
Privacy-Aware Verification of Aggregate Queries

on Outsourced Databases with Applications to
Historic Data Integrity

Stuart Haber1, William G. Horne1, Tomas Sander1, and Danfeng Yao2

1 Hewlett-Packard Labs
5 Vaughn Drive, Suite 301

Princeton, NJ 08540
{stuart.haber, william.horne, tomas.sander}@hp.com

2 Department of Computer Science
Rutgers University

Piscataway, NJ 08854-8019
danfeng@cs.rutgers.edu

Abstract. It is often desirable to be able to guarantee the integrity
of historical data, ensuring that any subsequent modifications to the
data can be detected. It would be especially convenient to extend such
proofs of integrity to certain computations performed later using the his-
toric data. We raise this question in the context of outsourced databases,
where a data owner delegates the ability to answer users’ queries to a
service provider, and distrustful users may desire to verify the integrity
of responses to their queries on the data. We present a solution for
integrity verification of aggregate database queries, such as SUM and
MAX, with efficient proofs of correctness and completeness of responses
to the queries. What makes the problem challenging is that individual
data entries may be sensitive, and should not be revealed to the user.
Our protocols are secure, under reasonable cryptographic assumptions.

Keywords: Database query, privacy, outsource, algorithm.

1 Introduction
For many applications, it is desirable to have historical data integrity, in which
the integrity of some data is established at a specific point in time, and any
subsequent modifications to that data can be detected. Of particular interest
is the ability to establish the historical integrity of transactions and event logs,
which are routinely collected in IT systems for a variety of applications such as
intrusion detection, forensics, fraud detection, network monitoring and quality
control. Recently, audit logs and IT auditing have become increasingly important
as a means of assuring compliance with financial and legal regulations, such as
the Sarbanes-Oxley Act (SOX) in the US and similar regulations worldwide.

Consider the following example. A corporation logs financial transactions into
a general ledger. At periodic time intervals, a third-party audit is performed to
verify that the corporation is following legally acceptable accounting practices.
Although there are checks and balances in place, there is always a threat of fraud

if an adversary is able to get access to the system and modify entries in the ledger.
These threats are traditionally addressed using carefully managed access control
systems and techniques such as segregation of duties. Cryptographic techniques
have also been proposed as a solution to this problem [3–5, 28].

Besides the integrity of the data, we still must be concerned about the parties
to whom the data can be disclosed. For many applications, it is undesirable to
disclose specific data elements, for example due to privacy concerns. However, it
may be acceptable to disclose aggregate statistics about the data. This is a com-
mon problem that occurs in many areas, including censuses, medical research,
and educational testing. For example, the static aggregates of confidential medi-
cal records of a group of patients might be accessible by the public; however, the
medical record of individual patients should be kept private. Several approaches
to this problem have been proposed, including certain methods for perturbing
individual data elements (e.g. [2]), but none of them attempt to simultaneously
guarantee the integrity of the underlying data, nor do they enable an end user
to formally verify the correctness and completeness of the aggregate statistics.

1.1 Our contribution
We formalize the model and definitions for the properties of integrity for privacy-
preserving aggregate queries on outsourced databases. We give a general model
for querying outsourced data in a three-player setting, in which a data owner
delegates to a third-party service provider the task of answering queries from
users.

We give protocols for privacy-preserving verification of aggregate queries in-
cluding SUM, MAX, MIN, COUNT, AVERAGE, and MEDIAN. The protocols
allow a user to verify both correctness and completeness of aggregate results
while the individual data values contributing to the results are kept secret from
the user. The user interacts with the service provider to obtain aggregate re-
sults, and can verify whether or not the service provider returns the correct and
complete results.

Our solutions for SUM-related aggregate queries are based on a homomor-
phic commitment scheme, making use of its linearity property. Our solutions for
MIN and MAX queries are based on a zero-knowledge proof of knowledge of a
greater-than relation of two values. We also use Merkle hash trees for efficient
authentication of commitment values.

Our algorithms are efficient. Let n be the number of elements in the data
set, and m be the number of elements to be aggregated in response to a specific
query. The space complexity for the data owner and the service provider are O(n)
(per setup), and O(m + log n) for the user (per query). The time complexity is
O(n log n) for the data owner (per setup), and O(m+ log n) for both the service
provider and the user (per query).

2 Preliminaries
In this section, we define our trust model and provide background on the cryp-
tographic building blocks we use to construct our solution.

2

2.1 Trust model

We use a three-party model in which a data owner, who is the originator or
creator of a database, delegates to a semi-trusted service provider the ability to
answer queries from a user. The data owner gives the service provider a copy of
the database, along with auxiliary information that enables the verification of
query results. The user submits queries to the service provider, and verifies the
correctness and completeness of the results returned by the service provider.

In practice, the data owner and the service provider may be the same en-
tity, but this abstraction allows us to clearly separate the tasks that must be
performed and where trust must be placed in the system to achieve our end
goals.

– Between data owner and service provider. The data owner provides the data
to a semi-trusted third-party to be able to assert that the data has not be
corrupted by insider fraud within the data owner’s organization. The data
owner must trust the service provider not to disclose the data directly to a
user, but rather only to answer well-formed queries from a user.

– Between service provider and user. The service provider is not necessarily
trusted to answer queries correctly since it may be compromised by outside
attacks or insider fraud. Therefore, the user should be able to verify that
responses from the service provider are correct and complete.

– Between data owner and user. The user must trust the data owner in the
sense that the user trusts any messages signed with respect to the data
owner’s public key. This model is similar to the trust assumptions of the
existing literature on outsourced databases [18, 21].

2.2 Cryptographic tools

We describe the building blocks that are used to construct our verification pro-
tocols. All of the algorithms discussed in this paper can be stated in terms of any
sort of proofs of integrity that begin by hashing their inputs with a one-way hash
function, including both digital signatures and time-stamp certificates. Since pre-
cise definitions of the security of time-stamping schemes are not yet clear in the
cryptographic literature (see [16, 7, 8]), we state all our security results only in
terms of digital signatures.

In order to protect the privacy of individual data items while providing veri-
fiable responses to aggregate queries, we make use of the cryptographic commit-
ment scheme due to Pedersen [26], which we review here. We assume that the
attribute values to be aggregated are numeric values that can be represented as
positive integers. Let G be any group of large prime order q in which the com-
putation of the discrete log is believed to be hard (and where q is large enough
so that our data values can be taken as integers modulo q). Let g and h ∈ G be
group elements of order q for which logg(h) is unknown. A commitment value for
the data value x is computed by choosing a random value r mod q and comput-
ing the group element Cr(x) = gxhr. A commitment value c can be “opened”
or de-committed as a correct commitment to x by revealing r to a verifier (who

3

checks the equation c = gxhr). This commitment scheme is computationally
binding and unconditionally hiding.

The Pedersen scheme enjoys a convenient homomorphic property: Given two
commitments ci = Cri

(xi) (i = 1, 2), it is easy to compute a commitment to the
sum of the unknown values x1 and x2 simply by computing the group element
c1c2 = Cr1+r2

(x1 + x2).
We will also require a cryptographic hash function H with domain [0, q− 1].
A zero-knowledge proof of knowledge allows a prover to demonstrate to a

verifier the knowledge of secret values or their relations (such as ≥) without
revealing them. For example, a proof of knowledge of a Pedersen committed
integer x demonstrates the knowledge of a value r such that Cr(x) = gxhr. We
use non-interactive proofs of knowledge, where the proof is contained in a single
message.

