
Privacy-aware Identity Management for Client-side Mashup
Applications ∗

Saman Zarandioon Danfeng Yao Vinod Ganapathy
Department of Computer Science

Rutgers University
Piscataway, NJ 08854

{samanz, danfeng, vinodg}@cs.rutgers.edu

ABSTRACT
This paper concerns the problem of identity management in mod-
ern Web-2.0-based mashup applications. Identity management sup-
ports convenient access to information when mashups are used in
sensitive environments, such an banking, investment and online
shopping, by providing services such as single sign-on.

We present Web2ID, a new identity management protocol tai-
lored for mashup applications. Web2ID leverages a secure mashup
framework and enables transfer of credentials between a service
provider and a consumer. We also describe a new relay framework
in which communication between two service providers is medi-
ated by a relay agent within the mashup. We show that Web2ID is
privacy-preserving and prevents service providers from learning a
user’s surfing habits.

We present an implementation of Web2ID and the relay frame-
work using a JavaScript-based library that executes within the
browser. Our implementation does not require client-side changes
and is therefore fully compatible even with legacy browsers. We
also highlight the key challenges faced in creating a portable, in-
browser library to support identity management in mashups.
Categories and Subject Descriptors: D.4.6[Operating Systems]:
Security and Protection - Authentication K.6.5[Management of
Computing and Information Systems]: Security and Protection
General Terms: Security, Design, Human Factors
Keywords: Mashup, Security, Communication, AJAX, Web,
OMOS.

1. INTRODUCTION
Mashup applications integrate information from multiple au-

tonomous data sources within the Web browser. For example,
iGoogle allows users to create a personal page containing “gad-
gets” from multiple Web domains, such as NYTimes, Weather.com
and Google Maps. As such, mashups have gained in popularity
because they provide a seamless browsing experience.
∗This work has been supported in part by NSF grant CCF-0728937,
CNS-0831186, and the Rutgers University Computing Coordina-
tion Council Pervasive Computing Initiative Grant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIM’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-786-8/09/11 ...$5.00.

Despite their popularity, mashups are still not in widespread use
for sensitive Web applications, such as banking, investment, online
shopping and bill payment. Such mashup applications currently re-
quire user authentication to prevent unauthorized access to sensitive
information. A Web user who includes such sensitive applications
in a mashup must authenticate herself individually to each of these
applications. For example, mint.com and yodlee.com allow
users to view a summary of their financial activities by accessing
back-end services such as banks and credit card companies. How-
ever, they require the user to authenticate with each of these ser-
vices and grant the mashup service provider access to her private
financial information. Studies show that users who manage multi-
ple Web identities often use weak passwords, or write them down
to alleviate the burden of having to memorize their passwords for
each domain—both of which can potentially compromise security.

Existing techniques to ease user authentication leverage feder-
ated identity management solutions, such as Single Sign-On (SSO).
In conventional SSO, a user authenticates herself to an identity
provider (IdP) website. The IdP allows the user to sign into
other participating service provider (SP)1 websites without requir-
ing her to authenticate again. For example, suppose that Al-
ice authenticates using a secure logon session with an identity
provider IdP.com. She may later wish to access services pro-
vided at CarRental.com and Airline.com. Instead of re-
quiring Alice to authenticate herself again to CarRental.com
and Airline.com (the SPs), IdP.com could assert Alice’s
identity to these websites. IdP.com, which acts as the IdP in this
case, can provide Alice’s user name and other attributes that ver-
ify her identity to CarRental.com and Airline.com. Note
that in this case, because of direct communication between the
IdP and SPs, IdP.com may learn that Alice has accounts at
CarRental.com and Airline.com and her usage pattern.
Moreover, CarRental.com may query user’s flight schedule
(or other attributes) from Airline.com. However, using any
conventional communication over network (e.g. HTTP) enables
Airline.com to learn which car rental service is being used by
the user.

Unfortunately, two key difficulties prevent existing identity man-
agement protocols from being directly applicable to modern Web-
2.0-based mashup environments. First, these protocols implement
SSO via a series of HTTP redirections within the user’s browser.
These redirections perform inter-domain communication between
the IdP and SP and transmit the user’s credentials from the IdP to
the SP. However, redirections are ill-suited for stateful AJAX-based
applications, such as Web desktops and Web-based office appli-
cations, because they involve unloading/reloading the application

1Identity providers have also been known as authorities or asserting
parties. Service providers have also been known as replying parties.

upon each redirection. Without application-level support, unload-
ing/reloading operations will result in the loss of unsaved data. Sec-
ond, the identity provider used to manage users’ credentials and
personal information causes privacy concerns. It can learn a lot
about a user’s online activities because IdPs are involved whenever
a user authenticates herself to a service provider.

There have been several existing identity management work ad-
dressing IdP-related privacy concerns by anonymizing user creden-
tials, defining privacy policies, or hiding a user’s digital trail [4,
7, 11, 21, 23]. There are two main differences between these
privacy-aware identity management solutions and our work. First,
we study identity management in the client-side mashup environ-
ment through a secure and efficient in-browser framework. Second,
we propose a novel single sign-on protocol without requiring the
participation of a trusted party identity provider.

We present Web2ID, a new protocol for identity management
(and SSO) in mashup applications. By leveraging a secure mashup
framework, Web2ID enables transfer of credentials without requir-
ing webpage redirections, and works seamlessly with AJAX-based
Web-2.0 applications. We also describe a new relay mashup frame-
work, based on which a trusted, client-side relay application can be
built in the mashup to transmit credentials between providers. Our
Web2ID protocol offers the following main benefits:

• Privacy. We protect user privacy by eliminating the require-
ment of a trusted party identity provider in online single
sign-on process. To realize this property, we utilize public-
key cryptography, in our authentication protocol. Moreover,
we provide a client-side communication framework called
mashlet relay which enables a service provider to send a
query to another service provider without revealing its iden-
tity. A mashlet is a HTML page hosted by an iframe in the
browser (described in Section 2). The mashlet-relay frame-
work protect user privacy in mashup environments because
service providers that host user’s data cannot learn how user
consumes her data. This feature is especially important when
the user wants to provide her identity attributes (certified by
a trusted party) to another service provider.

