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1. INTRODUCTION

Authorization is an important concept of the resource sharing in open and collabo-
rative environments such as Grid computing [Pallickara et al. 2006] or the Internet.
In role-based trust management [Li et al. 2002; Tamassia et al. 2004], privileges
are associated with roles and each user is assigned one or more roles. Role mem-
bers prove their memberships with digital credentials and public-key signatures.
Role-based delegation is important in decentralized role-based trust management
for transferring privileges and sharing resources among role members that are ini-
tially unknown to each other. A delegation credential is a digital certificate signed
by a delegator on a statement that gives authorizations to delegatees. In role-based
delegation models [Li et al. 2003; Tamassia et al. 2004], a privilege can be delegated
to another role, and then any member of the role can pass that privilege onto other
roles. Besides privileges, a role, which represents a collection of privileges, can be
delegated as well. We first illustrate in Example 1 a simple multi-step delegation
scenario that transfers rights among roles within one administrative domain. Then
we show in Example 2 a more complex cross-domain role-based delegation.

Example 1. A hospital has roles Doctor, Nurse, and Intern. The hospital permits
all doctors to access a medical storage room. Bob is a doctor and has a doctor role
credential issued by the hospital. When Bob is out of town, he authorizes his nurses
to access the storage room by issuing the nurses a delegation credential. Alice is
Bob’s nurse and has a nurse role credential. She has short-term interns who also
need to access the storage room. Then Alice passes the access privilege onto her
interns by creating another delegation credential. The two-step delegation chain
gives the authorization to interns to access the storage room, which consists of the
two delegation credentials and Bob and Alice’s role credentials. The role credentials
show the delegators have the proper roles to issue the delegation.

Decentralized delegation is to transfer privileges across different administrative
domains, which is important to facilitate information and resource sharing in a
collaboration. We give a more complex cross-domain role-based delegation in Sec-
tion 3.

For privacy concerns, the identity of a user or an authorizer may be sensitive
information in e-commerce, e-medicine, or peer-to-peer file-sharing (e.g., Kazaa)
applications. An authorizer may not want to reveal his or her identity and role
membership at each authorization or authentication. There has been a significant
amount of work on trust negotiation frameworks [Winsborough and Li 2004; Yu
et al. 2000], whose aim is to strategically control the release of sensitive credentials
to unknown parties. In addition, organizations may want to hide their internal
structures from the outside world.

To address these privacy concerns, an anonymous role-based delegation protocol
can be implemented with group signatures, in which a signature proves the mem-
bership of a signer without revealing the identity [Chaum and van Heijst 1991;
Bellare et al. 2003]. The anonymous signing feature of group signatures is partic-
ularly suitable for role-based delegation, because what is essential for verifying a
delegation credential is the proof of the delegator’s role membership, rather than
his or her identity. A role-based delegation protocol implemented using group sig-
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nature schemes is not only scalable due to the use of roles, but also has strong
privacy protection provided by the group signature schemes.

A practical concern about group signatures is their efficiency in a distributed
environment. Next, we introduce the technique of aggregate signatures and ex-
plain the need for a signature scheme that supports both anonymous signing and
signature aggregation.

1.1 Credential size and aggregate signatures

Lengthy digital credentials are inefficient to transmit and store. In decentralized
trust management systems [Li et al. 2003; Tamassia et al. 2004], a delegation chain
represents how trust or a delegated privilege is transferred from one user to another.
The chain contains a sequence of delegation credentials that connects unknown
entities and resource owners. The number of credentials required to authenticate
a delegation chain is linear in the length of the chain. Credentials associated with
a delegation chain need to be compact, because mobile devices may have limited
storage units and bandwidth.

Aggregate signatures [Boneh et al. 2003; Lysyanskaya et al. 2004] are an effective
solution for shortening credential size. Namely, multiple signatures on different
messages can be aggregated into one signature of constant size. An interesting
question is how to obtain an aggregate signature scheme that supports anonymous
signing in role-based authorization. In on-line banking applications for example,
certain transaction can be approved only if it is signed sequentially by a member
of the role cashier, a member of the role accountant, and a member of the role
manager. Each signature can be generated without disclosing the signer’s identity
for privacy protection, and then be aggregated to existing ones.

Existing group signatures do not support signature aggregation. In this paper,
we present an anonymous-signer aggregate signature scheme. that satisfies proper-
ties of unforgeability, anonymity, traceability, exculpability, unlinkability, collusion-
resistance, correctness, and aggregation (See Section 4.3 for definitions). We achieve
these properties by designing the signing key such that it is random, yet contains
the long-term private key of a role member. Even a role manager cannot sign on
behalf of a role member because the manager does not know the long-term private
key of that user. We are able to achieve this by leveraging properties of a bilinear
map, which was first used in the identity-based encryption scheme of Boneh and
Franklin [Boneh and Franklin 2001b].

1.2 Our contributions

We present an anonymous-signer aggregate signature scheme. In our scheme, a role
member u has a long-term public and private key pair. In addition, u computes a
set of one-time secret signing keys from his private key. Then, the public informa-
tion associated with these one-time signing keys are certified by the role manager.
A role manager maintains the role by processing newly joined members and opening
signatures (revoking the anonymity of signers) as necessary. The resulting certifi-
cates are (one-time) signing permits. To sign on behalf of a role, a member u first
signs with one of the secret signing keys, then that signature is aggregated with the
corresponding signing permit. This operation creates a role signature in which the
signer is anonymous but can be proven to be a member of a role. We introduce a
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simple yet effective key blinding mechanism that integrates the long-term private
key of a signer with a random blinding factor. Using this special signing key, a role
member cannot deny a signature when revoked anonymity; yet, the role manager
cannot misattribute a signature to any role member. By leveraging signature ag-
gregation [Boneh et al. 2003], the length of a role signature can be as short as 170
bits with security equivalent to a 1024-bit RSA signature. A role signature along
with the public information needed for verification is only 510 bits or 64 bytes long.
Role members can join and leave at any time, without requiring existing members
to perform any update.

In an anonymous-signer aggregate signature scheme, individual role signatures
that may be generated by members of different roles can be aggregated into one
signature of constant length. Even if a signature is aggregated with other signatures,
a role manager can trace the signer and show the proof. The security is based on the
security of the aggregate signature scheme [Boneh et al. 2003]. Because of one-time
public keys, the asymptotic growth of our signatures is still linear in the number of
individual signatures. Nevertheless, signature aggregation can significantly reduce
the length of multiple signatures. A discussion on the efficiency of the scheme is
given in Section 7.

We describe how anonymous-signer aggregate signatures can be used to realize an
anonymous and efficient role-based authorization protocol, where a delegator issues
delegation credentials and proves role membership without disclosing the identity.
Although anonymous RBCD can be realized with any group signature scheme, using
our anonymous-signer aggregate signature scheme allows the compression of dele-
gation credentials and significantly improves the efficiency. Delegation certificates
in RBCD are issued to roles, rather than individual role members. For example, a
privilege is delegated to the role doctor at a hospital.

Note that the RBCD protocol does not require a hierarchical generalization of
our signature scheme, and does not require the (expensive) hierarchical certification
of one-time signing keys.

