
Towards End-to-End Secure Content Storage
and Delivery with Public Cloud

Huijun Xiong§, Xinwen Zhang†, Danfeng Yao§, Xiaoxin Wu†, Yonggang Wen‡

§ Virginia Tech, Blacksburg, VA, USA, {huijun, danfeng}@cs.vt.edu
†Security & Privacy Lab, Huawei Technologies, {xinwen.zhang, wuxiaoxin}@huawei.com
‡School of Computer Engineering, Nanyang Technological University, ygwen@ntu.edu.sg

ABSTRACT
Recent years have witnessed the trend of leveraging cloud-
based services for large scale content storage, processing,
and distribution. Security and privacy are among top con-
cerns for the public cloud environments. Towards end-to-
end content security, we propose and implement CloudSeal,
a scheme for securely sharing and distributing content via
the public cloud. CloudSeal ensures the confidentiality of
content in the public cloud environments with flexible access
control policies for subscribers and efficient content distri-
bution via content delivery network.
CloudSeal seamlessly integrates symmetric encryption,

proxy-based re-encryption, k-out-of-n secret sharing, and
broadcast revocation mechanisms. These algorithms allow
CloudSeal to cache the major part of a stored cipher content
object in the delivery network for content distribution, while
keeping the minor part in the cloud storage for key manage-
ment. The separation of subscription-based key manage-
ment and confidentiality-oriented proxy-based re-encryption
policies uniquely enables flexible and scalable deployment of
the solution as well as strong security for cached content in
the network. We have implemented CloudSeal on Amazon
Web Services, including EC2, S3, and CloudFront. Through
experimental evaluation, we demonstrate the end-to-end ef-
ficiency and scalability of CloudSeal.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection; K.6.5 [Management of
computing and Information Systems]: Security and
Protection—Authentication, unauthorized access.

General Terms
Algorithms, Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’12,February 7–9, 2012, San Antonio, Texas, USA.
Copyright 2012 ACM 978-1-4503-1091-8/12/02 ...$10.00.

Keywords
cloud computing, cloud storage, proxy-based re-encryption,
security, confidentiality, content distribution

1. INTRODUCTION
Recent advance of Internet and information technology

has shown two significant trends. First, media content
has become the main Internet traffic. As predicated by
Cisco, video streaming will consume approximately 90%
of Internet traffic in 2015 [18]. Second, utilizing elastic
cloud computing and storage resources has become the trend
for enterprises and consumer-oriented commercial services.
Large scale content processing, storage, and distribution via
public cloud infrastructures become promising for quality-
guaranteed and cost-efficient media streaming services. De-
spite the increasing usage of cloud in applications and ser-
vices, security issues have been the top concerns for cloud
computing [6, 22]. Among them, how to maintain the con-
fidentiality and privacy of outsourced content in the public
cloud remains a challenging task. The security requirement
becomes more complex with flexible content processing and
sharing among a large number of users through cloud-based
applications and services.

Previous work has addressed such problems in conven-
tional distributed environments [20, 34]. For large scale
cloud-based content sharing and distribution services, there
are new requirements beyond this. First, the content se-
curity should be realized by the content provider who uses
public cloud services, instead of the cloud service provider [7,
28]. A content provider needs to encrypt her content with
keys that are out of the reach of the cloud provider. Sec-
ond, the access control policies should be flexible and distin-
guishable among users with different privileges to access the
content. Each piece of content may be shared by different
users or groups, and users may belong to multiple groups.
Third, the number of redundant copies of the content cached
in the content delivery network should be minimum in order
to preserve efficiency of content distribution via the con-
tent delivery network. A user may earn benefits from the
cache of encrypted content in the content delivery network
of other users who have the same privilege. Multicast se-
curity [14] aims to address the confidentiality of content
sharing with dynamic user groups. However, conventional
multicast and broadcast involve only two types of entities:
multicast/broadcast center and users. The content center
belongs to the content provider or is fully trusted by the
content provider. Their setting differs from our cloud-based
model, which involves a semi-honest cloud provider to assist

1

the content provider and the users. The earlier proxy-based
encryption scheme for secure file systems [8] seems to work
with semi-honest servers, but it fails to consider frequent key
revocation problem, which is required by cloud-based data
sharing systems. Therefore, we need a system with stronger
content security guarantees and more flexible user and key
management mechanisms.
In this paper, we propose CloudSeal, an end-to-end so-

lution for secure content storage and delivery via the pub-
lic cloud. By end-to-end, we mean that the content is en-
crypted at cloud-based storage and delivery channels. Only
authorized end users or the content provider can decrypt
it. CloudSeal ensures content confidentiality and content
forward and backward security. CloudSeal applies dual en-
cryption algorithms on the original plaintext of the content
and uploads encrypted content to the cloud to protect con-
tent confidentiality. Then, CloudSeal seamlessly integrates
proxy-based encryption and k-out-of-n secret sharing mech-
anisms to guarantee content forward and backward security.
A proxy is employed in the cloud to transform encrypted
content stored in the cloud storage to the delivery network
or directly to the subscribers. The content provider updates
re-encryption keys for legitimate groups and enforces shared
secret keys among authorized subscribers, with which the
content retrieved from the cloud can be decrypted.
Besides these security properties, CloudSeal further en-

ables efficient content distribution and flexible content ac-
cess control mechanisms. CloudSeal splits the ciphertext of
the content stored in the cloud into two parts, so that the
proxy only re-encrypts a very small part of ciphertext, and
the large portion remains unchanged. The proxy guarantees
two important properties of the content: 1) the content to
be downloaded by the subscribers is always encrypted with
the latest re-encryption key; 2) there is only one copy of
the content stored in the content delivery network. These
features enable the efficient cache mechanism during con-
tent distribution and achieve fast content distribution. For
flexible content access control mechanisms, CloudSeal sepa-
rates the distribution of the subscribers’ decryption key from
that of the content to enforce flexible authorization policies.
Only authorized users can obtain the latest decryption key,
and the content provider maintains the control of issuing
new keys. We design k-out-of-n secret sharing and broad-
cast revocation protocols to renew the shared secret key in
a scalable fashion.
We have implemented CloudSeal with Amazon Web Ser-

vices (AWS), including EC2 (proxy service), S3 (cloud stor-
age), and CloudFront (content delivery). With extensive
experimental evaluation, we have demonstrated that Cloud-
Seal achieves content distribution efficiency with the support
of flexible user management.
The rest of the paper is organized as follows. We present

the overview of CloudSeal and its design goals in the next
section, and the details of its design in Section 3. Section 4
describes our prototype and evaluation results. We discuss
related work in Section 5 and conclude in Section 6.