• Compatibility with legacy browsers and modern AJAX
oriented mashups. Our framework is implemented as a
JavaScript library that is incorporated with mashup applica-
tions. It does not require browser modifications or special-
ized plugins to operate and is fully portable across browsers
and execution platforms. We illustrate the portability of our
framework by incorporating it with several popular browsers,
including Firefox, Opera, Apple Safari, IE and Google
Chrome. Moreover, we avoid using HTTP redirections for
communication; consequently, our protocol is compatible
with modern AJAX-based Web applications.

Our implementation of the relay framework required in-
browser support for both symmetric and asymmetric cryp-
tography in the form of a JavaScript library. We highlight the
key difficulties in creating such a library for a legacy browser
and also consider this library as an independent contribution
of this paper.

2. BACKGROUND AND DEFINITIONS
In this section, we present background material on mashup

frameworks and discuss the problems addressed by our identity
management protocol.

2.1 Mashups and Mashlets

Mashup applications aggregate content from a number of
providers and display them within Web browsers. Such applica-
tions can be designed either as server-side mashups or client-side
mashups. In server-side mashups, a proxy (called the mashup
server) aggregates content from multiple sources. The Web
browser loads the mashup application by visiting a URL corre-
sponding to the proxy. For example, Facebook applications use
the RESTful API provided by Facebook to query user’s social in-
formation and aggregate them with other data to provide their users
with some interesting social oriented services. In contrast, client-
side mashups directly aggregate content within the Web browser.
Several frameworks have recently been proposed to support safe
yet expressive client-side mashups [3, 10, 13, 15, 25, 27].

The client-side components of a mashup application are called
mashlet. Mashlets represent the service provider that is hosting
them in the client side and run in the browser with the privilege
of domain name of their host. To be more concrete, a mashlet is
simply a HTML page which loads to an iframe and contains some
JavaScript code that enables it to communicate with other mashlets
in the page. A mashup application is a Web application that aggre-
gates a number of mashlets, possibly from different sources on the
Web. We also use the term mashlet container to refer to the mashup
application.

A number of recently-proposed frameworks allow mashlets to
securely communicate with other mashlets executing in a mashup
application [3, 13, 15, 25, 27]. A secure inter-mashlet communi-
cation protocol is a protocol that guarantees mutual authentication,
data confidentiality, and message integrity of mashlet. Mutual au-
thentication in inter-mashlet communication means that two mash-
lets that are communicating with each other must be able to verify
each other’s domain name. Message integrity requirement means
that any tampering of the messages between two mashlets should
be detected/prevented. Data confidentiality here means a mash-
let should not be able to listen to the communication between two
other mashlets running under different domains.

For concreteness, the rest of this paper describes mashups and
mashlets in the context of OpenMashupOS (OMOS) [20, 27], a
secure client-side mashup framework. The concepts developed in
this paper are applicable to any client-side mashup framework.

2.2 Identity Management in Mashup Applica-
tions

In the following discussion, we consider three problems in iden-
tity management and discuss how the Web2ID protocol and our
mashup relay framework address each of these problems. Where
applicable, we also discuss why existing techniques fail to address
the problem.

User Authentication.
When sensitive Web applications, such as those for banking, in-

vestment and tax services, are integrated into a mashup environ-
ment, it is highly desirable to use an authentication protocol that
provides single sign-on (SSO). SSO enables these service providers
(i.e., the bank or the investment company) to authenticate the
user without requiring her to prove her identity separately to each
provider. The goal of an authentication protocol in a mashup en-
vironment is for the user to prove the ownership of an identity to
a service provider without revealing any information that can be
misused by a malicious service provider to impersonate the user.

Most existing identity management protocols for Web, including
OpenID [1], use a unique URL to represent the identity of a princi-
pal. The advantage of using a URL as opposed to a name or email
address is that a URL is tangible, clickable, user-friendly, and can

contain information that facilitates the authentication process. This
URL is called the principal’s identity URL . The static page that is
located at identity URL is called the identity page. The server that
hosts the identity page is called the identity host. Therefore, during
the authentication, user claims ownership of an identity URL and
proves her claim to a service provider by following the correspond-
ing authentication protocol. However, all these authentication pro-
tocols require a trusted third party called Identity Provider (IdP) to
validate user’s claim. Users first create an account with IdP and
then in identity page delegate the authentication of their identity
URL to that IdP. But this violates user’s privacy as IdP can learn
surfing habits of the user.

Web2ID uses asymmetric cryptography to enable users to prove
ownership of their identity URL without relaying on any services
by third parties. In Web2ID , users are represented by a mashlet
hosted at their identity URL, in much the same way that service
providers are represented on the client-side by their mashlets. We
call the mashlet that is hosted at the identity URL of a user iden-
tity mashlet. Basically, in Web2ID , identity page is a mashlet (i.e.
includes JavaScript libraries required for communication and pro-
viding authentication service in the client-side).

During the authentication protocol, the user first presents her
identity credentials to her identity mashlet. In turn, the identity
mashlet acts on behalf of the user and interacts with other mash-
lets to prove that the user owns the identity that corresponds to its
URL. The identity mashlet enables other desirable features includ-
ing authorization delegation and attribute exchange. We define both
problems below.

