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Abstract—
Securing the networks of large organizations is technically challenging due to the complex configurations and constraints.
Managing these networks requires rigorous and comprehensive analysis tools. A network administrator needs to identify
vulnerable configurations, as well as tools for hardening the networks. Such networks usually have dynamic and fluidic structures,
thus one may have incomplete information about the connectivity and availability of hosts. In this paper, we address the problem
of statically performing a rigorous assessment of a set of network security defense strategies with the goal of reducing the
probability of a successful large-scale attack in a dynamically changing and complex network architecture. We describe a
probabilistic graph model and algorithms for analyzing the security of complex networks with the ultimate goal of reducing the
probability of successful attacks. Our model naturally utilizes a scalable state-of-the-art optimization technique called sequential
linear programming that is extensively applied and studied in various engineering problems. In comparison to related solutions
on attack graphs, our probabilistic model provides mechanisms for expressing uncertainties in network configurations, which is
not reported elsewhere. We have performed comprehensive experimental validation with real-world network configuration data
of a sizable organization.

Index Terms—Network security, attack graph, probabilistic model, vulnerability analysis, optimization.
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1 INTRODUCTION

Large organizations need rigorous security tools for
analyzing potential vulnerabilities in their networks.
However, managing large-scale networks with com-
plex configurations is technically challenging. For ex-
ample, organizational networks are usually dynamic
with frequent configuration changes. These changes
may include changes in the availability and connec-
tivity of hosts and other devices, and services added
to or removed from the network.

Network administrators also need to respond to
newly discovered vulnerabilities by applying patches
and modifications to the network configuration and
security policies, or utilizing defensive security re-
sources to minimize the risk from external attacks. For
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instance, to prevent a remote attack targeting a host it
is useful to analyze the candidate defensive strategies
in choosing installation and runtime parameters for
one or several intrusion prevention systems.

To facilitate a scalable security analysis of organi-
zational networks, attack graphs (e.g., [1], [2]) were
proposed. Attack graphs show possible attack paths
with respect to a particular network setting, which
provide the necessary elements for modeling and
improving the security of the network.

Existing work utilizes attack graphs (for example,
[1], [2], [3]) for analyzing the security risks by quan-
tifying attack graphs using a variety of techniques
such as Bayesian belief propagation [4], [5], [6], [7],
basic laws of probability [8], [9], and vertex ranking
algorithms [10], [11]. These models lack a system-
atic and scalable computation of optimized network
configurations. Current attack graph quantification
models assume a network with known and fixed
configurations in terms of the connectivity, availability
and policies of the network services and components
disregarding the dynamic nature of modern networks.
Moreover, except for a few attempts [12], [13], [14],
[6], previous work has solely focused on computing a
numerical representation of the risk without address-
ing the more challenging problem of risk management
and reduction.

In this paper, we present a rigorous probabilistic
model that measures the security risk as the proba-
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bility of success in an attack. Our probabilistic model
referred to as the success measurement model has three
main features: (i) rigorous and scalable model with
a clear probabilistic semantic, (ii) computation of risk
probabilities with the goal of finding the maximum
attack capabilities, and (iii) considering dynamic net-
work features and the availability of mobile devices
in the network.

As an application of our success measurement
model, we formalize the problem of utilizing network
security resources as an optimization problem with
the goal of computing an optimal placement of security
products across a network. Our new contribution is
to define this optimization problem and provide an
efficient algorithm based on a standard technique
called sequential linear programming. Our algorithm
is proved to converge and it is scalable to large
networks with thousands of components and attack
paths. Our contributions in this paper include:
• A scalable probabilistic model that uses a Bernoulli

model to measure the risk in terms of the proba-
bility of success to achieve an attack goal.

• An efficient security optimization model, generated
based on a quantified attack graph, to compute an
optimal placement of security products according
to organizational and technical constraints.

• Modeling dynamic network features for a realistic
and accurate analysis of the risk associated with
modern networks.

The results of our experiments confirm three key
properties of our model. First, the vulnerability values
computed from our model are accurate. Our manual
inspection of the results confirm that the probability
values obtained in the experiments correlate to the
vulnerabilities of components in the network. Second,
our security improvement method efficiently finds
the optimal placement of security products subject to
constraints. Third, we quantify the additional vulner-
abilities introduced by mobile devices of a dynamic
network. Our results indicate that an infected mobile
device within the trusted region creates a preferred
attack direction towards the attack target, which in-
creases the chance of success at the target host.

2 RELATED WORK

The literature has a significant number of attempts
to provide methods, algorithms, and tools for the
various problems concerning graph-based analysis of
security in large networks. Graph-based analysis of
networks was proposed in [15] where a graph of
attack stages in a network topology was introduced to
analyze specific attacks in a network. The work in [15]
was followed by the method proposed in [16] that
in addition to producing attack graphs using model
checking, introduced an analysis of guarding options
against the attacks.

The effort to enhance graph-based analysis and
security hardening has continued since [15] and [16].
Unfortunately, some of the ongoing challenges facing
automated network security analysis remain unre-
solved. Per our survey, the literature lacks a compre-
hensive and rigorous methodology for the assessment
of a set of network security defense strategies with the
goal of reducing the success of an attack. In the follow-
ing, we present a thorough comparison of our work
with the related research followed by a summary of
the novelty of our work and the differences from the
related research.

2.1 Probabilistic Analysis

Using the probability theory to compute a quantitative
security has been reported in [4], [5], [9]. A work by
Wang et al. [9] considers a probabilistic model for
computing a security risk metric using attack graphs.

Bayesian analysis of networks using attack
graphs [6], [5], [7] differs from our success
measurement model in that our model does not
require the knowledge of conditional probabilities.
In [5], a dynamic Bayesian network model was
proposed that is capable of incorporating temporal
factors. Bayesian threat probability based on security
and organization-specific knowledge as well as
attacker profile is discussed in [4]. Xie et al. [7]
introduced a Bayesian model that adds a node to the
Bayesian network indicating whether or not an attack
has happened. Although this extension improves
the models in [5], it does not capture the various
possibilities of attack paths taken by an attacker
before reaching an intermediate attack goal, which is
addressed in our work.

The work in [17] attempts to broaden the definition
of attack graphs as well as providing algorithms for
predicting vulnerabilities in the network. This work
introduces temporal probabilistic attack graphs that
are used to update the vulnerability information in
time. Our work differs with [17] in the modeling
assumption. The probabilistic attack graph presented
in [17] model time intervals for each attack step
that may or may not occur with specific probabili-
ties. While this is a very useful approach, our work
models a direct attack step probability based on the
Bernoulli model of successes and failures considering
uncertainties in an attacker’s action and a notion of
device availability (i.e., assuming a device may not
always be in the network). Despite that we share
the same goal of mitigating security risks, our work
takes a different approach through the application
of efficient mathematical programming methods to
security optimization problems that we point out in
Section 3.

The work in [9] discusses an interpretation of the
metric and a heuristic to compute the metric. In our
work, we provide a success measurement model that
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generalizes the method in [9] by capturing the un-
certainty in attacker’s choices (discussed as a random
selector in Section 4).

2.2 Ranking
In attack graph ranking, an initial input score is used
to bootstrap a ranking algorithm that produces a
quantified attack graph. A number of attack graph
ranking algorithms are inspired by and extensions of
PageRank [18]. PageRank is an algorithm proposed
by Page et al. [18], which is used to rank important
web pages.

