
Forward-Secure Hierarchical IBE with
Applications to Broadcast Encryption1

Danfeng (Daphne) YAOa,2 Nelly FAZIO b Yevgeniy DODISc

Anna LYSYANSKAYA d

aDepartment of Computer Science, Rutgers University, New Brunswick, NJ
b IBM Almaden Research Center, San Jose, CA

c Department of Computer Science, New York University, NY
d Department of Computer Science, Brown University, Providence, RI

Abstract. A forward-secure encryption scheme protects secret keys from exposure
by evolving the keys with time. Forward security has severalunique requirements in
hierarchical identity-based encryption (HIBE) scheme: (1) users join dynamically;
(2) encryption is joining-time-oblivious; (3) users evolve secret keys autonomously.

We define and construct a scalable pairing-based forward-secure HIBE (fs-
HIBE) scheme satisfying all of the above requirements. We also show how our
fs-HIBE scheme can be used to realize a forward-secure public-key broadcast en-
cryption scheme, which protects the secrecy of prior transmissions in the broadcast
encryption setting. We further generalize fs-HIBE into a collusion-resistant multi-
ple hierarchical ID-based encryption scheme, which can be used for secure com-
munications with entities having multiple roles in role-based access control. The
security of our schemes is based on the bilinear Diffie-Hellman assumption in the
random oracle model.

Keywords. Forward security, ID-based encryption, broadcast encryption

1. Introduction

The idea of an identity-based encryption (IBE) scheme is that an arbitrary string can
serve as a public key. The main advantage of this approach is to largely reduce the need
for public key certificates and certificate authorities, because a public key is associated
with identity information such as a user’s email address. A first scheme for identity-
based encryption (BF-IBE) was based on the bilinear Diffie-Hellman assumption in the
random oracle model by Boneh and Franklin [10]. In IBE schemes private key generator
(PKG) is responsible for generating private keys for all users, and therefore is a perfor-
mance bottleneck for organizations with large number of users. Hierarchical identity-
based encryption (HIBE) schemes [7,20,24] were proposed toalleviate the workload of a
root PKG by delegating private key generation and identity authentication to lower-level

1The preliminary version of this chapter has been published in the Proceedings of the ACM Conference on
Computer and Communications Security (CCS ’04) [38].

2Corresponding Author: Department of Computer Science, Rutgers University, New Brunswick, RI 08854;
E-mail: danfeng@cs.rutgers.edu.

PKGs. In a HIBE scheme, a root PKG needs only to generate private keys for domain-
level PKGs, who in turn generate private keys for users in their domains in the next level.
The organization of PKGs and users forms a hierarchy that is rooted by the root PKG.
To encrypt a message, Alice needs to obtain the public parameters of Bob’s root PKG,
and the ID for Bob and for those domain-level PKGs that are on the path from the root to
Bob; there are no lower-level parameters. Gentry and Silverberg [20] extended BF-IBE
scheme and presented a fully scalable hierarchical identity-based encryption (GS-HIBE)
scheme. Later, a HIBE construction with a weaker notion of security was given by Boneh
and Boyen [7]. Most recently, new IBE and HIBE constructionsthat can be proved to
have the full security without the random oracle model [8,35] were given.

Due to the inherent key-escrow property, the standard notion of HIBE security cru-
cially depends on secret keys remaining secret. Key exposure is a realistic threat over
the lifetime of such a scheme. To mitigate the damage caused by the exposure of secret
key information in HIBE, one way is to construct a forward-secure hierarchical identity-
based encryption (fs-HIBE) scheme that allows each user in the hierarchy to refresh
his or her private keys periodically while keeping the public key the same. A forward-
secure public-key encryption scheme has recently been presented by Canetti, Halevi and
Katz [12]. But surprisingly, a practical fs-HIBE scheme hasseveral unique requirements
that cannot be achieved by trivial combinations of the existing fs-PKE schemes [12,25]
and HIBE scheme [7,20].

Apart from being interesting on its own, fs-HIBE is a useful tool that lends itself
to several applications. One such application is the implementation of forward secrecy
for public-key broadcast encryption. While forward secrecy is an important requirement
in any context, it is especially needed for broadcast encryption [6,16,18,27,36]. This is
because by design an adversary can freely listen to any broadcast and store it. Then,
should the adversary ever succeed in recoveringanyuser’s secret key, she will manage
to decrypt all past broadcasts that such user was authorizedto receiveunlesswe have
forward secrecy.

In our preliminary version [38], we posed an interesting open question that whether
a general fs-HIBE scheme with linear or even sub-linear complexity can be realized.
Shortly afterward, Boneh, Boyen, and Goh were able to construct an efficient HIBE sys-
tem with constant-size ciphertexts [9] under a different security assumption. Their HIBE
scheme can also be extended to achieve forward-security with constant ciphertexts. The
security of Boneh, Boyen, and Goh’s system is based on a weaker version of Diffie-
Hellman Inversion (BDHI) assumption. The BDHI assumption was previously used to
construct a selective-ID secure IBE without random oracles[7]. In comparison, our sys-
tem is only based on the Bilinear Diffie-Hellman (BDH) assumption. The 1-BDHI as-
sumption is equivalent to the standard BDH assumption. It isnot known if theh-BDHI
assumption, forh > 1, is equivalent to BDH [7].

Below, we discuss the notion of forward security for HIBE in more detail, and then
explain why it cannot be trivially achieved by existing techniques such as a combination
of fs-PKE [12] and HIBE [7,20] schemes.

1.1. Forward Security

The central idea of forward secrecy is that the compromise oflong-term keys does not
compromise past session keys and therefore past communications. This notion was first

proposed by G̈unther [19] and later by Diffieet al. [13] in key exchange protocols. The
notion of non-interactive forward security was proposed byAnderson [2] in 1997 and
later formalized by Bellare and Miner [3], who also gave a forward-secure signature
scheme followed by a line of improvement [1,28]. In this model, secret keys are updated
at regular intervals throughout the lifetime of the system;furthermore, exposure of a
secret key corresponding to a given interval does not enablean adversary to break the
system (in the appropriate sense) for any prior time period.The model inherently cannot
prevent the adversary from breaking the security of the system for any subsequent time
period. Bellare and Yee [5] provided a comprehensive treatment of forward security in
the context of private key based cryptographic primitives.

The first forward-secure public-key encryption (fs-PKE) scheme was given by
Canetti, Halevi, and Katz [12] based on the Gentry-Silverberg HIBE [20] scheme. The
fs-PKE scheme constructs a binary tree, in which a tree node corresponds to a time period
and has a secret key. Children of a nodew are labeledw0 andw1, respectively. Given the
secrets corresponding to a prefix of a node representing timet , one can compute the se-
crets of timet . In order to make future keys computable from the current key, the secrets
associated with a prefix of a future time are stored in the current key. After the key for the
next time period is generated, the current decryption key iserased. The state-of-the-art
fs-PKE scheme [12] is based on the decisional bilinear Diffie-Hellman assumption [10]
in the standard model. Canetti, Halevi and Katz also gave a more efficient scheme in the
random oracle model [12].

1.2. Requirements of a fs-HIBE Scheme

Intuitively, forward security in a HIBE scheme implies thatcompromise of the current
secret key of a user only leads to the compromise of the user and his descendants’ subse-
quent communications. We will give a formal definition of security in Section 2.2. Our
design of a forward-secure HIBE scheme also takes system properties such as scalability
and efficiency into consideration. This is essential in the management of large scale dis-
tributed systems. Below, we define the requirements for a scalable forward-secure HIBE
scheme.