Attribute Exchange.
An important feature supported by most identity management

frameworks is that of attribute exchange, in which one service
provider requests a user’s identity attributes (or preferences) from
another service provider. Attribute exchange is especially impor-
tant for mashup applications, in which interaction between mash-
lets is the norm. We refer to a service provider that requests user’s
attributes as an attribute requester and the service provider that
stores user attributes and settings as an attribute provider (also
called a wallet [22]). An attribute provider may optionally cer-
tify user attributes (e.g., for attribute-based authorization) or sim-
ply send non-certified values (e.g., for providing settings and pref-
erences).

An identity attribute exchange protocol should ideally accom-
modate three privacy requirements:

• Requirement 1: An attribute provider should share a user’s
attributes only upon explicit consent from the user.

• Requirement 2: An attribute requester should be able to
query a user’s attributes without necessarily knowing the
identity of the user.

• Requirement 3: The protocol should be able to anonymize
an attribute requester to prevent an attribute provider from
learning identity of the requester (and thereby, the user’s Web
surfing habits).

Designing a browser-based protocol that can satisfy all these
requirements is challenging. Existing browser-based attribute ex-
change protocols use a series of HTTP redirections to keep users
in the loop to acquire their consent without revealing their iden-
tity to the requester (Requirement 1). However, in such protocols,
the requester must send a callback URL to the provider; as a re-
sult, HTTP redirection-based communication discloses the identity

of the requesters, thereby violating Requirement 3. State of the art
techniques to remove the need for communication between the at-
tribute requester and provider use sophisticated cryptographic tech-
niques (e.g., idemix [6]). However, these solutions are not currently
suitable for practical use in browser-based protocols [22]. Web2ID
uses our proposed mashlet relay framework to anonymize the at-
tribute requester.

Authorization Delegation.
Web application mashlets included in a mashup typically access

resources hosted at other domains. In this context, the mashlet that
accesses resources is typically called the Consumer, while the do-
main that hosts the resource is called the Service Provider. Con-
sumers should not be able to access a user’s protected resources
unless the user grants them the required access permission.

An authorization delegation protocol allows a user to delegate
permissions to a consumer to access her resources hosted at a ser-
vice provider. For example, a user may be able to delegate per-
missions needed to access her files on a photo-sharing website (the
service provider) to a website that provides photo editing utilities
(the consumer). An authorization delegation protocol should be
privacy-preserving in that it must not reveal the user’s identity. In
the example above, for instance, the user may wish to grant the
photo editing service read access to her photos hosted on the photo
sharing website without revealing her identity to the photo editing
service.

3. THREAT MODEL
In this section, we present the threat model for Web2ID.

Users may be malicious.
As is standard with AJAX-based applications, some messages of

the Web2ID protocol are exchanged on the client-side, within the
user’s browser via inter-mashlet communication. Because the user
has complete control over the browser, a malicious user may alter
the client-side component of the Web2ID protocol, for example,
by forging the identity of another user or providing forged identity
attributes to an attribute requester. Consequently, for transactions
in which the user must not be trusted, the correctness and integrity
of the Web2ID protocol must not rely on the client-side portion
of the protocol executing correctly. Web2ID uses cryptographic
techniques to ensure the integrity of data that passes through the
client.

Service providers may be malicious.
When a service provider authenticates a user, it must receive

certain information that enables it to ensure the authenticity of
the user. A malicious service provider may misuse this infor-
mation to impersonate the user to a second service provider us-
ing a relay attack. For example, a malicious service provider
attacker.com that authenticates Alice may use her creden-
tials to impersonate her to another service provider honest.com.
In this attack, attacker.com tries to log into honest.com
claiming the ownership of Alice’s identity URL (e.g., alice.
me). When honest.com challenges attacker.com, it re-
lays that challenge to Alice when she tries to prove her identity to
attacker.com. In turn, attacker.com uses this information
to convince honest.com of Alice’s identity.

In attribute exchange, a malicious attribute provider may try to
violate a user’s privacy by learning the identity of requesters that
try to obtain the user’s attributes. As a result, the attribute provider
may learn the user’s surfing habits. Similarly, a malicious attribute

requester may also try to learn the user’s identity or attributes with-
out her agreement.

Finally, in the authorization delegation protocol, a malicious
consumer may try to convince a service provider to give it access to
a user’s protected resources without possessing appropriate autho-
rization (i.e., explicit consent from the user). In the case where the
user wishes to protect her privacy from the consumer, a malicious
consumer may try to learn the user’s identity during the course of
authorization.

Man-in-the-Middle (MitM) attacks.
Based on their capabilities, man-in-the-middle attackers (MitM)

can be either active or passive. A passive MitM attacker only lis-
tens to the conversation between two parties in the protocol. The
goal of a passive attacker is to obtain information that can be used
to impersonate the user, get unauthorized access to her private re-
sources or violate her privacy. In contrast, an active attacker can
also modify the content of conversation. An active MitM may try
to change the result of an authentication or authorization check by
modifying data transmitted in the protocol. MitMs can also be clas-
sified based upon their location in the network. Client-side MitMs
involve a malicious mashlet that tries to spoof mashlet-to-mashlet
communication in the protocol. A network MitM spoofs network
communication, such as those between a mashlet and its server, or
between two servers. In Web2ID protocol, we assume that the point
to point network communications are safe against active MitM at-
tacks, which can be guaranteed by using secure lower level pro-
tocols like SSL. Finally, malicious mashlets may also try to sub-
vert the protocol by launching frame phishing attacks against the
user [15].