We will be using a specific (i.e., not generic) zero-knowledge proof of knowl-
edge for comparing pairs of data values with Pedersen commitments. The proto-
col was proposed by Durfee and Franklin [14] and is described in the appendix
of our full version [17]. Suppose C1 and C2 are commitments of x1 under ran-
dom value r1 and x2 under random value r2, respectively. Following the notation
of [9], we will write

POK (x1, r1, x2, r2|C1 = gx1hr1 , C2 = gx2hr2 , x1 − x2 ≥ 0)

to denote a proof of knowledge that x1 − x2 ≥ 0 holds.

3 Overview of data structures
In order to illustrate the sorts of queries that we handle and how we are going
to approach the problem, in this section we give a simple example.

The data owner (and the service provider) use an expanded table T for storing
and maintaining data entries. The table not only stores the plaintext data entries,
but also stores their sorting indices and commitments of values (discussed in
details in Section 2.2). Intuitively, a commitment of a value uniquely binds to
the value, but does not reveal the value.

For example, consider a regular database table that has l attributes, such
as age, salary, and number of dependents. An expanded table T contains 3l
columns: o1, . . . , ol, C(o1), . . . , C(ol), π(o1), . . . , π(ol), where oi is the plaintext
value of attribute i, C(oi) is the commitment of oi, and π(oi) is the ordering
index of oi. See Table 1. In more detail:

– Plaintext attribute values o1, . . . , ol are stored in case they are insensitive
and can be directly revealed.

– Commitments values C(o1), . . . , C(ol) are used for proving the correctness
and completeness of aggregate query results.

– Rankings π(o1), . . . , π(ol) are used for proving completeness, and are ob-
tained by the data owner sorting the data according to each attribute.

In our protocols, the data owner constructs a Merkle hash tree whose leaves
consist of entries of the entire table, including plaintext data, their commitments,

4

Age Salary Num C(age) C(sal) C(Num) π(age) π(sal) π(num)

25 $65K 0 C(25) C(65) C(0) 1 2 1
30 $50K 2 C(30) C(50) C(2) 2 1 3
35 $70K 1 C(35) C(70) C(1) 3 3 2
40 $80K 3 C(40) C(80) C(3) 4 4 4

Table 1. An example of the expanded table maintained by the data owner and the
service provider. Num represents the number of dependents. C(i) is the commitment
of value i. The plaintext data is in columns Age, Salary, and Num, and their rankings
are in columns π(age), π(sal), and π(num).

and their rankings. Each row of the table corresponds to a subtree whose leaves
are cells of the row. An internal node contains the hash value of its child nodes.
The root hash of the tree represents the digest of the entire table, and is signed
by the data owner. The purpose of using Merkle hash tree is to efficiently link
data elements so that integrity proofs enjoy logarithmic complexities. As it will
become clearer soon, using Merkle hash tree a verifier does not need all the data
elements (or their commitments) in order to verify a specific element in the set.
Only a logarithmic number of elements (or their commitments) is needed.

4 Verification protocols for aggregate queries
We present our verification protocols for sum, max/min, count, and average
queries. Our protocols can be generalized to answer combined aggregate queries,
aggregate query with selection clause, generalized sum queries such as linear
combination, generalized max queries such as median and kth-element. In this
section, to clarify our explanations, we use a simple table with one attribute and
no plaintext data. These building blocks can be easily expanded to include the
general form of data structure as in §3.

For each query-type, we present four operations: Commit, Query,
Respond, and Verify. We present protocols for correctness verification first,
and then give our solution for verification of completeness. The following proto-
cols are run by the data owner, service provider, and the user to answer aggregate
queries and verify the correctness of results. In the protocols described in §4.1
and §4.2, we assume that the query is over the complete set of unsorted data
(a1, . . . , an). To handle tables with multiple attributes, we generalize our proto-
col in §5.1.

General Setup: The data owner chooses a public/private key-pair
(PK, SK) for a secure digital signature scheme. The data owner chooses a group
G and elements g and h in G that specify an instance of the Pedersen commit-
ment scheme; let C denote this specification. The public parameters are given
by param = (PK, C, H, S,POK), where H is a hash function, S is the signature
scheme, and POK is a zero-knowledge proof of knowledge for the greater-than
comparison.

Denote the set A of data by (a1, . . . , an). Denote the Pedersen commitment
of data ai with random value ri by Ci (see §2.2). The data owner has an unsorted

5

set A of data (a1, . . . , an). The data (in plaintext) is given to the service provider
along with auxiliary information including commitments and a signature on the
digest of commitments. The service provider answers aggregate queries on behalf
of the data owner without revealing the data (a1, . . . , an). Yet, the user is able
to verify the result.

4.1 SUM queries
For sum query, the user obtains the sum s of set A from the service provider,
and verifies the correctness of s with respect to the commitments (C1, . . . , Cn)
of the data along with data owner’s signature on the root hash of commitments.
The details are as follows.

Commit: The data owner with public/private key pair (PK, SK) and data
(a1, . . . , an) commits and signs the data as follows. Choose n random values
(r1, . . . , rn). Compute the Pedersen commitment Ci of ai with ri as Ci = gaihri .
Construct a Merkle hash tree with commitments C1, . . . , Cn as leaf nodes of
the tree, and denote the root hash of the tree by hr. Sign the root hash
hr with the private key SK of the data owner, which gives a signature Sig.
Send the following information to the service provider in a secure channel:
{(a1, . . . , an), (r1, . . . , rn), (C1, . . . , Cn), Sig)}. The random value ris are for the
service provider to open commitments of the sum (see operation Respond).

Query: User queries for the sum of the data set A.
Respond: The service provider obtains from the data owner the following

information: {(a1, . . . , an), (r1, . . . , rn), (C1, . . . , Cn), Sig)}. It prepares the sum
and its proofs as follows. Compute the sum of data s =

∑n
i=1

ai. Compute the
sum of random values r′ =

∑n
i=1

ri. Send the following information to the user:
{s, r′, (C1, . . . , Cn), Sig}.

Verify: The user receives {s, r′, (C1, . . . , Cn), Sig} from the service provider.
The user verifies the correctness of sum s as follows. The user confirms that
gshr′

=
∏n

i=1
Ci, and constructs a Merkle hash tree with (C1, . . . , Cn) as leaf

nodes. Next, the user computes the root hash hr, and verifies that Sig is a correct
signature for hr with respect to the public key of the data owner, PK. We assume
that the user obtains PK through a regular public key certificate process. Sum
s is accepted if all verifications are successful, and rejected otherwise.

The security and efficiency of the protocol are described in §6. Our above
protocol can be generalized to a query for any linear combination of sum without
revealing the data values themselves. For example, a user can query for the sum
of 3a1 + 5a2 + 12a3 + . . ., which can be easily computed by the service provider
who has ai values. Our protocol can be easily modified to allow verification of
the sum in a privacy-preserving fashion.

