
Detection and Prevention of Insider Threats in Database
Driven Web Services

Tzvi Chumash and Danfeng Yao�

Rutgers University, Computer Science Department,
110 Frelinghuysen Road, Piscataway, NJ 08854, USA

{tzvika,danfeng}@cs.rutgers.edu

Abstract. In this paper, we take the first step to address the gap between the
security needs in outsourced hosting services and the protection provided in the
current practice. We consider both insider and outsider attacks in the third-party
web hosting scenarios. We present SafeWS, a modular solution that is inserted
between server side scripts and databases in order to prevent and detect website
hijacking and unauthorized access to stored data. To achieve the required security,
SafeWS utilizes a combination of lightweight cryptographic integrity and encryp-
tion tools, software engineering techniques, and security data management prin-
ciples. We also describe our implementation of SafeWS and its evaluation. The
performance analysis of our prototype shows the overhead introduced by security
verification is small. SafeWS will allow business owners to significantly reduce
the security risks and vulnerabilities of outsourcing their sensitive customer data
to third-party providers.

1 Introduction

As e-commerce becomes more common on the Internet, an increasing number of small
businesses (e.g., online stores) use hosting providers to open their doors to online cus-
tomers. These small businesses put their trust in various hosting service providers for
the benefits of higher availability, fast website access, round-the-clock support and a
very low cost [6]. As a result, customer data, which may contain sensitive information
(such as Social Security numbers or credit card information), is either stored by these
third-party providers, or can be accessed from their servers.

In what follows, we will use the following terminology to distinguish the entities
that concern us. Service provider refers to an organization and its employees which are
in the business of leasing web service resources. Web-server refers to a machine and
software running on it that is owned by a service provider1. A web-server provides
website content to an end-user. Website content refers to HTML pages, scripts and any
data in a database that is stored or served by the scripts on a given website. An end-
user or a customer is a person that is interested in website content for a given website,

� This work has been supported in part by NSF grant CNS-0831186 and the Rutgers University
Computing Coordination Counsil Pervasive Computing Initiative Grant.

1 Software refers to the entire non-hardware environment provided, including the operating sys-
tem, web-server software (such as Apache) and PHP interpreter.

E. Ferrari et al. (Eds.): TM 2009, IFIP AICT 300, pp. 117–132, 2009.
c© IFIP International Federation for Information Processing 2009

118 T. Chumash and D. Yao

this person may disclose sensitive information to this website. A website owner is the
person (or organization) that is in charge of website content and has interest in keeping
end-user information safe. Web site owners lease web-servers from service providers in
order to run their web site.

A website owner may purchase a (low cost) certificate to authenticate their estab-
lishment [5, 7]. When customers fill out HTML forms with their sensitive information
on SSL protected websites, they are led to believe that with the padded lock icon and
an authenticated signed certificate, the data that they are about to hand over is safe.
However, SSL only protects the end-to-end security of the data from the customer’s
computer to the web-server [5], it bears no indication of the kind of protection that the
data gets once it enters the domain of the service provider. As we will explain next,
many website owners typically store the database credentials in clear-text. This infor-
mation can be easily used to login to the website owners’ databases and either retrieve
or alter sensitive information of customers.

Many websites are driven by database systems, as databases are widely used to store
customer data and product information and play a crucial and central role in modern
e-commerce. Using a combination of server-side scripts2 and database connections is
a widely used approach in providing dynamic content to online users and in retrieving
and storing customer data on databases. These scripts offer website owners a versatile
interpreted language that can create complex web environments, with libraries offering
connectivity to many other services such as databases. However, there has not been any
framework provided within the web-server environment to allow for safe execution of
server-side scripts. Server-side scripts are called by web server modules, which are initi-
ated by end-user requests. Due to the interpretive nature of server-side scripts, and with
the tools available today, it is impossible to obscure or hide sensitive program details
from users with administrative access to the web-server machine. Furthermore, aside
from being completely readable, these server-side scripts can be altered by privileged
users without the owner’s consent or knowledge.

Storing database passwords as clear-text in server-side scripts is the de facto practice
for IT professionals world-wide. In an outsourced setting, this approach implies that it
is extremely easy for malicious employees at the service provider organization to ac-
cess the passwords of business owners and thus their customer data. Security breaches
at providers, caused by outside adversaries, may also expose hosted sensitive infor-
mation. However, neither the research nor the industrial community have been giving
enough attention to protecting sensitive data from being used by unauthorized parties
and untrusted service providers in the outsourced setting.