• New users should be able to join the hierarchy and receive secret keys from their
parent nodesat any time.
• Encryption isjoining-time-oblivious, which means that the encryption does not

require knowledge of when a user or any of his ancestors joined the hierarchy.
The sender can encrypt the message as long as he knows the current time and the
ID-tuple of the receiver, along with the public parameters of the system.
• The scheme should be forward-secure.
• Refreshing secret keys can be carried outautonomously, that is, users can refresh

their secret keys on their own to avoid any communication overhead with any
PKG.

Surprisingly, the design of a fs-HIBE scheme that fulfils theabove system require-
ments turns out to be non-trivial, despite the fact that bothHIBE [20] scheme and fs-
PKE [12] scheme are known. Intuitive combinations of the twoschemes fail to achieve
all the desired system features. Next, we explain why this isthe case.

1.3. Some Forward-Secure HIBE Attempts

In this section, we make three simple forward-secure HIBE constructions based on HIBE
scheme [20] and fs-PKE scheme [12], and explain why these naive schemes do not satisfy
the requirements of a practical fs-HIBE scheme.

1.3.1. Scheme I

Consider a scheme based on the HIBE [20] scheme. The user witha given ID tuple
(ID1, . . . , IDh) maintains two sub-hierarchies (subtrees): the time subtree that evolves
over time for forward security (as in fs-PKE [12]), and the IDsubtree to which other
nodes are added as children join the hierarchy. To encrypt a message for this user at
time t , use the HIBE with identity(ID1, . . . , IDh, t). The user can decrypt this message
using HIBE decryption, using the fact that he knows the key from the time subtree. The
user’s children are added to the hierarchy into the ID subtree.

However, Scheme I has the following issue. Suppose a user never erases the secret
key corresponding to the root of his ID subtree. Then should this key ever be exposed,
the forward secrecy of his children is compromised. On the other hand, if this secret key
is ever erased, then no nodes can be added as children of(ID1, . . . , IDh) in the hierarchy,
and so this scheme will not support dynamic joins.

The lesson we learn from this failed scheme is that all keys must be evolved together.

1.3.2. Scheme II

Let us try to repair Scheme I by making sure that the key from which children’s keys are
derived is also evolving over time. In Scheme II, the public key of a user consists of al-
ternating ID-tuples and time strings, which is referred to as anID-time-tuple. The private
key of a user serves three purposes: decryption, generatingprivate keys for new children,
and deriving future private keys of the user. The public key of a newly joined child is the
parent’s ID-time-tuple appended with the child’s ID. That key is in turn used for gener-
ating keys for lower-level nodes further down the hierarchy. For example, if Alice joins
Bob, the root, at time (January, Week 1) and Eve joins Alice at time (January, Week 2),
Eve’s public key is (Bob,January, Week 1, Alice, January, Week 2, Eve). Encrypting a
message to Eve requires the sender to know when Eve and all herancestors joined the
system. Therefore Scheme II is not joining-time-oblivious.

The lesson we learn from the failed Scheme II is that the keys must evolve in a way
that is transparent to the encryption algorithm.

1.3.3. Scheme III

In our final unsuccessful attempt, Scheme III, a user adds a child to the hierarchy by giv-
ing him or her secret keys that depend both on the current timeand on the child’s posi-
tion in the hierarchy. This is achieved by requiring that messages may only be decrypted
by those who know two keys: one corresponding to the current time and the other cor-
responding to their positions in the hierarchy. Each user autonomously evolves his time
key, and gives his newly joined children his time key in addition to their ID keys.

It is easy to see that this scheme isnot forward-secure. An adversary who joins the
hierarchy at the beginning of time can corrupt a user at any future time and obtain his or
her ID key. Moreover, this adversary can derive any past timekey (because he joined at

the beginning of time). Thus, this adversary may decrypt anypast message addressed to
the exposed user.

For the same reason, the multiple hierarchical identity-based encryption (MHIBE)
scheme generalized from Scheme III is not collusion-resistant, where the ciphertext for a
user with multiple identities can be decrypted if some otherindividuals collude. MHIBE
scheme is useful for secure communications with entities having multiple identities, and
is described in Section 1.4.3 and 5.

1.3.4. Comparisons

All the above trivial approaches fail. Constructing a forward-secure hierarchical ID-
based encryption scheme that is both secure and scalable is not so straightforward. Our
implementation, which is described in next Section, is still based on GS-HIBE [20]
scheme and fs-PKE [12] scheme. Yet, it overcomes the problems existing in naive com-
binations of the two schemes, and satisfies the requirementsof supporting dynamic joins,
joining-time-obliviousness, forward security, and autonomous key updates.

1.4. Overview

We describe several cryptographic constructions. First, we present a scalable and joining-
time-oblivious forward-secure hierarchical identity-based encryption scheme that allows
keys to be updated autonomously. Second, we show how our fs-HIBE scheme can be
used to obtain a forward-secure public-key broadcast encryption (fs-BE) scheme. Third,
we generalize our fs-HIBE scheme and discuss its application in secure communications
with entities having multiple roles in role-based access control (RBAC) [32].

1.4.1. Forward-Secure HIBE Scheme

Our fs-HIBE protocol is based on the HIBE scheme by Gentry andSilverberg [20] and
forward-secure public-key encryption (fs-PKE) [12] scheme due to Canetti, Halevi and
Katz. It satisfies the requirements of dynamic joins, joining-time-obliviousness, forward
security, and autonomous key updates.

A HIBE scheme involves only one hierarchy, whereas a fs-HIBEscheme has two
hierarchies: ID and time. Each (ID-tuple, time) pair can be thought of as a point on the
two-dimensional grid as follows. On the x-axis, we start with the identity of the root
Public Key Generator in the ID hierarchy (e.g. Hospital), then in position (1,0) we have
the identity of the first-level PKG (e.g. ER). In position (2,0) there is the identity of the
second level PKG (e.g. Doctor), and in position (3,0) there may be another PKG or an
individual user (e.g. Bob). Thus the x-axis represents an ID-tuple, for example (Hospital,
ER, Doctor, Bob). Similarly, the y-axis represents the time. Divide a duration of time
into multiple time periods and arrange them as leaf nodes of atree. Internal nodes of the
tree represent the time spans associated with their child nodes. Then, the origin of the
grid corresponds to the root of the time hierarchy (e.g. 2005). In position (0, 1) we have
the first level of the time hierarchy (e.g. January), and in position (0, 2) there is the next
level of time hierarchy (e.g. Week 1). Thus a time period can be expressed as a tuple on
the y-axis, for example (2005, January, Week 1). Figure 1 gives a schematic drawing of
the correspondence between the tuples and keys in fs-HIBE.

In a fs-HIBE scheme, the secret key of an (ID-tuple, time) pair is associated with
some path on the grid. For each grid point on that path, there is a corresponding element

Hospital ER Doctor Bob

2005

January

Week 1

Figure 1. A schematic drawing of keys for ID-tuple(Hospital, ER, Doctor, Bob) at
time period (2005, January, Week 1) in a forward-secure HIBE scheme. The ID-tuple
(Hospital, ER, Doctor, Bob) of Bob is on x-axis. The tuple representing time period
(2005, January, Week 1) is on y-axis. The origin represents the root identity (Hospital) and the
highest-level time period (2005). The black node represents Bob’s key at Week 1. The gray nodes
correspond to keys of Bob’s ancestors at Week 1. Each white node represents an intermediate key.
Secret keys at both the grey and white nodes can be used to compute private keys for Bob.

in this secret key. Such a path (secret key) isnot joining-time-oblivious: it depends on
when the user, as well as the nodes higher up, join the system.However, when encrypting,
the sender does not have to know the path. What is non-trivialhere is that, the path (secret
key) and ciphertext of our fs-HIBE scheme are designed in such a way that we do not
need to come up with a separate ciphertext for each possible path in order to achieve
joining-time-obliviousness.