The verification protocols of count and average queries can be built based on
the sum query. We consider aggregation over the entire set A. For verification of
count result n, the user simply counts the number of commitments (C1, . . . , Cn),
and confirms that it is n. The user constructs the Merkle hash tree of commit-
ments Cis and verifies the signature Sig of the root hash with the public key of
the data owner as in sum protocol. The protocol for average query can be built
by combining the sum and count verifications, and is not repeated here.

6

4.2 MAX/MIN queries
For a sorted list, the max/min query can be easily solved as follows. The data
owner sorts and signs the root hash of the Merkle tree. The service provider
returns the max or min element, and proves that the element is the last or the
first element of the sorted list. The user trusts the data owner for sorting the
list, and therefore the verification of correctness is equivalent to verifying the
position of the result in the list.

We focus on how to verify the correctness of max/min query for unsorted
data. We present our correctness verification protocol for max query, which can
be easily modified to answer min query. The proofs generated by the service
provider for max query are more complex than for sum query. We use the zero-
knowledge proof of knowledge for greater-than comparison described in Section
2.2 for the proof of comparison result.

Commit: Same as in sum protocol.
Query: The user queries for the maximum element of set A.
Respond: The service provider computes the maximum element aj of data

set A which contains (a1, . . . , an). For each data value ai ∈ A and i 6= j, prepare
the zero-knowledge proof of knowledge pi for aj ≥ ai:

pi = POK (ai, ri, aj , rj |Ci = gaihri , Cj = gaj hrj , aj − ai ≥ 0)

The service provider gives the following information to the user:
{aj, rj , (C1, . . . , Cn), (p1, . . . , pj−1, pj+1, . . . , pn), Sig}. Note that all the data
in A except the max is not revealed to the user. Also note that values of ai

and aj are not revealed, as the proofs are for the algebric equations. That is, the
verifier only learns about the comparison result, not the values themselves.

Verify: The user obtains the following information from the service
provider: {aj , rj , (C1, . . . , Cn), (p1, . . . , pj−1, pj+1, . . . , pn), Sig}, where pi is the
zero-knowledge proof of knowledge for aj ≥ ai. The user does: Open commit-
ment Cj with aj and rj . Construct a Merkle hash tree with (C1, . . . , Cn) as leaf
nodes. Compute the root hash hr and verify signature Sig of hr with the public
key PK of the data owner. We assume that the user obtains PK through a reg-
ular public key certificate process. The response is accepted if all verifications
are successful, and rejected otherwise.

A similar technique can be used to answer a query for the median or the kth
element of a set of data items (by changing the comparison proofs appropriately).

4.3 Nested aggregate queries
The above protocols assume that the queries are over the complete set of data.
We generalize our solutions to handle tables with multiple attributes in §5.1.

Our correctness protocols can be composed and generalized to verify more
complex aggregate queries, namely, nested aggregate queries. Nested aggregate
queries are an important and expressive type of query in database systems. For
example, a query asks for the max of the counts of numbers of cancer patients

7

per year. The yearly cancer patient numbers are first counted, and then the max-
imum is found. Or, for example, a query asks for the max of the sums of revenues
per quarters. The quarterly revenues are first summed up, and then the max-
imum is computed. Our previously presented protocols can be composed with
an arbitrary depth to support nested aggregate queries. The integrity verifica-
tion hides not only individual data entries but also intermediate values in nested
aggregate queries.

To give a concrete example, we present the verification protocol for max-sum
query. There are m data sets: A1, . . . , Am. The user wants the maximum sum of
individual sets.

Commit: The data owner commits and signs elements in each set of
A1, . . . , Am, similar to the sum protocol. The data owner computes commit-
ments of each data value in all sets, and signs the root hash of Merkle tree
built over the commitments. Let C represent all the commitments, Ci,k be the
commitment of k-th element in set Ai, and Sig be the signature.

Query: The user queries for the maximum number of the sums of individual
set A1, . . . , Am.

Respond: For each set Ai (i ∈ [1, m]), the service provider computes the
sum si, and compute the commitment Di for si by multiplying commitments

of Ai’s data in C: Di =
∏|Ai|

k=1
Ci,k. Note that the service provider also has the

random values to open Dis. Compute the maximum number of all sums, which
is denoted by sj (j ∈ [1, m]). For each sum si, prepare the zero-knowledge proof
of knowledge pi for sj ≥ si:

pi = POK (si, ti, sj , tj |Di = gsihti , Dj = gsj htj , sj − si ≥ 0)

The above proofs are for the maximum computation. The service provider
also needs to show proofs for summation computation using commit-
ments C, and the authenticity of commitments C is proved with signa-
ture Sig. The service provider gives the following information to the user:
{sj, C, (p1, . . . , pj−1, pj+1, . . . , pm), Sig}. Note that the intermediate sums are not
revealed except the max.

Verify: The user obtains the following information from the service provider:
{sj, C, (p1, . . . , pj−1, pj+1, . . . , pm), Sig}, where pi is the zero-knowledge proof of
knowledge for sj ≥ si. The user constructs a Merkle hash tree with C as the leaf
nodes. The user then computes the root hash and verifies signature Sig with the
public key PK of the data owner. We assume that the user obtains PK through
a regular public key certificate process. She then computes the commitment Di

for the intermediate sum, for all i ∈ [1, m] as Di =
∏|Ai|

k=1
Ci,k. Finally, the user

verifies pi for all i ∈ [1, m] and i 6= j using commitments Di. Max sj is accepted
if all verifications are successful, rejected otherwise.

5 Verification of completeness
The definition of the completeness of aggregate queries is directly based on the
completeness of selection queries. The basic building block is the existing proof-

8

of-knowledge protocol for proving greater-than relation of two values. One re-
quirement of our solution is that the attributes used for selection need to be
sorted by the data owner. For a relational database table, indices can be built
for arbitrary attributes. For a table that has multiple attributes, the attribute
used for selection can be different from the attribute for aggregation, for ex-
ample, average blood pressure for patients older than 55. In this example, we
require the table to be sorted under attribute age, but not under attribute blood
pressure.

Our description of completeness verification proof requires a generalization
of Commit operation in the previous section to support multiple attributes.

5.1 Support of multiple attributes

To support flexible aggregate with selection queries, we generalize our Commit,
Respond, and Verify operations in the previous section to handle tables with
multiple attributes. The main addition to Commit operation is that for a data
entry with multiple attributes, each attribute value is committed and the hash
value of concatenated commitments is used to build a Merkle hash tree. The
commitments are also required for verification in Verify operation.

Let (T1, . . . , Tl) be the attributes of a database table, and l is the number
of attributes. Denote the value of attribute Ti by ti (for i ∈ [1, l]). We assume
that all the attributes are sensitive and cannot be revealed to users. If certain
attributes are insensitive (and the problem becomes simpler), then the attribute
values rather than their commitments are computed in the hash value.

In Commit, for each database table entry, the data owner commits to at-
tribute value ti for all i ∈ [1, l], by computing Ci = gtihri , where ri is chosen
at random. The data owner computes the hash value of concatenated commit-
ments: h = H(C1, . . . , Cl), and constructs Merkle hash tree with all the hash
values as leaf nodes. As before, commitments, database tables, random values,
and the signature are given to the service provider.