Finally, we point out that anonymous role-based delegation implemented with
anonymous-signer aggregate signatures gives rise to a proxy signature scheme for
groups, which may be of separate interest. In this scheme, u delegates his signing
power to a certain group G of proxy signers by issuing a delegation certificate. Each
of the proxy signers can sign anonymously on behalf of u, provided that the proxy is
a valid group member. The anonymity can be revoked by the manager of group G.
The signature from a proxy signer needs to demonstrate the group membership of
the proxy, and that group G is authorized by u. Note that u is not the manager of
group G. Indeed, u can be anyone outside group G. Our proxy signature scheme
for groups is scalable, and is particularly suitable for role-based systems [Sandhu
et al. 1996]. For example, Central Bank needs to delegate the signing power to
all members of role clerk at a local bank. To do this, Central Bank just needs to
generate one proxy signature for the role clerk, instead of issuing one for each role
member. The ability to aggregate multiple such proxy signatures into one make
this scheme efficient in pervasive computing environment. We omit the details of
our proxy signature scheme for groups in this paper, as it can be easily derived
from our anonymous RBCD protocol.
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1.3 Organization of the paper

In Section 2, we give an overview of the aggregate signature by Boneh et al [Boneh
et al. 2003]. A cross-domain role-based delegation example is given in Sec-
tion 3. The definition and construction of our anonymous-signer aggregate signature
scheme are given in Section 4. We prove the security properties in Section 5. In
Section 6, we introduce the anonymous role-based cascaded delegation protocol.
The analysis of the anonymous role-based cascaded delegation protocol is given
in Section 7. Related work is described in Section 8. Conclusions are given in
Section 9.

2. PRELIMINARIES

Here, we describe the aggregate signature scheme [Boneh et al. 2003] that is used
to construct our signature schemes. The aggregate signature scheme by Boneh,
Gentry, Lynn, and Shacham (BGLS scheme for short) supports aggregation of mul-
tiple signatures on distinct messages from distinct users into one signature [Boneh
et al. 2003]. It uses bilinear maps [Boneh and Franklin 2001b] and works in any
group where the decision Diffie-Hellman problem (DDH) is easy, but the com-
putational Diffie-Hellman problem (CDH) is hard. Such groups are referred as
gap groups [Okamoto and Pointcheval 2001] and are explained further in Sec-
tion 4.1. The BGLS scheme comprises five algorithms: BGLS KeyGen, BGLS Sign,
BGLS Aggregate, BGLS Verify, and BGLS Agg-Verify. The first three algorithms are
defined the same as in ordinary signature schemes; BGLS Aggregate merges multiple
signatures into one signature of constant length; BGLS Agg-Verify verifies aggregate
signatures.

Informally, the security of aggregate signature schemes is equivalent to the nonex-
istence of an adversary capable of existentially forging an aggregate signature
[Boneh et al. 2003]. Here, existential forgery means that the adversary attempts
to forge an aggregate signature by some set of users, on messages of her choice.
The formal proof of security defines an aggregate chosen-key security model, where
the adversary is given a single public key, and her goal is the existential forgery
of an aggregate signature. The adversary is given the power to choose all public
keys except the challenge public key, and she is also given access to a signing oracle
on the challenge key [Boneh et al. 2003]. We refer readers to the paper of BGLS
scheme [Boneh et al. 2003] for further details.

Our anonymous-signer aggregate signature scheme is constructed based on the
aggregate signature scheme [Boneh et al. 2003]. We do not claim our scheme as
a general group signature scheme, although it has the key properties of a group
signature scheme. To distinguish from the naming conventions of group signatures,
we use role, role member, role manager, and role signature in our scheme, which are
equivalent to group, group member, group manager, and group signature in a group
signature scheme, respectively. A role represents a number of individuals having
certain attributes, each of them being a role member. The role is administrated
by the role manager. A role signature is a signature signed by a role member on
behalf of a role.
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3. AN EXAMPLE OF CROSS-DOMAIN ROLE-BASED DELEGATION

Example 2 is a multi-step role-based delegation that transfers rights among roles
across different administrative domains in a collaboration. Example 2 is conceptu-
ally more complex than Example 1 in the introduction.

Example 2. [Scenario] Suppose that a hospital has a collaborative project with
members of the role Staff in a lab. The collaboration requires Staff to access certain
resources (e.g., medical databases) at the hospital. Also suppose that the lab further
subcontracts a part of the project to a company. This subcontract requires a role
Contractor at the company to also access the resources at the hospital. Therefore, in
this example, a two-step delegation is needed to transfer privileges first to the role
Staff and then to the role Contractor. Note that there is no single administrative
authority and the three organizations are autonomous.

Suppose the priviledges (e.g., accessing medical databases) required in the project
are all associated with the role Visiting Researcher at the hospital. Therefore, when
the role Visiting Researcher is delegated to the role Staff, all members of the role
Staff at the lab are authorized the privileges associated with role Visiting Researcher

and thus can access the required data. Furthermore, a member of role Staff needs to
extend the role Visiting Researcher to members of role Contractor, so that the collab-
orators at the company can share the resources as well. The rights are transferred
by delegation as follows.

[Delegation step 1] An administrator at the hospital delegates the role
Visiting Researcher to the lab’s role Staff in a credential C. This delegation means
that a member of Staff at the lab is also a member of Visiting Researcher at hospital,
and can access resources that are associated with the role Visiting Researcher. John
is a member of the role Staff and has the corresponding role credential R. Therefore,
John now is delegated the hospital’s role Visiting Researcher.

[Delegation step 2] To transfer the access privileges associated with role
Visiting Researcher to Contractor at the company, John (or any authorized Staff

member) further delegates the role Visiting Researcher to the role Contractor in a
credential C′. This delegation means that a member of role Contractor at the com-
pany is also a member of Visiting Researcher at the hospital.

[Delegation chain for Contractor] Credentials C, R, and C′ constitute the dele-
gation credential that authorizes the role Contractor. Note that the role credential R

proves that John is indeed a member of Staff and thus is entitled to issue delegations.
[Accessing resource] When a member of Contractor at the company requests to

access the shared resources at the hospital, he or she presents the delegation chain
shown above along with the proof of Contractor membership.

4. ANONYMOUS-SIGNER AGGREGATE SIGNATURE SCHEME

We present our anonymous-signer aggregate signature scheme. First, we list the
number theoretic assumptions needed in our scheme, and then describe the algo-
rithms.

4.1 Assumptions

Similar to the aggregate signature scheme [Boneh et al. 2003], our anonymous-signer
aggregate signature scheme uses bilinear maps and works in gap groups [Boneh et al.
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2001; Okamoto and Pointcheval 2001], which is explained next. Let G1 and G2 be
two cyclic groups of some large prime order q. We write G1 additively and G2

multiplicatively.
Computation Diffie-Hellman (CDH) Problem: Given a randomly chosen P ∈ G1,
aP , and bP (for unknown randomly chosen a, b ∈ Zq), compute abP .
Decision Diffie-Hellman (DDH) Problem: Given a randomly chosen P ∈ G1,
aP, bP , and cP (for unknown randomly chosen a, b, c ∈ Zq), decide whether c = ab.
(If so, (P, aP, bP, cP ) is called a valid Diffie-Hellman tuple.)

We call G1 a gap group, if the DDH problem can be solved in polynomial time
but no probabilistic algorithm can solve the CDH problem with non-negligible ad-
vantage within polynomial time. As observed in the aggregate signature scheme
[Boneh et al. 2003], general gap groups are insufficient for constructing efficient
aggregate signatures, therefore our scheme also makes use of bilinear maps. We
refer the readers to papers by Boneh and Franklin [Boneh and Franklin 2001b] for
examples and discussions of groups that admit such pairings.
Reverse Computation Diffie-Hellman (RCDH) Problem: Given a randomly chosen
P ∈ G1, aP , and bP (for unknown randomly chosen a, b ∈ Zq), compute cP such
that aP = bcP .