Server-side script creators have been aware of the clear-text credential issues [4, 19],
but have been concentrating on the ability of an end-user to see them, in case the web-
server software is badly configured or compromised. The service providers and their
web servers have been assumed trustworthy, therefore no protection against insider
threats with respect to server-side scripts has been provided. The existing solution to
protect against credential disclosure to end-users is to create an external script con-
taining the clear-text credentials, placing it outside of the document root, and includ-
ing it by the called script. While this naive hiding strategy might protect against poor

2 Such as PHP, ASP, PERL, Python, etc.

Detection and Prevention of Insider Threats in Database Driven Web Services 119

web-server software configuration, a tampered version of a web server, as well as peo-
ple with access to the server’s operating system, can read that file. Another approach
is to include the credentials inside the web server configuration file [19], but this again
does not protect against insider threats.

Our Contributions. In this paper, we take the first step to address the gap between the
security needs in outsourced hosting services and the protection provided in the current
practice. We consider both insider and outsider attacks in the third-party web hosting
scenarios. We describe the threats and security vulnerabilities that exist in today’s web
environments. And finally we present SafeWS3, a system with a relatively low overhead
to mitigate the threats of potential security breaches at service providers. SafeWS is a
novel and modular solution that prevents and detects website hijacking and unautho-
rized access to stored data.

To achieve the required security, our solution utilizes a combination of lightweight
cryptographic integrity and encryption tools, software engineering techniques, and se-
curity data management principles. Our solution is written in C/C++ and contains a
component that resides between server-side scripts and database systems, as well as
components that reside off the service-provider’s server. We evaluated SafeWS with
PHP scripts and the performance analysis shows the overhead introduced by SafeWS is
small.

SafeWS allows business owners to significantly reduce the security risks and vul-
nerabilities of outsourcing their sensitive customer data to third-party providers. By
deploying our solution, website owners can provide their customers with a robust and
secure storage of their sensitive personal information.

The main goal of this work is to improve the protection of outsourced sensitive data
on untrusted web servers. We believe that low-budgeted database driven websites that
use shared-hosting have the greatest risk for unauthorized disclosure of information,
and therefore designed SafeWS for their needs. Our framework enables website owners
(e.g., small business owners) to automatically verify the integrity of service providers
and their web servers. Most importantly, we efficiently and effectively prevent sensi-
tive credentials, e.g., database locations, names, usernames and passwords, from being
stored as clear-text at the service provider side. The highlights of our solution are shown
below.

– Guarantees that only authorized webpages from the web server can access a
database that stores end users or product information.

– Effectively hides database access credentials from web server administrators who
can read any file on the system.

– Ensures the integrity of outsourced websites by detecting and monitoring suspi-
cious environments and activities; provides website owner with notifications of
suspicious activities.

SafeWS demonstrates a general security design principle for outsourced computation
that is a contribution beyond the specific server-side script problem studied. Our work

3 SafeWS stands for Safe Web Script.

120 T. Chumash and D. Yao

can improve the security of any kind of database driven web server system in a third-
party service provider setting.

Scope of our work. We decided to concentrate our work in the layer between server-
side scripts and databases as that is the intersection where the end-user, the owner and
the service provider meet. It allows us to verify the authenticity of owner-built scripts
and the healthiness of the service provider environment, while also protecting end-user
data from being maliciously used. At this layer we can also notify the owner of any
foul play, thus minimizing the possible impact of an attack. Authorization and access
control, if implemented within server side scripts, can also benefit from SafeWS as long
as a database connection is used, though SafeWS is not meant to be an access control
system. We also concentrated our efforts on preventing data theft and corruption, rather
than handling denial of service attacks. Lastly, we decided to evaluate our system on a
platform (LAMP4), that is widely used in the third-party hosting setting, is open-source
and easily implemented, but due to the generality of our design, we believe our system
to be valid for any server-side scripting language (SafeWS can also improve the security
of non-scripting programs such as compiled/binary server-side programs).

Organization of the paper. The rest of the paper is organized as follows. Our ad-
versarial model, security definitions, and assumptions are described in Section 2. The
architecture and protocols are presented in Section 3. Our security analysis is discussed
in Section 4. Performance evaluation of SafeWS is described in Section 5. Related work
is given in Section 6. Finally, we describe future work and conclude in Section 7.

2 Definitions and Trust Models

In this section, we give the necessary definitions, trust model, adversary model, and
security definitions used in our solution. First, let us briefly recapture our definitions on
the types of entities introduced in Section 1.