Suppose a user submits an aggregate query for attribute T1. In response, the
service provider prepares correctness proofs for attribute T1 as in previous pro-
tocols. The service provider also gives commitments C1, . . . , Cl of all attributes
T1, . . . , Tl for each entry and proofs to the user. The user reconstructs the hash
root and verifies the correctness of query result.

5.2 Completeness verification protocol

We present the completeness verification protocol for aggregate queries with
selection. Consider a table with l attributes T1, . . . , Tl. Our presentation of the
protocol uses a range query [y1, y2] for an attribute Tj, and aggregation is over
attribute Ti. We augment the operations to support proof of completeness.

Without loss of generality, we assume that data entries on the Merkle hash
tree are sorted under attribute Tj. That is, the left most entry on the tree has
the smallest Tj value, and so on. Our protocol can be modified to allow arbitrary
orderings without revealing unnecessary ranking information, which is discussed
at the end of this section.

9

Commit: The data owner sorts data entries from small to large, based on
one or more attributes that are used for selection, computes commitments as
described in §5.1, constructs Merkle hash tree, and signs the root hash. Let the
signature be Sig.

Query: Without loss of generality, let the user’s query be an aggregation
of attribute Ti (i ∈ [1, l]) over the selection over attribute Tj (j ∈ [1, l]) whose
values lie between [y1, y2].

Respond: To construct the proof for completeness, the service provider se-
lects the entries that lie in the selection range, which are denoted by A. Then
the service provider computes the required aggregate (such as sum, max, etc)
of attribute Ti. The completeness proof shows two goals: (1) the unaggregated
entries are out of the selection range, and (2) the aggregated entries are within
the range. The techniques for (1) and (2) are essentially the same and use zero-
knowledge proofs of knowledge. To show (1), we distinguish the following three
cases.

– If the selected entries has two immediate neighboring entries, then the ser-
vice provider constructs a zero-knowledge proof of knowledge that the two
entries are beyond the selection range [y1, y2]. Denote the zero-knowledge
proofs of knowledge as plft and prgt. The ZK proof plft shows that the entry
immediately to the left 3 of the set of selected entries A has a Tj attribute
value vlft smaller than y1, i.e., vlft < y1. The ZK proof prgt shows that the en-
try immediately to the right of the set of selected entries A has a Tj attribute
value vrgt larger than y2, i.e., vrgt > y2.
Let rlft and rrgt be the random values used by the data owner to compute
the commitments of vlft and vrgt in Commit, respectively. The proofs plft

and prgt are expressed below.

plft = POK (vlft, rlft, |Clft = gvlfthrlft , y1 − vlft > 0)

prgt = POK (vrgt, rrgt, |Crgt = gvrgthrrgt , vrgt − y2 > 0)

The service provider gives the following information to the user: commit-
ments of selected entries denoted by CA, commitments of neighbors Clft and
Crgt, proofs plft and prgt, data owner’s signature Sig, and companion hashes.
Recall companion hashes are hash values at the roots of disjoint subtrees
of the Merkle hash tree all of whose leaves correspond to commitments of
unselected data entries (i.e., not in set A).

– If the selected entries has one immediate neighboring entry, then the service
provider constructs a zero-knowledge proof of knowledge that the entry is
beyond the selection range [y1, y2] as above, i.e., either vlft < y1 or vrgt > y2.

– If no element is out of the selection range, i.e., all entries are selected, the
Merkle tree construction implicitly proves the completeness. Hence, the ser-
vice provider returns all the commitments and signature Sig.

3 Sorting in Commit is from small to large.

10

For (2) (i.e., the aggregated entries are within the selection range), the service
provider shows that the smallest aggregated entry is greater than the lower-
bound y1, and similarly, the largest selected entry is less than the upper-bound
y2, if both cases apply. In the selection range is unbounded at one end, then
the service provider proves that (i) the lower (or upper) bound is satisfied using
zero-knowledge proof of knowledge, and (ii) all the rest of the database entries
are (selected and) aggregated, which is implicitly proved in the Merkle tree
construction 4. The details of the proofs are omitted here.

Verify: The user verifies the completeness of results by computing the root
hash of Merkle hash tree with commitments CA, Clft, Crgt, and companion
hashes, verifying the signature Sig on the root hash with data owner’s public
key, and verifying the zero-knowledge proofs of knowledge. The query is accepted
if all verifications are successful, rejected otherwise.

The above protocol uses a range as the selection clause. For just ≥ or ≤
predicates, a simplified version of our protocol suffices, as the proof of only one
neighbor is needed. For an equality predicate, the service provider prepares a
completeness ZK proof showing that immediate neighbors of selected entries are
either larger or smaller than the predicate. The solution presented supports the
selection of one attribute. For more complex selections of multiple attributes, for
example, age ≥ 30 and height ≥ 6′, a multi-dimensional range tree [24] has to
be constructed by the data owner.

5.3 Generalizing the Completeness Proof

Above we assumed that entries on the hash tree are sorted under attribute Tj ,
which is also used for the selection. In order to support general completeness
proof, the data owner also sorts the data under each attribute, and the indices
or rankings are stored as part of the table, as shown, for example, in Table 1
in §3. To further hide the rankings, the rankings can also be committed and
then folded into the hash tree, as described above. We demonstrate this using
an example as follows.

Consider Table 1, instead of using ranking 3 for entry $70K for attribute
π(sal) in the Merkle hash tree, the data owner computes a randomized commit-
ment of 3, denoted by Cπ = g3hr for a random r. Similarly, for entry $65K, let
C′

π = g2hr′

be a commitment of ranking 2, for a random r′.
Suppose that the selection criteria of a user’s query is for salary greater-than

$67K. This selects $70K entry, but not $65K entry. To prove that the selection
is complete, the service provider shows that (1) $65K < $67K, (2) ranking 3 is
higher than ranking 2 by 1, and (3) $65K has ranking 2 and $70K has ranking 3.
Requirement (3) is proved implicitly because in Merkle hash tree commitments
of $65K and ranking 2 are grouped and hashed together and similar for $70K
and ranking 3. Requirement (1) can be proved with zero-knowledge proofs of
knowledge without revealing $65K. Finally, requirement (2) can be proved by
showing that Cπ/C′

π is a commitment of 1: Cπ/C′
π = g3−2hr−r′

= ghr−r′

. The

4 One can tell if an entry is missing, because its commitment is needed to obtain the
root hash.

11

Commit Respond Verify Update Storage

Data owner O(n log n) – – O(k log n) O(n)
Service provider – O(m + log n) – O(k log n) O(n)

User – – O(m + log n) – O(m + log n)
Table 2. Time and space complexities of the protocol.

user is given r − r′ to open the commitment of 1. Due to space limit, we omit
the formal description of this generalized protocol in this version.

6 Security and efficiency
We have analyzed the adversarial model and proved the security of our protocols.
Our approach is to give a formal game-based security definition in the random
oracle model. Given a set param of system parameters chosen by the challenger,
an adversary is able to adaptively choose a set of commit and query requests to
the challenger. The adversary’s goal is have non-negligible probability of success
either in making a guess that breaks the secrecy-preserving properties of our
protocol, or in computing a new incorrect query-response pair that passes the
Verify algorithm. We give a concrete-security proof, reducing the existence of
a successful polynomially bounded adversary for our scheme to the existence
of an adversary that successfully breaks one or more of the signature scheme,
the Pedersen commitment scheme, or the one-way hash function. Our security
definitions and proofs are given in the appendix of our full version [17].