2. MODEL AND SYSTEM GOALS
Figure 1 shows a three-layer architecture for a typical con-

tent storage and distribution system over the public cloud
infrastructure: a centralized storage service provided by a
cloud provider, a content delivery network (or service) to
accelerate content distribution over public network, and end

Figure 1: Schematic drawing of data flow in cloud-
based storage and delivery services.

users with variant devices as subscribers (content consumers
or clients). A cloud provider provides two cloud-based ser-
vices: storage and content delivery. A content provider uti-
lizes these two services to store, share, and distribute her
content to multiple subscribers. The content provider and
subscribers can access content via a cloud-based applica-
tion service, which reads and manages the content stored
in the storage service via cloud storage APIs. The applica-
tion service is an application deployed in the cloud by the
content provider or a third party. The content provider can
use multiple cloud-based services from different cloud ser-
vice providers to host her application service, content stor-
age service, and content delivery service. For example, Net-
flix [3] uses Amazon EC2 and S3 for content processing and
storage, and uses multiple content delivery services such as
Limelight, Level 3, and Akamia.

2.1 Trust Model and Assumption
CloudSeal trusts the content provider. The cloud service

provider is honest but curious; that is, it follows the pro-
tocol and operations defined in CloudSeal, but it may ac-
tively attempt to gain the knowledge of the content. The
content delivery service is also semi-trusted: it also may at-
tempt to sniff content distributed and cached in the network,
but it honestly performs all the operations and satisfies the
quality of services, e.g., as specified in a service level agree-
ment between the content provider and the delivery service
provider. In addition, the cloud infrastructure (hardware
and software) may be exploited by attackers who aim to
obtain content [26].

CloudSeal aims to protect the content with large size and
leverages public cloud for storage and content distribution.
We assume that a subscriber does not store any cleartext and
ciphertext of the content permanently in her local device.
Instead, she downloads the content from the cloud and the
content distribution network when she wants to access. We
further assume that a subscriber does not re-disseminate
decrypted content and her share of secrets to unauthorized
parties.

2.2 Design Goals
We summarize the security objectives and system objec-

tives of CloudSeal as follows.

• CloudSeal should ensure content confidentiality in the
cloud storage and content delivery network even un-

2

der the collusion between the cloud provider and the
revoked subscribers.

• CloudSeal should support dynamic group-based user
authorization, i.e., a user may choose to join or leave
a group, or to be revoked from a group by the content
provider at any time. Only authorized users are able
to obtain the cleartext of protected content stored in
cloud or cached in network at any system state.

• CloudSeal should support flexible security policies in-
cluding forward and backward security.

– For forward security, a user cannot access content
published before she joins a group.

– For backward security, a user cannot access con-
tent that is published after she leaves or is revoked
from a group.

For forward and backward security, CloudSeal can be con-
figured to support either or both. For example, a user may
be allowed to access any movie that has been released be-
fore she subscribes, but cannot access any content after be-
ing revoked. For another example, a family content sharing
application may allow a family friend to only access shared
photos published during a certain period.
Beyond these security objectives, CloudSeal aims to

achieve the following system and network performance re-
quirements.

• CloudSeal should preserve the efficiency of content de-
livery network. In particular, it is desirable for the
network to store a single copy of encrypted content at
each system state.

• CloudSeal should support light-weight end storage
cost. Only a small amount of storage should be re-
quired at the content provider side and the subscriber
side to sustain user and key management of CloudSeal.

• CloudSeal should not affect user experiences at device
side. The overhead of security mechanisms should be
acceptable.

3. CLOUDSEAL SCHEME DETAILS
This section presents the overview, algorithms, and secu-

rity analysis of CloudSeal in details. A preliminary scheme
of CloudSeal is presented in [33].

3.1 Overview
Figure 2 shows the architecture of CloudSeal with three

types of players: cloud provider, content provider, and sub-
scriber.

• Cloud Provider provides two public cloud services:
storage service for content storing and content deliv-
ery for content distribution. It also provides virtual
infrastructure to host application services, which can
be used by the content provider to manipulate the con-
tent stored in the cloud, or by the content subscribers
to retrieve the content.

• Content Provider provides content to groups of sub-
scribers, as well as user management. It uses cloud-
based service from the cloud provider to store and dis-
tribute content.

!"#$%#$&'%()*%+,&-%+*).%&

!"

!"#$%&'()*+(,-./012345"1-/

!("/0&-$"+12%&-%+*).%&

344().15"#&-%+*).%&
#$%&'(")*"+,-./0"

#$%&'(")*"1&2&,-./0"

3)4,5)'6"

6747*+089:/
785)'6"

/'8" 3&5&$&"

!"#$%#$&

6+"*)0%+&

;<*:7*:=>7$%?708(67=7*+(,--/

-/78.+)7%+8&

9&:";,$&%*'-&"

67@
"7&

:=A%
$7/

Figure 2: CloudSeal overview.

• Subscriber is able to access the content stored in the
cloud if she successfully subscribes to the content
provider. The subscriber can decrypt delivered con-
tent and consume it with local software.

The application service provides web interfaces for the
content provider to publish and manipulate content in the
cloud, as well as for subscribers to retrieve content from the
cloud. The content can be directly accessed by consumers
from the cloud storage service via storage APIs provided
by the cloud service provider, or be cached in the delivery
network once it has been accessed to save bandwidth and
communication cost for the sake of high efficient content
distribution.