AssetRank [11] was proposed to rank any depen-
dency attack graph using a random walk model.
AssetRank is a generalization of PageRank extending
it to handle both conjunctive and disjunctive nodes.
AssetRank is supported by an underlying probabilis-
tic interpretation based on a random walk. Mehta et
al. propose a ranking method using state enumeration
attack graphs [10]. The idea of PageRank is applied
to state enumeration attack graphs with a modified
interpretation of the ranking. Attack graphs based
on model checking have been proposed in [16] for-
malizing an intrusion attack in a finite state model.
Authors in [16] do not propose a complete attack
graph ranking method. Instead, a method to compute
minimal critical attack assets based on user-specified
metrics has been introduced.

Other approaches to security assessments include
a goal-motivated attacker model based on a Markov
decision process [19], a weakest-adversary approach
to ranking attack graphs [20], a generic framework for
an attack resistance metric [21], and an enterprise IT
risk metric using CVSS scores [22].

2.3 Security Improvement
Quantified attack graphs or similar formalism are
particularly useful when utilized as a basis for im-
proving the security of a network. The authors in [6],
[13] proposed solutions for the security hardening
problem as a multi objective optimization problem.
The main advantage of our work compared to the
use of genetic algorithms in [13] is that we formulate
the security hardening problem as a general mathe-
matical programming problem that is directly devel-
oped according to an attack graph. The mathematical
programming problem presented in this paper can
be extended to consider a variety of constraints that
we discuss as a future direction. Moreover, our work
differs in the research goal as we focus on reducing
the success rates of attackers, whereas the work in [13]
focuses on cost (similar to [12]) and damage.

In [14] Noel and Jajodia presented a greedy algo-
rithm to solve the problem of the best placement of
IDS sensors in a network using attack graphs. It is
to find a minimal number of sensors that can cover
all critical attack paths. Also, [23] describes a method

for finding the initial conditions that need to be
removed to improve the network security. Our work is
different in goals and methods since both [23] and [14]
attempt to only reorganize the network for improved
security. Our work, in contrast, covers reorganization
of a network as an application as well as computing
optimal network security defense strategies.

Huang et al. proposed a method for distilling
the critical attack graph surface iteratively through
minimum-cost SAT solving [24]. The presented
method is useful in finding the most critical attack
path, which can be considered later for hardening the
security of the network. Such a result can be used to
guide our improvement recommendation method to
consider hosts found on a critical path.

In [8], a probabilistic metric was introduced. The
core component of the proposed work is to simulate
the attack scenario and provide recommendation op-
tions to find a better configuration of the network.
Comparably, our improvement model is not limited
to making an optimal choice between available con-
figuration options. Our work goes further by con-
sidering additional security hardening options (such
as installing an IPS) and finding an optimal recom-
mendation accordingly. Our proposed model finds
an optimal recommendation based on a nonlinear
program and is not limited to simulation results. In [8]
the authors provided a method to quantify the attack
graph and simulate attackers’ choices to compute
an improved reconfiguration. While being a valuable
approach, the proposed method does not take into
account the availability of machines and uncertainty
in attackers’ decisions.

2.4 Summary of Comparisons
In summary, there are several differences that distin-
guish our work from the existing research.

1. None of the previous work considers the ef-
fect of device availability on open networks.
Furthermore, optimized network configurations
and improvement in our work has not been
previously studied. Bayesian methods are pow-
erful in computing unobserved facts, such as
predicting possible threats. It remains unclear
how Bayesian methods can be used to support
variability in attacker’s decisions, device avail-
ability, and the effect of mobile devices.

2. Our probability calculation scheme is general
enough to allow performing various levels of
success probability analysis by introducing vari-
able attack steps as part of success probability
computation.

3. We complete the analysis of network security
threats by providing a sound and computation-
ally efficient security improvement recommen-
dation technique that is capable of finding op-
timal network configurations as well as optimal
placement of security solutions in the network.
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3 OVERVIEW

Motivated by the general research goal of developing
optimized network security settings, our work focuses
on the problem of statically performing a rigorous assess-
ment of a set of network security defense strategies with the
goal of reducing the probability of a successful large-scale
attack in a dynamically changing and complex network ar-
chitecture. This problem represents a practical concern
in modern organizational networks, where there is a
need for a highly reliable and mathematically sound
platform to conduct effective security hardening anal-
yses.

3.1 Challenges
In addressing the aforementioned problem, our work
faces and attempts to solve several technical chal-
lenges. First, to provide a reliable analysis for im-
proving network security, we face the challenge of
developing a rigorous model that accurately captures
the reality. Though this is not an entirely new chal-
lenge, the current state-of-the-art does not focus on the
rigorousness of the proposed models. As explained in
Section 4, we approach this challenge by developing
a model with a clear theoretical foundation that accu-
rately captures a complete view of a multistage attack
on a network. The main advantage of our model is in
the use of established mathematical concepts that best
fit the problem, which enables us to exploit efficient
methods to develop reliable algorithms.

Second, most of the literature in attack graph anal-
ysis focuses on various techniques to transform what
we call plain attack graphs (that is, attack graphs with
no quantification metrics) to quantified attack graphs
that provide clearer insights into the seriousness of
the attacks. Effective assessment of network security
defense strategies remains a challenge that requires
significant effort in terms of further enriching the at-
tack graph model and transforming it into an identical
optimization problem. We address this challenge by
developing theoretically sound mathematical models
that represent a complete view of attack graphs, and
are capable of including candidate network security
defense options. The result of our optimization is
to find which network security defense strategy will
yield enhanced security according to the provided
input.

For example, a system administrator managing a
complex network architecture can use our method to
compare and contrast the effectiveness of two security
defense packages, one to install a software firewall on
a number of hosts, thus downgrading computational
performance and potentially increasing false posi-
tives, and the other to move a set of services behind
a hardware-based load balancer and thus increasing
cost as well as network latency.

Third, we discover and address a novel challenge in
systematically modeling the uncertainties in an adver-

sary’s attack steps towards a major attack goal. This is a
problem when dealing with attacks of multiple steps.
For instance, an adversary may be faced with a range
of vulnerabilities to try to exploit when executing an
attack step. When analyzing the level of security in a
network, in the lack of historical attack data, it is par-
ticularly challenging to deal with such uncertainties
at the modeling level. We use a statistical approach
where we define a random behavior to model the
various possibilities of attacks. Specifically, we define
a special random variable Yui

for each possible attack
step within an attack path. The value of Yui corre-
sponds to the probability that the adversary chooses
an attack step ui. We further explain the details of
defining and using this method in Section 4.1.

3.2 Approach
We approach the challenges mentioned in Section 3.1
by defining, implementing, and experimenting with a
new probabilistic quantification model that we com-
bine with our novel optimization problem as de-
scribed in Sections 4 and 5. Our probabilistic quantifi-
cation model, referred to as success measurement model,
quantifies the vulnerabilities of networked compo-
nents and resources, by computing the expected
chance of successful attack (ECSA) at every attack
step, which is represented by an attack graph node.
Our security improvement model uses the computed
probabilities from the success measurement model to
find optimal security defense strategies given a set of
available options.