Next we analyze the complexities of operations in our verification protocols.
We consider the verification of both correctness and completeness. The analysis
is independent of the specific type of aggregate query. Let n be the size of all data,
m be the size of data selected for query, and k be the number of data elements
updated in an Update operation. Our verification algorithms have cost linear
in the number of data elements selected by a query. This is to be expected, given
our approach, since in essence our procedures verify each of these data elements’
contribution to the correct response. A summary is given in Table 2.

7 Related work
Several cryptographic techniques have been proposed to protect the integrity
of data even if the adversary is an insider, including forward integrity [4, 5, 28]
and time-stamping [3]. However, these techniques do not directly address the
problem of establishing the integrity of aggregate statistics computed over that
data.

A substantial amount of research work has been done on how to verify out-
sourced data and computation [13, 19, 22, 23], including the verification of both
correctness and completeness of relational database queries. The existing litera-
ture on database query verification has focused on non-aggregate queries such as
SELECT, PROJECT, JOIN, SET UNION and INTERSECTION. Merkle hash
trees have been used extensively for authentication of data elements [20]. Aggre-

12

gate signatures are another approach for data authentication, where each data
tuple is signed by the data owner [23]. Most recently, the privacy issue in ver-
ifying non-aggregate queries was first addressed by [25], which gave an elegant
solution using hashing for proving the completeness of selection queries without
revealing neighboring entries. We provide an alternative solution for the privacy
issue in completeness proof by utilizing zero-knowledge proofs of knowledge and
a commitment scheme.

The aggregate query verification problem has been studied in database-as-
a-service (DAS) model [19, 22]. This model is an instantiation of the computing
model involving trusted clients, who store their data at an untrusted server that
are administrated by the service provider. The challenge is to make it impossible
for the system provider to correctly interpret the data. The data is owned by
clients. The clients only have limited computational power and storage, and they
rely on the server for the mass computational power and storage. The server ex-
poses mechanisms for the clients to create and manage the client databases at
the server. Data originates from the client. The recent paper by Hacigümüs, Iyer,
and Mehrotra [19] addresses the execution of aggregate queries over encrypted
data using a homomorphic encryption scheme. Mykletun and Tsudik [22] pro-
posed an alternative approach where the data owner pre-computes and encrypts
the aggregate results and stores them in the service provider. This approach
avoids the use of homomorphic encryption, which was found to have a security
flaw when used for DAS [22]. The correctness and completeness definitions do
not apply to these models as the user is also the data owner in DAS. Our model
is different from DAS, and is suitable for a more general security setting, as the
data does not have to be originated from the client. We compare major features
of our work with existing solutions in Table 3.

Searchable symmetric-key encryption schemes for private-key storage out-
sourcing have been previously studied (e.g., [1, 29]). Most recently, improved
security definitions and constructions are proposed by Curtmola, Garay, Ka-
mara, and Ostrovsky [11]. Public-key systems have also been used to construct
searchable encryption schemes [1, 31], including a practical searchable and en-
crypted audit log system [31]. In general, symmetric key encryption is more
efficient than public-key encryption. In the meantime, the symmetric key en-
cryption typically requires live key updates, which incur communication costs.
Our authentication protocol differs from the above work in that it focuses on
the validation of query results, and supports data aggregate besides search (i.e.,
equality and comparison-based selection).

Damiani et al are the first to address the access control issue in encrypted
outsourced data [12]. They proposed to use selective data encryption and tree-
based key management to delegate to the service provider the access control
enforcement. Their goal is to reduce the workload of data access management
by the data owner in a dynamic scenario. Their security model is different from
ours in that their clients have different access privileges to data and are allowed
to view selective plaintext data.

13

Ours NT [23] DGMS [13] PJRT [25] HIM [19]/MT [22]

Aggregate Q. Yes No No No Yes
Correctness Yes N/A N/A N/A N/A

Completeness Yes Yes Yes Yes N/A
Authenticity Yes Yes Yes Yes Yes

Privacy Yes No No Yes Yes
Data Structure Tree-based Signature chain Tree-based Tree-based N/A
Table 3. Comparisons of functionalities of our verification protocols with some of the
existing approaches developed for outsourced systems.

In data mining literature [2, 27, 30], an important approach to protect data
privacy is to modify database tables such that an individual entry enjoys certain
degree of anonymity. Our solutions differ from existing efforts in that we support
authenticated ad hoc data analysis without releasing the microdata to the public.
Because the aggregate is computed over exact data instead of generalized data,
there is no loss of data accuracy in the aggregate results.

8 Future work
One interesting future direction is to develop efficient data update algorithms.
All of our discussion has been directed towards queries on a fixed database.
A dynamically changing database can be handled with periodic time-stamped
snapshots of the database, where each signature (of the root of the Merkle hash
tree) is accompanied by a third-party time-stamp certificate. In this scenario,
queries would include a time, and the Verify algorithm is changed to require
verification of the time-stamp certificate with respect to the appropriate snapshot
time. Note that changes to any data item require not only changes along the path
from the corresponding Merkle-tree leaf to the root of the tree, but also sorting
the elements and updating indices associated with the attribute. To avoid or to
reduce the sorting overhead (e.g., sorting a subset of elements instead of all of
them), it is conceivable that advanced data structures such as multi-dimensional
range-trees may be used. More investigations on these topics need to be carried
out.

Another challenging direction is to develop unlinkable and verifiable data ag-
gregation. The linkage problem occurs when a prover (database holder) answers
several different queries from the verifier and returns the same set of commit-
ments. Then, there is a possible leakage of information. For example, if one query
asks how many people live in Springfield and another query asks how many are
over forty years old, then by viewing the returned commitments the verifier
could determine how many people over forty there are in Springfield, i.e. an in-
formation leakage occurred. One way to prevent this is to change commitments
over time; for example, a prover could randomize commitments. This procedure
should not require interaction from the prover with the proof preparer. In the
meantime, a user should still be able to verify the randomized commitments are
generated from authentic data.

14

References
1. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. M. Lee,

G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions. In In CRYPTO 2005,
volume 3621 of LNCS, pages 205–222. Springer, 2005.

2. Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, May 2000.

3. D. Bayer, S. Haber, and W.S. Stornetta. Improving the efficiency and reliability of
digital time-stamping. In R.M. Capocelli, A. De Santis, and U. Vaccaro, editors,
Sequences II: Methods in Communication, Security, and Computer Science, pages
329–334. Springer-Verlag, 1993. (Proceedings of the Sequences Workshop, Positano,
Italy, 1991.).

4. M. Bellare and B. Yee. Forward integrity for secure audit logs. Technical report,
University of California, San Diego, November 1997.

5. M. Bellare and B. Yee. Forward security in private-key cryptography. In CT-RSA,
volume 2612 of LNCS, pages 1–18. Springer-Verlag, 2003.

6. F. Boudot. Efficient proofs that a committed number lies in an interval. In Ad-
vances in Cryptology - EuroCrypt ’00, volume 1807 of Lecture Notes in Computer
Science, pages 431 – 444. Springer-Verlag, 2000.