To protect the content stored in the public cloud from
being accessed by unauthorized parties, CloudSeal provides
several cryptographic tools for the content provider to en-
sure that only authorized subscribers are able to obtain the
decryption keys. The content provider preprocesses cleart-
ext locally by calling CloudSeal Enc function and then pub-
lishes the processed content to the public cloud-based stor-
age. Enc function performs dual encryption on the content
with symmetric encryption as the first level of encryption
and then proxy-based encryption as the second level of en-
cryption. The dual encryption scheme enables CloudSeal
to protect content confidentiality as well as outsource flexi-
ble access control policies. To delegate different access con-
trol mechanism, the content provider distributes correspond-
ing re-encryption keys rk to the application service in the
cloud. The application service transforms the ciphertext in
the cloud by calling Re_Enc function with rk so that sub-
scribers can decrypt them with the shared secret key uk.
When an update happens in the user group, e.g., a user joins
or leaves the group, the content provider updates the con-
tent re-encryption key rk stored in the application service to
invalidate previous version of the content. Specifically, the
content provider calls Re_key to generate a new delegation
key for the application service. Then the application service
produces new ciphertext by executing Re_Enc on the origi-
nal cipher content in the cloud with the new re-encryption
key rk. The small part of the resulting new cipher content
is stored in the cloud storage service and the main part is
cached in the delivery network to accelerate content distri-
bution. During the re-encryption process, only a small part
of the ciphertext of the content needs to be updated. The
main part remains unchanged and can be persistently cached
within the delivery network. When accessing a content, a
client has to obtain all parts from cloud and distribution
network in order to decrypt and render the content. This

3

feature seamlessly achieves security objectives and efficient
content distribution together.
For user management, CloudSeal has operations of User

Revocation and User Subscription. CloudSeal supports a
group of users’ access to a set of encrypted content (or a
channel) by sharing a secret key uk within the group. When
a user joins the group, the content provider issues her shares
of future secret keys as well as the current secret key. When a
user leaves or is revoked from the group, the content provider
broadcasts this user’s share of the new decryption key to the
entire group so that the remaining users are able to generate
the new decryption key autonomously.

3.2 Preliminary
Bilinear Maps [10, 11]: Let G, GT be two multiplicative
cyclic groups of prime order r, we say ê is an admissible
bilinear map if: (1) computative actions in G and GT are
efficient; (2) for all α, β ∈ Zr of prime order r, ê(gα, gβ) =
ê(g, g)αβ ; (3) ê is non-degenerate, which means that not all
pairs in G×G are sent to the identity in GT by ê.

Secret Sharing [24, 29]: A k-out-of-n threshold secret
sharing scheme is that a secret S ∈ Zr shared by n users
can be recovered, if the number of the secret shares exceeds
the threshold k. The scheme utilizes a random polynomial P
of degree k − 1, where P (x) ∈ Zr and P (0) = S. Given any
k shares < x0, P (x0) >, ..., < xk−1, P (xk−1) >, one can use
Lagrange interpolation formulas as follows to recover P (0):

P (0) =

k−1∑

i=0

λiP (xi), where λi =
∏

j 6=i

xj

xj − xi
(1)

Proxy-based Re-encryption [8]: A proxy-based re-
encryption algorithm transforms ciphertext ck1 to ciphertext
ck2 with a key rkk1→k2 without revealing the corresponding
cleartext, where ck1 and ck2 can only be decrypted by differ-
ent key k1 and k2, respectively. rkk1→k2 is a re-key issued
by another party, e.g., the originator of ciphertext ck1.

3.3 CloudSeal Operations
CloudSeal operations involve in two planes: data plane

and control plane. In the data plane, we describe the oper-
ations on the content, including system setup, content pub-
lishing, proxy re-encryption, and content retrieving. In the
control plane, we present user management including user
revocation – when a user leaves or is revoked from a group
and user subscription – when a new user joins a group. Our
scheme applies the dual encryption scheme to protect con-
tent confidentiality and uniquely bridges the proxy-based re-
encryption scheme proposed by Ateniese et al. [8] and the
secret sharing scheme in [24]. Table 1 shows the notation
we use in this paper.

System Setup is called by the content provider to pre-
pare the cryptographic system for content encryption and
re-encryption. The content provider first chooses system
public parameters params, namely g ∈ G and a bilinear
map ê. It chooses a proxy secret key SK ∈ Zr and public
key PK = gSK ∈ G. The content provider keeps SK se-
cret. The content provider chooses an integer k and a list
L of polynomials of degree k − 1 with coefficients randomly
chosen from Zr, which are kept secret. The number of users
who can be revoked at the same time is k − 1. The content
provider then chooses a random number from Zr as the ini-

Table 1: Notation.
Term Notation

PK content provider’s public key
SK content provider’s secret key
uk, uk′ shared secret key for a group
rkSK→uk re-encryption key
k number of shares to recover uk
P polynomial formula
xi user i’s ID
P (xi) polynomial value of user i
M original content
h temporary secret of content provider

tial uk. This setup is performed by the content provider for
each group of users.

Content Publishing is run by the content provider to pub-
lish its content to the public cloud. The content provider
performs the dual encryption scheme as follows. First she
encrypts the content M with a symmetric data encryption
key DEK to produce ciphertext C(M,DEK). Then she
further encrypts the content C(M,DEK) with the secret
key SK and params as shown in Algorithm 1. The re-
sulting encrypted content has three components (uSK , w, v),
which are stored in the cloud-based storage service by the
application service via cloud APIs. uSK depends on the
random secret h and content provider’s secret key SK,
w depends on the random secret h and the data encryp-
tion key DEK, and v depends on both h and the con-
tent. Usually, uSK and w are much smaller than v.

Algorithm 1: Enc(params, M, SK, DEK)
1: Content provider chooses a random secret h ∈ Zr;
2: Content provider chooses symmetric data encryption

key DEK and encrypts the content M to obtain
ciphertext C(M,DEK);

3: Let Z denote ê(g, g); Compute uSK = gSK·h and
Zh = ê(g, gh) = ê(g, g)h ∈ GT ,

4: Content provider outputs ciphertext of content M :
(uSK , w, v) = (gSK·h, DEK · Zh, C(M,DEK) · Zh).

Content Retrieving is for subscribers to access content
stored in the public cloud. Two algorithms - Re Key
and Re Enc - are involved in this process. Using Re Key
algorithm, the content provider generates a content re-
encryption key rkSK→uk with her secret key SK and the
current decryption key uk. Details are shown as follows.

Algorithm 2: Re Key(params, SK, uk)
1: Given params, SK and uk, the content provider

computes rkSK→uk = guk/SK .

Upon request, the application service ob-
tains the newest rkSK→uk from the content
provider and re-encrypts the target cipher content
(uSK , w, v) with the following Re Enc algorithm.

Algorithm 3: Re Enc((uSK , w, v), rkSK→uk, params)
1: The proxy calculates uuk = ê(rkSK→uk, uSK)

= ê(guk/SK , gSK·h) = ê(g, g)uk·h = Zuk·h;
2: The proxy outputs re-encrypted content (uuk, w, v).