4. BASIC WEB2ID PROTOCOL
The basic Web2ID protocol enables users to prove their identity

to a service provider website without the use of a trusted third party.
This enables users to independently prove their identities and pre-
vent any third party from learning their surfing habits. The Web2ID
protocol achieves this goal using public-key cryptographic primi-
tives in a manner akin to public-key client authentication in SSH
(RFC 4252 [2]). Suppose that a principal P (e.g., Alice) wishes to
adopt an identity I (e.g., an identity URL, such as alice.me) and
prove her ownership of that URL to a service provider SP.com.
We explain below how identity adoption and authentication work
in Web2ID.

Identity Adoption.
To adopt an identity URL I , say alice.me, Alice first hosts an

identity mashlet at this URL. The identity mashlet is a component
that is trusted by Alice and represents her within a mashup appli-
cation. To configure her identity mashlet, Alice must navigate to
her identity mashlet using a browser. When the identity mashlet
loads for the first time, it detects that it is not configured, and gen-
erates a public/private-key pair (Pu(I),Pr(I)). The public key is
embedded within the identity mashlet, while the private key must
be stored safely by Alice.

Authentication.
When a user such as Alice attempts to authenticate herself with

a service provider, she claims the ownership of an identity URL,
such as alice.me. In turn, the service provider sends a session
token encrypted under the public key associated with the identity
URL alice.me. When the user then sends requests to access
resources, she must prove ownership of the session token corre-

sponding to her claimed identity. Figure 1 illustrates how service
provider SP.com assigns a session token to the user who claims
the ownership of identity alice.me. As this Figure illustrates,
authentication happens in seven steps, as described below:

1. The user claims to own an identity I . For instance, this
identity could be an identity URL alice.me. This claim
can be communicated to the mashlet of the service provider
SP.com. For example, the user may enter the URL in a form
provided by SP.com.

2. The service provider’s mashlet sends the claimed ID I to the
service provider and, if not already loaded, loads the identity
mashlet located at the claimed identity URL (i.e. alice.
me).

3. The service provider extracts the public key Pu(I) and the
type/version of the corresponding public-key encryption al-
gorithm Alg from the claimed identity page.

4. The service provider first generates a session token χ,
and encrypts χ and the domain name of its mashlet SP.
com with the public key Pu(I). It then sends the result
∆ = EPu(I)(χ, SP.com) back to the service provider’s
mashlet as response. Note that the domain name of the ser-
vice provider must be included in ∆ to protect users against
relay attacks by malicious service provider (see Section 3).
In practice, since the length of identity URL is unbound and
may be longer than the public key, a two step encryption
needs to be used. For the sake of clarity, these details are
omitted.

5. The service provider’s mashlet sends ∆ = EPu(I)(χ, SP.
com) to the identity mashlet for decryption.

6. If the identity mashlet does not already have the private key
Pr(I), it asks the user to provide her login credentials. Us-
ing the user’s login credentials identity mashlet computes the
private key. For example, the user can load the encrypted
value of her private key from a USB memory stick and pro-
vide a passphrase that can be used by the mashlet to compute
the private key. Alternatively, the user may enter the private
key directly by swiping her smart card that contains her pri-
vate key.

Once the identity mashlet has the private key and user per-
mits the authentication, the identity mashlet decrypts ∆
and verifies that the domain name of the service provider
(SP.com) matches the domain name in the token.

7. The identity mashlet sends the computed session token χ
back to the service provider mashlet.

In our implementation, inter-mashlet communication is facili-
tated by the OMOS framework which provides mutual authenti-
cation, and confidentiality and integrity guarantees for the data
exchanged between two mashlets. This ensures that a malicious
mashlet in the mashup application will not be able to compro-
mise communication between the identity mashlet and the service
provider’s mashlet.

Upon the completion of the above protocol, the service provider
can verify that the value of the session token received from the
identity I is valid. This proves the user’s claim of ownership of
I to SP.com. Existing identity management protocols prove the
possession of the session token by including it with each request,
and are therefore vulnerable to session hijacking via MitM attacks.

Figure 1: An identity mashlet represents the user within the ap-
plication. The user can prove ownership of the identity mashlet
by proving the possession of the private key that corresponds
to the public key located at URL of the identity mashlet.

Our implementation of Web2ID uses a MAC (Message Authenti-
cation Code) to prove possession of the session token. 2 In this
approach, MAC value of each XMLHTTRequest request is com-
puted using the session token and is included in every request. The
service provider serves a request only if the included MAC value
is correct. Note that during the above protocol does not require
the service provider to keep any protocol-specific state, thereby
ensuring a stateless implementation of the web application at the
service provider. In addition, the user’s credentials are never trans-
mitted over the network; instead such communication happens on
the client-side, where communication is secured using OMOS.

The Web2ID authentication protocol can also be used by a ser-
vice provider to prove the ownership of its mashlet. We use this
feature as part of authorization delegation protocol that we describe
next. The authorization delegation and attribute exchange protocols
build upon the authentication protocol described above.

The above basic Web2ID protocol supports user authentication.
It can be generalized to support more complex operations such as
identity attribute exchange and authorization delegation. In Sec-
tion 5, we will present a mashup relay framework and explain how
it facilitates attribute exchange in Web2ID. Our authorization dele-
gation protocol is described in Section 6.

Security Analysis of User Authentication Protocol.
Because Web2ID uses client-side inter-mashlet communication,

its security relies on the confidentiality of mashlet and the security
of the client-side communication protocol that is used in its imple-
mentation. We assume that the mashlet framework that is used for
implementation of Web2ID guarantees confidentiality of mashlets
and security of their communication. This assumption implies that
the mashlet framework protects the protocol against MitM attacks
by malicious mashlets. Next, we analyze how the user authentica-
tion protocol resists against attacks launch by adversaries.
2To do so, we ported the necessary cryptographic func-
tions HMAC-SHA1 and HMAC-SHA256 (RFC2104 [16],
RFC3174 [9]) into the OMOS framework.