Our fs-HIBE scheme has collusion resistance and chosen ciphertext security in
the random oracle model [4] assuming the difficulty of the bilinear Diffie-Hellman
problem [10,12,20], provided that the depths of the ID hierarchy and time hierarchy
are bounded by constants. Our fs-HIBE scheme is provable secure under full-identity
chosen-ciphertext model (ind-id-cca). The complexities of various parameters in our fs-
HIBE scheme are summarized in Table 1 and are discussed in Section 6.

1.4.2. Forward-Secure Broadcast Encryption Scheme

We show how our fs-HIBE scheme can be used to construct a scalable forward-secure
public-key broadcast encryption (fs-BE) scheme, which protects the secrecy of prior
transmissions. A broadcast encryption (BE) [14,15,21,22,26,29,30,34] scheme allows
content providers to securely distribute digital contentsto a dynamically changing user
population. Each active user is issued a distinct secret keywhen he joins the system, by
a trusted center. In comparison with the symmetric-key setting, a public-key BE scheme
of [14] has a single public key associated with the system, which allows the distribution
of the broadcast workload to untrusted third parties.

In a scalable forward-secure public-key broadcast encryption (fs-BE) scheme, users
should be able to update their secret keys autonomously, andthe trusted center should
allow users to dynamically join the broadcast system at any time while achieving forward
security. In addition, each content provider does not need to know when each user joins
the system in order to broadcast the encrypted contents. Theencryption algorithm of a
fs-BE scheme should only depend on the current time and the set of authorized users,
and thus be joining-time-oblivious. Applying our fs-HIBE to the public-key BE scheme
[14] yields such a fs-BE scheme.

1.4.3. Multiple Hierarchical ID-Based Encryption

We further generalize our forward-secure hierarchical ID-based encryption scheme into
a collusion-resistant multiple hierarchical identity-based encryption (MHIBE) scheme,
and describe its application in secure communications withindividuals who have multi-
ple roles in role-based access control (RBAC) [32]. In large-scale organizations, a user
may own multiple identities, each of which is represented byan ID-tuple. In MHIBE,
a message can be encrypted under multiple ID-tuples (identities) and can be decrypted
only by those who haveall the required identities. The collusion-resistant property can-
not be achieved using separate HIBE schemes. We note that thefs-HIBE scheme is a
special case of our MHIBE scheme, in that in fs-HIBE scheme, time can be viewed as
another identity of a user. Therefore the identities in MHIBE scheme capture a broad
sense of meaning.

2. Forward-secure HIBE (fs-HIBE)

This section defines the notion of forward secrecy for HIBE scheme and the related
security. In a fs-HIBE scheme, secret keys associated with an ID-tuple are evolved with
time. At any time periodi an entity joins the system (hierarchy), its parent node computes
its decryption key corresponding to time periodi and other values necessary for the
entity to compute its own future secret keys. Once the newly joined entity receives this
secret information, at the end of each period it updates its secret key and erases the old
key. During time periodi , a message is encrypted under an ID-tuple and the timei .
Decryption requires the secret key of the ID-tuple at timei .

Time Period: As usual in forward-secure public-key encryption [12] scheme, we
assume for simplicity that the total number of time periodsN is a power of 2; that is
N = 2l . ID-tuple: An entity has a position in the hierarchy, defined by its tupleof
IDs: (ID1, . . . , IDh). The entity’s ancestors in the hierarchy are the users / PKGs whose
ID-tuples are{(ID1, . . . , ID i):1 ≤ i < h}. ID1 is the ID for the root PKG.

2.1. fs-HIBE: Syntax

Forward-secure Hierarchical ID-Based Encryption Scheme (fs-HIBE): a fs-HIBE
scheme is specified by five algorithms:Setup, KeyDer, Upd, Enc, andDec.
Setup: The root PKG takes a security parameterk and the total number of time periods
N, and returnsparams(system parameters) and the initial root keySK0,1. The system
parameters include a description of the message spaceM and the ciphertext spaceC.
The system parameters will be publicly available, while only the root PKG knows the
initial root key.
KeyDer: This algorithm is run by the parent of a newly joined child attime i to compute
the child’s private key. During a time periodi , a lower-level entity (user or lower-level
PKG) joins in the system at levelh. Its parent at levelh − 1 computes the entity’s key
SKi,h associated with time periodi . The inputs are the parent’s private keySKi,h−1, time
i , and the ID-tuple of the child.
Upd: During the time periodi , an entity (PKG or individual) with ID-tuple (ID1, . . . , IDh)
usesSKi,h to compute his keySK(i+1),h for the next time periodi +1, and erasesSKi,h.

Enc: A sender inputsparams, the indexi of the current time period,M ∈M and the
ID-tuple of the intended message recipient, and computes a ciphertextC ∈ C.
Dec: During the time periodi , a user with the ID-tuple (ID1, . . . , IDh) inputs params,
C ∈ C, and its secret keySKi,h associated with time periodi and the ID-tuple, and
returns the messageM ∈M.
Encryption and decryption must satisfy the standard consistency constraint, namely when
SKi,h is the secret key generated by algorithmKeyDer for ID-tuple (ID1, . . . , IDh) and
time periodi , then:∀M ∈M, decryption of the ciphertextC with paramsand the key
SKi,h yields the messageM, whereC is the result of the encryption ofM under timei
and (ID1, . . . , IDh).

2.2. fs-HIBE: Security

We allow an attacker to makekey derivation queries. Also, we allow the adversary to
choose the time period and the identity on which it wishes to be challenged. Notice that
an adversary maychoosethe time period and the identity of its targets adaptively ornon-
adaptively. An adversary that chooses its targets adaptively first makes key derivation
queries and decryption queries, and then chooses its targets based on the results of these
queries. A nonadaptive adversary, on the other hand, chooses its targets independently
from the results of the queries he makes. Security against anadaptive-chosen-target ad-
versary, which is captured below, is the stronger notion of security than the non-adaptive
one. It is also stronger than the selective-node security defined in the fs-PKE scheme by
Canettiet al. [12].
Full-identity chosen-ciphertext security (ind-id-cca): We say a fs-HIBE scheme is se-
mantically secure against adaptive chosen ciphertext, time period, and identity attack,
if no polynomial time bounded adversaryA has a non-negligible advantage against the
challenger in the following game.

Setup: The challenger takes a security parameterk, and runsSetup algorithm. It gives
the adversary the resulting system parametersparams. It keeps the root secrets to itself.
Phase 1: The adversary issues queriesq1, . . . , qm, whereqi is one of the followings3:

1. Key derivation query(ti , ID-tuplei): the challenger runs theKeyDer algorithm
to generate the private keySK(ti , ID-tuplei) corresponding to(ti , ID-tuplei), and
sendsSK(ti ,ID-tuplei) to the adversary.

2. Decryption query(ti , ID-tuplei , Ci): the challenger runsKeyDer algorithm to
generate the private keySK(ti ,ID-tuplei) corresponding to the pair(ti , ID-tuplei),
runs theDec algorithm to decryptCi usingSK(ti ,ID-tuplei), and sends the resulting
plaintext to the adversary.

These queries may be asked adaptively. Also, the queried ID-tuplei may correspond
to a position at any level in the ID hierarchy, and the adversary is allowed to query for a
future time and then for a past time.
Challenge: Once the adversary decides thatPhase 1is over, it outputs two equal length
plaintextsM0, M1 ∈ M, a time periodt∗ and an ID-tuple∗ on which it wishes to be

3In the random oracle model, the adversary may also issue public key queries. Public key query
(ti , ID-tuplei): challenger runs a hash algorithm on(ti , ID-tuplei) to obtain the public keyH (ti ◦ ID-tuplei)

corresponding to(ti , ID-tuplei), whereH is a random oracle.

challenged. The constraint is that no key derivation query has been issued for ID-tuple∗

or any of its ancestors for any timet ≤ t∗.
The challenger picks a random bitb ∈ {0, 1}, and sets C∗ =

Enc(params, t∗, ID-tuple∗, Mb). It sendsC∗ as a challenge to the adversary.
Phase 2: The adversary issues more queriesqm+1, . . . , qn, whereqi is one of4:

1. Key derivation query(ti , ID-tuplei), where the time periodti and ID-tuplei are
under the same restriction as inChallenge: the challenger responds as inPhase 1.