The re-encryption is only performed on uSK . Because
uSK is independent of the content M , CloudSeal saves the
processing time and storage I/O cost of the application ser-
vice and storage service.

4

After this, the application service stores cipher content
(uuk, w, v) in the cloud storage service and allows the down-
load. For each cipher content, w and v can be cached in the
content delivery network, while uuk cannot be cached. Since
the size of uuk is small, this operation does not affect the
efficiency of content delivery.
When the system state is changed, e.g., a user joins or

leaves or is revoked from the group, the shared secret key
is updated from uk to uk′. Once the new secret key is
updated to authorized users (explained next), the content
provider generates the re-key rkSK→uk′ by running Re Key
algorithm and sends the re-key to the application service for
content re-encryption with Re Enc algorithm. The new ci-
pher content is (uuk′ , w, v). The user then downloads uuk′

from the cloud storage, w and v from the content delivery
network.
After a user obtains the encrypted content (uuk, w, v), she

follows Algorithm 4 below to decrypt the cipher with her
current secret key uk. The user either obtains the secret
key uk from the content provider when she first joins or
computes it (described in User Revocation next).

Algorithm 4: Decrypt((uuk, w, v), uk)

1: Given uuk and uk, the subscriber computes u
1/uk
uk = Zh,

where uuk = (Zuk·h);
2: The subscriber calculates DEK = w/Zh, and

C(DEK,M) = v/Zh;
3: The subscriber decrypts C(DEK,M) with DEK;
4: The subscriber outputs original content M .

User Revocation happens when a subscriber leaves a
group or is revoked by the content provider. It requires
key revocation operations in the group. Our key revocation
process is based on the k-out-of-n threshold secret sharing
scheme. We consider the following two cases.

• Case I: There are k−1 users to be revoked at one time.
The content provider revokes k − 1 users with shares
P (x1), P (x2), ..., P (xk−1), respectively. The content
provider broadcasts the shares of secrets and identi-
ties of these users < x1, P (x1) >,< x2, P (x2) >, ..., <
xk−1, P (xk−1) > to the entire group. Each user x in
the group combines her share of secret < x, P (x) >
with these k − 1 shares, to interpolate the new se-
cret key uk′ = P (0). For example, k = 2, P ′(0) can
be calculated by x

x−x1

P ′(x1) +
x1

x1−x
P ′(x) according

to Equation 1. The content provider uses uk′ as the
new shared secret key to generate re-encryption key
for non-revoked users.

• Case II: There are t users to be revoked, where t <
k − 1. The content provider performs the revocation
by sending the t shares of secret and additional k−t−1
shares of the secret of polynomial P. These additional
shares are values different from any existing users.

Polynomial P is then removed from the list L. If the list L is
empty, the content provider adds new polynomials, as well
as computes and distributes corresponding secret shares to
current subscribers (for future interpolation purposes).

User Subscription happens when a user joins a group.
Successful subscription authorizes a user’s access to pro-
tected content. To prevent new users from accessing con-
tent published before they join (for forward security), the
key revocation process is required to be executed as follows.

• Upon receiving join requests from t new users, the con-
tent provider obtains the first polynomial P ′ on list L,
and calculates key uk′ = P ′(0); uk′ is sent to the new
users in secure channels.

• The content provider assigns each new user a unique
identity xi ∈ Zr and her share of secret from poly-
nomial P ′(xi), along with xi’s values from the other
polynomials on list L. The content provider sends
these polynomial values, except for P ′(xi), to the new
users respectively for future key updating through se-
cure channels.

• The content provider broadcasts new users’ share of
secret < xi, P

′(xi) to the current group members for
new key generation. If t < k − 1, the content provider
generates k−t−1 more share of the secret with P ′ and
sends them to the entire group. These k− t− 1 shares
of the secret are different from any existing values. P ′

is removed from the list L.

For each current group member xj , upon receiving <
x1, P

′(x1) >,< x2, P
′(x2) >, . . . , < xk−1, P

′(xk−1) from
the content provider, she calculates the new key with her
share of secret P ′(xj) for P ′ that was received when xj

joined earlier. This user can recover the new secret key
uk′ = P ′(0) = b by calculating P ′(0) with its share and
received share.

3.4 Security Analysis
CloudSeal aims to protect content confidentiality and user

access control (forward and backward security). We briefly
discuss them next.

3.4.1 Content Confidentiality
CloudSeal performs two types of encryption algorithms to

the content before outsourcing it. One is symmetric encryp-
tion algorithm to protect the confidentiality of the original
content. The other is the first-level encryption algorithm
in [8] executed on the resulting ciphertext from the sym-
metric encryption to enable flexible user access control of
the ciphertext. Although we use the same secret parameter
h for all blocks of a content to speed up the first-level en-
cryption algorithm, CloudSeal is as strong as the symmetric
encryption algorithm that is applied on the original plaintext
of the content. Therefore, CloudSeal achieves the confiden-
tiality of the encrypted content exposed in the public cloud.
Furthermore, in any system state, the cloud service provider
or an attacker cannot decrypt the cipher content with only
re-encryption keys rkSK→uk.

CloudSeal leverages the dual encryption scheme and uses
the same h for all blocks of a content to achieve security
and performance at the same time. Several approaches may
be alternatives. However they either fail to fulfill the secu-
rity goals of CloudSeal, or cannot achieve the efficiency of
encryption and content distribution for the practical usage.
For example, one approach is to distribute DEK via a se-
cure channel to individual users, instead of be encapsulated
within the content. This solution cannot support forward
and backward security objectives without invaliding cached
content in the network and re-publishing content with a new
DEK. Furthermore, any leakage of the DEK can compro-
mise the confidentiality of the content permanently, unless
the content provider invalidates the cache and re-encrypts

5

and re-distributes it. Sole proxy-based re-encryption algo-
rithm with different secret parameter h for each data block
of a big file is too slow for encryption at the content provider
side.

3.4.2 Forward and backward security
CloudSeal is designed to protect content forward and

backward security. When a user joining or leaving event
happens in a group, the content provider issues a new re-
encryption key for this group to the application service, then
requires the application service to alter the content to be
delivered with the newest re-encryption key, and finally up-
dates the entire group with the new group information. For
a join event, the content provider sends her the latest de-
cryption key and her shares of secrets for future key update.
Consequently, a new user cannot decrypt the old content
with the new decryption key, and a revoked user cannot
decrypt new content with her old keys. Note that Cloud-
Seal does not prevent a user from sharing decrypted content
or decryption keys to unauthorized users. A digital rights
management tool, such as the Microsoft DRM component
in Netflix [25], can be used to solve this problem, which is
out of the scope of CloudSeal.