RCDH problem has been shown to be equivalent to CDH problem by Chen,
Zhang, and Kim [Chen et al. 2003], which is shown briefly as follows for complete-
ness. Suppose one can solve CDH problem in G1 on (P, aP, bP ), then one can
obtain abP . Let Q = bP . Then P = b−1Q, aP = ab−1Q, and abP = aQ. This
means that we can obtain aQ from (Q, b−1Q, ab−1Q). Thus solves RCDH problem.
Given (P, aP, bP ), suppose one can solve RCDH problem in G1. Then one can first
obtain b−1P from (P, bP ) because P = bb−1P . Then we can solve RCDH problem
on (P, aP, b−1P ) to obtain abP , as aP = (ab)b−1P . This means that we obtain
abP and thus solve CDH problem.
Admissible pairings: Following Boneh and Franklin [Boneh and Franklin 2001b],
we call ê an admissible pairing if ê : G1 × G1 → G2 is a map with the following
properties:

(1) Bilinear: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1 and all a, b ∈ Z.

(2) Non-degenerate: The map does not send all pairs in G1 ×G1 to the identity in
G2.

(3) Computable: There is an efficient algorithm to compute ê(P, Q) for any P, Q ∈
G1.

Admissible pairing has been used to construct a number of encryption and signa-
ture schemes [Boneh and Franklin 2001b; Yao et al. 2004], and most recently in a
broadcast encryption scheme with short ciphertexts and private keys [Boneh et al.
2005].

4.2 Operations

An anonymous-signer aggregate signature scheme consists of AA Setup, AA Join,
AA Sign, AA Aggregate, AA Verify, and AA Open algorithms.

AA Setup: On input a security parameter k, a probabilistic algorithm outputs a
role public key PA1

. Each entity (role manager and role member) also chooses his
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or her public/private keys.

AA Join: A protocol is run between the role manager A1 and a user that results in
the user becoming a new role member. The outputs of the user are membership
certificates and membership secrets.

AA Sign: An algorithm takes as inputs a role public key, a membership secret, a
membership certificate, and a message M1, and outputs a role signature on M1.

AA Aggregate: This deterministic algorithm takes as inputs a number of role sig-
natures and returns one aggregate signature SAgg.

AA Verify: An algorithm takes as inputs the role public keys PA1
, . . . , PAn

, the
aggregate signature SAgg, and the messages M1, . . . , Mn. n is the number of sig-
natures in the aggregation. PAi

is the role public key of role manager Ai whose
member signs message Mi in SAgg, for i ∈ [1, n]. The output is 1 or 0.

AA Open: The deterministic algorithm takes as inputs the message M1, . . . , Mn,
the signature SAgg, and role manager A1’s secret information to return the identity
of the signer on message M1.

A secure anonymous-signer aggregate signature scheme must satisfy the following
properties. We give formal definitions for these security properties in the next
section.

Correctness: Signatures produced by a role member using AA Sign must be accepted
by AA Verify, and the AA Open recovers the identity of the signer.

Unforgeability: Only valid role members can sign messages on behalf of the role. In
particular, for an anonymous-signer aggregate signature S that is aggregated from
n individual role signatures, even if an adversary knows n − 1 of them, she cannot
successfully forge S.

Anonymity: Given a valid signature, it is computationally hard to identify the
signer for anyone except the role manager.

Unlinkability: Deciding whether two different valid signatures were computed by
the same role member is computationally hard for anyone except the role manager.

Traceability: The role manager is always able to open a valid signature and identify
the signer.

Exculpability: Even if the role manager and members collude, they cannot sign on
behalf of a non-involved member.

Coalition-resistance: A colluding subset of role members cannot produce a valid
signature that the role manager cannot open.

Aggregation: Multiple signatures signed on different messages by different signers
can be aggregated into one signature of constant length, and the aggregation can
be performed by anyone.

We achieve the exculpability property because the manager cannot frame the
member. A role member cannot deny his signature to the role manager because
the manager possesses a proof that binds the signature to the role member’s long-
term public key. The signature itself only serves as a partial proof. Only the role
manager can revoke the anonymity and this can be done any time without any
restriction.
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4.3 Formal Definitions of Security Properties

Here, we give formal definitions in game models for properties of unforgeability,
anonymity, traceability, and exculpability for an anonymous-signer aggregate sig-
nature scheme. We will show later in Section 5 that unlinkability and collusion-
resistance are implied by our definitions. Our anonymity and traceability definitions
follow the definitions by Bellare, Micciancio, and Warinschi who gave the first for-
mal treatment of group signatures [Bellare et al. 2003]. We do not give game-based
security definitions for properties of correctness and aggregation as the definitions
in the above section are sufficiently clear.

For unforgeability definition, the challenge key corresponds to the role public
key. For anonymity definition, there are two challenge keys that correspond to two
users’ public keys, and we allow the adversary to adaptively choose both targets.
We allow adversary to choose messages and query for opening signatures on the
challenge public key(s). Similar to aggregate signature security [Boneh et al. 2003],
for a signature aggregated from n role signatures, the adversary is free to choose
n − 1 of the signing keys in all our definitions.

Unforgeability Setup: The challenger chooses a role manager’s public key
PA1

by random and gives the adversary PA1
. The challenger keeps the correspond-

ing secret key. The challenger also gives the adversary public/private key pairs of
all role members.

Join query: The adversary adaptively requests to join the role by asking for
membership certificates of users of her choice. The challenger uses role manager’s
secret key to generate role certificates.

Hash query: The adversary requests the hash of a message of her choice.
Open query: The adversary requests to open anonymous-signer aggregate sig-

natures of her choice.
Unforgeability response: The adversary outputs an anonymous-signer ag-

gregate signature σ along with verification keys PA1
, PA2

, . . . , PAn
, and messages

M1, . . . , Mn. The restrictions are that (1) message M1 has not been queried and
(2) all messages are distinct 1. PA1

, . . . , PAn
correspond to the role public keys that

are needed to verify the n signatures in the aggregation. The adversary breaks the
unforgeability if σ can be verified.

Anonymity Setup: Same as in the unforgeability definition. In addition, the
adversary chooses a message M at this phase.

Join, Hash, Open queries: Same as in the unforgeability definition.
Anonymity challenge: Once the adversary decides the query phase is over, she

outputs two users’ public keys P 0
u , P 1

u . The challenger picks a random bit b ∈ {0, 1}
and computes a challenge role signature ρ on M with the secret key corresponding
to P b

u. The adversary’s task is to guess which user generates ρ.
The adversary can continue to submit more open queries on signatures other

than ρ.
Anonymity response: The adversary outputs a guess b′ and wins if b′ = b.
Traceability Setup: The challenger gives the role manager’s public key PA1

1This restriction is inherited from the aggregate signature scheme (See explanation on page 6 of
BGLS paper [Boneh et al. 2003])
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to the adversary as in unforgeability definition. The challenger gives the public
keys of all role members to the adversary.

Key extract query: The adversary obtains private keys of users in a set C of
her choice.

Join, Hash, Open queries: Same as in the unforgeability definition.
The order of the above queries is up to the adversary.
Traceability response: The adversary outputs an anonymous-signer aggregate

signature τ along with PA1
, . . . , PAn

, and messages M1, . . . , Mn. The restrictions
are that (1) message M1 has not been queried and (2) all messages are distinct.
The adversary wins if τ can be verified and the signer associated with role manager
PA1

is opened to ⊥ or to a user not in set C.
Compared to the “full-traceability” definition by Bellare, et al [Bellare et al.

2003], our definition for traceability is weaker as we do not give the adversary the
private key of the group manager. In our exculpability definition, an adversary is
allowed to have the role manager’s secret key, which means that we consider the
case of a malicious role manager. The exculpability adversary is given the challenge
that is the public key of a target role member.