As depicted in Figure 1, the computation in the
success measurement model requires three sets of
inputs, which are a set of attack steps, a set of
network configuration and potential vulnerabilities,
and a set of ground facts. The first set includes the
steps necessary to execute a targeted attack in a net-
work. These steps represent intermediate attack goals
such as compromising a machine that has an internal
connectivity with a targeted server. In addition, the
attack steps also describe the various parallel choices
available to an attack when achieving a specific target.
The second set includes the network configuration
and vulnerability data that represent host software
installations, inter host connectivity, running services
and connections, and known or potential software
vulnerabilities. The third set contains the ground fact
values that describe the vulnerability, availability, and
connectivity of various network configuration.

In our implementation, the first two sets of inputs
(i.e., the attack steps and the network configuration
data) are taken from dependency attack graphs. The
system administrators use vulnerability assessment
tools (such as OVAL [25]) to explore the configura-
tions and vulnerability data in their networks. The
output of such assessment is provided as an input
to attack graph generation tools. Attack graph gen-
eration tools (such as MulVAL [26]) often include
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Fig. 1. Our models work based on three input sets from
attack graph generators as well as initial belief values
associated with potential vulnerabilities and network
configuration data.

customized predefined attack step rules that are ap-
plied to the configurations and vulnerability data of a
network and produce a plain (that is, not quantified)
attack graph. The additional step required by our
model is to develop a set of ground fact values
(described in detail in Section 6). The values bootstrap
the computation of success probabilities throughout
an attack graph.

The output of the computation based on our suc-
cess measurement model is the input to the security
optimization model (Figure 1). Using the security im-
provement model, we transform the quantified attack
graph from the success measurement model into a
mathematical program. The resulting mathematical
program includes an additional set of data that rep-
resent various network security defense strategies. In
the tool that we developed, the security administra-
tors simply feed this information as logical predicates
such as ips_installed(T, E), which describes
a potential installation of an intrusion prevention
system of type T and security effectiveness E. The
effectiveness value E is a score estimated by the
system administrator based on prior experiences and
available effectiveness data.

3.3 Results

Validating the results of theoretical modeling of net-
work security under the assumption of lack of data
is challenging. In this work, we only use the data
from attack graphs to perform a manual analysis of
the results produced from the application of our two
models. We set up our experiments based on the
network configuration data, existing potential vulner-
abilities, and attack graphs produced for a functioning
real world corporate network. We summarize our
experience with implementing the models as follows:

1. All the algorithms were programmed from
scratch in Java, automating the entire process

for receiving input from attack graph generators
until recommending the best security defense
strategies.

2. The implementation performance only relies on
the performance of the simplex method used
for solving the optimization problem. Since the
simplex method is heavily and successfully used
in practice [27], our model features a high level
of computational scalability and efficiency.

In addition, we give a summary of our experiments
(Section 7) next.

1. The focus of our experiments is to practically
demonstrate the practicality, feasibility, and ac-
curacy of the model.

2. Our experiments include novel features such
as analyzing networks with less studied but
potentially vulnerable devices such as mobile
devices and networked printers. To the best of
our knowledge, the experiments in the network
analysis literature lack this level of detail.

3. Our model will give system administrators a
solid analysis of the security in their networks
that will assist in actual implementation of se-
curity features to downgrade the possibility of
successful attack.

4 SUCCESS MEASUREMENT MODEL

In this section we present our success measurement
model to compute the expected chance of a successful
attack on a network with respect to the attack’s ulti-
mate goal. We first present the definitions of the ex-
pected chance of a successful attack (ECSA) followed
by the description of an efficient method to compute
ECSA values.

4.1 Definitions of ECSA Values
The key component of our success measurement
model is the probabilistic definition of the expected
chance of a successful attack against any node in the
attack graph.

We present an alternative approach to the Bayesian
analysis discussed in [6], [7]. Our success measure-
ment model computes probabilities as a function of
initial belief probabilities without the need for spec-
ifying conditional probabilities required by Bayes’
theorem. The set of initial belief values required by
our model is small and can be obtained from stan-
dard vulnerability assessment systems (discussed in
Section 6).

Our model measures the success of an attacker
based on the attack dependencies determined by a
logical attack graph.

Definition 1: A logical attack graph G = (V,E) is a
digraph where V = Nf ∪ Ng ∪ Nr and Nf , Ng , Nr
are disjoint sets of nodes containing fact nodes, goal
nodes, and rule nodes, respectively. E is the set of
arcs, and G ∈ Ng is the attacker’s goal.
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In a logical attack graph, nodes are of three types
and are defined as tuples.

Definition 2: Each attack graph node u is a tuple
(du, E[Xu]) where du is the description of a network
configuration item (when u ∈ Nf ), an attack rule
(when u ∈ Nr), or an attack goal (when u ∈ Ng),
and E[Xu] ∈ [0, 1] is the corresponding ECSA (see (1)
and (3)) of the node u.

A rule node in an attack graph represents a logical
conjuncture of its predecessors, a goal node in an
attack graph represents a logical disjuncture of its
predecessors, and a fact node is a node with no
predecessor.

We define the sample space for a node and a
corresponding random variable representing attack
outcomes. The outcome of an attack attempt on a node
can either by a success or a failure. Let Ω(u) be the
sample space for a node u ∈ V for an attack graph G.
We define the random variable Xu for the node u as a
Bernoulli random variable with Xu(ω) = 1 denoting
success in an attack and Xu(ω) = 0 failure, where ω
is an outcome.

Definition 3: For any node u ∈ V of an attack graph,
the expected chance of a successful attack (ECSA) at
a node u is given as E[Xu] = P (Xu = 1), that is, the
probability of success for the random variable Xu.

Let φ(u) = {v | (v, u) ∈ E} be the set of predecessors
(dependencies) of a node u. In the following, we
define ECSA for the derived nodes based on the
corresponding logical semantics (that is, conjunction
for a rule node and disjunction for a goal node).

ECSA value of a rule node. Let u ∈ Nr be a rule
node and φ(u) = {v1, v2, . . . , vt}. The random variable
Xu — corresponding to the success or failure of the
attacker at node u — is defined as the product of the
random variables for all predecessor nodes v ∈ φ(u),
for which the expected value is

E[Xu] =
∏

v∈φ(u)

E[Xv], (1)

assuming independence of the predecessor random
variables (further discussed in Section 4.4).

ECSA value of a goal node. An attack graph has
several goal nodes. A goal node either depends on a
single exploitation rule (represented by a rule node)
or multiple exploitation rules such as u1 in Figure 2.

A goal node with multiple rule node dependencies
is a logical disjunction. In reality, this disjunction
indicates that there are multiple attack choices for an
attacker towards a specific attack goal. For instance,
consider a server with a local privilege escalation vul-
nerability (which is exploitable remotely in a multi-
step attack) and runs a network service with multiple
remote vulnerabilities. An attacker must exploit one
(or more) of these vulnerabilities to gain privileges on
the target server. In the lack of observable evidence,
one needs to compute the ECSA of a goal node with

Remote 
exploitation rule 

(1)

Local 
exploitation rule

code execution on H

Remote 
exploitation rule 

(2)

u1

u2

u3

E[Xu2
] = 0.7

E[Xu3
] = 0.66

E[Xu4
] = 0.8

E[Y1] = 0.3

E[Y2] = 0.5

E[Xu1
] = 0.721

...

...

...

u4

Fig. 2. A goal node for an attack on host H with three
attack choices: a local exploitation and two methods of
remote exploitation. The variables Y1 and Y2 measure
the probability of attack choices. We assume E[Y1] and
E[Y2] are not available, and thus, we computationally
determine their values based on Equation 2.

a function that correctly captures the probabilities of
such attack choices.