3.4.3 Collusion Resistance
Collusion between delegatees and the proxy is one weak-

ness of many proxy-based re-encryption algorithms. The
goal of collusion resistance in such systems is to prevent
the recovery of a delegator’s secret keys by combination of
the issued re-encryption key and delegated decryption keys.
CloudSeal utilizes the proxy-based re-encryption scheme
proposed in [8], which has been proven to be collusion re-
sistant. This guarantees that the secret key of a content
provider is secure even with a user or the cloud provider
obtains both re-encryption key and the user’s decryption
key. With this algorithm, CloudSeal ensures that the entire
outsourced content cannot be compromised and the content
provider preserves the control of security policies by issuing
of different re-encryption keys to different authorized groups
of subscribers.

Besides security properties for content sharing and deliv-
ery via public cloud, CloudSeal uniquely achieves content
distribution efficiency. When a group state changes, only a
small part of the cipher content needs to be re-encrypted in
cloud, while most of the content objects can be cached in
the delivery network and shared by users. The separation of
content operations (data plane) and user management op-
erations (control plane) further enables flexible and scalable
deployment of CloudSeal in the public cloud and network
environment.

4. IMPLEMENTATION & EVALUATION
In this section, we first present the implementation of

CloudSeal with Amazon Web Services (AWS), and then
evaluate its system and network performance.

4.1 System Implementation
Content sharing applications with public cloud. We
spent nontrivial efforts to build a simulated content shar-
ing service based on three AWS services [1]: Elastic Com-
pute Cloud (EC2) service to host an application service for
subscribers, Simple Storage Service (S3) to store the cipher
content for content providers, and Content Delivery Service

(CloudFront) to distribute content. Amazon EC2 provides a
virtual environment and allows developers to launch virtual
machine instances with various operating system and appli-
cations. Amazon S3 is a cloud-based storage system, which
stores data in buckets and allows write, read, and delete op-
erations on them. Amazon CloudFront provides high-speed
content delivery service by automatically caching content in
the nearest edge locations and delivering the cache to end
users. To achieve security enhancement of this service, we
extend its functionality with algorithms and protocols afore-
mentioned in CloudSeal.

We implement the application service as a website writ-
ten by PHP and host it with an Apache server running in
an Amazon Linux EC2 instance. In order to directly store
and manipulate the content in S3, we create a connection

object with Python library boto [2], which calls the func-
tion boto.connect s3(s3.key, s3.ID) to establish connections
between the EC2 instance and S3 storage. s3.key and s3.ID
are the key and identifier number of Amazon S3 instances
assigned when created.

Our content is stored in the buckets of Amazon S3, which
assigns each bucket with a global unique name and each file
a URL composing with bucket name and file name. We
use this URL as a content object in the application ser-
vice web page. For example, file video1.mp4 is stored in
bucket bucket1, the access URL to that file is http://s3.

amazonawa.com/bucket1/video1.mp4. Applications can use
HTTP or BitTorrent-like protocols to access data stored in
Amazon S3. Our application service uses HTTP protocol.
Users can request files by file names from the file list stored
in the application service with HTTP GET request. For each
published content, we create two buckets in S3: one is for
the originally published cipher content <uSK , w, v> from
the content provider, which is not updated once stored, and
the other for the cipher content <uuk, w, v> to be delivered,
which is updated once a user joins or leaves. Although both
buckets can be made publicly readable to users, we set pri-
vate permission to the original published one since only the
content provider and the application service need to access
them. The other content bucket is publicly readable to all
users. To avoid storage redundancy, only uSK of the cipher
content is stored, as the other part <w, v> is the same as
the public bucket. This part is so small that we cache them
on EC2 to facilitate the cryptographic operations.

CloudSeal with its cryptographic tools. We implement
aforementioned data plane cryptographic algorithms (Enc,
Re Key, Re Enc, and Decrypt) based on cryptographic
functions from the OpenSSL library [4] and the pairing-
based cryptographic library (PBC) [5] with independent na-
tive processes. We choose Advanced Encryption Standard
(AES) with 16 bytes key as our symmetric encryption al-
gorithm and implement the CFB mode of AES to randomize
the ciphertext of each data block of a file. For pairing-based
encryption, instead of mapping an arbitrary M to a certain
field GT , we map the elements in GT to byte array in C
language and use XOR operation in our implementation to
produce w and v. This approach accelerates the encryption
operation for the content provider. For key updating, we
choose random linear polynomial formula so that only one
user can be revoked with a single re-encryption operation.

We further develop a web application as the administra-
tive service to assist the content provider for the user and
key management on EC2 instance. This service enforces the

6

cryptographic tools running on the same EC2 instance as
the application service. When a user signs up in a group
with the administrative service, the service updates current
decryption key of the group and assigns this key and a share
of future decryption keys to the new user. It updates the
entire group with the new user’s share. When a user de-
cides to leave the group, the user sends Leave message to
the administrative service. The service again updates the
current decryption key and distributes the share of secret
of the revoked user. When an update happens in a group,
the administrative service blocks any new file downloading
activities in this group. Then it calculates the new key
and distributes the revocation information to the remain-
ing users, and then re-encrypts the content and stores it
back on EC2 with the newest decryption key. After this,
this group can start downloading files. In order to keep the
up-to-date decryption key, the user periodically checks the
administrative service to see whether or not there is a revo-
cation by sending Update_Checking HTTP requests to the
server. Once there is a revocation, remaining users send
GET_Update_Info packets to get the newly revocation infor-
mation and update her decryption key accordingly. As we
integrate the administrative service into the HTTP server of
the application service to measure the key and user manage-
ment mechanisms, the user needs to actively pull the update
information from the service, instead of passively receiving
message from the service. We plan to realize the adminis-
trative service with an XMTP (XML MIME Transformation
Protocol) server in the future, with which users can receive
push notification from the server.

4.2 Experimental Evaluation
To confirm that CloudSeal achieves the performance ob-

jectives (cf. Section 2.2), we sought to answer the follow-
ing questions to demonstrate that the security mechanisms
from cryptographic algorithms in CloudSeal bring accept-
able costs to end-to-end performance.