Exculpability Setup: The challenger chooses a role manager’s public key
PA1

and a challenge public key Pu by random. Pu is the public key of the target
role member that the adversary needs to attack. Let sA1

be the private key cor-
responding to PA1

. PA1
, sA1

, and Pu are given to the adversary. The challenger
keeps the private key of the target user. The challenger also gives the adversary
the public/private keys of all the other role members.

Exculpability response: The adversary outputs an anonymous-signer aggre-
gate signature φ along with PA1

, . . . , PAn
, and messages M1, . . . , Mn. The restric-

tions are that (1) message M1 has not been queried in the Sign queries and (2)
all messages are distinct. The adversary wins if φ can be verified and the signer
associated with role manager PA1

is opened to the target role member with public
key Pu.

Our exculpability definition is restrictive in that it does not allow an adversary
to issue queries on the target. Ideally, an adversary may obtain from the challenger
signatures of the target on messages of the adversary’s choice. Note that the ad-
versary can generate and open signatures of other role members on her own as she
is given the private keys of the rest of group.

4.4 Construction

One can construct a naive aggregate group signature scheme from BGLS
scheme [Boneh et al. 2003] and one-time signing keys as follows. In a naive scheme,
a group member generates a public/private key pair (PK, SK), by running the key
generation algorithm of BGLS aggregate signature scheme. The group manager
signs (with the group master secret) the public key, and sends the certificate 2

Certback to the group member. To produce a signature on message M , the group
member signs M with the private key SK to create signature Sig as in the ag-
gregate signature scheme, and sends (M, Sig, PK, Cert) to the verifier. Signature

2This certificate is issued by a group manager for proving group membership of a member. It is
different from a CA certificate, which certifies the validity of a public key.
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u A role member
su Private key of u

Pu Long-term public key of u

Ku,i i-th signing key
Xu,i i-th secret signing factor
Su,i i-th signing permit of u

A A role manager
sA Private key of A

PA Long-term public key of A

Kuk,ik
The signing public key for the k-th signature

Puk
Long-term public key of k-th signer

Xuk,ik
Secret signing factor of k-th signer

Table I. Notation for anonymous-signer aggregate signature scheme.

Sig can be aggregated with other signatures of this scheme as in BGLS aggregate
signature scheme. However, the above scheme cannot prevent the group manager
from misattributing signatures. The group manager first runs the key generation
algorithm of BGLS aggregate signature scheme to obtain a key pairs (PK∗, SK∗).
He signs public key PK∗ using the group master secret and generates a certificate
Cert∗ for PK∗. The group manager can then sign a message with private key SK∗,
and misattribute the signature to any group member. The innocent group member
does not have any proof that can be used to deny the signature.

We overcome the above problem by designing signing keys that are both un-
linkable and tied to the long-term private key of a signer. In our protocol, a role
member generates a one-time signing key based on both a long-term private key of
and a short-term secret. The signing keys are then certified by the role manager.
The long-term public key of the role member is certified by a Certificate Authority
(CA), which serves as a trusted entity. Misattributing a signature to others is im-
possible, even for the manager, because a role member can prove that the signature
does not correspond to his CA-certified public key. The underlying bilinear pairing
allows us to achieve this property.

The notation of our anonymous-signer aggregate signature scheme is shown in
Table I. The last three items in Table I refer to the k-th signature in an (aggregate)
signature aggregated from n (k ≤ n) individual signatures.

Notation: For a role member u, su represents his private key, Pu represents his
long-term public key, Ku,i represents his i-th signing public key, and Xu,i represents
the corresponding i-th secret signing factor. For a role manager A, sA represents
his private key, PA represents his long-term public key. Su,i is the i-th signing per-
mit generated by the role manager for member u. When referring to an aggregate
signature, Kuk,ik

represents the signing public key associated with the k-th signa-
ture in the aggregate signature. Similarly, Puk

and Xuk,ik
represent the long-term

public key and the secret signing factor of the k-signer in an aggregate signature,
respectively. See also Table I.
AA Setup: This operation outputs the system parameters and public/private keys
of users that will be used in the system.

—A trusted third party chooses a set of public parameters params =
(G1, G2, ê, π, H), where G1, G2 are groups of a large prime order q, G1 is a
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gap group, ê : G1 × G1 → G2 is a bilinear map, π is a generator of G1, and
H : {0, 1}∗ → G1 is a collision-resistant hash function, viewed as a random
oracle [Bellare and Rogaway 1993].

—Each role member chooses a secret su as his private key, and computes the product
suπ as its public key Pu. Similarly, the role manager chooses his secret key sA,
and computes the public key PA = sAπ. These are the long-term public keys, and
are certified by a Certificate Authority (CA) using any secure signature scheme.
The certification binds a long-term public key with its owner. The public key
certificate of a member is used for repudiating misattributed signatures, and is
different from the one-time signing permits below. The CA can be any trusted
third party, but cannot be the same as the role manager. 3

AA Join: A role member u obtains one or more one-time signing permits from the
role manager. Each permit certifies u’s one-time signing key information, and is
used for issuing role signatures. The following shows how the signing permits are
generated.

—u randomly chooses l number of secrets x1, . . . , xl. u computes one-time signing
factors Xu,1 = x1π, . . . , Xu,l = xlπ and one-time signing public keys Ku,1 =
sux1π, . . . , Ku,l = suxlπ. Keys Pu, Xu,i, and Ku,i are sent to the role manager
in a secure channel 4, for all i ∈ [1, l].

—The role manager tests if e(Ku,i, π) = e(Pu, Xu,i) for all i ∈ [1, l]. Recall Ku,i =
suxiπ, Pu = suπ, and Xu,i = xiπ. If the test fails, the protocol terminates.
The role manager makes sure that the one-time signing public keys submitted
by u and on the manager’s record are all unique. This check is necessary for
the traceability requirement, otherwise colluding members can submit identical
signing keys by manipulating their private keys and signing factors. Finally, the
role manager runs BGLS Sign on inputs sA and strings roleinfo ‖ Ku,i to obtain
Su,i = sAH(roleinfo ‖ Ku,i) for all i ∈ [1, l]. Su,i is the i-th one-time signing
permit for u, and is given to u. The role manager adds tuples (Pu, Xu,i, Ku,i) to
its record for all i ∈ [1, l].

AA Sign : A role member u first computes a signature Su on a message M on
behalf of the role, by running BGLS Sign on inputs suxi and M , where suxi is one
of his one-time signing secrets. Then, u calls algorithm BGLS Aggregate to merge
signature Su with his one-time signing permit Su,i corresponding to the secret suxi.
This gives the role signature, which is returned with the public key PA of the role
manager and the key Ku,i. The details are as follows.

—u runs BGLS Sign with secret key suxi and message M , and obtains a signature
Su = suxiH(M).

—u aggregates the signature Su with one-time signing permit Su,i associated with
secret suxi. This is done by running BGLS Aggregate, which returns a signature
Sg = Su +Su,i. Recall that Su,i = sAH(roleinfo ‖ Ku,i). Sg is output as the role
signature. u also outputs public key PA and one-time signing public key Ku,i.

3For simplicity, we assume that at a given time each user has only one long-term public key.
4Xu,i needs to be kept secret because it can be used to identify the signer along with public
information Pu and Ku,i.
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AA Aggregate: Same as in algorithm BGLS Aggregate. It takes as inputs n number
of role signatures Sgk

and corresponding values PAk
and Kuk,ik

for all k ∈ [1, n].
Set SAgg =

∑n

k=1 Sgk
. SAgg is output as the anonymous-signer aggregate signature.

