify this
segment. The list of keys starts with the primary proxy of
the P-proxy, followed by other proxies’ public keys in the P-
proxy. We use array Seg½i�:s to store the public keys of the
P-proxy that most recently modified segment i and a
structure ari that contains the set of accessible read and
update segments of the P -proxyi in Path. Note that in step 2
in Fig. 10, Seg½seg� is instantiated with different values for
different ACIS:ari.

Generating the data server’s CI. The data server needs to
send segments to corresponding P-proxies or to the client.
Each P-proxy must receive the segments that are allowed to
access and send some or all of these segments to subsequent
P-proxies or the client. For each segment, the data server
scans the P-proxies according to the content service path; if
a P-proxy needs to read this segment, then the data server
adds this P-proxy to its succ, and this P-proxy will receive
this segment from the data server. The data server repeats
this activity until the first P-proxy that needs to update this
segment. After the P-proxy updates the segment, it sends
out the segment to the rest of the P-proxies or the client if
they need to access it.

Function add-predði; r; jÞ and add-succðj; r; iÞ are defined
as follows: If there is no element p 2 P -proxyj:pred such that
p:pid ¼ i, function add-predði; r; jÞ inserts in the set
P -proxyj:pred an element p, where 1) p:pid ¼ i, 2) p:sk ¼ k,
where k is a symmetric key generated by the data server, and
3) p:seg ¼ hti, where t is the tuple in P -proxyi:seg such that
t:r ¼ r. Otherwise, it appends t to p:seg. If there is no element
su 2 P -proxyi:succ such that su:sid ¼ j, function add-succ
ðj; r; iÞ inserts in the set P -proxyi:succ an element su, where

1) su:sid ¼ j, 2) su:sk ¼ k, where k ¼ P -proxyj:pred:p:sk, and
3) su:seg ¼ hri. Otherwise, it appends r to su:seg.

Updating CI by calling procedure AddSeg. The procedure,
reported in Fig. 11, updates CI by inserting segments that
need to be sent out by each P-proxy (except the data server
and the client) in the path.

ProcedureAddSeg (Fig. 11) works as follows: Let P -proxyi
be a P-proxy that has updated a segment; it then sends it to the
first subsequent P -proxyj in Path that can either read or
update this segment (step 1). If the primary proxy ofP -proxyi
is different from that of theP -proxyj (step 1.a), the scan stops.
If these two primary proxies are the same andP -proxyj has an
update privilege over the segment again (step 1.b), then this
segment will not appear neither in P -proxyi’s succ nor in
P -proxyj’s pred, and the scan stops. If the two proxies are the
same and P -proxyj can only read the segment (step 1.c),
P -proxyj will not receive the segment, and the scan will
continue.

If P -proxyi has read access to a segment and needs to
send it out (step 2), it will forward it to all subsequent P-
proxies in the path that can only read the segment (step 2.b)
until a P-proxy that can update the segment (step 2.a). Also,
this last P-proxy will receive this segment. A P-proxy that
receives a segment from another P-proxy such that both of
them can only read the segment does not send the segment
to any other proxy (step 2.b.b). If the segment is to be
received later by P -proxyj, whose primary proxy is the most
recent one that updated it, we remove it from P -proxyj’s
pred (step 2.b.a), and P -proxyi will not send the segment to
P -proxyj. If P -proxyj only has read access to the segment
later and needs to send this segment to P -proxyx, then the
predecessor that is supposed to send the segment back to
P -proxyj will send the segment to P -proxyx. This does not
only save bandwidth but also ensure data integrity. Finally,
the control information CI is stored and returned. Note that
the control information CI, not ACIS, is to be used for
parallel processing among proxies.

Example 2. Suppose that P-proxy2 receives seg1, seg2, and
seg3 fromP-proxy1 andthat thesesegmentsareupdatedby
P-proxy1 (Fig.9).The instructions fromthe dataserver to P-
proxy2 are to transcode seg1 and send it to the client (no
proxy will accessseg1 anymore) and to form a new package
that consists of two segmentsseg2 andseg3 and send it to P-
p r o x y 3 . I f P-proxy1 ¼ hproxy1=pubk1; proxy2=pubk2i,
P-proxy2¼hproxy3=pubk3; proxy4=pubk4i, and P-proxy3¼
hproxy5=pubk5; proxy6=pubk6; proxy7=pubk7i, where pubki
is the public key of proxyðiÞ, and pubkc is the public key of
the client, then the control information for P-proxy2 is
given as follows: CI2 ¼ ð2; pred; succÞ, where

620 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 8. Data server protocol for handling content service requests.