2. Decryption query (ti , ID-tuplei , Ci) 6= (t∗, ID-tuple∗, C∗): the challenger re-
sponds as inPhase 1.

Guess: The adversary outputs a guessb′ ∈ {0, 1}. The adversary wins the game ifb = b′.
We define its advantage in attacking the scheme to be|Pr

[

b = b′
]

− 1
2|.

3. A Forward-secure HIBE Scheme

Here, we present a forward-secure hierarchical identity-based encryption scheme. Fol-
lowing the presentation standard in the IBE literature [10,20], we first present a fs-HIBE
with one-way security. One-way security is the weakest notion of security. It means that
it is hard to recover a plaintext with a passive attack. A standard technique, due to Fu-
jisaki and Okamoto [17], converts one-way security to chosen-ciphertext security in the
random oracle model. The definition of one-way security and the Fujisaki-Okamoto con-
version of the one-way secure fs-HIBE can be found in [37].

Our scheme, which is based on the HIBE scheme of Gentry and Silverberg [20] and
the fs-PKE scheme of Canetti, Halevi and Katz [12,25], overcomes the scalability and
security problems that exist when naively combining the twoschemes as described in
Section 1.3. Next, we first give the number theoretic assumptions needed in our scheme,
and then describe the algorithms in our construction.

3.1. Assumptions

The security of our fs-HIBE scheme is based on the difficulty of the bilinear Diffie-
Hellman (BDH) problem [10]. LetG1 andG2 be two cyclic groups of some large prime
orderq. We write G1 additively andG2 multiplicatively. Our schemes make use of a
bilinear pairing.
Admissible pairings: Following Boneh and Franklin [10], we callê an admissible pair-
ing if ê: G1×G1→ G2 is a map with the following properties:

1. Bilinear:ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1 and alla, b ∈ Z.
2. Non-degenerate: The map does not send all pairs inG1 × G1 to the identity in

G2.
3. Computable: There is an efficient algorithm to computeê(P, Q) for any P, Q ∈

G1.

4In the random oracle model, the adversary may also issue public key query. Public key query(ti , ID-tuplei):
the challenger responds as inPhase 1.

We refer the readers to papers by Boneh and Franklin [10] and Boneh and Silver-
berg [11] for examples and discussions of groups that admit such pairings.
Bilinear Diffie-Hellman (BDH) Parameter Generator: As in IBE [10] scheme, a ran-
domized algorithmIG is a BDH parameter generator ifIG takes a security parameter
k > 0, runs in time polynomial ink, and outputs the description of two groupsG1 andG2
of the same prime orderq and the description of an admissible paringê: G1×G1→ G2.
BDH Problem: As in IBE [10] scheme, given a randomly chosenP ∈ G1, as well as
aP, bP, andcP (for unknown randomly chosena, b, c ∈ Zq), computêe(P, P)abc.

For the BDH problem to be hard,G1 andG2 must be chosen so that there is no
known algorithm for efficiently solving the Diffie-Hellman problem in eitherG1 or G2.
Note that if the BDH problem is hard for a parinĝe, then it follows thatê is non-
degenerate.
BDH Assumption: As in IBE [10] scheme, we say a BDH parameter generatorIG

satisfies the BDH assumption if the following probability isnegligible ink for all PPT
algorithmA: Pr

[

A(G1, G2, ê, P, aP, bP, cP) = ê(P, P)abc
]

where(G1, G2, ê) ←
IG(1k); P← G1; a, b, c← Zq.

3.2. fs-HIBE: Implementation

For simplicity of description, our fs-HIBE construction makes use of a version of fs-PKE
scheme due to Katz [25]. In Katz’s scheme, time periods are associated with theleaf
nodes of a binary tree (Rather than with all tree nodes as in the scheme by Canettiet
al. [12]. Our fs-HIBE scheme can also be realized based on the fs-PKE scheme by Canetti
et al., which will give faster key update time. The complexity discussion of our scheme
is in Section 6). Without loss of generality, we give the rootPKG ID1, where ID1 can
just be an empty string.

Keys: There are two types of keys:skw,(ID1,...,IDh) andSKi,(ID1,...,IDh). The node key
skw,(ID1,...,IDh) is the key associated with some prefixw of the bit representation of a time
periodi and a tuple(ID1, . . . , IDh). SKi,(ID1,...,IDh) denotes the key associated with time
i and an ID-tuple(ID1, . . . , IDh). It consists ofsk keys as follows:SKi,(ID1,...,IDh) =

{ski,(ID1,...,IDh), skw1,(ID1,...,IDh): w0 is a prefix ofi }. When this causes no confusion, we
denote the keys asskw,h andSKi,h, respectively.

fs-HIBE construction Let IG be a BDH parameter generator for which the BDH as-
sumption holds.
Setup(1k, N = 2l): The root PKG with ID1 does the following:

1. IG is run to generate groupsG1, G2 of orderq and bilinear map̂e.
2. A random generatorP ← G1 is selected along with randomsǫ ← Zq. Set

Q = sǫ P.
3. Choose a cryptographic hash functionH1: {0, 1}∗ → G1. Choose a crypto-

graphic hash functionH2: G2 → {0, 1}n for somen. The security analysis will
treatH1 andH2 as random oracles [4]. The message space isM = {0, 1}n. The
ciphertext space isC = G

l×h
1 × {0, 1}n whereh is the level of the recipient.

The system parameters areparams= (G1, G2, ê, P, Q, H1, H2). All operations
of fs-HIBE are performed underparams. The master key issǫ ∈ Zq.
The root PKG needs to generate not only thesk key associated with the cur-
rent time period 0, but also thesk keys corresponding to the internal nodes

on the binary tree whose bit representations are all 0 exceptthe last bit. The
sk key for time 0 is denoted assk0l ,1. The rest ofsk values are used by
the root PKG to generate keys for future time periods, and arerepresented as
{sk1,0, sk(01),1, . . . , sk(0l−11),1}. These values are generated recursively as fol-
lows.

(a) Set the secret pointS0,1 to sǫ H1(0 ◦ ID1), andS1,1 to sǫ H1(1 ◦ ID1).
(b) Set secret keysk0,1 = (S0,1,∅) and sk1,1 = (S1,1,∅). Root PKG uses

sk0,1 to recursively call algorithmCompNext (defined below) to generate
its secret keys. Let (skw00,1, skw01,1) = CompNext(skw0,1, w0, ID1), for
all 1 ≤ |w0| ≤ l − 1.

(c) Set the root PKG’s secret key for time period 0 asSK0,1 =

(sk0l ,1, {sk1,1, sk(01),1, . . . , sk(0l−11),1}), and erase all other information.

CompNext(skw,h, w, (ID1 . . . IDh)): This is a helper method and is called by theSetup
andUpd algorithms. It takes a secret keyskw,h, a nodew, and an ID-tuple, and outputs
keyssk(w0),h, sk(w1),h for time nodesw0 andw1 of (ID1 . . . IDh).

1. Parsew asw1 . . . wd, where|w| = d. Parse ID-tuple as ID1, . . . , IDh. Parse
skw,h associated with time nodew as (Sw,h,Qw,h), where Sw,h ∈ G1 and
Qw,h = {Qk, j } for all 1≤ k ≤ d and 1≤ j ≤ h, except fork = 1 and j = 1.