The associated keys PAk
and Kuk,ik

= suk
xik

π for all k ∈ [1, n] are also returned.
Note that k-th role manager’s public key PAk

for k ∈ [1, n] does not need to be
the same. In other words, signatures from roles of different organizations can be
aggregated.
AA Verify: This algorithm calls algorithm BGLS Agg-Verify with the following in-
puts: an anonymous-signer aggregate signature SAgg, public key PAk

, and one-time
signing public key Kuk,ik

for all k ∈ [1, n]. n is the number of signers on the
authorization chain.

—For 1 ≤ k ≤ n, compute the hash digest H(Mk) of message Mk and hk =
H(roleinfok ‖ Kuk,ik

) of the statement on one-time signing permit.

—SAgg is accepted, if ê(SAgg, π) = Πn
k=1ê(PAk

, hk)ê(Kuk,ik
, H(Mk)); rejected if

otherwise.

The correctness of the verification algorithm in our anonymous-signer aggregate
signature scheme is shown as follows.

ê(SAgg, π) = ê(

n∑

k=1

Sgk
, π)

= Πn
k=1ê(Sgk

, π)

= Πn
k=1ê(Suk

+ Suk,ik
, π)

= Πn
k=1ê(Suk

, π)ê(Suk,ik
, π)

= Πn
k=1ê(suk

xik
H(Mk), π)ê(sAk

H(roleinfok ‖ Kuk,ik
), π)

= Πn
k=1ê(H(Mk), suk

xik
π)ê(hk, sAk

π)

= Πn
k=1ê(H(Mk), Kuk,ik

)ê(hk, PAk
)

Opening of the signature by the role manager correctly identifies the signer, which
is shown next.

AA Open: Given an anonymous-signer aggregate signature SAgg and its associated
public information including PAk

and Kuk,ik
for k ∈ [1, n], a role manager first

verifies signature SAgg. If it is valid, a role manager can easily identify a role
member’s public key Puk

from Kuk,ik
, by consulting the role record. The role

member cannot deny his signature because the role manager can provide a proof,
i.e. by showing ê(Kuk,ik

, π) = ê(Puk
, Xuk,ik

), that the signature is associated with
the member’s public key.

Theorem 1. The communication complexity of AA Join algorithm is O(l),
where l is the number of one-time signing keys certified. The computational com-
plexity of the AA Verify algorithm is O(n), where n is the number of signatures
aggregated.
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5. SECURITY

We have shown that our anonymous-signer aggregate signature scheme satisfies
the correctness requirement. It also clearly satisfies the aggregation property. In
this section, we prove the security properties for our anonymous-signer aggregate
signature scheme.

Theorem 2. Our anonymous-signer aggregate signature scheme is as secure as
the BGLS aggregate signature scheme against existential forgery attacks.

Proof: There are three parties involved in this proof: a challenger, adversary
A, and adversary B. If adversary B has a non-negligible advantage over the un-
forgeability of our anonymous-signer aggregate signature scheme, then A uses B to
break the BGLS aggregate signature scheme by answering the challenge posed by
the challenger. The challenger chooses a public key PA1

by random and gives PA1

to A as the BGLS challenge. The challenger keeps the corresponding secret key
sA1

. A then interacts with B as follows.
Setup: A gives B the challenge key PA1

. A generates a set of public/private key
pairs and gives them to B as the keys of all role members.

Join query: A answers B’s join query by submitting it to the challenger as
follows. Suppose B’s query is to join a user with public key Pu, one-time signing
factors Xu, and signing key Ku. A tests whether e(Pu, Xu) = e(Ku, π) holds. If
yes, then A asks the challenger to sign (roleinfo ‖ Ku) with secret sA1

. A passes
the signature to B as the signing permit. A also keeps the tuple (Pu, Ku, Xu) for
the record.

Hash query: A simply uses a collision-resistant hash function to compute the
hash of messages of B’s choice.

Open query: B requests to open an anonymous-signer aggregate signature of
her choice. A can easily identify the signer’s Pu by looking up the signing key Ku

in A’s record.
Unforgeability response: B outputs an anonymous-signer aggregate signature

σ along with verification keys PA1
, PA2

, . . . , PAn
, K1, . . . , Kn, strings roleinfo1, . . .,

roleinfon, and messages M1, . . . , Mn. PA1
, . . . , PAn

correspond to role public keys
that are needed to verify the n signatures in the aggregation. A makes sure that
(1) signing key K1 has not been queried, (2) roleinfo1 ‖ K1, . . ., roleinfon ‖ Kn

are distinct, and (3) messages M1, . . . , Mn are distinct. PA1
, . . . , PAn

correspond to
the role public keys that are needed to verify the n signatures in the aggregation.
A passes σ to the challenger, along with keys PA1

, PA2
, . . . , PAn

, K1, . . . , Kn, and
messages roleinfo1 ‖ K1, . . ., roleinfon ‖ Kn, M1, . . . , Mn.

If B breaks the unforgeability, i.e., σ can be verified correctly, with advantage ǫ,
then A breaks BGLS with advantage ǫ. 2

Next we show that our signature scheme satisfies the anonymity property.

Theorem 3. Our anonymous-signer aggregate signature scheme from bilinear
pairings in gap groups preserves anonymity in the random oracle model.

Proof: We first design a new game, called random-x game, that is secure based
on randomness, i.e., the adversary’s advantage over random guessing is negligi-
ble. Then we reduce the anonymity game to the random-x game, i.e., breaking
anonymity means that breaking the random-x game. Random-x game is as follows.
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Random-x game

The challenger chooses public parameters: a gap group G1 of prime order q, a
generator π of G1. The challenger also generates a set of public/private key pairs
in the form of Pu = suπ and su. These public/private key pairs are given to the
adversary.

Query phase: The adversary chooses two public keys P 0
u and P 1

u , and gives
them to the challenger. The challenger picks a random secret x, a random bit b,
and computes Kb

u = sb
uxπ. The adversary is given Kb

u, xπ, and b, so that she learns
Kb

u is computed from sb
u.

When the adversary decides the query phase is over, she outputs two public keys
P ∗0

u and P ∗1
u to be challenged on.

Challenge phase: The challenger picks a random secret x, a random bit b,
and computes K∗b

u = s∗b
u xπ, where P ∗b

u = s∗b
u π. The adversary is given K∗b

u . The
adversary’s task is to guess whether b is 0 or 1.

The adversary submits more queries. Finally, the adversary outputs her guess b′,
and wins if b′ = b. Because x is randomly chosen, the adversary does not have the
advantage over random guessing, thus has negligible advantage in the random-x
game. Note that the adversary does not know xπ of her challenge.

Assume that an adversary A can break the anonymity of our anonymous-signer
aggregate signature scheme. Then an adversary B can use A to gain non-negligible
advantage in the random-x game as follows. We model hash function H as a random
oracle.

Setup: B first obtains the public parameters from her challenger in the random-
x game. B then chooses a role manager’s secret key sA by random and computes
the public key PA1

= sAπ. B gives A PA1
, and keeps sA. B also gives A the

public/private key pairs of all role members that B obtains from her challenger. A
outputs a message M that A wishes to be challenged on.

Join query: A adaptively requests to join the role by asking for membership
certificates of users of her choice. B uses sA to generate role certificates. B makes
sure that one-time signing public keys on her record are all unique.

Hash query: For messages other than M , B picks a random value in Zq and
returns it as the hash value. For message M , B picks a random r and returns rπ

as its hash.

Open query: B also answers A’s requests of opening anonymous-signer ag-
gregate signatures. B can do this because the signing keys and the associated
(long-term) public keys are recorded during the join query phase.