Fig. 9. An example of control information.



. pred ¼ fð1; sk12; < ð1; ðpubk1; pubk2ÞÞ,
ð2; ðpubk1; pubk2ÞÞ, ð3; ðpubk1; pubk2ÞÞ >Þg, and

. succ ¼ fð4; sk24; < 1 >Þ; ð3; sk23; < 2; 3 >Þg.
Once the data server has generated the control informa-

tion and encrypted the data segments, it distributes them to
the corresponding primary proxies and the client. The data
server also provides a one-way hash function for the
participating proxies and the client to verify the authentica-
tion of the data they received and to calculate a digest value
for each segment they have updated.

Key management. We use public keys for signing and
symmetric keys for encrypting contents. Although the
number of keys used may be large, key management is
quite simple, and there is no need for a public-key
infrastructure and public-key certificates. The public keys
of proxies are stored in the intermediary profile table
maintained by the DP. This information is endorsed by the
DP in its control information. The symmetric keys are
preassigned by the DP and transmitted to corresponding
proxies in encrypted form. Therefore, our protocol does not
need any two-party key agreement protocol.

3.1.2 Intermediary Proxy and Client Protocol

During content service processing, the primary proxy in
each P-proxy can either delegate the content services to
another proxy in the same P-proxy or execute the function
by itself.

If no delegation needs to be performed, the primary
proxy executes a protocol that is similar to the client
protocol. Such protocol has the following steps: check the
integrity according to incoming package templates received
from the data server, execute operations according to
privileges, form package(s) according to outgoing package

templates received from the data server, and send out
packages. The details of these steps are given as follows:

Step 1. Integrity check. Upon receiving a package P , the
receiver with control information CIi verifies the
following: 1) It verifies whether there has been any
transmission error; if there is any such error, it asks the
sender to send the package again. 2) It verifies that the
package is from one of its predecessors. Suppose a
receiver deciphers P with the symmetric key k such that
k ¼ px:skxi and px 2 CIi:pred. If P:pid 6¼ x, the receiver
discards the package. 3) It verifies the integrity and
authorization of each segment according to the incoming
package template. For each R in px:seg, the receiver
checks if the segment in the package starts with a
segment identifier equal to R:r. If so, the receiver
generates a hash value using the one-way hash function,
deciphers the hash in the package with R:s’s primary
public key, and checks if these two values are equal. If
the primary proxy of the P-proxy that authored the
segment had delegated another proxy q for the update,
then the receiver must check if q is in R:s and
delegateHash is correct. If there is any error, the receiver
asks the sender to recover.

Step 2. Executing functions on the data. After correctly
receiving a package from each predecessor, the receiver
executes its functions on the data. If it has update
privileges on some segments, it will update the seg-
ments, calculate the hash value for each segment it
updated, and cipher this value with its private key for
future authorization checking.

Step 3. Forming new package(s). For each suy 2 CIi:succ, the
receiver forms an outgoing package U such that

KOGLIN ET AL.: EFFICIENT AND SECURE CONTENT PROCESSING AND DISTRIBUTION BY COOPERATIVE INTERMEDIARIES 621

Fig. 11. Procedure AddSeg.
Fig. 10. Control information generation.



U:pid ¼ i. For each r 2 suy:seg, the receiver fills r in U .
After this, the subject encrypts U with suy:skiy and sends
it to the primary proxy of P-proxyy. The receiver should
also keep a copy for later recovery.

If a primary proxy decides to delegate its function to
another proxy q in the P-proxy, the primary proxy first
performs the integrity checking as in step 1. If there is no
error, the primary proxy sends all the received packages to
q, which completes the second step. q sends back only the
updated segments with the delegateHash attributes signed
by q. The primary proxy calculates the hash value for each
segment that is updated by q, makes sure that these values
are equal to those signed by q, and then signs these hash
values. At last, the primary proxy executes the last step of
forming and sending out the outgoing packages.