2. Choose randoms(d+1), j ∈ Zq for all 1≤ j ≤ h.
3. SetS(w0),h = Sw,h +

∑h
j=1 s(d+1), j H1(w0 ◦ ID1 . . . ID j).

4. SetS(w1),h = Sw,h +
∑h

j=1 s(d+1), j H1(w1 ◦ ID1 . . . ID j).
5. SetQ(d+1), j = s(d+1), j P for all j ∈ 1, h.
6. SetQ(w0),h andQ(w1),h to be the union ofQw,h andQ(d+1), j for all 1≤ j ≤ h.
7. Outputsk(w0),h = (S(w0),h,Q(w0),h) andsk(w1),h = (S(w1),h,Q(w1),h).
8. Erases(d+1), j for all 1≤ j ≤ h.

KeyDer(SKi,(h−1), i , (ID1 . . . IDh)): Let Eh be an entity that joins the hierarchy during
the time periodi < N − 1 with ID-tuple (ID1, . . . , IDh). Eh’s parent generatesEh’s key
SKi,h using its keySKi,(h−1) as follows:

1. Parse i as i1 . . . i l where l = log2 N. Parse SKi,(h−1) as
(ski,(h−1), {sk(i |k−11),(h−1)}ik=0).

2. For each valueskw,(h−1) in SKi,(h−1), Eh’s parent does the following to generate
Eh’s keyskw,h:

(a) Parsew asw1 . . . wd, whered ≤ l , and parse the secret keyskw,(h−1) as
(Sw,(h−1),Qw,(h−1)).

(b) Choose randomsk,h ∈ Zq for all 1 ≤ k ≤ d. Recall thatsk, j is a shorthand
for sw|k,(ID1...ID j) associated with time nodew|k and tuple(ID1 . . . ID j).

(c) Set the child entityEh’s secret point
Sw,h = Sw,(h−1) +

∑d
k=1 sk,h H1(w|k ◦ ID1 . . . IDh).

(d) SetQk,h = sk,h P for all 1 ≤ k ≤ d. LetQw,h be the union ofQw,(h−1) and
Qk,h for all 1≤ k ≤ d.

(e) Setskw,h to be(Sw,h,Qw,h).

3. Eh’s parent setsEh’s SKi,h = (ski,h, {sk(i |k−11),h}ik=0), and erases all other in-
formation.

Upd(SKi,h, i +1, (ID1 . . . IDh)) (wherei < N−1): At the end of timei , an entity (PKG
or individual) with ID-tuple(ID1, . . . , IDh) does the following to compute its private key
for time i + 1, as in the fs-PKE scheme [12,25].

1. Parsei as i1 . . . i l , where|i | = l . ParseSKi,h as (sk(i |l),h, {sk(i |k−11),h}ik=0).
Eraseski |l ,h.

2. We distinguish two cases. Ifi l = 0, simply output the remaining keys as the
key SK(i+1),h for the next period for ID-tuple(ID1, . . . , IDh). Otherwise, let̃k
be the largest value such thati k̃ = 0 (suchk̃ must exist sincei < N − 1). Let
i ′ = i |k̃−11. Usingski ′,h (which is included as part ofSKi,h), recursively apply

algorithmCompNext to generate keyssk(i ′0d1),h for all 0 ≤ d ≤ l − k̃ − 1,
andsk

(i ′0d−k̃,h)
. The keysk

(i ′0d−k̃,h)
will be used for decryption in the next time

periodi + 1; the rest ofsk keys are for computing future keys. Eraseski ′,h and
output the remaining keys asSK(i+1),h.

Enc(i , (ID1, . . . , IDh), M) (whereM ∈ {0, 1}n):

1. Parsei asi1 . . . i l . Select randomr ← Zq.
2. Denote Pk, j = H1(i |k ◦ ID1 . . . ID j) for all 1 ≤ k ≤ l

and 1 ≤ j ≤ h. Output 〈i , (ID1, . . . , IDh), C〉, where C =

(r P, r P2,1, . . . , r Pl ,1, r P1,2, . . . , r Pl ,2, . . . , r P1,h, . . . , r Pl ,h, M ⊕

H2(ê(Q, H1(i1 ◦ ID1))
r)).

Dec(i , (ID1, . . . , IDh), SKi,h, C):

1. Parse i as i1 . . . i l . Parse SKi,h associated with the ID-tuple as
(ski,h, {sk(i |k−11),h}ik=0) and the keyski,h as (Si,h,Qi,h). ParseQi,h as{Qk, j }

for all 1≤ k ≤ l and 1≤ j ≤ h, except fork = 1 and j = 1.
2. ParseC as(U0,U2,1, . . . ,Ul ,1,U1,2, . . . ,Ul ,2, . . . ,U1,h, . . . ,Ul ,h, V).

3. M = V⊕H2(
ê(U0,Si,h)

g), whereg is:5l
k=15

h
j=2ê(Qk, j ,Uk, j)5

l
k=2ê(Qk,1,Uk,1).

Using Fujisaki-Okamoto padding [17] and the help of random oraclesH3 and H4,
algorithmEnc andDec can be converted into ones with chosen ciphertext security,as in
BF-IBE [10] and GS-HIBE [20]. We summarize the security of our fs-HIBE scheme in
Theorem 3.1 and 3.2.

Theorem 3.1. Suppose there is a nonadaptive adversaryA that has advantageǫ against
the one-way secure fs-HIBE scheme for somefixed time t and ID-tuple, and that makes
qH2 > 0 hash queries to the hash function H2 and a finite number of key derivation
queries. If the hash functions H1, H2 are random oracles, then there is an algorithmB
that solves the BDH in groups generated byIG with advantage(ǫ− 1

2n)/qH2 and running
timeO(time(A)).

Theorem 3.2. Suppose there is an adaptive adversaryA that has advantageǫ against
the one-way secure fs-HIBE scheme targeting some time and some ID-tuple at level h,
and that makes qH2 > 0 hash queries to the hash function H2 and at most qE > 0 key
derivation queries. Let l= log2 N, where N is the total number of time periods. If the
hash functions H1, H2 are random oracles, then there is an algorithmB that solves the
BDH in groups generated byIG with advantage(ǫ(h+l

e(2lqE+h+l))
(h+l)/2 − 1

2n)/qH2 and
running timeO(time(A)).

4. Application: Forward-Secure Broadcast Encryption

In this section, we show how the fs-HIBE scheme can be used to build a scalable forward-
secure public-key broadcast encryption (fs-BE) scheme which is joining-time-oblivious.
In what follows,N denotes the total number of time periods,E denotes the universe of
users andE = |E |.

4.1. fs-BE: Syntax

Forward-Secure Broadcast Encryption Scheme (fs-BE): An fs-BE scheme is specified by
five poly-time algorithmsSetup, KeyDer, Upd, Enc, Dec:
Setup: The setup algorithm is a probabilistic algorithm run by thecenter to set up the
parameters of the scheme.Setup takes as input a security parameterk and possiblyrmax
(wherermax is a revocation threshold, i.e. the maximum number of users that can be
revoked). The input also includes the total numberE of users in the system and the total
number of time periodsN. Setup generates the public keyPK and the initial master
secret keyMSK0.
KeyDer: The key derivation algorithm is a probabilistic algorithmrun by the center to
compute the secret initialization data for a new user.KeyDer takes as input the master
secret keyMSKt at timet , the identityu of the user and the current time periodt < N−1
and outputs the new secret keyUSKt,u.
Upd: The key update algorithm is a deterministic algorithm run by an entity (center or
user) to update its own secret key of timet into a new secret key valid for the following
time periodt + 1. For a user,Upd takes as input the public keyPK , the identityu of a
user, the current time periodt < N−1, and the user’s secret keyUSKt,u, and outputs the
new user’s secret keyUSKt+1,u. For the center, the algorithm takes as input the public
key PK , the current time periodt < N, and the keyMSKt , and outputs the secret key
MSKt+1.
Enc: The encryption algorithm is a probabilistic algorithm that each content provider
can use to encrypt messages.Enc takes as input the public keyPK , a messageM, the
current time periodt and a setR of revoked users (with|R| ≤ rmax, if a threshold has
been specified to theSetup algorithm), and returns the ciphertextC to be broadcast.
Dec: The decryption algorithm is a deterministic algorithm runby each user to recover
the content from the broadcast.Dec takes as input the public keyPK , the identityu of
a user, a time periodt < N, the user’s secret keyUSKt,u and a ciphertextC, and returns
a messageM.