Our approach is to computationally determine at-
tack choice probabilities according to various attack
patterns (Section 4.2). Per our knowledge, no previous
work has modeled these choices.

In the the attack graph of Figure 2, node u1 has
three predecessors (rule nodes u2, u3, and u4). To com-
pute E[Xu1

], we introduce auxiliary Bernoulli random
variables Yi (referred to as the random selectors) to
capture the random selection of an attack path.

Definition 4: A random selector Yi is a Bernoulli
variable that is associated with a rule node ui. Yi
acts as a weighting variable for the correspond-
ing rule node variable Xui . For any goal node v,
with a set of predecessor rule nodes φ(v), we have∑
ui∈φ(v)E[Yi] = 1.
The values of Yi are multiplied with the computed

ECSA for the predecessor nodes to reflect the attack
choices. In Section 4.2, we show how the values of Yi
variables are computed.

Let φ(u) = {v1, v2, . . . , vt} be the set of dependen-
cies of u. Then we define the random variable Xu for
a goal node u ∈ Ng for which the expected value is

E[Xu] =

t−1∑
k=1

[
E[Yk]E[Xvk ]

k−1∏
i=1

(1− E[Yi])

]

+ E[Xvt ]

t−1∏
i=1

(1− E[Yi]). (2)

Observe that the definition above selects Xu = Xvi by
the event Yi = 1, Yj = 0 for j < i < t (for example,
Figure 2). Note that the Bernoulli variables Yi in
general depend on the node u, but this dependence
is not reflected with the notation Y

(u)
i for simplicity.

4.2 Computing ECSA Values

From a defender’s point of view, attack choices are
uncertain with various attack scenarios. Existing work
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such as [16], [9], [11], has provided ways to compute
a static view of the security risk corresponding to
specific attack scenarios. In this section we describe
the method for computing ECSA values of an attack
graph with a goal of finding the highest possible
chance of success for an attack.
Finding the most vulnerable components. The computa-
tion method described in this section allows one to
find the ECSA values such that the ECSA of the attack
target is maximized. The result of this computation
is in particular important for optimal placement of
security hardening products described in Section 5.1.

To find the most vulnerable components, we formu-
late a maximization problem with a nonlinear objec-
tive function subject to linear and nonlinear equality
constraints. The decision variables represent the nodes
of an attack graph.

Let xi = E[Xi] be a decision variable for a node
i ∈ Nr∪Ng , and x = (x1, x2, . . . , xM )T be the vector of
unknown ECSA values for all nodes. Let yi = E[Yi] be
a decision variable for a random selector Yi, and y =
(y1, y2, . . . , yP )T be the vector of unknown expected
values of the random selectors. For a rule node u ∈ Nr
with predecessors φ(u), the constraint function is

fu(x, y) =



xu − xj
∏

k∈φ(u)
k∈Nf

P (Xk = 1), j ∈ φ(u) ∩Ng,

xu −
∏

k∈φ(u)
k∈Nf

P (Xk = 1), φ(u) ∩Ng = ∅.

(3)
Note that Equation (3) has two cases. The first case is
for rule nodes with one goal node as a predecessor
and the second case is for rule nodes with no goal
nodes as predecessors. For a goal node u ∈ Ng with
predecessors φ(u) = {v1, v2, . . . , vt}, the constraint
function is

fu(x, y) = xu −
t−1∑
k=1

[
ymu+kxvk

k−1∏
i=1

(1− ymu+i)

]
(4)

− xvt
t−1∏
i=1

(1− ymu+i).

All the selector variables for all the goal nodes are
numbered consecutively, so that the yi for node u are
ym+1, ym+2, . . . , ym+t−1 for some m = mu depending
on u. Note that there is no variable ym+t since ym+t is
dependent on ym+1, ym+2, . . . , ym+t−1; ym+t = 1 only
when all other selectors for u are zero.

Let f(x, y) = (f1, f2, . . . , fM )T be a vector-valued
function. The nonlinear program for finding the most
vulnerable components is

maximize xG (5)
subject to f(x, y) = 0,
0 ≤ xi ≤ 1 , i = 1, . . . ,M,

0 ≤ yi ≤ 1 , i = 1, . . . , P .

In (5), the vector-valued function f(x, y) holds all
the constraint functions (that is, (3) and (4)) for all
rule and goal nodes in the attack graph. Note that
the constraints in f(x, y) are the ECSA equations (1)
and (2) set to zero.

4.3 Computational Procedure
For a network configuration w, let Gw be the cor-
responding attack graph. The complete procedure to
compute the ECSA values of nodes (Definition 2) for
an attack graph (Definition 1) is given next.

To prepare the attack graph for computation, we
execute the following procedure.

Procedure 1:
1. Determine the set of initial belief values B0 =
{E[Xuf

1
], E[Xuf

2
], . . . , E[Xuf

|Nf |
]} for each fact

node uf ∈ Nf . Let B0
i denote E[Xub

i
].

2. Create a set of fact nodes N ′f such that |N ′f | =
|Nf |, where for each node ui ∈ Nf there is
a node vi ∈ N ′f corresponding to the same
network item description (i.e., dui

is identical to
dvi ) and with E[Xvi ] = B0

i .
3. Update the attack graph Gw such that the origi-

nal set of fact nodes Nf is replaced with the new
quantified set of fact nodes N ′f , producing attack
graph G′w.

We input the resulting attack graph G′w to the pro-
cedure below for computing the maximum possible
ECSA values.

Procedure 2:
1. Transform G′w into the corresponding mathemat-

ical program Pw as explained in Section 4.2.
2. With Z = (x, y), choose a starting point Z0 with

each variable being a random value in the range
[0, 1].

3. Replace all the nonlinear functions fi(Z) with
a linear approximation fi(Z) ≈ fi(Z

0) +
∇fi(Z0)(Z − Z0).

4. To prevent large changes in Z, add the constraint
|Zi − Z0

i | ≤ ε, that is, each variable can change
by no more than ε.

5. Solve the resulting LP problem using an efficient
LP method, such as the simplex method, pro-
ducing the candidate optimal point Z∗, which
replaces Z0.

6. Repeat step Steps 3–5 until the solution con-
verges to a stationary point.

Procedure 2 computes the maximum possible ECSA
value for node u in the attack graph. Our procedure
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is a technique called sequential linear programming
(SLP) [28]. SLP is a standard technique for solving
nonlinear optimization problems, which is found to be
computationally efficient and converges to an optimal
solution [29].

Complexity. In terms of computational efficiency, all
of the steps in Procedure 1 and 2 require polynomial
time in the number of nodes. The most complex step
is the fifth step in Procedure 2. The complexity of
the fifth step depends on the complexity of the LP
algorithm, and the simplex method is polynomial in
practice [27]. Since SLP has linear convergence, the
number of iterations is also polynomial.

Optimizing the initial attack graph. Our choice of
attack graphs, have goal nodes with no outgoing arcs
(the ultimate goal), and may include several paths
towards satisfying the goal. It is possible to minimal
attack graphs to reduce the unnecessary paths that
may or may not be taken by an attacker towards the
ultimate goal. An experienced attacker may take a
near minimum path towards the goal, thus, saving
time and perhaps bypassing difficult paths along the
way. Finding a minimal attack graph will precede any
computation with regard to the ECSA value.