1. What is the overhead of cryptographic operations in-
cluding content encryption by the content provider and
the content decryption by the subscribers?

2. What is the overhead of the re-encryption operations
including content re-encryption by the application ser-
vice in the cloud? Will the application service become
performance bottleneck due to the overhead?

3. What is the affect of content delivery network to the
cloud-based content distribution?

We have conducted a number of experiments to evaluate
CloudSeal in the system and cloud levels. We examine the
host-based efficiency of the cryptographic algorithms with
different pairing types and the user management costs for
communication and storage. We further conduct experi-
ments on Amazon public cloud environment to evaluate effi-
ciency of different cloud services of CloudSeal with two EC2
types (small, and medium) and different data distribution
mechanisms (with or without CloudFront).

4.2.1 Efficiency of Algorithms and Protocols
Computation Cost. To show the performance at the
content provider side and the subscriber side with crypto-
graphic operations, we conduct content encryption (by con-
tent provider) and decryption (by content consumer) tests

�

�

��

��

��

��

��

� ��� ��� ��� ��� 	�� ��
 ���
��

��������

����������	��
��

�����������	
�����

����������	�
� ����������	�
�

Figure 3: Overhead of encryption operations with
different pairing types.

�

�

��

��

�

�

��

� ��� � �� ��� �� ��� ��� ���

��������

����������	��
��

�����������	
�����

����������	�
� ����������	�
�

Figure 4: Overhead of decryption operations with
different pairing types.

locally on a desktop with Intel Duo CPU 2.93GHz, 4GB
RAM, SUMSUNG 7200RPM, and CentOS 2.6. The encryp-
tion time consists of symmetric encryption with CFB mode,
pairing operation, and XOR operations. The decryption time
includes key generation, symmetric decryption, pairing op-
erations, and XOR operations. We choose two symmetric
pairings from the pairing based library [5], including Type
E pairing e.param and Type A pairing a.param, to examine
the impact from different pairing types to CloudSeal accord-
ing to the scheme of CloudSeal. The symmetric key length
is 16 bytes. The length of pairing-based master key and
decryption key is 20 bytes for both pairing types.

We put 9 different sizes of files in the desktop and run the
encryption and decryption algorithms 20 times on each file
to compute the average processing time. As shown in Fig-
ure 3 and Figure 4, encryption and decryption time increase
along with the content size, while there is a tiny difference
between the two symmetric pairing types. For content de-
cryption at consumer side, it takes less than 30 seconds to
decrypt a 800MB video file.

Communication Cost. We investigate the communication
cost caused by a group update, e.g., a user joins or is revoked.
Recall that the degree of the polynomials is the number of
users who can be revoked simultaneously. For example, a
degree 2 polynomial implies that the content provider can
revoke two users at one time. Assume we choose a degree d
polynomial and we need B bytes to send one user’s revoking
information, if we have r users remain in the group, each
revocation causes d ∗B ∗ (r+ d) bytes traffic in the network
with our broadcasting mechanism, where (r+d) is the total
number of users in the group. Suppose there are 100 users
in one group, d equals to 2, and B is 40 bytes according
to our implementation, the total amount for one update in
CloudSeal is around 8KB.

7

Table 2: Re-encryption Time (Seconds) of 600MB
Content on Different Amazon EC2 Instances.

Pairing Key Length (Bytes) Small EC2 Medium EC2

TypeE 20 0.00007425 0.000071
TypeA 20 0.00007925 0.000077

����

����

����

����

����

�����

�����

�����

��� ��� ��� ��� ��� ���

�
�
�
�
�
��
�
	�

�
�
��
�
�
�
��

��
�
��
��
��
�
�
�

��������	
���
������

�������� �������� ! "#�$$ %&' (����# %&'

Figure 5: Number of required re-encryption opera-
tions with different churning rates

Storage Cost. We further look into the storage cost for
the key management at both content provider side and sub-
scriber side. In order to sustain system state, the content
provider needs to keep current user secret key and a list
of polynomials in terms of sets of coefficient for future sys-
tem update. In our implementation, 20 bytes are enough to
represent user secret key or each coefficient of polynomials.
The average amount of storage cost for each group at con-
tent provider side is 6KB given 100 polynomials of degree
2. This cost is small enough to support a large number of
groups of subscribers in the service. For subscribers, they
only need to keep their own values of the list of polynomials
with total amount of 2KB for 100 polynomials of degree 2.

4.2.2 Application Service Performance
We evaluate Amazon EC2 service on two different instance

types: small and medium, located in AWS North California
data center. The small EC2 instance consists of one core
CPU with 1 ECU and 1.7GB memory, and the medium EC2
instance has two core CPU with 5 ECUs and 1.7GB memory.
An ECU provides the equivalent CPU capacity of 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor. We focus on
examining the re-encryption algorithm efficiency on Amazon
EC2, which is the only operation on cipher content by the
application service. We run each experiment 20 times and
report the average running time.
As Table 2 shows, the operation on the small EC2 instance

is slightly slower than that on the medium instance, which
implies that computation ability of CPU has positive impact
on cloud performance for our application services. Compar-
ing with previous encryption and decryption time shown in
Figure 3 and Figure 4, the re-encryption time on same size
of content is significantly shorter.
CloudSeal can serve multiple groups, each having a dif-

ferent set of authorized users. As a centralized component,
the application service can be a bottleneck for performance,
especially for the content re-encryption operations for all
groups. Suppose there are 100 similar groups, each with
maximum 100 subscribers and 1000 content objects. We
adjust the churn rate of a group to estimate the required re-

��

���

����

����

����

����

��� ��� ��� ��� ��� ���

��������

����������	��
��

������������

���������	

�	���	���������	

Figure 6: Downloading time for content delivery
with storage center at Tokyo.