An fs-BE scheme should satisfy the following correctness constraint: for any pair
(PK, MSKt) output by the algorithmSetup(k, rmax, N, E), any t < N, any R ⊆

E, (|R| ≤ rmax), any useru ∈ E \R with secret keyUSKt,u (properly generated for time
periodt) and any messageM, it should hold that:

M = Dec(PK, u, t, USKt,u, Enc(PK, M, t,R)).

4.2. fs-BE: Security

In fs-BE scheme, if a user leaks his or her secret key and is notrevoked by a content
provider, the security of subsequent communications broadcasted by such provider is
compromised. As a matter of fact, the forward security of broadcast encryption schemes

guarantees that this is theonly case where unauthorized access to the broadcast content
may occur. The advantage of the adversary is not significantly improved even if she
corrupts multiple users at different time periods. We formalize the security definition of
fs-BE below.
Chosen-ciphertext Security: An fs-BE scheme isforward-secure against chosen-
ciphertext attackif no polynomial time bounded adversaryA has a non-negligible ad-
vantage against the challenger in the following game:
Setup: The challenger takes security parametersk, rmax, and runs theSetup algorithm,
for the specified number of usersE and time periodsN. It gives the adversary the re-
sulting system public keyPK and keeps the initial master secret keyMSK0 secret to
itself.
Phase 1: The adversary issues, in any adaptively-chosen order, queriesq1, . . . , qm, where
qi is one of the followings:

1. Key derivation query(u, t): the challenger runs algorithmKeyDer(MSKt , u, t)
to generate the private keyUSKt,u corresponding to useru at timet , and sends
USKt,u to the adversary.

2. Decryption query(u, t, C): the challenger first runs theKeyDer(MSKt , u, t) al-
gorithm to recover private keyUSKt,u corresponding to useru at timet , and then
runs decryption algorithmDec(PK, u, t, USKt,u, C) to decryptC, and sends the
resulting plaintext to the adversary.

Challenge: Once the adversary decides thatPhase 1is over, it outputs two equal-length
plaintextsM0, M1 ∈M, and a time periodt∗ on which it wishes to be challenged. The
challenger picks a random bitb ∈ {0, 1}, and setC∗ = Enc(PK, Mb, t∗,Rt∗), where
Rt∗ = {u | A asked a key derivation query for(u, t), for somet ≤ t∗}. It sendsC∗ as a
challenge to the adversary.
Phase 2: The adversary issues more queriesqm+1, . . . , qn, whereqi is one of:

1. Key derivation query(u, t): the challenger first checks that eitheru ∈ Rt∗ or
t > t∗ and if so, it responds as inPhase 1. Notice that if a boundrmax was
specified inSetup, then the adversary is restricted to corrupt at mostrmax distinct
users via key derivation queries.

2. Decryption query(u, t, C): the challenger first checks that eitherC 6= C∗ or
u ∈ Rt∗ or t 6= t∗ and if so, it responds as inPhase 1.

Guess: The adversary outputs a guessb′ ∈ {0, 1} and wins the game ifb = b′. We define
its advantage in attacking the scheme to be|Pr

[

b = b′
]

− 1
2|.

4.3. fs-BE: A Construction Based on fs-HIBE

Here, we show how our fs-HIBE scheme can be applied to the construction of the public-
key broadcast encryption of [14] to obtain a forward-securepublic-key BE scheme.
Dodis and Fazio [14] provided a construction that extends the symmetric-key broadcast
encryption scheme of Naoret al. [29] to the public-key setting, based on any secure
HIBE scheme. The construction of [14] also applies to the scheme of Halevy and Shamir
[22], that improves upon the work of [29]. The symmetric-keyBE scheme of Halevy and
Shamir is an instance of theSubset Cover Framework[29]. The main idea of the frame-
work is to define a familyS of subsets of the universeE of users in the system, and to

associate each subset with a key, which is made available to all the users belonging to the
given subset. To broadcast a message to all the subscribers except those in some setR, a
content provider firstcoversthe set of privileged users using subsets from the familyS.
This is done by identifying a partition ofE \R, where all the subsets are elements ofS.
Then, the provider encrypts the message for all the subsets in that partition. To decrypt,
a useru /∈ R first identifies the subset in the partition ofE \R to which he belongs, and
then recovers the corresponding secret keys from his secretinformation.

In the public-key BE scheme [14], the subsets containing a given user are organized
into groups, and a special secret key,protokey, is associated with each of these groups. A
user only needs to store these protokeys, from which he can derive the actual decryption
keys corresponding to all the subsets in the group. Such an organization of the subsets
of the familyS produces a hierarchy, in which the leaves are elements ofS and each
internal node corresponds to a group of subsets. Using HIBE,a secret key can be associ-
ated with each internal node in the hierarchy, and constitutes the protokey for the group
corresponding to that internal node.

In order to add forward secrecy in the public-key BE scheme, we essentially apply
the fs-HIBE scheme to the above hierarchy. In fs-BE scheme, aprotokey is associated
with not only a node in the hierarchy, but also with a time period t . In fs-BE Setup,
the center runs fs-HIBESetup algorithm to compute its master secretSK0,1. This key
evolves with time, and is used by the center to compute protokeys for users. In fs-BE
KeyDer, a user joins the broadcast at some timet , and the center uses its current master
secret keySKt,1 to derive protokeys for the user by running fs-HIBEKeyDer algorithm.
The center and users evolve their secret keys with time autonomously by calling algo-
rithm Upd of fs-HIBE. In fs-BEEnc, a content provider uses fs-HIBEEnc algorithm to
encrypt the message not only with respect to the nodes in the hierarchy that represents
the subsets in the partition ofE \ R, but also to the current timet . In fs-BE Dec, the
user first runs fs-HIBEKeyDer to derive the current secret keys from his protokey at
time t . These secret keys are used for decryption by runing fs-HIBEDec algorithm. The
detailed construction of our fs-BE scheme is ommitted here.We analyze the complexity
of fs-BE operations in Section 6.

5. Application: Multiple Hierarchical Identity-Based Enc ryption Scheme

ID-based cryptographic schemes have been used in complex access control scenarios [23,
33]. We generalize the fs-HIBE into a collusion resistant multiple hierarchical ID-based
encryption (MHIBE) scheme, where a message can be encryptedunder multiple ID-
tuples. The applications of MHIBE scheme include secure communications with users
having multiple identities.

Motivations for MHIBE In role-based access control systems (RBAC) [32], individuals
are assigned roles according to their qualifications, and access decisions are based on
roles. The use of roles to control access is proven to be an effective means for streamlin-
ing the security management process [32]. Communications to a specific role may need
to be protected so that messages can be read only by members ofthat role. This can be
done using a shared key approach, which can be realized by an HIBE scheme. Members
of a role are given a secret group key that is used for decrypting messages encrypted with
the group public key of that role, which is an ID-tuple in HIBE. For example, the public

key of the roledoctor in the Emergency Room at a hospital is the ID-tuple (Hospital,
ER, doctor), and members of the roledoctorare given the corresponding private key in
HIBE. The hierarchical structure of public keys in HIBE makes it particularly suitable
for managing role communications in large organizations. This group key approach is
efficient and scalable compared to encrypting the message with individual recipients’
personal public keys, because a message is encrypted only once (under the public key of
the role).