7. A. Buldas and M. Saarepera. On provably secure time-stamping schemes. In
Advances in Cryptology — ASIACRYPT 2004, volume 3329 of Lecture Notes in
Computer Science, pages 500–514, October 2004.

8. A. Buldas and M. Saarepera. Do broken hash functions affect the security of
time-stamping schemes? In Internatioanl Conference on Applied Cryptography and
Network Security (ACNS ’06), volume 3989 of Lecture Notes in Computer Science,
pages 50 – 65, 2006.

9. Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is
the product of two safe primes. In Advances in Cryptology - EUROCRYPT ’99,
volume 1592 of LNCS, pages 107–122. Springer Verlag, 1999.

10. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Advances in Cryptology - CRYPTO
’94, volume 839 of Lecture Notes in Computer Science, pages 174 – 187. Springer-
Verlag, 1994.

11. Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-
metric encryption: Improved definitions and efficient constructions. In Proceedings
of the 13st ACM Conference on Computer and Communications Security (CCS),
2006.

12. Ernesto Damiani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. Selective data encryption in out-
sourced dynamic environments. Electr. Notes Theor. Comput. Sci., 168:127–142,
2007.

13. P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic third-party data
publication. Journal of Computer Security, 11(3), 2003.

14. Glenn Durfee and Matt Franklin. Distribution chain security. In Proceedings of
the 7th ACM Conference on Computer and Communications Security (CCS), pages
63–70, New York, NY, USA, 2000. ACM Press.

15. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptively chosen message attacks. SIAM Journal on Computing, 7(2):281–308,
1988.

15

16. S. Haber and W.S. Stornetta. Secure names for bit-strings. In Proceedings of
the 4th ACM Conference on Computer and Communication Security, pages 28–35.
ACM Press, April 1997.

17. Stuart Haber, William G. Horne, Tomas Sander, and Danfeng Yao. Privacy-aware
verification of aggregate queries on outsourced databases with applications to
historic data integrity, February 2008. http://www.cs.rutgers.edu/∼danfeng/

papers/agg-ver-full.pdf.
18. H. Hacigümüs, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted

data in the database-service provider model. In Proceedings of ACM SIGMOD
Conference on Management of Data, pages 216 – 227. ACM Press, June 2002.

19. H. Hacigümüs, B. Iyer, and S. Mehrotra. Efficient execution of aggregation queries
over encrypted databases. In Proceedings of International Conference on Database
Systems for Advanced Applications (DASFAA), 2004.

20. R. Merkle. Protocols for public key cryptosystems. In Proceedings of the 1980
Symposium on Security and Privacy, pages 122–133. IEEE Computer Society Press,
1980.

21. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in
outsourced databases. In Proceedings of Symposium on Network and Distributed
Systems Security (NDSS), February 2004.

22. E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service
model. In IFIP WG 11.3 Working Conference on Data and Applications Security
(DBSec), July 2006.

23. M. Narasimha and G. Tsudik. Authentication of outsourced databases using signa-
ture aggregation and chaining. In International Conference on Database Systems
for Advanced Applications (DASFAA), April 2006.

24. Glen Nuckolls, Charles U. Martel, and Stuart G. Stubblebine. Certifying data from
multiple sources. In Data and Applications Security XVII: Status and Prospects,
IFIP TC-11 WG 11.3 Seventeenth Annual Working Conference on Data and Ap-
plication Security, pages 47–60, 2003.

25. HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. Verifying
completeness of relational query results in data publishing. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 407–418, 2005.

26. T. P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract). In Advances in Cryptology - EuroCrypt ’91, volume 547 of Lecture Notes
in Computer Science, pages 522 – 526. Springer-Verlag, 1991.

27. Periangela Samarati. Protecting respondent’s privacy in microdata release. IEEE
Transactions on Knowledge and Data Engineering, 13(6):1010 – 1027, 2001.

28. B. Schneier and J. Kelsey. Cryptographic support for secure logs on untrusted
machines. In Proceedings of the 7th USENIX Security Symposium, pages 53–62.
USENIX Press, 1998.

29. D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted
data. In In Proceedings of 2000 IEEE Symposium on Security and Privacy, pages
44 – 55, May 2000.

30. Latanya Sweeney. k-Anonymity, a model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557 – 570,
2002.

31. Brent R. Waters, Dirk Balfanz, Glenn Durfee, and Diana K. Smetters. Building
an encrypted and searchable audit log. In Proceedings of Symposium on Network
and Distributed Systems Security (NDSS ’04), 2004.

16

A Security definitions and proof
In this section we give our game-based definition of security, and then prove that
our protocols satisfy this definition. For simplicity, the game definition is for a
single attribute table. It can be generalized to multiple attribute queries and is
omitted.

Setup: The challenger takes a security parameter k, and generates public
parameters param, which is given to the adversary. The challenger keeps the
private key SK to itself.

Phase 1: The adversary issues queries q1, . . . , qm, where qi is one of the
followings:

1. Commit query (A): The challenger computes commitments of data elements
in set A. The commitments and random values used are given to the adver-
sary.

2. Sign query (hr): The challenger signs the root hash hr with its private key.

3. Aggregate query (A,Q): The challenger runs the corresponding Respond
algorithm to answer query Q of A. The resulting answer ans, correctness and
completeness proofs pf, and the signature Sig of A are sent to the adversary.

These queries may be asked adaptively. Also, the queried set at each query
may be distinct. Once the adversary decides that Phase 1 is over, she chooses
a challenge for attacking privacy. (No need of choosing challenge for attacking
correctness and completeness.)

Privacy challenge: The adversary outputs two distinct equal size sets A0

and A1 and an aggregate query Q∗ to be challenged, such that query Q∗ on
set A0 and A1 gives the same result – the adversary cannot tell them apart
by just seeing the query result. The challenger picks a random bit b ∈ {0, 1},
computes the query results and proofs on set Ab by running Respond algorithm,
which outputs (ans∗, pf∗, Sig∗). It sends (ans∗, pf∗, Sig∗) as a challenge to the
adversary. The adversary needs to guess whether A0 or A1 is used to produce
the aggregate result ans∗.

Correctness challenge: The adversary outputs a data set Ã = (ã1, . . . , ãn),
commitments {C̃} = (C̃1, . . . , C̃n) of data elements, and random values r̃1, . . . , r̃n

used in computing the commitments. The challenger opens the commitments by
re-computing them with ãi and r̃i. If all the commitments are verified success-
fully, the challenger constructs the Merkle hash tree and signs the root hash.
The signature S̃ig is given to the adversary.

Phase 2: The adversary issues more queries. The challenger responds as in
Phase 1.

Guess: The adversary outputs one or more of three guesses for attacking
correctness, completeness, and privacy, respectively.

Privacy guess: The adversary outputs a guess b′ ∈ {0, 1}. The adversary
wins the game if b = b′. We define its advantage in attacking the scheme to be
|Pr[b = b′] − 1

2
|.

Correctness guess: The adversary outputs (Q̃, Ã, ˜ans, p̃f, ˜Sig∗), such that
˜ans is not the correct result of query Q̃ over data set Ã, however p̃f is an ac-

17

ceptable proof of correctness of result ˜ans, and ˜Sig∗ is an acceptable signature.
We allow ˜Sig∗ to be different from what is given in Correctness challenge.
However, the additional constraint is that ˜Sig∗ is a signature of a message (root
hash) that has not been signed in Phase 1 or Phase 2. In other words, the
adversary can demonstrate that a wrong answer can pass the correctness verifi-
cation. Note that the adversary needs to output the individual data values of Ã
in her attack.