Since the session token χ is encrypted by the public key that is
associated with the claimed identity URL (located at the identity
page), the user can get access to the session token only if she owns
the corresponding private key. Therefore, assuming that only the
owner of an identity URL has access to the private key that corre-
sponds to the public key embedded in the corresponding identity
page, she will be the only person that can use that session token.
This prevents malicious users from forging identities that does not
belong to them.

To protect users against replay attacks, Web2ID requires ser-
vice providers to encrypt the domain name of their mashlet besides
the session token. This way the identity mashlet can verify and
make sure that the mashlet that is requesting the session token is
not replaying an encrypted session token issued by another service
provider. Finally, since user’s credentials and session tokens are
never sent over network in clear text, Web2ID authentication is im-
mune to passive MitM attacks. As discussed earlier, Web2ID relies
on the underlying communication protocol (e.g HTTPS) to protect
users against active MitM network attackers.

5. RELAY MASHLET AND ATTRIBUTE
EXCHANGE IN WEB2ID

In this section, we introduce a new mashlet relay framework
which is a simple-yet-general mashup application that enables user-
centric client-side communications between two domains. Then we
explain why such a mashlet relay framework is useful in the imple-
mentation of identity attribute exchange in Web2ID.

5.1 Mashlet Relay Framework
We define mashlet relay framework as a special client-side

mashup framework with three mashlets within a browser environ-
ment where the communication of two mashlets, each hosting con-
tents of a remote server, is indirect and realized through a third
mashlet that is hosted by the localhost. We refer to the two mashlets
hosted by remote servers as server mashlets. A server mashlet also
communicates to its corresponding remote server via the mashlet-
to-server communication mechanism. We refer to the mashlet that
bridges the communication of the two server mashlets as the re-
lay mashlet. All inter-mashlet communication follows the mashlet-
to-mashlet messaging mechanism. The relay mashlet effectively
passes messages between two server mashlets and is able to modify
the messages based on user’s inputs. Figure 2 shows a schematic
drawing of such a mashlet relay framework, where the mashlet
in the middle (Mediator) mediates the communication between a
requester (e.g., SP.com) and a provider (e.g., AttProvider.com).
The mediator mashlet is launched by the localhost of the individual
user. It anonymizes the identity of the requester (e.g., SP.com), as
the provider (e.g., AttProvider.com) learns nothing about who is-
sues the request. Such a mashlet relay framework, although simple,
possesses two important properties. First, it supports a user-centric
design where the user is able to monitor and actively control the
messages being communicated among server mashlets. Second,
the client-side relay mashlet eliminates the need of direct commu-
nication between the two server mashlets; this feature plays a key
role in enabling privacy-aware identity management in Web2ID.

This mashup-based relay framework naturally facilitates the con-
struction of a privacy-aware identity management protocol, namely
identity attribute exchange in SSO, that enables the exchange of
user’s identity credentials without the direct communication be-
tween the identity provider and service provider. In existing (fed-

Figure 2: Web2ID users mashlet relay communication frame-
work for attribute exchange. In mashlet relay framework,
a mashlet (center) mediates the communication between re-
quester (left) and provider (right) and anonymizes the identity
of requester.

erated) identity management systems, direct communications be-
tween providers on user’s ID information are typically required,
which, however, is undesirable as providers may learn about the
user beyond necessary. Therefore, the segregation of providers in
their communication protects user privacy and prevents providers
from colluding to discover user activities. Yet, in the meantime,
proper message exchanges among providers should be allowed,
e.g., a service provider may need to verify Alice’s identity attributes
hosted by an identity provider. Next, we explain why such a mash-
let relay framework is useful in the identity attribute exchange in
Web2ID.

5.2 Identity Attribute Exchange
When a service provider requests a user’s identity attributes

from another service provider, the user may wish to anonymize
the identity of the provider requesting these attributes. Doing so
prevents the attribute providing service from learning the user’s
surfing habits. To implement privacy-aware identity attribute ex-
change, Web2ID avails of the mashup relay framework. In partic-
ular, the relay mashlet mediates the exchange of identity attributes
between service providers. Because the relay mashlet forwards the
request to the attribute provider only after obtaining the user’s con-
sent, users have full control over what attributes can be exchanged.

Figure 2 presents an example that shows how using Web2ID
a service provider SP.com can query user’s age certified by
AttProvider.com. If the attribute requester already knows the
user’s identity, the identity mashlet of the user can itself be used as
a relay mashlet. Alternatively, a mashlet loaded from a trusted third
party or the local machine can act as the relay mashlet. We omit the
security definition and analysis for our identity attribute exchange
protocol, as they can be easily deduced following the analysis in
the basic Web2ID protocol.

6. WEB2ID EXTENSION: REALIZING AU-
THORIZATION DELEGATION

We defined in Section 2 the problem of authorization delegation
in web single sign-on. We can realize authorization delegation as a
natural generalization of the user authentication procedure in basic
Web2ID protocol. The details are presented in this section.

A user may wish to delegate to a consumer the rights to access
her resources hosted on a service provider. There are two cases that
arise in the implementation of authorization delegation, based upon
the privacy guarantees that the user requires.

Case 1: Protecting user identity from consumer.
In the first case, the user may not want to disclose her identity to

the consumer. For example, a user Alice may wish to print her pho-

tos hosted at a photo sharing website sp.com by allowing a print-
ing website consumer.com to access her photos at sp.com.
Yet, she may not wish disclose her identity (i.e. alice.me) to
consumer.com. To support this case, the authorization delega-
tion protocol should not give any information to the consumer that
reveals her identity.