4.4 Attack Dependencies
A major problem in probabilistic risk assessment is
to accurately capture attack step dependencies and
correlations. Attack dependencies in the form of at-
tack preconditions are intrinsically captured by our
model. That is because we base our analysis on attack
graphs that are formed based on the dependency rela-
tions among the nodes. Therefore, the probabilities of
success are computed by considering the dependency
relations determined in an attack graph.

Definition 5: An attack step represented by a goal
or rule node u in an attack graph is dependent on an-
other attack step v, if achieving v affects the decision
of the attacker in achieving u.

The dependency, as defined in Definition 5, occurs
when a dependent node u is a direct or indirect
successor of v. The only way u can be dependent on
v is if v is known to have Xv = 1. Knowing Xv = 1
indicates an attack has succeeded, and the attacker is
now using that knowledge to stage a second attack.
In our current model, we assume independence of all
attack steps since the scope of this paper is limited to
analyzing a single attack. The attack step dependen-
cies could occur when multiple consequent attacks are
analyzed. To compute these dependencies, consider
the following formulation.

Let A, B, and C = AB be the random variables as-
sociated with nodes in an attack graph. If we assume
A and B are dependent, then

E[C] = P [C = 1] = P [A = 1 ∧B = 1] =

P [A = 1|B = 1]P [B = 1] = E[A|B = 1]E[B].

To compute E[A|B = 1], set B = 1, which forces
all predecessors of B to also be 1, and recompute all
expected values at nodes affected by assuming B = 1.
variables are fixed at 1. After

E[C] = E[A|B = 1]E[B]

is computed, the rest of the computation proceeds
without modification.

Given the above formulation, we conclude that
considering dependence in attack information in our
success measurement model (despite existing proba-
bilistic work) is straightforward and does not require
significant additional computation.

5 SECURITY OPTIMIZATION

To achieve our main research goal (described in Sec-
tion 3) of reducing the probability of success in an
attack, and thus optimizing the overall security of
the network, we point out the necessity to model
this problem as an optimization problem. Further,
we attempt to model an important feature that is to
consider the availability of machines in the network.
In this section we describe these two contributions of
our work as summarized below.
• Optimizing the security of the network. Given a

set of security hardening products (e.g., a host
based firewall), we compute an optimal distribu-
tion of these resources subject to placement con-
straints. Using the rigorous probabilistic model
introduced in Section 4.1, this is the first work
in which a logical attack graph (Definition 1) is
transformed into a system of linear and nonlinear
equations with the global objective of reducing
the probability of success on the graph’s ultimate
attack goal. This transformation is performed ef-
ficiently and naturally and directly captures our
research goal.

• Machine availability and the effect of mobile devices.
Our work is the first to show how to represent
and assess devices with variable availability (fre-
quently joining and leaving the network), which
is one of the characteristics of mobile devices with
variable connectivity.

5.1 Optimizing the security of the network
With limited resources for hardening an organiza-
tional network, it is important to install a single or
a combination of security hardening products so that
the expected chance of a successful attack on the
network is minimized. To find the best placement of
a set of security products in a network, we extend the
attack graph to define a security product as a special
fact node referred to as an improvement node, which
is a fact node that represents a security hardening
product, service, practice, or policy.

The objective of solving the problem of optimal
placement of security products is to compute the effects
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of various placements of one or more improvement nodes
subject to certain constraints, and choose the placement that
minimizes the attack goal’s ECSA value.

The following describes computing the best place to
deploy a single security product (that can be gener-
alized to multiple security products) in the network.
We formulate this optimal placement problem as a
minimax problem — finding the best placement of the
improvement option that minimizes x̂G , where x̂G is
the maximum of E[XG ] with respect to Xu and Y

(u)
i .

We consider a single improvement option for rule
nodes given deployment constraints. We define the
set of admissible rule nodes Nra ⊆ Nr as a subset of
all rule nodes. Let P (Xτ = 1) be the initial belief of
some improvement option τ . The problem is to find
a configuration that minimizes x̂G . That is, we aim to
find a rule node u ∈ Nra such that if τ ∈ φ(u), the
value of x̂G is minimized.

Let A =
∣∣Nra∣∣ and j1 < j2 < . . . < jA be the nodes

in Nra. Define 0-1 variables tji for i = 1, . . . ,A and let
T = (tj1 , . . . , tjA). A single improvement corresponds
to the constraint

tj1 + tj2 + · · ·+ tjA = 1,

and the generalization to multiple improvements is
obvious.

We modify the definition of fu(x, y) for a rule node
given in Equation (3) to include the effect of the
improvement option τ . For a rule node u ∈ Nra, define

fu(T, x, y) = (6)

xu − (P (Xτ = 1))tuxj
∏

k∈φ(u)
k∈Nf

P (Xk = 1), j ∈ φ(u) ∩Ng,

xu − (P (Xτ = 1))tu
∏

k∈φ(u)
k∈Nf

P (Xk = 1), φ(u) ∩Ng = ∅.

fu is unmodified for rule nodes u ∈ Nr. This
modified definition adds the improvement node at
exactly one rule node in Nra. Note that the definition
of fu for a goal node is identical to Equation (4).
The minimax problem to find the best placement of
security products is

minimize
T∈{0,1}A

x̂G (7)

subject to tj1 + · · ·+ tjA = 1,

where x̂G is the solution to

maximize
x,y

xG (8)

subject to f(T, x, y) = 0,
0 ≤ xi ≤ 1, i = 1, ...,M ,
0 ≤ yi ≤ 1, i = 1, ..., P .

The minimax problem (7) maximizes the ECSA
value of the attack’s goal (E[XG ]) to find the highest

chance of success in attacking a specific network
component (such as a server). The result of the inner
maximization problem (8) is then used in the outer
minimization problem (7) to find the best placement
of the security product such that the maximized ECSA
is minimized.

The inner maximization problem is solved using
SLP as before. The outer minimization problem is a
limited combinatorial problem for one improvement.
For multiple improvements, the outer problem can
be solved by an LP relaxation (change ti ∈ {0, 1}
to 0 ≤ ti ≤ 1) with branch and bound. For k
improvements, the complexity is

(A
k

)
.

5.2 Machine Availability and Threats from Mobile
Devices

To capture the increase in security threats due to the
inclusion of mobile devices (such as laptops, smart-
phones, and tablet computers) in the network, our
approach is to extend an original attack graph for a
network to include attack paths from mobile devices.
Specifically, we define special rules to represent the
uncertain availability of mobile devices in an attack
graph, as well as the corresponding ECSA formulation
and computation. The ability to model the availability
of machines in attack graphs is general and useful
beyond the specific mobile devices studied.

Attack graph extension. We extend the rules of the
MulVAL attack graph generator [30] to include ex-
ploitation rules that capture the availability of mobile
devices. An identified mobile device may not always
appear in the network. Mobile devices rarely include
server software. The majority of Internet-based mobile
applications are clients to the outside world, requiring
interaction with malicious input to execute a success-
ful exploit. For instance, most of the vulnerabilities
that we studied for the Android platform involved
an interaction with a malicious code (i.e., a malicious
website) and exploiting a local vulnerability. Accord-
ingly, we define basic exploitation rules for mobile
devices in Figure 3.

execCode(H,Perm) :-
compromised(H),
vulExists(H,Vulid,

localExploit,privEscalation).

compromised(H) :-
deviceOnline(H,Platform),
vulExists(H,Vulid,remoteClient,

codeExecution),
maliciousInteraction(H,_,App).

Fig. 3. The two predicates describe attack stages
(i.e., remote and local exploits). The predicate de-
viceOnline(H,Platform) captures the availability of the
device H.