3.1.3 Recovery Protocol

If a proxy receives a package that fails integrity verification,
the proxy asks the sender to recover the package. If a
receiver cannot get an error-free package according to the
control information twice, it will send both packages it
believes to be incorrect to the data server and the sender.
The data server will delete this malicious proxy from its
intermediary profile table. A simple solution is for the data
server to broadcast to the P-proxies in the content services
that the process has failed and aborted. However, this
approach exposes the protocol to possible frequent failures.
Indeed, if at least one proxy is malicious and generates a
corrupted segment, the entire process fails.

To reduce such failures, the receiver will wait for a
correct version from the data server. The data server will
not broadcast an abort command immediately. It will first
check if the malicious sender m of the error segment seg has
only read access to this segment. If m only has read access,
the data server will contact all the receivers that received
seg from m. If any one has a correct version (passed
integrity checking) from m, the data server will send this
correct version to all the senders that did not receive a
correct version from m. If no one has a correct version, the
data server will ask the primary proxy of the P-proxy that
authored this segment to send the data server a copy; the
data server then acts the role of m, checking the integrity
and sending this segment to all the receivers to which m
was supposed to send it.

If m has an update privilege on the segment, the data
server will check if there is any other proxy n in the P-proxy
with m. If not, the data server aborts the process. Otherwise,
it lets n execute the service m was suppose to execute. The
receiver will then receive data from n.

4 PARALLEL SECURE CONTENT SERVICE CACHE

PROXY PROTOCOL

With cache proxies, a client’s request is submitted to a cache
proxy first, which may give a cache hit, that is, the
requested content is cached by the proxy. In this case, the

content is sent directly to the client without any processing.
Cache hits can largely reduce the communication costs for
delivering and computation costs for processing. If the
requested content is not readily available at the cache proxy,
the cache proxy handles the request as follows:

If a cache proxy is not the data server and can, however,
satisfy a request, the cache proxy handles the request
depending on whether it has a credential from the data
server or not. If it has a credential that allows it to perform
operations on requested data, the cache proxy handles the
request and sends the requested data and the credential to
the client. If the cache proxy does not have the proper
credential, then it acts on behalf of the data server and does
the following:

1. The cache proxy calls its access control system. If the
request is denied, then the client is notified. Other-
wise, the output of such a call includes a pathP 0 and an
ACIS. Note that P 0 should be part of the original path
P if the client directly requests from the DP, that is,
P 0 � P . An empty P 0 happens when the requested
content is cached, which is then sent to the client. If P 0

is not empty, the cache proxy is the first one in the path
that has update privileges on all the segments.

2. The cache proxy generates control information for
the involved P-proxies and the client.

3. The cache proxy sends the control information to a
data server.

4. If the data server allows the cache proxy to
disseminate the data, the data server disseminates
this control information to the corresponding inter-
mediaries and the client; then, the data server asks
the cache proxy to start sending out data segments.
Otherwise, the data server replies to the cache proxy
that the request is not allowed, and the data server
handles the request of the client.

When a cache proxy handles the request, the amount of
required bandwidth is greatly reduced, especially when a
large amount of data is involved. Because adapted content
is often buffered in proxies, cache consistency in coopera-
tive proxies is an important problem. This problem is
currently out of the scope of this paper, because we focus on
the security (integrity and confidentiality in particular) of
data adaptation and intermediary caching. We refer readers
to existing literature on general cache consistency problem
for more information.

5 COMPLEXITY AND SECURITY ANALYSIS

For complexity analysis, we focus on the size and generation
time of control information, the complexities of which are
shown in Figs. 12 and 13, respectively. Let N be the total
number of proxies required to process a request, and
i 2 ½1; N�. Let K be the total number of segments in the
request content. The analysis of time complexity follows the
description of control information generation in Section 3.1.1.

622 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 12. The size complexity of control information.



The analysis assumes that there are a constant number of
proxies in each P-proxy. In the next section, we give the
overall performance results of our protocols.

We analyze the security for the case that a client’s request
is handled by a data server. Due to space limitations, the
analysis about the security of the PSCScp Protocol is not
provided, as it is similar to the analysis of the PSCSds
Protocol. Our protocol assumes a digital signature scheme
that is secure against existential forgery attacks. Intuitively,
this means that a polynomial-time adversary cannot
successfully forge the signature of a message that a signer
has not signed. We also assume a symmetric key encryption
scheme with one-way security, which intuitively means that
a polynomial-time adversary cannot successfully guess the
plaintext after seeing the ciphertext.