Figure 3 illustrates the authorization delegation protocol, via
which consumer.com acquires an opaque token AC to access
Alice’s resource (e.g., /a/v.jpg) without learning her identity I
(e.g., alice.me). As this figure illustrates, the service provider
sp.com uses a secret key SK, known only to the service provider,
to generate an opaque token AC = ESK (consumer.com, GET,
/a/v.jpg, I) that grants consumer.com read access (i.e., a
GET request) to the resource /a/v.jpg, which belongs to I .

When the service provider sp.com receives a request from
consumer.com (via back-end server-to-server communication)
containing the access token AC, it first decrypts AC and ensures
that that the identity of the requester matches the principal that the
token is granted to (consumer.com); if so, it allows the request.

Figure 3: In Web2ID, a service provider can issue an opaque
token to a consumer to access user’s resources. In doing so,
Web2ID does not reveal the user’s identity to the consumer.

Case 2: User identity known to consumer.
In this case, the consumer already knows the user’s identity (e.g.,

because the user has authenticated herself to the consumer). Fig-
ure 4 illustrates the protocol used in this case. The user’s identity
mashlet can independently issue an access delegation certificate us-
ing the user’s private key to grant the consumer access to her pro-
tected resources hosted on a service provider. In turn, the service
provider can validate the certificate using the user’s public key. The
service provider can obtain the public key using the identity URL
of the user that the resource belongs to.

The Web2ID authorization delegation protocol does not require
the consumer to pre-register with the service provider. This prop-
erty is in sharp contrast to similar protocols, such as OAuth and
SubAuth, which require the consumer to pre-register with the ser-
vice provider. Additionally, Web2ID does not require the service
provider or the consumer to maintain protocol-related state during
delegation, therefore it is scalable and easy to implement.

Figure 4: The identity mashlet issues a delegation certificate
for read access to resource /a/v.jpg. Using this certificate
the consumer can access /a/v.jpg on sp.com.

Security Analysis.
Before serving a request, service providers verify that the access

tokens are either issued using their own secret keys or the private
key of the owner of the resource. Since these types of tokens can
be issued only with user’s consent, consumers will not be able to
access users resources without agreement of their owner.

Moreover, to prevent MitMs from using hijacked access tokens,
Web2ID requires that all access tokens be bound to the domain
name of the mashlet that the token is granted to; therefore, these to-
kens can be used only by the service provider that owns the mashlet.
Service providers can use Web2ID authentication to prove owner-
ship of the mashlet that the token is issued for.

In access tokens issued by service provider, the identity URL of
the user is encrypted by service provider’s secret key. Therefore,
the consumer will not be able to learn the identity of user and this
protects the privacy of the user.

7. IMPLEMENTATION AND EVALUA-
TION

As described in Section 4, realizing Web2ID requires in-browser
symmetric and asymmetric cryptographic primitives. However, we
could not find any JavaScript cryptographic libraries that provide
all the operations that are required for implementation of Web2ID
(i.e., HMAC, asymmetric encryption and public/private key gener-
ation). The only JavaScript-based library that implemented asym-
metric cryptography [24] did not support asymmetric key genera-
tion, which is required by Web2ID.

Therefore, we developed a JavaScript-based cryptographic li-
brary that not only supports operations that are required by Web2ID
but also can be easily extended to support other cryptographic op-
erations. Our library is fully compatible with commodity browsers,
such as IE, Firefox, Chrome, Opera and Safari, and does not require
any browser modifications.

7.1 Implementation Details
We based our implementation of the JavaScript cryptographic li-

brary on the Java Cryptography Architecture (JCA) [14, 19], an
open-source Java-based cryptographic toolkit. We used Google

Web Toolkit (GWT) to translate code from Java to JavaScript.
However, in implementing this library and porting it to commodity
browser platforms, we encountered three key challenges, namely
performance, browser interference, and code complexity, that we
describe below.

Performance.
Directly compiling the JCA library into JavaScript resulted in ex-

tremely poor performance of cryptographic operations. We found
that the main performance bottlenecks were BigInteger operations,
such as modInverse, mod, and multiplication operations,
that are frequently used in cryptographic operations. We addressed
this problem by replacing the JCA implementation of BigInteger
with the native JavaScript code using the JavaScript Native Inter-
face (JSNI). This replacement significantly improved the perfor-
mance, with encryption and decryption operations consuming less
than a second (see also Section 7.2).

Browser Interference.
Recall that the implementation of the Web2ID protocol requires

generation of public/private key pairs when the identity mashlet
is first loaded. We observed that key generation algorithms for
asymmetric cryptographic algorithms such as RSA were quite ex-
pensive. Because most browsers (and JavaScript interpreters) are
single-threaded, users cannot interact with the browser during key
generation. Most browsers time out JavaScript functions that exe-
cute for long durations of time (typically about 10 seconds). As a
result, key generation algorithms are interrupted by the browser.

To overcome browser interference during our key generation
operations and keep the browser responsive, we used an incre-
mental and deferred command technique. We observed that the
most expensive operation during the generation of public/private
RSA key pairs was the generation of probable prime numbers p
and q. The BigInteger.getProbablePrime function con-
tinuously generates random odd integers until it finds a one that
passes Miller-Rabin primality test, thereby resulting in long execu-
tion times. We changed this procedure so that each iteration ran in
a continuous time slice. We then scheduled the next iteration for
another time slice and returned control to the browser. This pro-
cess continues until the key generation algorithm finds a number
that passes Miller-Rabin test. We found that this approach was ef-
fective at keeping the browser responsive and preventing browser
timeouts of JavaScript execution.

Figure 5: Deferred execution of prime number generation.