We capture the availability of a device with the
node deviceOnline(H,Platform). In the success
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measurement model, these nodes are dynamic nodes
with no fixed initial belief. The availability of a device
may be measured as the percentage of the time that
the device is connected within the target network (e.g.,
through a wireless connection) in a certain period.
This data may be collected or estimated for the target
network.

Note that our intuition of availability is in its
general sense and is not necessarily bound to the
availability as, for example, connectivity of a machine.
An availability element in our method may capture a
machines connectivity, responsiveness of a particular
vulnerable service, or the role of a firewall rule that
might limit the availability of a service. For instance,
our model captures the scenario in which a software
firewall, based on a specific policy, limits the number
of TCP connections opened by the Apache web server,
and, for a specific period of time. When analyzing a
vulnerable network according to our model, a frac-
tional probability value on a fact node representing a
service such as Apache will accurately imply limited
attack chance as a result of the limited availability.

ECSA for mobile devices. For mobile device fact
nodes, the availability of the device cannot be de-
terministically specified. Thus, fact nodes similar to
deviceOnline(H,Platform) cannot have a pre-
computed value for all instances of ECSA computa-
tion. In order to solve this issue, we define a stochastic
fact node as a fact node that represents a dynamic
ground fact that is not associated with a fixed initial
belief. Each stochastic fact node u is represented using
a Bernoulli random variable Xu. For instance, for
the node deviceOnline(H,Platform), E[Xu] =
P [Xu = 1] is the probability of the event that the
device is online.

6 DETERMINATION OF INITIAL BELIEF

In this section we discuss and provide a concrete
example for choosing initial belief values for fact
nodes and improvement nodes.

6.1 Discussion
Our model relies on the availability of the initial belief
values that are initial estimates of vulnerabilities at a
subset of nodes in an attack graph. Since this raises
a concern about the practicality of determining these
values, there have been a number of recent attempts
to automate this process. One notable attempt is
presented by Wang et al. [31] where a vulnerability
assessment metric is developed that can be computed
regardless of the type of the vulnerability itself. That
is, the metric relies on the number of unknown vul-
nerabilities required to compromise a network.

References [32] and [33] provide various ways to
calculate metrics for zero-day or known vulnerabili-
ties. While a comprehensive measurement model for
computing initial estimates of vulnerability impacts

may still be needed, existing methods as well as
expert knowledge suffice for our computations.

6.2 Example

Initial belief for fact nodes. An initial belief value is a
given probability of success P (Xui

= 1) at a fact node
ui ∈ Nf . Our success measurement model relies on a
relatively small set of initial beliefs that provide an
estimation of expected chance of success for specific
attacks on network services. In an attack graph, these
network service vulnerabilities are formalized as fact
nodes. The methods for obtaining initial belief values
may vary. We illustrate some specific approaches next.

For documented software vulnerabilities, the value
of standard vulnerability scores (such as CVSS) is
used as an estimation of the expected chance of
success in exploiting the vulnerability. The steps for
assigning the initial belief values follow.

Analyzing the network configuration. A server A runs
MySQL listening on port 3306, allowing remote con-
nections. To protect A, iptables rules are set to
allow tcp/udp connections either locally or to specific
IP addresses inside a NAT subnet. These IP addresses
belong to workstations from which the database ad-
ministrators and developers connect to the server A,
and a web server that runs the web applications.

Analyzing attacks and vulnerabilities. An attacker can
exploit a remote privilege escalation vulnerability
from a workstation W1 to a developer workstation
W2. Since A accepts MySQL connections from W2,
the attacker uses one of multiple remote denial of
service vulnerabilities (such as CVE-2012-3147, with
a CVSS base score of 6.4/10) to launch a denial of
service attack on the MySQL server in A.

Assigning initial belief values. With multiple docu-
mented vulnerabilities with similar effects on u2, we
compute the value P (Xu2

= 1) = max(s1, s2, · · · , sK),
where sj is a value in [0, 1] based on the CVSS base
score for a vulnerability j (for example, the score
divided by 10), with K documented vulnerabilities.
Alternatively take P (Xu2 = 1) = µ(s1, s2, · · · , sK),
where µ is the mean of the score values.

We create another fact node as a dependency of the
rule node u1 (see Figure 4), denoted u3, to indicate
that incoming traffic on port 3306 is allowed from host
W2. We choose the probability value P (Xu3 = 1) =
1, indicating that the connection to the port 3306 is
reliable and the attacker is knowledgeable about the
port 3306 when attacking a MySQL database server.
Otherwise, depending on the network configurations,
we can set P (Xu3

= 1) < 1, with a reasonable value.
Initial belief for improvement nodes. Initial belief

values for improvement nodes correspond to the re-
liability of the security solution represented by the
nodes. There are several assessment factors for com-
puting the initial belief values. We categorize these
factors into two main groups: (i) effectiveness and (ii)
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networkService(A, MySQL, 3306, W2)

vulnerability(A, remoteDoS, 6.4)

attackerIn(W2)

denialOfService

E[u3] = 1

...

E[u4] = 0.7

E[u2] = 0.64

E[u1] = 0.448

Fig. 4. u1 is a denial of service on A, u2 is a vulner-
ability, u3 is a network service info, and u4 indicates
attacker reached W2 that can access A.

deployment. Effectiveness is measured by detection
accuracy and the rate of false positive/negative deci-
sions. The deployment factor includes measurements
for memory consumption, CPU utilization, library
dependencies, maintenance, and financial cost.

To compute an estimated initial belief value for
a security product, we use the mean of all the ef-
fectiveness and deployment parameters. Let Z(ui)

k be
a Bernoulli variable for an assessment factor k for
improvement option ui, and let L be the total number
of assessment factors. We define the expected value
for Xui as

E[Xui
] =

∑
k E[Z

(ui)
k ]

L
. (9)

For an effectiveness factor k, the value of E[Z
(ui)
k ]

indicates the accuracy of improvement option ui. For
a deployment factor k, a higher value of E[Z

(ui)
k ]

indicates lower deployment overhead.
In the example scenario of Section 6, we create an

improvement node for additional iptables rules to
improve security. For instance, we modify the firewall
rules on server A to allow connection to the database
server on an unusual port p other than the default
3306, and also change MySQL socket configuration to
listen on port p. Then we create an improvement node
u5 for an iptables rule dropping ICMP requests
and limiting TCP ACK packets to already established
connections to prevent the attacker from easily finding
the port number p through a port scanner such as
nmap. We expect that the firewall rule of the node
u5 has an average effectiveness (some attacks may
bypass this rule) with virtually no deployment over-
head. Thus we compute the initial belief value for u5
as P (Xu5 = 1) = 0.5

(
E[Z

(u5)
1 ] + 0.5 ∗ E[Z

(u5)
2 ]

)
with

a value of E[Z
(u5)
1 ] ≥ 0.5 for the effectiveness factor

and E[Z
(u5)
2 ] = 1 for the deployment factor.

7 EXPERIMENTS

To validate our models (introduced in Sections 4
and 5), we conduct four experiments on an actual
corporate network (depicted in Figure 5). Our exper-
iments focus on (i) computing the ECSA values for
the network, (ii) assessing security defense strategies,
(iii) adding mobile device data to the analysis, and

(iv) security improvement without installation of new
devices.