Theorem 1. The PSCSds Protocol is secure with respect to
integrity.

Proof. We need to prove that a proxy cannot update a
segment over which it does not have update privileges. If
a primary proxy delegates another proxy q in the P-
proxy for the execution of content services, according to
the protocol executed by intermediary proxies, proxy q
cannot modify a segment that it is not allowed to update
and send the segment out.

Thus, we only need to consider the primary proxies.
There are two cases:

Case 1. A primary proxy modifies a segment that is not
authored by itself, and the proxy does not have the
authorization to update the segment.

In this case, integrity is enforced by digital signatures.
When a proxy i updates a segment seg, it signs the hash
value that it generates from seg with its private key. If a
primary proxy j has read authorization on seg, j receives
control information from the data server, which contains
an incoming template. The incoming template includes
the public key of i for deciphering the hash. j will
calculate the hash of the segment and check the
signature. Suppose an adversarial proxy can modify
segment seg before it reaches j and the signature on the
modification is accepted by j. This means that the
adversarial proxy can successfully forge i’s signature
and thus break the digital signature scheme. This
contradicts with the assumption on the security of the
signature scheme.

If a primary proxy m receives two segments authored
by the same proxy i, it cannot switch the information in
these two segments, as a segment represented in XML
has the segment identifier in its tag and this identifier is
included when the hash value is generated.

Although a primary proxy may not indicate that it
delegates another proxy for the update of a segment, this
does not violate the integrity, because the primary proxy
also has the privilege to update the segment. It can write
the segment with the result of the delegated proxy.

Thus, no proxy can modify a segment that has not
been authored by itself and for which it does not have an
update privilege.

Case 2. A primary proxy modifies a segment authored by
itself, even though it does not have update authorization over it
now.

First, we discuss the case in which no delegation
happens. Suppose a segment seg is updated by proxy A,
then read by proxy B, and, after that, sent by B to A for
reading (A cannot update seg this time) and then by B to
C for reading. In this case, A cannot send C a segment
that is different from the one it sends to B. As in the
control information generation, B will send a copy to C
instead of A. Thus, C receives the segment that A
authored at the beginning.

In the case of delegation, suppose a segment seg is
updated by A, then read by B, and then distributed by B
to C for reading. Suppose A delegates to B, updating seg;
after B finishes updating, A also needs to sign the hash
value of the segment. B cannot change seg when
accessing it the second time, because C will also verify
the segment with A’s signature as A is the primary
proxy.

Thus, data integrity is enforced. tu

Theorem 2. The PSCSds Protocol is secure with respect to

confidentiality.

Proof. We need to prove that if a proxy is not authorized to
access a segment, then it cannot access it. During the
communication, the confidentiality is enforced by the
symmetric key that enciphers/deciphers a package so that
only the designated receiver can access it. When a proxy
receives a package, it uses the control information received
from the data server to decipher the package. Suppose an
adversarial proxy has successfully deciphered the package
and broken the confidentiality. This means that the
adversary has broken the symmetric key encryption
scheme, which contradicts with the assumption of a secure
symmetric key encryption scheme. Besides, the control
information generation ensures that a proxy only receives
the segments that it is authorized to access. Thus, the
protocol is secure with respect to confidentiality. tu
It is important to notice that under our approach a receiver

could learn the access privileges of its predecessor(s) or
successor(s). The disclosure of such access privileges, how-
ever, does not violate confidentiality and integrity, because
these requirements only concern the data contents.

6 EXPERIMENTS AND RESULTS

In this section, we report some results for the experiments
we have carried out to evaluate the performance of our
approach. The primary goals of our experiments are to
understand the characteristics of the PSCS Protocol with
respect to three properties:

1. Size of transmitted data. how much bandwidth our
approach saves?

KOGLIN ET AL.: EFFICIENT AND SECURE CONTENT PROCESSING AND DISTRIBUTION BY COOPERATIVE INTERMEDIARIES 623

Fig. 13. The time complexity of preparing control information.



2. Integrity checking time. how much does this security
requirement cost?

3. Content servicing time. how much could the PSCS
Protocol save in the overall servicing time and how
does the recovery affect the overall servicing time?