– Service provider refers to an organization and its employees which are in the busi-
ness of leasing web service resources.

– Web-server refers to a machine and software running on it that is owned by a service
provider.

– An end-user or a customer is a person that is interested in website content for a
given website.

– A website owner is the person (or organization) that is in charge of website content
and has interest in keeping end-user information safe.

In reality, website owners typically want to provide a cost-effective solution to their
customers. Most of them are unaware of or unable to comprehend the security require-
ments and guarantees in the outsourcing environments of service providers. A large
number of website owners do not write server side scripts for data manipulation them-
selves. Instead, those functions are provided as part of the outsourcing service.

4 Linux, Apache, MySQL and PHP.

Detection and Prevention of Insider Threats in Database Driven Web Services 121

Similarly, website customers are usually completely unaware of the business out-
sourcing agreements between website owners and service providers. Consequently, the
end-users assume that their sensitive information is only released to the website owner,
and no one else5.

Trust Relationships. Our trust model is simple and intuitive. The main interactions are
between the website owner and the service provider. Website owners are not malicious.
Web servers are not trusted by the website owners, and therefore, our solution is used
by a website owner to verify the integrity of the outsourced environment. Website users
trust that the website owner is ensuring the outsourced web server is not compromised.

Adversarial Model in SafeWS. Instead of assuming abstract adversaries, we strive to
give a concrete and comprehensive categorization of types of attackers, from both inside
or outside the service provider organization. Such a practical analysis is both crucial and
fundamental to the security of proposed solutions. Because of the specific application
scenario studied, we are able to describe a concrete adversarial model.

We divided the security threats on a hosted web server into different levels based
on the position and experience of the possible attacker. While we would want to be-
lieve most people would not violate the trust put in them by their employer, all it takes
is one person with a different set of motives. Every given level is assumed to encom-
pass the abilities of the previous level. Thus, a novice hacker may do anything that an
administrator could do.

We believe that some of these security threats can be reduced by making them more
difficult to accomplish, as well as providing our own threat of recognizing an attack
when it happens, and notifying the owners.

– Nosy Administrator. Any server administrator with super-user access can scan the
directory tree for clear-text server-side script files. Upon finding those files, this
person can then read the database credentials, and learn the names of the columns
and tables where sensitive information is stored. This person can then decide to
enter the provided database and look at the information stored there. While this
person might be acting out of curiosity, the outcome is that an unauthorized person
was able to view secret data.

– Disgruntled Employee. A disgruntled employee, or specifically a disgruntled em-
ployee with system access, may maliciously obtain information from hosted client
websites in the same way the Nosy Administrator would, but for different reasons.
This person can actually cause financial harm by disclosing information to out-
siders, or using it for personal gain.

– Novice Hacker. In addition to all the threats defined above, a novice hacker may
attempt to hijack a website by changing the server-side script files that obtain web-
user information, or by adding new script files. A novice hacker may also try to
replace the web-server executable with a malicious one.

– Advanced Hacker. An advanced hacker may analyze traffic in and out of the system,
change the kernel, scan the memory, and reverse engineer any program.

5 For server authentication, users can rely on their web browser indications, such as the lock
icon, an https address and a valid certificate.

122 T. Chumash and D. Yao

Definitions of Security. We formalize our security goals in three requirements, namely,
secrecy of database credentials, provenance authentication for database access, and
integrity of outsourced environments.

The secrecy of database credentials is defined as that the credentials (e.g., pass-
words) required to access the website owner’s database need to be confidential and
cannot be learned by privileged users on the service provider’s machine, who can read
any file on the system. We give the web server administrators significant amount of
power, which is necessary in this outsourced scenario. This requirement implies that
the website owner’s database needs to be maintained by a different provider from the
web server provider. In practice, such a separation of duties principle (i.e., separating
web server provider from database provider) is in general desirable to constrain and
balance providers’ privileges.

Provenance authorization for database access is defined as that only authorized web-
pages on the web server can access a database that stores end user or product information.
The provenance of a database request is the webpage that initiates the database connec-
tion. This requirement means that the provenance information associated with a database
request must be recorded, submitted, and verified before a request can be satisfied.

Integrity of outsourced environments is defined as that any tampering with the web
and computing environments, including parameters, software, and libraries, should be
detected and the website owners’ notified.