Backup
Server

Public DMZ

Application
Server Linux 1

Application 
Server Win 4

Public DMZ

Cloud Server
Linux 2

Application 
Server Win 3

Printer1

Internet

MySQL 
Database Server

Private DMZ (Trusted)

Attacker

Wireless access point

Firewall

Firewall

Mail ServerWeb Server 
1

Web Server 
2

Smartphone Laptop

Workstation

Attacker

Public DMZ

Fig. 5. Each machine on the three public DMZ sub-
networks runs at least a network service with an open
port. Data servers are on a NAT subnetwork and
can only be accessed through the workstation. The
attacker either attacks remotely or uses a phone to
crack the wireless password and attack the servers.

We implemented a tool for our computational pro-
cedures (Section 4.3) in Java (with approximately 3500
lines of code). We use (GNU Linear Programming
Kit) GLPK [34], a well known open source linear
programming API for our SLP-based procedure.

Our tool parses an attack graph input file (obtained
from MulVAL [30]), computes the ECSA values ac-
cording to various parameters, and performs security
improvement analysis based on a set of improvement
options and constraints.

In Figure 6, we demonstrate the performance of
our implementation. For each graph, we repeat the
corresponding experiment to measure the time to
compute the final expected chance of a successful
attack at the graph’s root vertex.

We compute the ECSA values for the target graphs
using our tool that is a single threaded program on
a single machine having an Intel Core i7 processor
with a clock speed of 2.4 GHz and 8 GB of DDR3
memory. All our experiments converged with at most
20 iterations towards the solution. On average, 87.99%
of the execution time for Procedure 2 is spent on the
Taylor expansion from which on average 78.27% of
the execution time is spent on symbolic differentia-
tion performed using DJep1 Java library for symbolic
operations. The Taylor expansion is parallelizable, and
scales with the number of vertices, hence can be done
efficiently offline.

1. DJep is available on http://www.singsurf.org/djep/.
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Fig. 6. The x-axis captures the number of vertices for
each experiment, while the y-axis shows the average
time measured in seconds to execute one iteration for
Procedure 2. On average 87.99% of time is spent on
computing the Taylor expansion.

7.1 Experimental setup

The target network of Figure 5 is open to a large
number of users and contains several servers and
workstations. This network has low usage restrictions
and allows untrusted mobile devices to enter the
network without mandatory security scanning (some
of the data is sanitized while preserving the general
structure and vulnerability information.). In this net-
work, a connected user can easily obtain information
about the network topology, and perform port scan-
ning and operating system finger printing.

Generating the attack graphs. We used network scan-
ning tools (such as nmap), online vulnerability repos-
itories, and information provided by system admin-
istrators to create a network topology (depicted in
Figure 5) and the attack graphs that represent the real
network. We performed wireless network scanning to
confirm the connectivity of wireless devices to the
network. We generate two attack graphs (Table 1) with
slight variations. Attack graph A (483 nodes) assumes
no mobile devices in the network (i.e., availability
of mobile devices is 0%), while attack graph B (549
nodes) includes attack scenarios from untrusted mo-
bile devices.

Assigning the initial beliefs. A subset of the initial
belief values (22 values for attack graphs A and B)
for computing ECSA values for our example attack
graphs is given in Figure 7. All the entries in the
file correspond to known vulnerabilities for which a
Common Vulnerability Scoring System (CVSS) score
is available. A CVSS score is a number in the range
[0, 1] that represents the exploitability level of a vul-
nerability. We use this number as an approximation of
the probability of success for known vulnerabilities.

Initial belief values are required for every ground
fact node. In our network, attack graph A contains 229

ground fact nodes. We use an automated technique
to determine the initial belief values for all the nodes
without a CVSS score. Of the 229 ground fact nodes,
161 nodes describe host access control information
between two machines in the network. We assume
that all the actual connections are highly reliable, thus
setting an initial belief value for availability of these
hosts to 0.9. Our tool automatically detects host access
control nodes and sets the initial belief values for
them.

The other fact nodes are in three categories: 37
nodes describe network services (such as Apache), 30
describe a vulnerability (for which we use the CVSS
scores, as depicted in Figure 7), and one node repre-
sents the existence of an attacker. Similar to the host
access control nodes, we apply unified initial belief
values for each category. Note that these parameters
may be adjusted to test various scenarios, for example,
under low probability of existence of an attacker.

Vulnerability fact node ui
CVE_2006_1516 5.0
CVE_2006_1518 6.5
CVE_2008_1483 6.9
CVE_2006_5752 4.3
CVE_2011_1929 5.0
CVE_2011_1968 7.1
CVE_2004_0331 5.0
CVE_2009_4565 7.5
CVE_2005_2090 4.3
CVE_2010_1899 4.3

E[Xui
]

Fig. 7. First ten entries in initial belief values file
(containing 22 entries) for attack graphs A and B. We
use the Common Vulnerability Scoring System values
as approximation of E[Xui ] for documented vulnerabil-
ities.

7.2 Chances of a Successful Attack
Given complicated attack structures represented by
an attack graph of the network, it is particularly
interesting to analyze the attack to understand the
weakest points of the network that enable the ultimate
attack goal. In addition to computing the highest
expected chance of success given an ultimate attack
goal E[XG ], the solution to Equation (5) as described
in Section 4.2 finds the expected chance of successful
attack on intermediate attack goals that are necessary
to achieve G.

To verify the solution computed by our tool, con-
sider the partial view of the attack graph A in Figure 8.
We highlight two attack vectors leading to privilege
escalation on the database server, namely through
compromising servers 3 and 4 (See Figure 5). Comput-
ing the ECSA for all the nodes in the graph, the results
suggest that both application servers 3 and 4 (denoted
server3 and server4 in Figure 9) have high ECSA
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Attack Graph Hosts Nodes Edges Placement Options Min. Size of Initial Belief Set
A: No mobile 13 483 663 206 22
B: With mobile 13 549 757 235 22

TABLE 1
Attack graph A is generated with no mobile devices in the network and attack graph B is generated with two

mobile devices. Placement options refers to the number of nodes that can be considered for the addition of an
improvement node.

1g
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482r

466r

3g 464f

465f

481f

475g

480f
483f

472f

473f

467g

Network access 
through apache 

vulnerability 
cve_2006_5752

Network access through 
mySQL vulnerability 

cve_2006_1518

Network access through 
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cve_2006_1516

Network access through 
ssh vulnerability 
cve_2008_1483

Privilege escalation on DB 
server (ultimate goal)

4
3

2

1

25f Starting point of attack

6g Privilege 
escalation on 

server 3

96gPrivilege 
escalation on 

server 4

Other attack 
vectors Apache exploits

Apache and ssh exploits

Fig. 8. A simplified partial view of attack graph A
in which nodes are numbered and labeled with node
type. Nodes are labeled with an ID followed by the
node type (g for goal, r for rule, and f for fact). The
attack sequence starts at node 25 and proceeds with a
number of alternatives among which is compromising
either server 3 or server 4 through nodes 6 and 96
respectively. Both nodes 6 and 96 are predecessors
of the final attack goal, that is node 1, which refers to
privilege escalation on the database server.

values for their goal node, indicating high chances of
successful attacks. This is because application servers
3 and 4 have highly scored software vulnerabilities
with a number of open ports that increase the attack
surface, and thus are relatively more exposed to the
outside world. The chance of successful attack on the
target database server is the lowest, which is due to a
better network configuration to protect it. In our target
network, the probability of success (based on our
computation) for compromising the database server
is a function of both success probability at preceding
goals (and thus taking into account the dependency
on previous stages of the attack) as well as the inde-
pendent probability of success at the database server
itself. This is in contrast with simply regarding the
probability of success at the database server, the same
as the one for compromising the preceding servers in
the chain of attack.