We compare our approach with a centralized approach.
In the centralized approach, the data server sequentially
contacts each P-proxy to complete the requested content
services. Once an intermediary has completed the opera-
tion, it sends back only the data that it has updated to the
data server, and the data server then prepares the data for
the next P-proxy. Both the server and intermediaries use
message digests and digital signatures to ensure data
integrity, and they communicate through a secure channel.
Once the data server receives the data from the last
intermediary, it finally sends the data to the client. The
centralized model has a star-shaped communication pat-
tern, where the data server is at the center, and each proxy
only communicates with the data server. In addition, the
communication is always a round-trip traffic, that is, from
the data server to a proxy and then back.

The experiments have been carried out in a high-speed
local area network with an average bandwidth of about
100 Mbps. The data server, client, and intermediaries are
on the same network, and each machine runs Linux OS
with a Pentium III 500-MHz CPU.

6.1 Data Size

Reducing the total size of the data transmitted in the system
could improve system performance by reducing congestion
and collision. In a low-bandwidth system, the time
difference between transferring a large amount of data
and a small amount of data is quite significant. First, we
should notice that even if the content is divided into
different segments such that the sum of all segment sizes is
equal to the size of the whole content, for a symmetric
encryption algorithm, the size of the ciphertext is the same
as the cleartext. Thus, the ciphertexts under these two
approaches have the same size. Second, in XML encryption,
the cleartext uses UTF-8 encoding (8 bits per character),
whereas the ciphertext is base64 (6 bits per character) text.
Thus, the ciphertext is about 1.33 times of the size of the
cleartext. Enforcing the confidentiality of XML data during
communications requires transmitting more data.

Fig. 14 reports the total size of the data transmitted by all
entities in the system under the two approaches when no

recovery is executed. In the experiment, we considered the
case of 100-Kbyte data equally divided into 25 segments. All
segments are accessed by four P-proxies, and RSA
signatures of size 128 bytes are used. From the graph, we
can see that our approach requires transferring less data
than the centralized approach when the update/access ratio is
higher than 4 percent. Because most content service
functions (see Fig. 2) require an update privilege that has
an update/access ratio of 100 percent, our approach is much
more efficient than the centralized approach with respect to
the amount of data to be transmitted on the network.

In fact, our approach requires transferring a minimal
amount of data with very low overhead. Such overhead
basically arises because of the signatures associated with the
segments. For n P-proxies, there are at most 3n segments,
because for each segment, a P-proxy can have either read or
update access or no access to the segment. For large amounts
of data and a few segments in the data, the additional data due
to the signatures is almost negligible.

6.2 Integrity Check Time

Since our approach requires each P-proxy to perform an
integrity check, we have evaluated the time of this check by
dividing a whole document equally into five segments. For
the parallel approach, the time of the check is given by the
sum of the times required for computing the hash values of
the five segments and for the RSA signature verification.
Under the centralized approach, only one hash value is
computed for the whole document, and only one RSA
signature verification has to be executed. Fig. 15 reports the
time for different data sizes.

As the time to compute a hash value is almost linear in the
size of the data and because verifying a digital signature is
quite fast, our results indicate that our approach does not
have much additional overhead with respect to the centra-
lized approach (less than 50 ms for a data size of 4 Mbytes).

6.3 Overall Content Servicing Time

First, we investigate how much our approach could save in
the overall content servicing time against the centralized
approach. The experiments have been run with four proxies
(as data normally require about four different content
services), and all segments have the same size (size ¼ N=M,
where N is the size of a document, and M is the number of
segments). Each proxy transcodes the segments it receives
from the data server, and then, these results are sent to the
client. We use a ratio to represent the data size distribution.

624 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 14. Comparison of the total size of data transmitted. Fig. 15. Comparison of the integrity check time.



For simplicity, in our experiment, we assume that the
segment distribution among the client and four proxies is
1:1:2:3:4. Fig. 16 reports the overall servicing times for data
of size 11 Kbytes.

In the figure, we can see that if the operation time for a
content service is 1 ms/Kbyte, our approach can save at
least 12 sec. As the size of the data increases (see Fig. 17), the
savings obtained by our approach increase. Thus, even
though our approach spends a little more time during
integrity checking, overall, it is much more efficient than the
centralized approach. Figs. 16 and 17 also show that as the
operation time increases, the overall servicing time of our
approach is much lower than that of the centralized
approach. As noted by previous research [6], [12], transcod-
ing normally involves intensive computation. In multi-
media applications, our approach is thus highly desirable.