Anonymity challenge: Once A decides the query phase is over, A outputs two
targets’ public keys P ∗0

u , P ∗1
u in the random-x game. Then B outputs these two keys

to her challenger as her targets. B’s challenger picks a random bit b ∈ {0, 1} and a
random x, and computes K∗b

u = xP ∗b
u = s∗b

u xπ. K∗b
u is given to B as the challenge

(in the random-x game). Next, B needs to generate a challenge role signature ρ on
M for A using K∗b

u as the signing key even though B does not know s∗b
u x. (The

trick is in the hash of message M .) B computes signature ρ = sAH(roleinfo ‖ K∗b
u )

+rK∗b
u . ρ can be correctly verified: e(ρ, π) = e(H(roleinfo ‖ K∗b

u ), PA)e(rπ, K∗b
u )

= e(H(roleinfo ‖ K∗b
u ), PA)e(H(M), K∗b

u ).

B answers more open queries from A on signatures other than ρ as before.
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Anonymity response: A outputs a guess b′. B outputs b′ as her guess in the
random-x game. If A has non-negligible advantage ǫ in breaking the anonymity
of our anonymous-signer aggregate signature scheme, then B has advantage ǫ in
breaking the random-x game. 2

Anonymity as defined in Section 4.3 naturally implies unlinkability. In fact, they
are technically the same property as observed in [Bellare et al. 2003]. We summarize
the unlinkability property in the following corollary.

Corollary 1. Our anonymous-signer aggregate signature scheme from bilinear
pairings in gap groups satisfies the unlinkability requirement in the random oracle
model.

Next we show the traceability of our signature scheme. Intuitively, traceability
means that the role manager is always able to open a valid signature and identify
the signer.

Theorem 4. Our anonymous-signer aggregate signature scheme from bilinear
pairings in gap groups satisfies the traceability requirement in the random oracle
model under the CDH assumption.

Proof: We prove traceability by contradiction. We show that if an adversary
has non-negligible advantage in the traceability game, then there is a contradiction.

Setup, Join query, Hash query, and Open query: The challenger performs
as in the unforgeability proof for Theorem 2. In addition, in Join query, the
challenger makes sure that the one-time signing public keys are all distinct. At the
end of join queries, the challenger has recorded a list of tuples (Pu, Ku, Xu) for the
users that have been queried.

Traceability response: The adversary outputs a signature τ along with
keys PA1

, . . . , PAn
, K1, . . . , Kn, strings roleinfo1, . . ., roleinfon, and messages

M1, . . . , Mn. As defined, τ should satisfy the following restriction: (1) signing
key K1 has not been queried, (2) roleinfo1 ‖ K1, . . ., roleinfon ‖ Kn are distinct,
and (3) messages M1, . . . , Mn are distinct.

Suppose the adversary wins. This means that (i) τ can be verified and (ii) the
signer associated with role manager PA1

is identified to ⊥ after opening τ . In
our signature scheme, (ii) means that e(K1, π) 6= e(Pu, Xu) for all users on the
challenger’s record. However, (i) means that τ is correctly formed, in particular, (i)
means that τ contains a valid signing permit (in the form of sA1

H(roleinfo1 ‖ K1))
for signing public key K1. We have shown in Theorem 2 that the signing permit
cannot be forged, which implies that the adversary obtains it from the challenger.
Thus the challenger must have a unique tuple corresponding to K1 on the record.
We reach a contradiction. 2

Next, we prove the exculpability of our signature scheme 5.

Theorem 5. Our anonymous-signer aggregate signature scheme from bilinear
pairings in gap groups satisfies the exculpability requirement in the random oracle
model under the CDH assumption.

5Our traceability does not directly imply exculpability as in [Bellare et al. 2003] because the
traceability definition does not give the adversary the private key of the role manager.
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Proof: There are three parties involved in this proof: a challenger, adver-
sary A, and adversary B. If adversary B has a non-negligible advantage over our
anonymous-signer aggregate signature scheme, then A uses B to solve the RCDH
problem (defined Section 4.1).

Setup: A’s challenger chooses s and x by random and gives A (π, sπ, sxπ) as
the challenge. Denote sπ by Pu and sxπ by K1. They correspond to the long-
term public key and one-time signing public key of a role member u, respectively.
Adversary A also chooses a role manager’s private key sA1

by random and computes
the corresponding public key PA1

= sA1
π.

A gives B keys PA1
, sA1

, Pu, and K1. A also gives B the public/private keys of
all the other role members that A generates on her own. Adversary B’s task is to
use K1 as one of the signing public keys to create an anonymous-signer aggregate
signature misattributing role member u.

Exculpability response: Adversary B outputs an anonymous-signer aggregate
signature φ along with PA1

, . . . , PAn
, K1, . . . , Kn, and messages M1, . . . , Mn. The

restriction is that all messages are distinct. If adversary B wins then φ can be
verified and the signer associated with role manager PA1

is opened to the target
role member with public key Pu. The latter means that B can provide the proof
X that satisfies e(sπ, X) = e(K1, π). Because of the bilinearity of e, X must be
xπ. Therefore, A outputs X as her answer and solves the RCDH problem on sxπ

and xπ. 2

Our definitions of unforgeability, anonymity, traceability, and exculpability allow
the adversary to have the private keys of any number of users except the target(s),
therefore our signature scheme is naturally collusion-resistant.

Corollary 2. Our anonymous-signer aggregate signature scheme from bilinear
pairings in gap groups is collusion-resistant in the random oracle model under the
CDH assumption.

6. ANONYMOUS ROLE-BASED CASCADED DELEGATION PROTOCOL

In this section we first briefly introduce the role-based cascaded delegation (RBCD)
protocol [Tamassia et al. 2004; Yao et al. 2005]. A large amount of work has been
done on trust management and distributed authorization systems [Aringhieri et al.
2005; Aura 1999; Blaze et al. 1998; Clarke et al. 2001; Li et al. 2002]. Among them,
role-based cascaded delegation [Tamassia et al. 2004] is an efficient role-based trust
management model that supports administrator-free delegation. Administrator-
free delegation allows an individual role member to issue delegations without the
participation of a role manager. It enables flexible and dynamic authorization in
a decentralized environment. Using predicates and constraints, it is also possible
to restrict the scope of the delegation, e.g., prevent further delegation [Yao et al.
2005]. RBCD comprises four operations: Initiate, Extend, Prove, and verify.
Initiate and Extend are used by a resource owner and an intermediate delegator,
respectively, to delegate a privilege to a role. Prove is used by a requester to
produce a proof of a delegation chain that connects the resource owner with the
requester. Verify decides whether the requester is granted the access based on
the proof.

In RBCD [Tamassia et al. 2004], a delegation credential includes role member-
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ship certificates of each intermediate delegator, and delegation extension credentials
that are proofs of delegation transactions signed by delegators. Credentials asso-
ciated with a delegation chain are transmitted to delegated role members at each
delegation transaction. Therefore, for a delegation chain of length n, the number
of certificates required to verify the delegation path is 2n. In this paper, we use our
signature scheme to extend the original RBCD protocol to support the anonymity
of delegators.

Next we define anonymous role-based cascaded delegation and then describe how
it is realized using anonymous-signer aggregate signatures. Delegation credentials
generated in our signature scheme are efficient to store and transmit, which is impor-
tant in ubiquitous computing. Similar to definitions in the original RBCD protocol
[Tamassia et al. 2004], a privilege represents a role membership or a permission for
an action such as accessing a database. Anonymous role-based cascaded delegation
allows any role member to authorize on behalf of the role without disclosing the
individual identity. Recall that a role defines a group of entities having certain
qualifications. Role members are managed by a role manager, which is equivalent
to a role manager in the anonymous-signer aggregate signature scheme.