��

���

���

���

���

��� ��� ��� ��� ��� ���

��������

	
��������������

��������	
����
�����

���������	

�	���	���������	

Figure 7: Downloading time for content delivery
with storage center at N. California.

encryption operations of the application service. The churn
rate varies from 100 users per hour to 400 users per hour,
which indicates the number of subscribers who join or leave
the group per hour. From Table 2, we can calculate that,
with the small EC2 instance, the application service can han-
dle at most 1/0.00007425 = 13468 re-encryption operations
per second and with the medium EC2 instance, the appli-
cation service can perform 1/0.000071 = 14084 operations
per second. Figure 5 demonstrates that with either small
EC2 instance or medium EC2 instance, the number of re-
encryption operations per second performed by the applica-
tion service is much larger than the required operations per
second along with different churn rate in the system. This
indicates that the application service is adequate in provid-
ing revocation induced content re-encryption operations for
groups for large churn frequencies. Furthermore, with elas-
tic computing resources, the content provider can allocate
more computing instances for the application service in an
on-demand manner. Therefore, re-encryption operation in
cloud will not be a bottleneck to the system’s performance.
Besides, as elapsed time for re-encryption operation is unre-
lated with the size of content, frequent revocation will not
add large overhead on our system.

4.2.3 Content Delivery Efficiency
For content delivery network performance, we evaluate

content delivery time with Amazon CloudFront. Four ele-
ments can affect the delivery efficiency: whether the Cloud-
Front service is enabled, the locations of end consumers,
deployed CloudFront edge servers 1, and the location of the
content storage center. In our experiment, we store our con-
tent in two different Amazon S3 data centers: North Cali-
fornia, USA and Tokyo, Japan. To initiate content delivery
action, we develop a customized client with Python to con-
tinuously request files from one bucket stored in Amazon
S3. We run 5 clients at North California, USA to leverage

1Our experiment was conducted in May 2011.

8

cache in local edge location. Each client requests 20 files and
we measure the time of downloading all of them. As shown
in Figures 6 and 7, without using CloudFront, the content
delivery time in North California is much smaller than that
in Tokyo. When the CloudFront is used, the delivery speed
for content stored in Tokyo can be significantly improved by
almost 10 times, while there is no obvious improvement for
that in North California. We conjecture that this is because
our client application is close to the North California S3 data
center. Therefore the download speed does not change much
when CloudFront is used.
Comparing the time for content delivery with the time of

cryptographic operations (encryption, decryption, and re-
encryption) shown in Figure 3, Figure 4, and Table 2, the
cryptographic time is at least 40 times faster than the con-
tent delivery time. Therefore, the security mechanisms im-
plemented in our prototype bring accesptable overhead.

In summary, our evaluation presents the efficiency of
CloudSeal in content processing and content delivery. At
subscriber side, CloudSeal brings acceptable decryption
time. The overhead of CloudSeal does not affect user’s expe-
rience. At the cloud side, the application service is not the
bottleneck of the system and supports the efficient content
re-encryption operations. Our system performs well when
scaling up to a large number of subscribers. CloudSeal pre-
serves the efficiency of content distribution of the content
delivery network with a smaller overhead for cryptographic
operations.

5. RELATED WORK
Several security solutions have been recently developed

for securing data in cloud [9, 23, 27, 36]. With similar secu-
rity concerns in outsourcing data to untrusted cloud service,
authors in [16, 21, 31, 35, 37] have proposed several so-
lutions. For example, Yu et al. [35] proposed an attribute
based access control policy to securely outsource sensitive
user data to the cloud. In their approach, data is encrypted
by a symmetric key while the access to this symmetric key is
controlled by KP-ABE algorithm [17]. To manage dynamic
user groups, they delegate rekey operations to the cloud and
let the cloud server update users’ secret keys and re-encrypt
data without revealing the underlying plaintext. CloudSeal
is different from their approach in that: CloudSeal only al-
lows a content provider to perform the Re_Key operation,
and the proxy re-encryption is performed directly on part
of the cipher content. Directly applying their approach to
solve our problem of content delivery may not be practi-
cal, as their ciphertext is customized for different users. In
comparison, as CloudSeal supports on-demanding data re-
encryption operations, our design brings performance ad-
vantage for large scale content cached in content delivery
network.
Secure storage system is an important application of proxy

re-encryption algorithms [8, 19]. CloudSeal is based on the
scheme proposed in [8], where the authors implemented an
encrypted file storage system with an access control server
in charge of data access according to proxy re-encryption
schemes. When a client requests data from a block store, it
firstly asks the access control server to re-encrypt the block
with its public key and the system master key, such that it
can decrypt the block with its own secret key. Access con-
trol server can deny re-encryption operation if the client is

not authorized. In comparison, we consider user revocation
problem in CloudSeal and also the real time efficiency of the
system.

Secure multicast communication [12, 13, 14, 15, 32, 38]
and conditional access systems [30] address similar security
problems as ours in distributing content to dynamic user
groups and key management. Proxy re-encryption algo-
rithm and k-out-of-n mechanisms have been used to solve
these problems. For example, researchers in paper [15] pro-
posed proxy re-encryption based secure multicast mecha-
nisms to achieve scalability and containment. Several prox-
ies (routers), usually during the content transmission, tran-
sitively convert ciphertext data with re-encryption keys as-
signed when building a multicast network. When a user is
to be revoked or a proxy (router) is off the network, cor-
responding proxy re-encryption keys and group secret keys
need to be updated. The problem solved by CloudSeal is
different from them due to the cache properties in content
delivery network, which requires more efficient and flexible
secure content delivery and user management mechanisms.

The security mechanism and supported access control
policies of CloudSeal differ from what Netflix adopts [25]
in several aspects. First, the goal of CloudSeal is to protect
the security of outsourcing content for the content provider,
rather than to prevent digital rights of the content on sub-
scribers’ device in Netflix 2. Second, the access control of
CloudSeal supports various groups of subscribers with dif-
ferent privileges for different shared content, while Netflix
currently supports only one (unlimited) plan for their video
streaming service. Third, CloudSeal encrypts the content
when storing in public cloud and distributing via content
delivery network. Netflix only encrypts the content at the
edge of the content delivery network.

6. CONCLUSION AND FUTURE WORK
We designed and implemented CloudSeal, an end-to-end

content confidentiality protection mechanism for large scale
content storage and distribution systems over the public
cloud infrastructure. By leveraging advanced cryptographic
algorithms including symmetric encryption, proxy-based re-
encryption, threshold secret sharing, and broadcast revoca-
tion, CloudSeal addresses unique challenges of efficient ci-
pher content transformation, cipher content caching in the
delivery network, and scalable user and key management.
Through the prototype implemented on Amazon EC2, S3,
and CloudFront, our experimental evaluation demonstrates
that CloudSeal achieves the efficiency and avoids possible
performance bottleneck. For future work, we plan to extend
our current design to support an open service, where each
user can publish content and delegate group membership
control with our broadcast revocation library.