Completeness guess: The adversary outputs (Q̃, Ã, ˜ans, p̃f, S̃ig), such that
˜ans is not the complete result of query Q̃ over the data set Ã, however p̃f

is an acceptable proof of completeness and S̃ig is an acceptable signature of
commitments of the data. In other words, the adversary can demonstrate that
an incomplete answer can pass the completeness verification.

Theorem 1. Our verification protocols of aggregate query results on outsourced

databases preserve the correctness, completeness, and privacy properties, assum-

ing the existence of a collision-free hash function, a secure commitment scheme

with hiding and binding properties, and a signature scheme secure against exis-

tential forgery.

Proof: For simplicity, our proof is for a single attribute table. The proof
generalizes to multiple attribute queries naturally, which is omitted. Let Adva

be the adversary that has advantage against our correctness or completeness
verification protocol. Let us construct an adversary Advb that uses Adva to gain
advantage against collision-free hash function, secure commitment scheme, se-
cure signature scheme, or zero-knowledge proof of knowledge for the greater-than
comparison. The adversary Advb acts as the challenger for Adva and uses Adva’s
outputs as her own outputs. Advb answers Adva’s queries as follows.

Setup: Advb’s challenger chooses hash function H , commitment scheme C,
signature scheme S, and the zero-knowledge proof of knowledge P for the greater-
than comparison. Advb’s challenger gives Advb a public key PK of the signature
scheme S. Advb then gives the adversary Adva the resulting public parameters
param = (PK, H, C, S, P). Note that Advb does not know the private key SK of
signature scheme S.

Phase 1: For query qi, Advb answers Adva’s queries as follows. The queries
may be asked adaptively. Also, the queried document at each query may be
distinct.

1. Commit query (A): Advb runs the first several operations in Commit al-
gorithm on A, including computing commitments, building hash tree over
commitments, and gathering auxiliary information Info. The commitments
and Info are given to the user.

2. Sign query (hr): Advb does not know how to sign the root hash, because he
does not have the private key. Therefore, Advb submits a signing query on the
root hash to his challenger (of the signature scheme to break), and obtains a
signature Sig (the game definition for signature scheme is not given, please
see [15]). Signature Sig is given to the user.

18

3. Aggregate query (A,Q): Advb runs a commit query and a sign query on A
to obtain the signature Sig, commitments, and auxiliary information Info.
Then Advb runs the corresponding Respond algorithm to compute query
Q on A. The resulting answer ans, correctness and completeness proofs pf,
and the signature Sig of data set A are sent to Adva.

Once Adva decides that Phase 1 is over, she chooses a challenge for attacking
privacy.

Privacy challenge: Adva outputs two distinct equal-size (n) data sets A0

and A1 and an aggregate query Q∗ to be challenged, such that query Q∗ on set
A0 and A1 gives the same result (Adva should not be able to tell them apart by
just seeing the query result or the size.) Advb chooses a random i ∈ [1, n], such
that the i∗-th elements of A0 and A1 are distinct. Denote the two elements by
a0

i∗ and a1
i∗ , respectively.

Advb needs to use Adva’s advantage against the confidentiality to break the
hiding property of commitment scheme. Advb needs to embed his commitment
challenge in the challenge of Adva. Values a0

i∗ and a1
i∗ are Advb’s two messages

of choice for breaking the hiding property of commitment C. Advb’s challenger
generates a challenge for Advb as follows. Advb’s challenger picks a random bit
b ∈ {0, 1}, and computes a commitment of ab

i∗ . Denote this challenge as Cb
∗.

Although Advb does not know b, Advb needs to compute commitments of
elements in Ab (b ∈ {0, 1}) such that the correctness verification can pass. Advb

first computes the aggregate result ans∗ of query Q∗, then Advb chooses a random
guess b′′ ∈ {0, 1}. Note that, b′′ = b with probability 1/2. For each j-th element
in Ab′′ for all j 6= i∗ and j 6= 1, Advb computes a commitment Cj .

Advb distinguishes two cases.

(1) For sum-related query Q∗, Advb chooses random r and computes a com-
mitment for the sum: Cs = gans∗hr. (The sum is the same for A0 and A1

as defined.) Advb then computes the commitment C1 for the first element as
C1 = Cs/(Cb

∗ ×
∏n

j=2,j 6=i∗ Cj). Now, Advb has embedded his commitment chal-
lenge at the i∗-th position of A’s challenge. ans is the aggregate result. Ran-
dom value r and commitments Cj (j 6= i∗, j ∈ [1, n]) and Cb

∗ are correctness
proof pf∗ for summation. Advb also obtains a signature Sig∗ as in sign query.
(ans∗, pf∗, Sig∗) is given to Adva. Readers can verify that the correctness verifi-
cation of (ans∗, pf∗, Sig∗) should be successful even though Advb does not know
b.

(2) For max/min type of query Q∗, for the i∗-th position, Advb does not
know ab

i∗ , therefore, he has to simulate the greater-than proof (i.e., transcript).
The simulation can be done, because of the zero-knowledge property of greater-
than protocol, which guarantees that the verifier sees during the protocol (i.e.,
the transcript) can be simulated by anyone without knowing the secret. Denote
the simulated proof by pi∗ . One goal in simulating the proof is to prepare com-
mitments α0, . . . , αt−1, each corresponding to a random commitment of 0 or 1,

such that
∏t−1

i=0
α2

i

i is a commitment of |ab
i∗ − ans∗|, as in the zero-knowledge

proof of knowledge for greater-than. W.l.o.g., we assume that ans∗ > ab
i∗ and

the query is max. Denote the commitments of ab
i∗ and query result ans∗ by Cb

∗

19

and Cans∗ , respectively. Note that Advb does not know ab
i∗ , thus does not know

the bit presentation of ans∗ − ab
i∗ . Advb first chooses random commitments for

α1, . . . , αt−1, and then computes α0 = Cans∗/(Cb
∗

∏t−1

i=1
α2

i

i).

In addition, Advb has to simulate zero knowledge proofs to show that values
committed by α0, . . . , αt−1 are either 0 or 1. This can be done without Advb

knowing the real values committed, because of the zero-knowledge property of
the OR proof (see the previous section for the definition of zero-knowledge prop-
erty). Therefore, Advb can simulate proof pi∗ . We omit further details of proof
simulation and refer readers to literature for details [6, 10, 14]. The correctness
proof pf∗ contains pj (j ∈ [1, n], j 6= i∗) and pi∗ . Advb also obtains a signature
Sig∗ as in sign query. (ans, pf∗, Sig∗) is given to Adva.

In both the above cases, Advb can also generate completeness proof in pf∗

(if it applies). Because completeness proof would be the same for A0 or A1, it
cannot be used to gain advantage for privacy attack, hence is omitted here.