Security Assumptions. The owner of a website can obtain the SHA-1 hashes of non-
hacked Apache executable and modules running on the web-server before the server
is compromised. The owner of a website has a separate, non-compromised machine
where he can store private keys, authenticate server-side script files, periodically acti-
vate configuration scripts and compile SafeWS. The machine running SafeWS may be
compromised after SafeWS is already in place. The service provider may, from time to
time, upgrade the software on the web server. It is up to the owner to keep up with these
changes and reconfigure SafeWS accordingly (as automatically identifying whether a
change of a library or executable is done maliciously or not is outside our scope). If
multiple script files which require database access include each other, it is up to the
owner to ensure each of them calls SafeWS as we do not want to introduce the overhead
of nested source files and pre-compilation to our run-time environment. Embedding
connection strings in compiled code is an approach that can provide added security, as
opposed to just placing them in clear-text scripts, as some work needs to be done to de-
compile and evaluate the data. This is common practice for any compiled (non-script)
DB accessing CGI6 on a web server, but it is not flexible, nor secure enough. Recom-
pilation is needed whenever credentials change, as the environment is not authenticated
and the credentials are revealed after one decompilation.

3 Architecture

Intuitively, our solution provides the website owner a way to evaluate, assess, and au-
thenticate the working environments of a web server hosted by a third-party service

6 Common Gateway Interface.

Detection and Prevention of Insider Threats in Database Driven Web Services 123

provider. With our solution in place, a website owner (or his trusted technologically
savvy agent) stores and encrypts part of the security information used for authentication
on the third-party web server. If abnormal conditions are detected, our solution has the
ability to automatically notify and alert the website owner and users to the well-being
of the third-party server. Next, we will give detailed descriptions on the architecture,
components, and procedures of our solution.

The design of our solution is divided into two parts. The first part includes all actions
needed during run-time to ensure only authorized and authenticated scripts may access
the database, and other attempts would cause notifications to be sent to the owner of
the site. The second part is an offline process that happens mostly outside the server to
ensure proper configuration of the solution7.

Internet

Server
Script

Web
Server

(apache)

Hosting Server

 Website
Database

Website
Owner Website

User
Website

User

...

(a) Standard Deployment

Internet

Server
Script

Web
Server

(apache)

Hosting Server

Website
Owner Website

User
Website

User

...

RTM

 SafeDB

Signer

 Website
Database

(b) Our Deployment

Fig. 1. Schematic drawings of the architecture of database-driven hosted website in standard de-
ployment and with our solution

3.1 Security of Database Credentials

A big security vulnerability in outsourced environments is the existence of clear-text
database credentials and connection strings inside server-side script files. Existing com-
mon practice is to place this information in another script file that resides outside of the
document root and is included during run-time [4, 19]. While this simple approach
might protect the included file from a poorly configured web-server, it does nothing to
prevent a user (or a superuser) on the machine from reading it.

To solve the clear-text database credential problem, our approach is to hide the
database credentials by encrypting them, and storing them in a separate database, which
we call SafeDB. Because our solution includes access to SafeDB, we need to protect
ourselves from having that access information freely available. We achieve this in two
steps. First, we compile the module that accesses the database and derive its database
access password from a signed SHA-1 hash of the module’s own executable. Second,
this module checks if it was run by an authorized script file on a trusted web-server.

7 The results of this process are the inputs for the run-time module and so may reside on the
web-server.

124 T. Chumash and D. Yao

Note that the location of this database may vary. Locating it locally with the web
server may reduce the system’s security, as a superuser may connect to and alter SafeDB.
Locating it off the web server improves the security guarantees, while a distributed de-
ployment may reduce the reliability and stability of the service. We further evaluate and
analyze the performance in Section 5.

3.2 Key Generation and Solution Setup

During compile time, two sets of 2048-bit RSA keys are generated for the Signer mod-
ule and Run-Time Module (RTM), which are described in the next section. The keys are
placed in header files included by the Signer and RTM, respectively. The SHA-1 hashes
of a valid web-server executable and related modules are compiled into the RTM as well
as the owner’s e-mail address. Once the package is compiled, one can begin incorporat-
ing our solution into the website’s script files. A part of an unchanged script file (PHP)
is shown in Listing 1, where the IP address, database user, database password and the
name of the database are all in clear-text. To demonstrate the ease of using our solution,
we show how to convert the legacy code in Listing 1 to safer code in Listing 2.

Listing 1. PHP Script connecting to a Database
�

<?php
. . .
$db = mysq l con n ect (1 9 2 . 1 6 8 . 0 . 1 0 0 , ’ my usr ’ , ’PWord ’) ;
m y s q l s e l e c t d b (’ m y s t o r e d b ’) ;
. . .