7. ACKNOWLEDGEMENTS
We thank the anonymous referees for providing valuable

reviews. We especially thank Qingji Zheng for his construc-
tive comments on the algorithms and Wei Zhu for his help
in implementation.

2Netflix uses Microsoft DRM on subscriber side to ensure
end-to-end content security and digital rights management,
e.g., to prevent further dissemination of protected content
by an end user.

9

8. REFERENCES

[1] Amazon Web Services. http://aws.amazon.com.

[2] boto: Python interface to amazon web services.
http://code.google.com/p/boto/.

[3] Netflix on Amazon’s Cloud.
http://www.techflash.com/seattle/2010/05/

netflix_on_amazon_cloud.html.

[4] OpenSSL Cryptography and SSL/TLS Tookit,
http://www.openssl.org/.

[5] Pairing-based cryptography (pbc) library.
http://crypto.stanford.edu/pbc/

[6] Cloud Computing, an IDC update, 2010.

[7] AWS Customer Agreement
http://aws.amazon.com/agreement/, 2011.

[8] G. Ateniese, K. Fu, M. Green, and S. Hohenberger.
Improved Proxy Re-encryption Schemes with
Applications to Secure Distributed Storage. ACM
Trans. Inf. Syst. Secur., 9:1–30, February 2006.

[9] E. Bertino, F. Paci, R. Ferrini, and N. Shang.
Privacy-preserving Digital Identity Management for
Cloud Computing. IEEE Data Eng. Bull., 2009.

[10] D. Boneh and M. K. Franklin. Identity-based
Encryption from the Weil Pairing. In CRYPTO ’01.

[11] D. Boneh, B. Lynn, and H. Shacham. Short Signatures
from the Weil Pairing. In Proc. of ASIACRYPT ’01.

[12] B. Briscoe. MARKS: Multicast Key Management
using Arbitratily Revealed Key Sequences. In
Proceedings of NGC’99.

[13] B. Briscoe. Nark: Receiver-based Multicast
Non-repudiation and Key Management. In Proceedings
of EC’99.

[14] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor,
and B. Pinkas. Multicast Security: A Taxonomy and
Some Efficient Constructions. In INFOCOM ’99.

[15] Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang. Secure
Multicast Using Proxy Encryption. In Information
and Communications Security, Lecture Notes in
Computer Science. 2005.

[16] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon,
R. Masuoka, and J. Molina. Controlling Data in the
Cloud: Outsourcing Computation without
Outsourcing Control. In Proceedings of CCSW ’09.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based Encryption for Fine-grained Access
Control of Encrypted Data. In Proc. of ACM CCS,
2006.

[18] Cisco Inc. Cisco Visual Networking Index: Forecast
and Methodology, 2010-2015. White paper, Cisco.,
2011.

[19] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable Secure File Sharing on
Untrusted Storage. In Proceedings of FAST, 2003.

[20] Y. Koglin, D. Yao, and E. Bertino. Secure Content
Distribution by Parallel Processing from Cooperative
Intermediaries. IEEE Transactions on Parallel and
Distributed Systems, 2008.

[21] D. Lin and A. Squicciarini. Data Protection Models
for Service Provisioning in the Cloud. In Proceeding of
ACM SACMAT ’10.

[22] Lockheed Martin, LM Cyber Security Alliance.

Awareness, Trust and Security to Shape Government
Cloud Adoption. White paper, Cisco, 2010.

[23] M. Nabeel, N. Shang, J. Zage, and E. Bertino. Mask:
A System for Privacy-preserving Policy-based Access
to Published Content. In Proceedings of SIGMOD ’10.

[24] M. Naor and B. Pinkas. Efficient Trace and Revoke
Schemes. In Proceedings of the 4th International
Conference on Financial Cryptography, 2001.

[25] Pomelo, LLC Tech Memo. Analysis of Netflix’s
Security Framework for Watch Instantly Service, 2009.

[26] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, You, Get Off of My cloud! Exploring Information
Leakage in Third-Party Compute Clouds. In
Proceedings of CCS, 2009.

[27] R. Sandhu, R. Boppana, R. Krishnan, J. Reich,
T. Wolff, and J. Zachry. Towards A Discipline of
Mission-aware Cloud Computing. In Proceedings of the
2010 ACM workshop on Cloud computing security
workshop, CCSW ’10.

[28] Cloud Security Alliance. Security Guidance for Critical
Areas of Focus in Cloud Computing V2.1, 2009.
https://cloudsecurityalliance.org/csaguide.pdf.

[29] A. Shamir. How to Share A Secret. Commun. ACM,
22, November 1979.

[30] P. Traynor, K. R. B. Butler, W. Enck, and
P. McDaniel. Realizing Massive-Scale Conditional
Access Systems Through Attribute-Based
Cryptosystems. In NDSS, 2008.

[31] W. Wang, Z. Li, R. Owens, and B. Bhargava. Secure
and Efficient Access to Outsourced Data. In
Proceedings of CCSW ’09.

[32] C. K. Wong, M. Gouda, and S. S. Lam. Secure Group
Communications Using Key Graphs. IEEE/ACM
Trans. Netw., 8, February 2000.

[33] H. Xiong, X. Zhang, W. Zhu, and D. Yao. Cloudseal:
End-to-End Content Protection in Cloud-based
Storage and Delivery Services. In Proceedings of
Securecomm, 2011.

[34] D. Yao, Y. Koglin, E. Bertino, and R. Tamassia.
Decentralized Authorization and Data Security in
Web Content Delivery. In Proc ACM Symp. on
Applied Computing (SAC), 2007.

[35] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving
Secure, Scalable, and Fine-grained Data Access
Control in Cloud Computing. In INFOCOM’10.

[36] S. Zarandioon, D. Yao, and V. Ganapathy. K2C:
Cryptographic Cloud Storage With Lazy Revocation
and Anonymous Access. In Proceedings of
Securecomm, 2011.

[37] L. Zhou, V. Varadharajan, and M. Hitchens.
Enforcing role-based access control for secure data
storage in the cloud. The Computer Journal, 2011.

[38] S. Zhu, C. Yao, D. Liu, S. Setia, and S. Jajodia.
Efficient Security Mechanisms for Overlay Multicast
based Content Delivery. Comput. Commun.,
30:793–806, February 2007.

10