A user may have multiple roles. Some messages are intended tobe read only by
those who have multiple roles, and should not be recovered bycollusions among role
members. For example, the intended message recipients are those who must take on both
role doctor in ER and roleresearch managerat the affiliated medical school of the hos-
pital. In healthcare systems, medical data such as patient records are extremely sensitive,
therefore, achieving this type of secure communications isimportant. However, the GS-
HIBE [20] scheme provides cryptographic operations only ifthe message is encrypted
under one identity (ID-tuple). It cannot be used for communications to anintersection
of identities. Note that the Dual-Identity-Based Encryption scheme by Gentry and Sil-
verberg [20] is different from what we want to achieve here. The word “dual” in their
scheme [20] refers that the identities of both the sender andthe recipient, rather than just
the recipient, are required as input into the encryption anddecryption algorithms.

To solve the problem of secure communications to members having multiple roles,
we develop a multiple hierarchical identity-based encryption (MHIBE) scheme, where
encryption is under multiple ID-tuples. In addition, it canbe used for authenticating mul-
tiple hierarchical identities in the hidden credential protocol [23], where the success of
authentication of identities is implied if one can correctly decrypt the message encrypted
with the required identities of the intended recipients. What makes the problem interest-
ing is that theintersectionof identities is different from theunionof identities, which im-
plies that a proper scheme should be collusion-resistant: secure even if adversaries with
partial roles collude. In other words, it requires that compromising the private keys of
individual identities does not compromise the messages encrypted with the intersection
of identities. This property cannot be achieved by the broken Scheme III described in
Section 1.3, where two separate HIBE schemes are used, as it is not collusion-resistant.

Next we use an example to describe the MHIBE scheme, including key acquisition,
encryption, and the properties of MHIBE implementation generalized from our fs-HIBE
scheme.

5.1. Identity-set and Joining-path-obliviousness

In MHIBE, we define anidentity-setas the set of identities that a user has, each repre-
sented as an ID-tuple. For example, Bob’s identity-set is {(Hospital, ER, Doctor), (Hos-
pital, School, Manager)}. Anancestor E′ of a nodeE has the same number of ID-tuples
in its identity-set as that ofE, and for each ID-tupleT in the identity-set ofE, there is
an ID-tuple in the identity-set ofE′ such that it is either the ancestor ofT in HIBE or the
same asT . In addition, the ancestorE′ of the nodeE cannot beE. All ancestors of node
E are capable of generating secret keys forE.

In an MHIBE scheme, Bob may obtain his key directly from either of the two
ancestor entities. One is the entity whose identity-set is {(Hospital, ER), (Hospital,
School, Manager)}. And the other has the identity-set {(Hospital, ER, Doctor), (Hospi-

tal, School)}. Bob’s parents obtain their keys from their parents in the same way. The
highest-level ancestor in this example is the hospital and has the identity-set {Hospi-
tal, Hospital} (not {Hospital}). The root secretsǫ used for computing the private key
for identity-set {Hospital, Hospital} may be the same as theroot secret used in regular
HIBE scheme [20]. The private key is set tosǫ H1(Hospital◦Hospital). Bob’s key can be
computed only by his ancestors in the MHIBE scheme. An MHIBE scheme needs to be
joining-path-oblivious. This means that encryption should be oblivious of the path from
which the receiver and his ancestors acquire their private keys. Having the receiver’s
identity-set is sufficient to encrypt a message. For example, the sender does not need
to know whether Bob obtains his keys from entity {(Hospital,ER), (Hospital, School,
Manager)} or from entity {(Hospital, ER, Doctor), (Hospital, School)}.

5.2. Properties of Our MHIBE Implementation

Our fs-HIBE scheme naturally gives rise to an MHIBE scheme. In fs-HIBE, a message is
encrypted under both an ID-tuple and the current time. This can be viewed as the encryp-
tion under two tuples, one being the current time. Therefore, the identities in MHIBE
scheme capture a broader sense of meaning. The MHIBE scheme generalized from our
fs-HIBE scheme supports dynamic joins and joining-path-oblivious encryption. More
importantly, it is collusion-resistant, which cannot be achieved by using multiple sep-
arate HIBE [20] schemes. In our MHIBE implementation, a message encrypted under
{(Hospital, ER, Doctor), (Hospital, School, Manager)} or {(Hospital, School, Manager),
(Hospital, ER, Doctor)} requires different decryption keys. We note that in this scheme,
the fact that a user holds the private key corresponding to multiple identities does not
imply that he or she has the private key to any subset of identities.

Our MHIBE scheme has similar goals as the pairing-based attribute-based encryp-
tion (ABE) schemes [31]. In ABE, a user’s private key for an application is constructed
so that the key can encode expressive access control policies. While ABE can support
expressive policies, a user may have to store several private keys, each for one applica-
tion/policy. In comparison, MHIBE does not support generalaccess control policies; the
private keys in MHIBE are generated independent of applications or policies. Whether
or not MHIBE can be realized by ABE is an interesting open question. We omit the de-
tails of MHIBE scheme (definition of security, description of scheme, and proof of se-
curity), as this is a direct generalization of fs-HIBE scheme. The complexities of various
parameters of our MHIBE scheme are shown in Table 1 in Section6.

6. Discussions

We analyze the complexity of our fs-HIBE scheme, the generalized MHIBE scheme,
and the fs-BE scheme in Table 1 showing running time complexities and key sizes. Key
generation time of fs-HIBE and MHIBE is the time to generate secret keys for a child
node by the parent. Key generation time of fs-BE scheme is therunning time of fs-
BE KeyDer algorithm. In our fs-HIBE scheme, the time periods correspond to leaf nodes
of a binary tree, and the key update time isO(h log N), whereN is the total number of
time periods andh is the length of an ID-tuple. Because of the node arrangement, the
key generation time and key update time of our fs-HIBE schemegrows logarithmically

with the total number of time periodsN. Faster key update time (O(h)) can be achieved,
if the time periods are associated withall the nodes of the tree in a pre-order traversal,
as in the fs-PKE scheme by Canettiet al. [12]. Because the realization of such a fs-
HIBE scheme can be easily derived from the construction in Section 3.2, it is omitted
here. We show the optimized running time in Table 1. Even dropping the joining-time-
obliviousness requirement (as in the naive Scheme II of Section 1.3), our implementation
cannot achieve a ciphertext with linear lengthO(h+ log N).

Table 1. Dependency of parameters of our fs-HIBE, MHIBE, and fs-BE schemes on the total numberN of
time periods, the lengthh of an ID-tuple, the numberm of ID-tuples in an identity-set in MHIBE, the total
numberE of fs-BE users and the numberr of actual revoked users in fs-BE scheme. Key derivation timeof
fs-HIBE and MHIBE is the time to generate secret keys for a child node by the parent. Key derivation time of
fs-BE scheme is the running time of fs-BEKeyDer algorithm.

Parameters fs-HIBE MHIBE fs-BE

Key derivation time O(h log N) O(hm) O(log3 E log N)

Encryption time O(h log N) O(hm) O(r log E log N)

Decryption time O(h log N) O(hm) O(r + log E log N))

Key update time O(h) N/A O(log3 E)

Ciphertext length O(h log N) O(hm) O(r log E log N)

Public key size O(h+ log N) O(hm) O(r log E + log N)

Secret key size O(h log N) O(hm) O(log3 E log N)

7. Conclusion

The Multiple Hierarchical Identity-Based Encryption scheme is an ID-Based encryp-
tion scheme for complex hierarchies. The generalization ofa collusion-resistant MHIBE
scheme from the Hierarchical Identity-Based Encryption scheme is significant, because
MHIBE scheme conveniently lends itself to a wide range of applications that cannot
be accomplished using HIBE schemes. To demonstrate this, wepresented in details a
forward-secure HIBE scheme and a forward-secure BroadcastEncryption scheme. We
also described the application of MHIBE in the access control paradigm. The forward-
secure applications derived from our MHIBE scheme are joining-time-oblivious and sup-
port dynamic joins, which make them scalable.