Correctness challenge: Adversary Adva outputs a data set Ã =
(ã1, . . . , ãn), commitments {C̃} = (C̃1, . . . , C̃n) of data elements, and random
values r̃1, . . . , r̃n used in computing the commitments. Adversary Advb opens
the commitments by re-computing them with ãi and r̃i. If all the commitments
are verified successfully, Advb constructs the Merkle hash tree. Then, Advb asks
its challenger to sign the root hash. The resulting signature S̃ig is given to Adva.

Phase 2: The adversary issues more commit queries, sign queries, and ag-
gregate queries. The challenger responds as in Phase 1.

Guess: Adversary Adva outputs one or more of three guesses for attacking
correctness, completeness, and privacy, respectively.

Privacy guess: Adversary Adva outputs a guess b′ ∈ {0, 1}. Advb outputs
b′ as his guess for breaking the hiding property of the commitment scheme. If
Adva has advantage ǫ1 in breaking the confidentiality property, then Advb has
advantage at least ǫ1/2 in breaking the commitment scheme. Recall that Advb

does not know b and thus when computing commitments in the proofs for Adva,
it guesses randomly whether to use elements from A0 or A1. For half of the time,
Adva is given the right combination of committed values. Thus, Advb carries over
advantage ǫ1/2 in breaking the hiding property of the commitment scheme.

Adversary Adva may also try to gain advantage from proof information other
than commitments, for example, from zero-knowledge proofs of knowledge for a
great-than relation. Reduction can be directly constructed from advantages in
such attacks to breaking the zero-knowledge property of the greater-than proof
protocol, and is omitted here.

Correctness guess: Adversary Adva outputs (Q̃, Ã, ˜ans, p̃f, ˜Sig∗), such that
˜ans is not the correct result of query Q̃ over data set Ã, however p̃f is an accept-

able proof of correctness, and ˜Sig∗ is an acceptable signature of commitments
of data. Advb’s goal is to try to convert Adva’s output into either breaking the
binding property of commitment scheme or an existential signature forgery. We
distinguish two cases.

– ˜Sig∗ 6= S̃ig: ˜Sig∗ is not the same as given in Correctness challenge.
As defined, the constraint is that ˜Sig∗ is a signature of a message (root

20

hash) that has not been signed in Phase 1 or Phase 2. This means that
Advb obtains a signature that breaks the existential unforgeability property.
Advb outputs ˜Sig∗ and the corresponding message (which is the root hash
of Merkle tree and can be easily obtained from the proof p̃f). If Adva has
advantage ǫ2 in this attack, then Advb has advantage ǫ2 in breaking the
existential unforgeability of the signature scheme.

– ˜Sig∗ = S̃ig: Denote the commitments in p̃f by {C̃∗}. We distinguish the
following three cases.
(1) If the commitments {C̃∗} are the same as the commitments {C̃} (com-
puted in Correctness challenge) and the query Q̃ is summation-based
(e.g., sum, count, etc), then Advb can break the binding property of com-
mitment scheme as follows. Advb computes the correct answer ans of set Ã
for query Q̃, and computes the commitment Cans of ans based on the com-
mitments C̃1, . . . , C̃n: Cans =

∏n
i=1

C̃i. Cans is also the commitment of the

incorrect result ˜ans, because
∏n

i=1
C̃i =

∏n
i=1

C̃∗
i. Advb outputs Cans as the

commitments for both ans and ˜ans to its challenger. If Adva has advantage
ǫ3 in this attack, then Advb has advantage ǫ3 in breaking the binding prop-
erty of the commitment scheme. (Advb also knows how to open commitment
Cans.)
(2) If the commitments {C̃∗} are the same as the commitments {C̃} (com-
puted in Correctness challenge) and the query Q̃ is comparison-based
(e.g., min, max), then Adva can cheat on the greater-than protocol in the
correctness proofs of max/min query. This means that Advb can break the
soundness of zero-knowledge proof of knowledge for the greater-than com-
parison. The analysis is similar to our completeness analysis (below), and is
omitted here.
(3) If the commitments {C̃∗} are different from the commitments {C̃}, then
Adva has find a hash collision. That is, Adva has find at least a different
message pair (commitments) giving the same hash value (and thus same
signature). If Adva has advantage ǫ4 in finding such a message-signature pair,
then Advb has advantage ǫ4 in breaking the collision-free hash function.

Completeness guess: Adversary Adva outputs (Q̃, ˜ans, Ã, p̃f, S̃ig), such
that ˜ans is not the complete result of query Q̃ over a set of data, however
p̃f is an acceptable proof of completeness and S̃ig is an acceptable signature of
commitments of data. Let the selection range be [x, y]. This means that Adva

cheats on the zero-knowledge greater-than proof in either one or both cases: (1)
proving in zero-knowledge that alft < x, however alft ≥ x; (2) proving in zero-
knowledge that argt > y, however argt ≤ y. If Adva achieves this, Advb can break
the soundness of zero-knowledge proof of knowledge for the greater-than relation.
Recall that soundness means that no one who does not know the secret can con-
vince the verifier with non-negligible probability. In this proof protocol, it means
that no one who does not know a secret satisfying the greater-than relation can
convince the verifier with non-negligible probability. If Adva has advantage ǫ5
in cheating the completeness proof, then Advb has advantage ǫ5 in breaking the
soundness of zero-knowledge proof of knowledge for the greater-than relation. �

21

B Durfee and Franklin’s Zero-Knowledge Proofs

of Knowledge Protocol
Our protocols need proofs that two committed integers, x1 and x2, satisfy an
inequality such as x1 ≥ x2 [6, 10, 14]. One approach is to show that x1 − x2 ≥
0. We review the greater-than proof by Durfee and Franklin that is based on
the bit commitments of the difference x1 − x2, following their description [14]:
POK (x1, r1, x2, r2|C1 = gx1hr1 , C2 = gx2hr2 , x1 − x2 ≥ 0).

The prover can compute the commitment C′ = Cr1−r2
(x1 − x2), and the

verifier can compute this as C′ = C1/C2. Let (γi)
t−1

i=0 be the binary representation

of x1 − x2, i.e., x1 − x2 =
∑t−1

i=0
2iγi, where t is the bit length of the difference.

Choose random values s1, . . . , st−1 and set s0 = r1 − r2 −
∑t−1

i=1
2isi. Let αi =

Cγi
(si) = gγihsi for all i ∈ [0, t − 1]. Suppose the verifier knows that the bound

x1, x2 ∈ [0, 2t) holds. The prover provides the commitments α0, . . . , αt−1 along
with a proof that each γi is a bit (either 0 or 1). The verifier checks the proof that

each bit committed by αi is either 0 or 1 and confirms that equation C2

∏
α2

i

i =
C1 holds. Suppose the verifier does not know the bound of x1 or x2. Then, a
zero-knowledge proof of knowledge that x1 ∈ [0, 2t) and x2 ∈ [0, 2t) can be
constructed in a similar fashion. In our protocol, we assume the bounds of x1

and x2 are known by the verifier (or the user), which is usually the case for most
database entries such as zip code, salary, age, etc.

A special case of greater-than proof called interval proof. An interval proof
proves that a committed integer satisfies an inequality such as x ≥ A or
y ≤ B, where A and B are constants: POK (x1, r1|C1 = gx1hr1 , x1 − A ≥ 0),
POK (x2, r2|C2 = gx2hr2 , B − x2 ≥ 0).

22