The results obtained from this experiment signif-
icantly improve the manual inspection of network
vulnerabilities even with the assistance of plain attack
graphs. In addition, the ECSA values and the math-
ematical programming structure of Equation (5) lay
the foundation for an efficient assessment of security
improvement options as discussed in Section 7.3.

Figure 9 also shows the results for the ECSA com-
puted based on attack graph B, which are discussed
in Section 7.4.

7.3 Optimal Placement of Security Products
We used the results from the previous section to find
the best placement of an improvement option for
the network of Figure 5. Our improvement option
is the installation of an intrusion prevention system
(IPS) on a single device to minimize the risk on the
target host (the database server). Our choice of IPS has
some deployment overhead because of memory and
CPU usage. After testing its effectiveness, we believe
that this IPS has a low false negative rate. Using
Equation (9), the initial belief for each improvement
fact node for the IPS is E[Xτ ] = 0.3.

According to our method (described in Section 5.1),
we add all the exploitation rules to the set of applica-
ble placement nodes Nra (i.e., 206 nodes for attack
graph A and 235 nodes for attack graph B; note
that one can choose fewer rule nodes for solving the
optimal placement problem, depending on possible
placement constraints.). Then we modify the original
attack graph to include improvement fact nodes as
predecessors to each u ∈ Nra.

Cursory reasoning may recommend that the target
server (i.e., database server) itself must be where we
install the IPS. However, this recommendation may
not be optimal. We computed the improvement for
the attack graph with no mobile devices and with the
mobile devices present in the network. Table 2 shows
the improvement results, for each attack graph config-
uration, ordered based on the percentage decrease in
E[XG ]. The third column shows the best placement
of the IPS. E′[XG ] and E[XG ] denote the expected
chances of a successful attack on G (i.e., the database
server) in the improved attack graph and the original
attack graph, respectively.

The results in Table 2 demonstrate significant de-
crease in E[XG ] when considering the improvement
option for attack graphs A and B. Our results indicate
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Fig. 9. ECSA values for attack graphs A (no mobile devices) and B (with mobile devices). In the experiment with
mobile devices, the availability of a mobile device is captured with a random variable and is not assumed to be
fixed.

Rank Attack Graph Machine E′[XG ] E[XG ] % ↓

1
A: No mobile App Server 3 0.0520 0.1739 70.09
B: With mobile Database 0.0521 0.2651 70.04

2
A: No mobile Database 0.0552 0.1739 79.18
B: With mobile Workstation 0.0791 0.2651 70.16

TABLE 2
Optimal selection for IPS installation for attack graphs
A and B. The attack target is code execution on the
database server. The results are compared against
the original ECSA values without the improvement
option. E′[XG ] is the ECSA value of the improved

model.

that installing the IPS on application server 3 has the
best effect in minimizing the ECSA of the attack’s
goal. The reason is that the target server can be
attacked from a number of ports indicated by goal
nodes. Based on the computed values of the random
selectors Yi, a particular port p1 receives a high chance
of being used to attack the database server.

In the results, attacking the database server from p1
has a lower ECSA compared to attacking application
server 3. In the attack graph, attacking application 3
is a predecessor of attacking the database server on
port p1. Thus, the improvement option multiplied by
the ECSA of attacking application server 3 reduces
the value of E[XG ] more, and installing the IPS on
application server 3 yields a slightly lower value of
E[XG ].

Notice that the second ranked improvement recom-
mendation (obtained during the course of solving the
minimization problem (7)) suggests the workstation
as the best place to install the IPS. This is consistent
with the conclusions from the ECSA values since the
workstation is one of the most vulnerable devices
determined in the previous experiment.

7.4 Effect of Mobile Devices
The network architecture presented in Figure 5 is
also vulnerable to threats from mobile devices. For
example, in the network of Figure 5, the system

administrators have allowed mobile devices to join
the wireless access point that is set up for internal
purposes in the private DMZ region. Also, the laptop
(connected to the wireless access point) is directly
accessible from the workstation and the printer. Such
configurations increase the attack surface. We assessed
the security of the network by computing the ECSA
values for attack graph B that includes the attack
vectors from mobile devices.

The ECSA in our experiments is computed accord-
ing to the method for computing the most vulnerable
components (Section 4.2). Therefore, the results of
the experiment on attack graph B (Figure 9) show
lower values for exploiting the application servers,
but higher values for exploiting the smartphone and
the laptop (with highly scored known software vul-
nerabilities), the workstation, and the printer. This is
because the mobile devices in the network of Figure 5
have highly scored vulnerabilities that make them
more attractive to attackers.

From the results of the experiment with mobile
devices, we can conclude that the presence of highly
vulnerable mobile devices in the network increases
the chance of a successful attack on the target ma-
chine. Using attack graph B, the most vulnerable
components are the workstation, the printer (which
has vulnerable server software), and the mobile de-
vices (i.e., the laptop and the smartphone). In this
experiment, the chance of success in exploiting the
database server is increased by 52.44%.

7.5 Improving Network Configuration

Our optimal recommendation method is capable of
computing an improved network configuration with
no extra security products (such as an IPS) added to
the network. In particular, we find a port p (amongst
all open ports on all machines) such that if it is
disabled, the value of E[XG ] (the optimum value for
(5)) is minimized. That is, for any other port p′, if p′ is
disabled in the network (for which we obtain E′[XG ]),
then E′[XG ] ≥ E[XG ].
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We used our method to examine the option on
every possible open port that appears in the at-
tack graph. The results of our experiments on attack
graphs A (no mobile) and B (with mobile) are sum-
marized in Table 3.

Rank Attack Graph Machine, Port E′[XG ] E[XG ] % ↓

1
A: No mobile Database, 2200 0.0 0.1739 100
B: With mobile Database, 2200 0.0 0.2651 100

2
A: No mobile App Server 3, 22 0.0 0.1739 100
B: With mobile Backup, 2200 0.12 0.2651 53.8

TABLE 3
Optimal selection for closing a single port with the

best effect on the security of the network.

To verify the accuracy of our method, we consid-
ered open ports on the target database server that
if disabled would eliminate the chance of attack. Al-
though it is a common practice to eliminate straight-
forward attacks on well known ports, some of the
servers in the target network did have open ports with
minimum firewall rules.

The results in Table 3 show that the best recom-
mendation is to disable the port 2200 yielding a
zero expected chance of successful attack. The second
ranked recommendations are to close ports on the
application server 3 and the backup server. Notice
that both recommendations achieved a lower value
of E[XG ], thus improving the security of the network.

All the analyses (including vulnerability and opti-
mization analyses) conducted in our experiment fin-
ished within several seconds for the attack graphs
used.

8 CONCLUSIONS AND FUTURE WORK
In this work we formalized, implemented, and eval-
uated a new probabilistic model for measuring the
security threats in large enterprise networks. The
novelty of our work is the ability to quantitatively
analyze the chance of successful attack in the presence
of uncertainties about the configuration of a dynamic
network and routes of potential attacks.

For future work, we plan to utilize and extend
our success measurement model and optimal security
placement algorithm to solve more complex network
security optimization problems. For instance, an im-
portant issue is noise elimination in the initial belief
set of values. This is an important problem that if
solved will lead to the production of more accurate
results.
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