References

[1] M. Abdalla, S. K. Miner, and C. Namprempre. Forward-secure threshold signature schemes. InTopics
in Cryptography — CT-RSA ’01, volume 2020 ofLNCS, pages 441–456. Springer-Verlag, 2001.

[2] R. Anderson. Two remarks on public-key cryptology. Invited lecture,4th ACM Conference on Computer
and Communications Security, 1997. Available athttp://www.cl.cam.ac.uk/ftp/users/
rja14/.

[3] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. InAdvances in Cryptology —
Crypto ’99, volume 1666 ofLNCS, pages 431–448. Springer-Verlag, 1999.

[4] M. Bellare and P. Rogaway. Random oracles are practical:a paradigm for designing efficient protocols.
In Proceedings of the 1st ACM Conference on Computer and Communications Security, pages 62–73.
ACM, 1993.

[5] M. Bellare and B. Yee. Forward security in private-key cryptography. InCT-RSA, volume 2612 of
LNCS, pages 1–18. Springer-Verlag, 2003.

[6] S. Berkovits. How to broadcast a secret. InAdvances in Cryptology — Eurocrypt ’91, volume 547 of
LNCS, pages 535–541. Springer-Verlag, 1991.

[7] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption without random oracles.
In Advances in Cryptology — Eurocrypt ’04, volume 3027 ofLNCS, pages 223–238. Springer-Verlag,
2004.

[8] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. InAdvances in
Cryptology — Crypto ’04, volume 3152 ofLecture Notes in Computer Science, 2004.

[9] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identitybased encryption with constant size ciphertext.
In Proceedings of Advances in cryptology — Eurocrypt ’05, Lecture Notes in Computer Science, 2005.

[10] D. Boneh and M. K. Franklin. Identity-based encryptionfrom the Weil pairing. InAdvances in Cryp-
tology — Crypto ’01, volume 2139 ofLNCS, pages 213–229. Springer-Verlag, 2001.

[11] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography.Contemporary Mathe-
matics, 324:71–90, 2003.

[12] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. InAdvances in
Cryptology — Eurocrypt ’03, volume 2656 ofLNCS, pages 255–271. Springer-Verlag, 2003.

[13] W. Diffie, P. van Oorschot, and W. Wiener. Authentication and authenticated key exchanges. InDesigns,
Codes and Cryptography, volume 2, pages 107–125, 1992.

[14] Y. Dodis and N. Fazio. Public-key broadcast encryptionfor stateless receivers. InDigital Rights Man-
agement — DRM ’02, volume 2696 ofLNCS, pages 61–80. Springer, 2002.

[15] Y. Dodis and N. Fazio. Public-key trace and revoke scheme secure against adaptive chosen ciphertext
attack. InPublic Key Cryptography — PKC ’03, volume 2567 ofLNCS, pages 100–115. Springer-
Verlag, 2003.

[16] A. Fiat and M. Naor. Broadcast encryption. InAdvances in Cryptology — Crypto ’93, volume 773 of
LNCS, pages 480–491. Springer-Verlag, 1993.

[17] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In
Advances in Cryptology — Crypto ’99, volume 1666 ofLNCS, pages 537–554. Springer-Verlag, 1999.

[18] A. Garay, J. Staddon, and A. Wool. Long-lived broadcastencryption. InAdvances in Cryptology —
Crypto 2000, volume 1880 ofLNCS, pages 333–352. Springer-Verlag, 2000.

[19] C. Günther. An identity-based key exchange protocol. InAdvances in Cryptology — Eurocrypt ’89,
volume 434 ofLNCS, pages 29–37. Springer-Verlag, 1989.

[20] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. InAdvances in Cryptology — Asi-
acrypt ’02, volume 2501 ofLNCS, pages 548–566. Springer-Verlag, 2002.

[21] M. T. Goodrich, J. Z. Sun, and R. Tamassia. Efficient tree-based revocation in groups of low-state
devices. InAdvances in Cryptology — Crypto ’04, LNCS, 2004.

[22] D. Halevy and A. Shamir. The LSD broadcast encryption scheme. InAdvances in Cryptology — Crypto
’02, volume 2442 ofLNCS, pages 47–60. Springer-Verlag, 2002.

[23] J. Holt, R. Bradshaw, K. E. Seamons, and H. Orman. Hiddencredentials. InProceedings of the 2nd
ACM Workshop on Privacy in the Electronic Society (WPES), pages 1–8, October 2003.

[24] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. InAdvances in Cryptology —
Eurocrypt ’02, volume 2332 ofLNCS, pages 466–481. Springer-Verlag, 2002.

[25] J. Katz. A forward-secure public-key encryption scheme. Cryptology ePrint Archive, Report 2002/060,
2002.http://eprint.iacr.org/.

[26] C. Kim, Y. Hwang, and P. Lee. An efficient public key traceand revoke scheme secure against adaptive
chosen ciphertext attack. InAdvances in Cryptology — Asiacrypt 2003, volume 2894 ofLNCS, pages
359–373. Springer-Verlag, 2003.

[27] M. Luby and J. Staddon. Combinatorial bounds for broadcast encryption. InAdvances in Cryptology —
Eurocrypt ’98, volume 1403 ofLNCS, pages 512–526. Springer-Verlag, 1998.

[28] T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure signatures with an un-
bounded number of time periods. InAdvances in Cryptology — Eurocrypt ’02, volume 2332 ofLNCS,
pages 400–417. Springer-Verlag, 2002.

[29] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. InAdvances
in Cryptology — Crypto ’01, volume 2139 ofLNCS, pages 41–62. Springer-Verlag, 2001.

[30] M. Naor and B. Pinkas. Efficient trace and revoke schemes. In Financial Cryptography — FC ’00,
volume 1962 ofLNCS, pages 1–20. Springer-Verlag, 2000.

[31] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-basedencryption with non-monotonic access struc-
tures. InACM Conference on Computer and Communications Security (CCS), pages 195–203, 2007.

[32] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models.IEEE
Computer, 29, Number 2:38–47, 1996.

[33] R. Tamassia, D. Yao, and W. H. Winsborough. Role-based cascaded delegation. InProceedings of the
ACM Symposium on Access Control Models and Technologies (SACMAT ’04), pages 146 – 155. ACM
Press, June 2004.

[34] W. Tzeng and Z. Tzeng. A public-key traitor tracing scheme with revocation using dynamics shares. In
Public Key Cryptography — PKC ’01, volume 1992 ofLNCS, pages 207–224. Springer-Verlag, 2001.

[35] B. R. Waters. Efficient identity-based encryption without random oracles. InAdvances in Cryptology
— Eurocrypt ’05, Lecture Notes in Computer Science, 2005.

[36] C. Wong, M. Gouda, and S. Lam. Secure group communications using key graphs. InProceedings of
the ACM SIGCOMM ’98, pages 68 – 79. ACM Press, 1998.

[37] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. Id-basedencryption for complex hierarchies with
applications to forward security and broadcast encryption. Full paper athttp://www.cs.brown.
edu/people/dyao/fs-hibe-full.pdf.

[38] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-basedencryption for complex hierarchies with
applications to forward security and broadcast encryption. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), pages 354 – 363. ACM Press, 2004.