6.1 Definitions

An anonymous role-based cascaded delegation protocol defines five operations:
ARBCD Initiate, ARBCD Extend, ARBCD Prove, ARBCD Verify, and ARBCD Open.

ARBCD Initiate: Same as in RBCD protocol [Tamassia et al. 2004], this operation
is run by a resource owner to delegate a privilege to a role. It initiates a delegation
chain for the privilege. The delegation certificate is signed using the private key
of the resource owner on a statement, which includes the delegated privilege, the
name of the role, and the public key of the role manager.

ARBCD Extend: This operation is similar to ARBCD Initiate, but is run by an in-
termediate delegator u, who is a member of a role that is delegated a privilege by
credential C. The goal is for u to generate a credential C′ that extends the privilege
to members of another role r. Delegation credential C′ includes information of the
delegated privilege, the name of role r, and the public key of role r’s administrator.
In addition, credential C′ also contains the delegation credential C that u received,
and the proof of u’s role membership. C′ does not disclose the identity of u.

Credential C′ may simply be an accumulation of individual certificates. In com-
parison, our realization using anonymous-signer aggregate signatures is more effi-
cient.

ARBCD Prove: A requester u with role r produces a proof, which authenticates the
delegation chain connecting the resource owner with u. This includes a proof of u’s
role membership without disclosing the identity, and the delegation credential that
delegates the requested privilege to r.

ARBCD Verify: This is performed by the resource owner to verify that a proof
produced by a requester correctly authenticates the delegation chain of a privilege.

ARBCD Open: Role manager revokes the anonymity of a delegator by examining
signatures on a delegation credential. The identity of the delegator is returned.

, Vol. V, No. N, September 2007.



· 19

6.2 Realization

We give an anonymous RBCD protocol using anonymous-signer aggregate signa-
tures. Compared to the original RBCD protocol [Tamassia et al. 2004], a one-time
signing secret key instead of the delegator’s private key is used to sign a credential,
and a one-time signing permit instead of a role credential is used to prove role
membership.

ARBCD Setup: A trusted third party runs AA Setup to set up public parameters
params, and individuals to choose and certify long-term keys. Then, AA Join pro-
tocol is run between role members and the role manager to set up one-time signing
permits. The role manager also keeps a record of signing key information.
ARBCD Initiate: A resource owner runs the BGLS Sign to sign a delegation state-
ment that authorizes a certain privilege to a role r. The inputs to BGLS Sign are
the resource owner’s private key and the delegation statement that includes the
delegated privilege, the role name r, and the role manager’s long-term public key.
The output is a delegation credential for r.
ARBCD Extend: Role r is delegated a privilege, and a member u of r wants to further
delegate the privilege to a role r′. u first runs algorithm AA Sign to generate a role
signature for r′. The inputs to AA Sign are u’s one-time signing secret key suxi,
a delegation statement, and u’s one-time signing permit Si corresponding to suxi.
The delegation statement includes the following information: role name r′, the long-
term public key of r′’s manager, delegated privilege, AA Sign returns a role signature
Sig. Then the public signing key suxiπ is appended to the delegation statement.
Finally, delegator u calls AA Aggregate to aggregate Sig with the signature on the
delegation credential issued to role r. The resulting aggregate signature SAgg and
delegation statements are given to members of role r′ as the delegation credential.
ARBCD Prove: A requester u of role r first runs AA Sign that uses a one-time
signing key to sign a random challenge message T chosen by verifier. The random
challenge is to prevent replay attacks and ensure that u possesses the secret signing
key. Then, u calls AA Aggregate to merge the output signature with the signature
on the delegation credential issued to role r. The outputs are returned.
ARBCD Verify: AA Verify is run to verify the aggregate signatures submitted by
the requester against the delegation statements. The request is granted if the
signature is accepted, and rejected if otherwise. Note that the delegation statements
include the following public keys required to verify the aggregate signature: (1)
public signing keys of intermediate delegators, and (2) long-term public keys of role
managers. (1) are for verifying the signatures created in ARBCD Extend operations;
and (2) are for verifying one-time signing permits of intermediate delegators. We
assume that the verifier knows the public key of the resource owner, which is needed
to verify the signature generated in ARBCD Initiate.
ARBCD Open: A role manager runs algorithm AA Open with a delegation creden-
tial, a target signing key suxiπ, and the signing keys record. This returns the public
key suπ, which identifies the signer.

The security of the above protocol is directly based on the security of the
anonymous-signer aggregate signature scheme. This implies that it is infeasible to
forge any valid delegation credential even under collusion. The anonymous RBCD
protocol satisfies traceability and exculpability requirements, i.e., a role manager
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can revoke the anonymity of a role member as an intermediate delegator, but can-
not frame a role member. Our realization of anonymous RBCD supports delegator
anonymity without affecting the performance. It has similar efficiency as in the
original RBCD protocol [Tamassia et al. 2004]. The time required for signing and
verification is the same as in the original RBCD protocol [Tamassia et al. 2004]. In
anonymous RBCD, role managers need to sign multiple one-time signing permits
for role members, which is not required in RBCD. Nevertheless, a single signature
is quite fast (3.57 ms on a 1 GHz Pentium III, compared to 7.90 ms for a RSA
signature with 1007-bit private key on the same machine [Barreto et al. 2002]). As
described in Section 1.2, the above protocol gives rise to a proxy signature scheme
for groups. Details (definitions, construction, and proof of security) of the proxy
signature scheme are omitted in this paper.

7. ANALYSIS

For a delegation chain of length n, a delegation credential using our anonymous-
signer aggregate signatures can be twenty times shorter than the one using ACJT
scheme [Ateniese et al. 2000], and five times shorter than the one generated in BBS
scheme [Boneh et al. 2004]. For a delegation chain of length twenty, the size of
our credential is 1.4 KB, and the one in BBS scheme is 5.2 KB; for a 20 Kbits per
second connection, our credential can be transmitted within 0.5 seconds, and the
one using BBS takes 2.1 seconds.

In the anonymous RBCD protocol, a delegation credential generated by Initiate

operation contains a signature, delegator’s public key, delegatee’s role, the public
key of delegatee’s role manager, and the delegated privilege. Similarly, we can
derive the contents of a delegation credential after n− 1 extensions. Assume a role
or privilege name is expressed in 100 bits and let security requirement equivalent to
1024-bit RSA signature. Using ACJT group signatures, the size of a credential of
length n is at least 10944n bits. Using BBS group signatures, the size is 2073n bits.
Using our signature scheme, the size is 540n + 170. The improvement in credential
size is more significant as the length of delegation chain increases.
One-time keys. A major drawback of our anonymous-signer aggregate signature
scheme is that signing keys and signing permits are not reusable. To reduce com-
munications between the role manager and members, role members can obtain
multiple signing permits S1, . . . , Sn at a time, by asking the role manager to certify
multiple signing keys Ku,1, . . . , Ku,n. Similar concepts can be found in the trustee
tokens scheme [Juels 1999] and the secret handshakes protocol [Balfanz et al. 2003].
A role manager needs to keep a file for storing one-time signing public keys. How-
ever, this does not significantly affect his performance, even though the number
of role members is large. For example, for a role that has 100,000 members who
obtain 100 one-time signing keys each year for ten years, the total storage space for
all the one-time signing keys takes about 6.4 GB and can be easily stored on hard
disks. Although file I/O in general can be relatively slow, appending new keys to
the file is done off-line and does not affect the performance of users. If a database
is used to maintain the keys, operations such as searching a signing key can be very
fast as the keys can be indexed.
Remark: Our anonymous RBCD protocol does not use the anonymous-signer aggre-
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gate signatures in a hierarchical fashion, where a role member in one organization
is the role manager of another organization and so on. Instead, signatures to be
aggregated are generated by role members belonging to independent roles (or or-
ganizations), and role members have their signing keys certified independently by
their role managers.