The above approach causes all procedures invoked during key
generation to be asynchronous. Consequently, the key gen-
eration algorithm takes as input a call back function that re-
turns the result to the browser. The following code snippet
provides an example. Instead of directly returning KeyPair,
the function generateKeyPair, accepts a callback object
of type KeyPairCallback and returns KeyPair by calling

onGenerated function once the key is generated.
KeyPairGenerator keyGen = null;
try
{

keyGen = KeyPairGenerator.getInstance("RSA");
}
catch (NoSuchAlgorithmException e)
{

Log.error(e.toString());
}
keyGen.initialize(512); // Key Length
KeyPair keyPair = keyGen.genKeyPair();
// original signature: KeyPair generateKeyPair();
keyGen.generateKeyPair(new KeyPairCallback()
{

public void onGenerated(KeyPair keyPair)
{

PrivateKey privateKey = keyPair.getPrivate();
Log.debug("Private key : " +privateKey);

}
});

Code complexity.
JCA, upon which our JavaScript library is based, uses several

Java features, such as reflection, that are not supported by GWT.
Consequently, we first modified JCA to a set of core components
that were sufficient to implement cryptographic operations needed
for Web2ID. We then used this stripped-down version of JCA with
GWT to produce our JavaScript library.

7.2 Experiments
In this section we report on the performance of in-browser

cryptographic operations that are required for the implementa-
tion of Web2ID. Our goal is to study feasibility and overhead of
using in-browser cryptographic operations. We ran experiments
on a machine with the following configurations. Intel Core 2
CPU, 980 MHz, 1.99 GB RAM, Microsoft Windows XP 2002
SP2. Google chrome v1.0.154.53 Firefox v3.0.8, Internet Explorer
v7.0.5730.13, Opera v9.27, and Apple Safari v3.1.1.

The most expensive cryptographic operation that is required by
Web2ID is asymmetric-key generation. Figure 6 shows the run-
time of our RSA keypair generation function for keys of size 512
and 1024 bits. Since asymmetric key generation is a probabilistic
process, the values reported are averaged results over ten runs. As
this Figure shows, Google Chrome, which uses a fast JavaScript
Engine (V8), generates a 1024-bit key pair in under 4 seconds. The
slowest browser was IE, which took about one minute to generate a
1024-bit key pair. Because key generation is a one-time operation
and the browser stays responsive during this time, we feel that this
delay is acceptable.

Figure 7 shows the performance of RSA encryption/decryption
using keys of length 1024 bits. As expected, decryption is more
costly compared to encryption and the performance is quite reason-
able for web applications. Of the browsers that we tested, Google
Chrome had the best performance (less than 100ms for decryption
using 1024-bit key).

8. RELATED WORK
Our Web2ID protocol can be realized with any secure mashup

frameworks. They provide general infrastructure and environ-
ments for content providers to communicate in our identity man-
agement applications. There have been a couple of recent work
that proposed secure mashup solutions including MashupOS [25],
SMash [15], PostMessage method [3], and OMOS [27]. The main
goal of these solutions is two-fold: to isolate contents from dif-
ferent sources in sandbox structures such as frames and to achieve
frame-frame communication.

Figure 6: Key generation performance of our cryptographic
library on different browsers.

Figure 7: Performance of RSA encryption and decryption on
different browsers.

SMash [15] uses the concepts in publish-subscribe systems and
creates an efficient event hub abstraction that allows the mashup
integrator to securely coordinate and manage contents and infor-
mation sharing from multiple domains. SMash mashup integrator
(i.e., the event hub) is assumed to be trusted by all the web ser-
vices. MashupOS [25] applies concepts in operating systems in
mashup and develops sophisticated browser extensions and envi-
ronments that enable the separation and communication of frames
similar to inter-process communication management in the operat-
ing system. As mentioned earlier, the OpenMashupOS (OMOS)
framework contains a key-based protocol providing secure frame-
to-frame communication [27].

Camenisch et al. presented the architecture of PRIME (Privacy
and Identity Management for Europe), which implements a techni-
cal framework for processing personal data [7]. PRIME focuses on
enabling users to actively manage and control the release of their
private information. Privacy policies for liberty single sign-on [17,
8] have been presented [21] by Pfitzmann. The paper identifies a
number of privacy ambiguities in Liberty V1.0 specifications [18]
and propose privacy policies for resolving them. A good article on
the issues and guidelines for user privacy in identity management
systems was written by Hansen, Schwartz, and Cooper [12].

In the federated identity management (FIM) solution by
Bhargav-Spantzel et al., personal data such as a social security
number is never transmitted in cleartext to help prevent identity
theft [4]. Commitment schemes and zero-knowledge proofs are
used to commit data and prove the knowledge of the data. BBAE
is the federated identity-management protocol proposed by Pfitz-
mann and Waidner [23]. They gave a concrete browser-based sin-
gle sign-on protocol that aims at the security of communications

and the privacy of user’s attributes. Goodrich et al. proposed a no-
tarized FIM protocol that uses a trusted third-party, called notary
server, to effectively eliminate the direct communication between
identity provider and service provider [11]. The main difference
with these proposed privacy-aware ID management solutions and
our approach is that we study ID management in the client-side
mashup environment through a novel and efficient mashlet relay
framework.

In the access control area, the closest work to ours is the frame-
work for regulating service access and release of private informa-
tion in web-services by Bonatti and Samarati [5]. They study the
information disclosure using a language and policy approach. We
designed cryptographic solutions to control and manage informa-
tion exchange. Another related work aiming to protect user privacy
in web-services is the point-based trust management model [26],
which is a quantitative authorization model. Point-based authoriza-
tion allows a consumer to optimize privacy loss by choosing a sub-
set of attributes to disclose based on personal privacy preferences.
The above two models mainly focus on the client-server model,
whereas our architecture include two different types of providers.