Next, we investigate the effect of recovery. Fig. 18 reports
the comparison of the overall servicing time in the case of
recovery. As we can see in the figure, the operation time for
a content service is 20 ms/Kbyte. The access/update ratio for
each proxy is 10 percent, and each proxy also needs to send
its access segments to the client. We assume that the
probability � that a proxy performs illegal modification has
a uniform distribution. As � increases, the PSCS protocol
spends more time in recovery, and the overall servicing
time may be higher than the servicing time of the
centralized approach.

Next, we investigate the effect of recovery under
different data sizes. Fig. 19 reports the comparison of the

overall servicing time in the case of recovery for data of size
22 Kbytes. All the other parameters are the same as that of
the experiments reported in Fig. 18. By comparing Fig. 19
with Fig. 18, we can see that if the data size is larger, the
� value required to make the PSCS Protocol take a longer
overall servicing time than the centralized approach is
lower. This is because the data transmitting time dominates
the overall servicing time.

Our protocol still has performance gains even in the case
where no parallel service exists, because proxies have the
proper control information to sequentially process the
content among themselves without reporting to the DP.
This saves communication costs compared to a centralized
approach, where the content is returned to the DP after each
transformation.

7 CONCLUSIONS

In this paper, we have presented a solution for secure
content services characterized by a scalable and robust
network architecture. Our protocol allows a client to verify
that the received data is authentic and transformations on
the data are properly authorized. Our approach also assures
data confidentiality during transmission. It highlights load
distribution through P-proxies to improve system perfor-
mance and supports parallel content services. Because no
modification is required to current content distribution

KOGLIN ET AL.: EFFICIENT AND SECURE CONTENT PROCESSING AND DISTRIBUTION BY COOPERATIVE INTERMEDIARIES 625

Fig. 16. Comparison of the overall servicing time ðdata size ¼ 11 KbytesÞ.

Fig. 17. Comparison of the overall servicing time ðdata size ¼ 22 KbytesÞ.

Fig. 18. Comparison of the overall servicing time in case of recovery

ðdata size ¼ 11 KbytesÞ.

Fig. 19. Comparison of the overall servicing time in case of recovery

ðdata size ¼ 22 KbytesÞ.



systems in order to adopt our approach, our work is easy to
deploy for many applications. In addition, our approach is
extensible; if a new type of content service is required, our
architecture can be easily adapted to the new requirement.

REFERENCES

[1] C. Aggarwal, J.L. Wolf, and P.S. Yu, “Caching on the World Wide
Web,” IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 94-
107, Jan. 1999.

[2] G. Berhe, L. Brunie, and J.M. Pierson, “Modeling Service-Based
Multimedia Content Adaptation in Pervasive Computing,” Proc.
First Conf. Computing Frontiers, Apr. 2004.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM ’99, Mar. 1999.

[4] S. Buchholz and A. Schill, “Adaptation-Aware Web Caching:
Caching in the Future Pervasive Web,” Proc. 13th GI/ITG Conf.
Kommunikation in Verteilten Systemen (KiVS), 2003.

[5] V. Cardellini, P.S. Yu, and Y.W. Huang, “Collaborative Proxy
System for Distributed Web Content Transcoding,” Proc. Ninth
ACM Int’l Conf. Information and Knowledge Management (CIKM ’00),
Nov. 2000.

[6] S. Chandra and C.S. Ellis, “JPEG Compression Metric as a Quality-
Aware Image Transcoding,” Proc. Second Usenix Symp. Internet
Technology and Systems (USITS ’99), Oct. 1999.

[7] C.H. Chi, Y. Lin, J. Deng, X. Li, and T. Chua, “Automatic Proxy-
Based Watermarking for WWW,” Computer Comm., vol. 24, no. 2,
pp. 144-154, Feb. 2001.

[8] C.H. Chi and Y. Wu, “An XML-Based Data Integrity Service
Model for Web Intermediaries,” Proc. Seventh Int’l Workshop Web
Content Caching and Distribution (WCW ’02), Aug. 2002.

[9] Extensible Markup Language (XML), http://www.w3.org/XML/,
2007.

[10] A. Fox, S.D. Gribble, Y. Chawathe, and E.A. Brewer, “Adapting to
Network and Client Variation Using Active Proxies: Lessons and
Perspectives,” IEEE Personal Comm., Aug. 1998.