Therefore, the anonymous RBCD model using our signature scheme supports
anonymity, exculpability (non-framing), and aggregation, without incurring signifi-
cant overhead from the use of one-time signing keys. Note that there is a conceptual
difference between the aggregate algorithm in BGLS scheme [Boneh et al. 2003] and
the one in this paper. In their aggregate signature scheme, a verifier is given a signa-
ture along with the identities of the parties involved and their respective messages.
The verifier can obtain the public keys from CA, and thus in aggregate signatures,
the size of public information is reduced. Instead, in our proposed scheme, the
verifier can not obtain the one-time signing public keys from a certified directory.
Revocation Role membership revocation before the expiration can be handled by
maintaining a revocation service, which can be efficiently achieved using authen-
ticated dictionaries (e.g. [Goodrich et al. 2003; Naor and Nissim 1998]). Authen-
ticated dictionary is a system for distributing data and supporting authenticated
responses to queries. One-time signing public keys of revoked members are put on
the repository of revocation service by a role manager. Before verifying a role signa-
ture, the revocation service is queried to ensure that the signature is not generated
by a revoked signing key.
Anonymity of Role Manager In our schemes, the public key of the role manager is
required to verify role signatures, and therefore known to the public. Nevertheless,
it does not mean that the role manager cannot sign messages anonymously. On the
contrary, a role manager can run the protocols to certify a set of secret signing keys
of his choice and use them as signing keys without disclosing the identity. Therefore,
our schemes provide the same signing ability to every role member including the
role manager.

8. RELATED WORK

Our signature scheme has properties that are related to group signature schemes.
Group signatures, introduced by Chaum and van Heijst [Chaum and van Heijst
1991], allow members of a group to sign messages anonymously on behalf of the
group. Only a designated group manager is able to identify the group member who
issued a given signature. Furthermore, it is computational hard to decide whether
two different signatures are issued by the same member. In early group signature
schemes [Chaum and van Heijst 1991], group public keys grew with the size of the
group and were inefficient.

A group signature scheme with constant-sized public keys was first given in [Ca-
menisch and Stadler 1997], and followed by a number of improvements [Ateniese
et al. 2000; Boneh et al. 2004]. Until recently, group signature constructions (e.g.,
[Ateniese et al. 2000; Camenisch and Lysyanskaya 2002]) were mostly based on
the strong-RSA assumption, and a group signature typically comprised of multiple
elements of RSA-signature length. Recently, bilinear pairing [Boneh and Franklin
2001b] has been used to construct group signature schemes [Boneh et al. 2004;
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Camenisch and Lysyanskaya 2004; Chen et al. 2003], whose security is based on
variants of Diffie-Hellman assumptions. The group signature scheme by Boneh,
Boyen, and Shacham [Boneh et al. 2004] significantly shortens the signature length,
compared to the RSA-based state-of-the-art group signature scheme by Ateniese
et al. [Ateniese et al. 2000]. An identity-based group signature scheme was pro-
posed by Chen, Zhang, and Kim [Chen et al. 2003], where a group signature cannot
be forged even if the private key of a user is known by a third party (i.e., the Pri-
vate Key Generator in the ID-based systems [Boneh and Franklin 2001b]). Bellare,
Micciancio, and Warinschi gave the first formal treatment of group signatures by
introducing strong, formal definitions for the core requirements of anonymity and
traceability [Bellare et al. 2003]. They also developed a construction of a group sig-
nature scheme achieving the requirements based only on the existence of trapdoor
permutations.

Most recently, Chase and Lysyanskaya gave an abstract construction of anony-
mous delegatable credentials based on their construction of signatures of knowl-
edge [Chase and Lysyanskaya 2006]. Our anonymous role-based cascaded dele-
gation can be implemented using their anonymous delegatable credential system,
which allows one to issue delegation credential without revealing his or her identity
and the delegation can be further extended to others anonymously. In comparison,
we focus on the functionality of signature aggregation in addition to anonymous
delegation in our construction.

There has been extensive research on access control models in the past decade
[Ferraiolo and Kuhn 1992; Sandhu 1993; Sandhu et al. 1996]. The concept of
role-based access control [Ferraiolo and Kuhn 1992; Sandhu et al. 1996] is widely
deployed to improve the scalability and efficiency of management. Trust manage-
ment models are developed for the authorization in distributed systems. A number
of such systems have been proposed, for example KeyNote [Blaze et al. 1998], dele-
gation certificates [Aura 1999], SPKI [Clarke et al. 2001], Delegation Logic (DL) [Li
et al. 2003], proof-carrying authorization (PCA) [Appel and Felten 1999], RT frame-
work [Li et al. 2002], and role-based cascaded delegation [Tamassia et al. 2004]. The
anonymous role-based delegation protocol and implementation presented in this pa-
per are privacy-enhancing techniques general for any role-based trust management
systems.

Hidden credentials system [Holt et al. 2003] has been proposed to protect sensi-
tive credentials and policies. The main idea of that paper is that when a signature
derived from an identity based encryption scheme (IBE) [Boneh and Franklin 2001a;
Cocks 2001; Shamir 1984] is used to sign a credential, the credential content can be
used as a public encryption key such that the signature is the corresponding decryp-
tion key. Hidden credentials can be used in such a way that they are never shown
to anyone, thus the sensitive credentials are protected. The Hidden Credentials
system also protects sensitive policies by not specifying which credentials can be
used to decrypt the encrypted resource. Bradshaw et al. [Bradshaw et al. 2004] ex-
tended the hidden credentials system to support complex access policies expressed
as monotonic Boolean functions. They applied a secret splitting system to conceal
the structure of such policies. The extended hidden credentials system protects the
structure of Bob’s polices. Frikken et al. [Frikken et al. 2004] give a scheme that
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hides both credentials and policies. Most recently, Frikken et al. [Frikken et al.
2006] proposed a protocol that allows the client and the servers to have policies
for their credentials (to mitigate probing attacks) and hide these policies and the
credentials. The above-mentioned work is in the conventional access control set-
tings, where the server and authorized clients have established trust when hidden
credentials are issued.

Anonymous credential systems have been developed [Camenisch and Lysyanskaya
2001; Camenisch and Van Herreweghen 2002; Chaum 1985; Chaum and Evertse
1987] to allow anonymous, yet authenticated and accountable, transactions between
users and service providers. These systems give a technique for protecting the
users’ privacy when conducting Internet transactions. Our work presented in this
paper is for anonymous role-based authorization, and can potentially be used as
an anonymous credential system, where a user authenticates herself to be a valid
member of a role. This can be achieved by generating a role signature, which is
verified by a resource owner (verifier). The disadvantage of such an anonymous
credential system compared to the state-of-the-art is that the credential is only
one-time use instead of multi-use.

9. CONCLUSION

We have proposed an anonymous role-based cascaded delegation (RBCD) protocol
that protects sensitive role-membership information of delegators. Although the
anonymous RBCD model can use any group signature scheme to realize, we have
shown that there is a performance advantage using our anonymous-signer aggregate
signature scheme. Anonymous-signer aggregate signature scheme is suitable for
sensitive applications where a large number of signatures are produced and the role
or group membership of a signer (instead of the identity of the signer) is needed for
verification.
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