9. CONCLUSIONS
As mashup applications increase in popularity, we expect that

they will also be used with sensitive Web services, such as finan-
cial and banking applications. When mashups are used in such
scenarios, it is key to provide features such as identity management
and SSO. Existing identity management protocols are ill-suited for
modern AJAX-based Web applications

This paper presented Web2ID, an identity management protocol
for mashup applications. Web2ID preserves the privacy of the end
user and eliminates the need for a trusted identity provider in the
online single sign-on process. We described how this feature can
be realized with conventional public-key cryptography. We also
described a mashlet-relay framework that enables efficient yet in-
direct communication between two server mashlets via a local re-
lay mashlet controlled by the user. Such a relay framework allows
for attribute exchange without disclosing the user’s surfing habits
to service providers. Our implementation of Web2ID and the re-
lay framework is implemented as an in-browser library and is fully
compatible with commodity browsers.

10. ACKNOWLEDGEMENTS
The first author would like to thank the help of professors at Ba-

hai Institute for Higher Education (BIHE).

11. REFERENCES
[1] OpenID Specification.

http://openid.net/developers/specs/.
[2] RFC 4252, The Secure Shell (SSH) Authentication Protocol

http://tools.ietf.org/html/rfc4252.
[3] Adam Barth, Collin Jackson, and John C. Mitchell. Securing

Browser Frame Communication. In Proceedings of the 17th
USENIX Security Symposium, 2008.

[4] Abhilasha Bhargav-Spantzel, Anna Cinzia Squicciarini, and
Elisa Bertino. Establishing and Protecting Digital Identity in
Federation Systems. Journal of Computer Security,
14(3):269–300, 2006.

[5] Piero A. Bonatti and Pierangela Samarati. A Uniform
Framework for Regulating Service Access and Information
Release on the Web. Journal of Computer Security,
10(3):241–272, 2002.

[6] Jan Camenisch and Els Van Herreweghen. Design and
implementation of the idemix anonymous credential system.
In ACM Computer and Communication Security 2002. ACM,
2002.

[7] Jan Camenisch, Abhi Shelat, Deiter Sommer, Simone
Fischer-Hübner, Marit Hansen, Henry Krasemann,
G. Lacoste, Ronald Leenes, and Jimmy Tseng. Privacy and
Identity Management for Everyone. In Proceedings of the
2005 ACM Workshop on Digital Identity Management, pages
20–27, November 2005.

[8] S. Cantor, F. Hirsch, J. Kemp, R. Philpott, E. Maler,
J. Hughes, J. Hodges, P. Mishra, and J. Moreh. Security
Assertion Markup Language (SAML) V2.0. Version 2.0.
OASIS Standards.

[9] Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1).
In RFC3147.

[10] Robert Ennals and Minos Garofalakis. MashMaker: mashups
for the masses. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages
1116 – 1118. ACM, 2007.

[11] Michael T. Goodrich, Roberto Tamassia, and
Danfeng (Daphne) Yao. Notarized federated ID management
and authentication. Journal of Computer Security,
16(4):399–418, 2008.

[12] Marit Hansen, Ari Schwartz, and Alissa Cooper. Privacy and
Identity Management. IEEE Security and Privacy,
6(2):38–45, 2008.

[13] Collin Jackson and Helen J. Wang. Subspace: Secure
Cross-Domain Communication for Web Mashups. In
Proceedings of the 16th International Conference on World
Wide Web, pages 611–620, 2007.

[14] Java Cryptography Architecture.
http://java.sun.com/j2se/1.4.2/docs/
guide/security/CryptoSpec.html.

[15] Frederik De Keukelaere, Sumeer Bhola, Michael Steiner,
Suresh Chari, and Sachiko Yoshihama. SMash: Secure
Component Model for Cross-Domain Mashups on
Unmodified Browsers. In Proceedings of the 17th
International Conference on World Wide Web, 2008.

[16] Krawczyk, Bellare, and R. Canetti. HMAC: Keyed-Hashing
for Message Authentication. In RFC2104.

[17] Liberty Alliance Project.
http://www.projectliberty.org.

[18] July 2002. Liberty Alliance Project: Liberty Protocols and
Schemas Specification, Version 1.0.

[19] OpenJDK, http://openjdk.java.net/.
[20] OpenMashup. http://www.openmashupos.com/.
[21] Birgit Pfitzmann. Privacy in Enterprise Identity Federation -

Policies for Liberty Single Signon. In Proceedings of the
Third International Workshop on Privacy Enhancing
Technologies (PET 2003), volume 2760, pages 189–204,
2003.

[22] Birgit Pfitzmann and Michael Waidner. Privacy in
browser-based attribute exchange. In Proceedings of the
2002 ACM workshop on Privacy in the Electronic Society,
pages 52–62. ACM, 2002.

[23] Birgit Pfitzmann and Michael Waidner. Federated
Identity-Management Protocols. In Security Protocols
Workshop, pages 153–174, 2003.

[24] RSA JS library. http://www-cs-students.
stanford.edu/~tjw/jsbn/.

[25] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin
Jackson. Protection and Communication Abstractions for
Web Browsers in MashupOS. In ACM Symposium on
Operating Systems Principle (SOSP), pages 1–16. ACM
Press, 2007.

[26] Danfeng Yao, Keith B. Frikken, Mikhail J. Atallah, and
Roberto Tamassia. Point-Based Trust: Define How Much
Privacy Is Worth. In Proc. Int. Conf. on Information and
Communications Security (ICICS), volume 4307 of LNCS,
pages 190–209. Springer, 2006.

[27] Saman Zarandioon, Danfeng Yao, and Vinod Ganapathy.
OMOS: A Framework for Secure Communication in Mashup
Applications. In ACSAC’08: Proceedings of the 24th Annual
Computer Security Applications Conference, December
2008.