[11] M.J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
Content Publication with Coral,” Proc. Usenix/ACM Symp.
Networked Systems Design and Implementation (NSDI ’04), Mar.
2004.

[12] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J.
Rubas, “Dynamic Adaptation in an Image Transcoding Proxy for
Mobile Web Browsing,” IEEE Personal Comm., vol. 5, no. 6, pp. 8-
17, Dec. 1998.

[13] J-L. Huang, M-S. Chen, and H-P. Hung, “A QoS-Aware
Transcoding Proxy Using On-Demand Data Broadcasting,” Proc.
IEEE INFOCOM ’04, Mar. 2004.

[14] Y. Koglin, G. Mella, E. Bertino, and E. Ferrari, “An Update
Protocol for XML Documents in Distributed and Cooperative
Systems,” Proc. 25th Int’l Conf. Distributed Computing Systems
(ICDCS ’05), June 2005.

[15] B. Li, M.J. Golin, G.F. Italiano, X. Deng, and K. Sohraby, “On the
Optimal Placement of Web Proxies in the Internet,” Proc.
INFOCOM ’99, Mar. 1999.

[16] W.Y. Lum and F.C.M. Lau, “On Balancing between Transcoding
Overhead and Spatial Consumption in Content Adaptation,” Proc.
ACM MobiCom ’02, pp. 239-250, Sept. 2002.

[17] P. Maglio and R. Barrett, “Intermediaries Personalize Information
Streams,” Comm. ACM, vol. 43, no. 8, pp. 99-101, Aug. 2000.

[18] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M.V. Steen,
“Replication for Web Hosting Systems,” ACM Computing Surveys,
vol. 36, no. 3, pp. 291-334, Sept. 2004.

[19] SSL Specification, http://wp.netscape.com/eng/security/
SSL_2.html, 2007.

[20] B. Thuraisingham, A. Gupta, E. Bertino, and E. Ferrari, “Colla-
borative Commerce and Knowledge Management,” Knowledge and
Process Management, vol. 9, no. 1, pp. 43-53, Aug. 2002.

[21] Transport Layer Security, http://www.ietf.org/html.charters/tls-
charter.html, 2007.

[22] W3C XML Schema, http://www.w3.org/XML/Schema, 2007.

Yunhua Koglin received the PhD degree in
computer science from Purdue University in
2006. She is now with Cisco System. Her
research interests are secure content distribu-
tion, access control, and applied cryptography.

Danfeng Yao is a PhD candidate in the
Computer Science Department, Brown Univer-
sity. She has interned in the Trusted Systems
Laboratory, Hewlett-Packard Laboratories, and
worked in the Center for Education and Re-
search in Information Assurance and Security
(CERIAS), Purdue University. She will join the
Department of Computer Science, Rutgers
University, New Brunswick, as an assistant
professor in January 2008. Her research inter-

ests are in information security and applied cryptography. She is a
member of the IEEE. She served as a PC member in the Eighth IEEE
SMC Information Assurance Workshop in 2007. She won the Best
Student Paper Award in ICICS 2006 and the Award for Technological
Innovation from Brown University in 2006. She has two US patents
pending for her work on identity management.

Elisa Bertino is a professor of computer
science at Purdue University and serves as the
research director of the Center for Education
and Research in Information Assurance and
Security (CERIAS). Previously, she was a
faculty member in the Department of Computer
Science and Communication, University of
Milan, where she has been the department chair
and the director of the DB&SEC Laboratory. Her
main research interests include security, priv-

acy, database systems, object-oriented technology, and multimedia
systems. She has published more than 250 papers in major refereed
journals and in the proceedings of international conferences and
symposia. She has coauthored three books. She is a co-editor in chief
of the Very Large Database Systems Journal. She serves also on the
editorial boards of several scientific journals, including IEEE Internet
Computing, the IEEE Transactions on Dependable and Secure
Computing, IEEE Security & Privacy, and the ACM Transactions on
Information and System Security. She is a fellow of the IEEE and the
ACM and has been named a Golden Core Member for her service to the
IEEE Computer Society. She received the 2002 IEEE Computer Society
Technical Achievement Award for “outstanding contributions to data-
base systems and database security and advanced data management
systems” and the 2005 IEEE Computer Society Tsutomu Kanai Award
for “pioneering and innovative research contributions to secure
distributed systems.”

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

626 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