?>
�� �

Listing 2. PHP Script connecting to a database using SafeWS. With SafeWS, sensitive database
information is not exposed.

<?php
. . .
$ i n f o = s a f e e x e c (’ / home / u1 / b i n / rtm ’ , ’ t a g f 1 1 ’) ;
l i s t ($ d b h o s t , $db name , $ d b u s e r , $ d b p a s s) =

s p l i t (’ : ’ , $ in fo , 4) ;
m y s q l c o n n e c t ($ d b h o s t , $ d b u s e r , $ d b p a s s) ;
m y s q l s e l e c t d b ($db name) ;
. . .

?>

3.3 Run-Time Module and Signer Module

The Run-Time Module (RTM) is the most crucial component in our solution. It is called
within an authorized script file using safe exec() (described below). When RTM loads,

Detection and Prevention of Insider Threats in Database Driven Web Services 125

it calculates the SHA-1 hashes of its own executable, the script file that called it, as well
as the executable of the web server (i. e., the calling process) and its relevant modules.
When executing, RTM is supplied with a tag parameter. This piece of information al-
lows one script to request many different sets of Database credentials from RTM. RTM
then checks that it was called by a valid web server by comparing SHA-1 hashes.

RTM then attempts to access SafeDB. If the module was tampered with, it will not be
able to derive the correct database password from the SHA-1 hash of its own executable.

Upon connecting to the database, RTM looks for a record that matches the SHA-1
hash of the script filename (that called RTM) with the supplied tag. Using its private
key, RTM decrypts one of the fields and verifies the signature of the Signer module,
which is described next. If the hash of the script file is verified, then it is authentic, and
the database connection parameters as well as credentials are returned to the calling
script file.

The Signer module contains its own private key, as well as the RTM’s public key.
This module resides on the website owner’s machine, which is assumed to be safe.
Whenever a new script file is ready to be put on the website, the owner converts it to be
compatible with SafeWS.

The website owner uses the Signer to sign the SHA-1 hash of a script file that will be
installed on the server, and encrypts the result with the RTM’s public key. The Signer
also associates a tag with that script file and with the set of credentials given by the
owner.

The output of the Signer is a cryptographic SQL file that includes the following
information: a SHA-1 hash of the script full path name with the tag, credentials and
database connection parameters encrypted with the public key of the RTM and the SHA-
1 hash of the script file signed using the Signer’s private key and encrypted by the RTM’s
public key. This SQL file is transferred to the server containing the SafeWS database and
is executed there.

3.4 PHP Limitation and safe exec()

As we chose to evaluate our prototype with PHP scripts, we found a serious security
limitation that affects PHP security and the security of PHP-based web hosting in gen-
eral. In existing PHP execution environments, it is impossible to learn or verify the
provenance (i.e., origin) of the caller.

PHP offers the following methods to execute non-PHP programs: exec(), passthru(),
proc open(), popen(), shell exec() and system(). The process that is executed as a re-
sult of these calls does not know where the call originated (i.e. from which PHP file).
Moreover, the parameters of the web-server session are not provided either. While it is
possible to use proc open() and pass environment variables to a new process, this would
undermine the information integrity, as a hacker might try to pass bogus parameters to
bypass our protection. This security limitation may or may not affect other scripting
languages.

To solve these problems, we had to add another module to SafeWS’s architecture.
We created a new run-time PHP module called safe exec(). The main advantage of
safe exec() is that it is able to pass web-session information as well as run-time envi-
ronment information, including the calling PHP file, into the process that it executes.

126 T. Chumash and D. Yao

safe exec() is integrated with our solution through RTM. This module needs to be in-
stalled on the service provider’s machine, and added to the list of files RTM authenti-
cates. A similar module may be needed for other scripting languages which do not pass
credible execution and web environment information to executed binaries. CGI (Com-
mon Gateway Interface) binaries executed directly by Apache do receive the required
information, and thus can pass it through execle().

3.5 SafeWS Run-Time Protocol

Once SafeWS is deployed and configured, it will be invoked by the web-server when a
participating script file is processed. SafeWS’s protocol is illustrated in Figure 2 and is
described as follows.

Web Form
Submission

End-User
 Machine

Hosted Webserver

Web
Server

Server
Script

RTM

1

2
3

DB
Access

4 5

6 7

8

Check Self
and Web
Server

Connect to
SafeDB

and verify
Server Script

Fault in
4-7

Notify
Owner

e-Mail

Owner’s
Machine

Yes

No

11

12
13

14

Decrypt
and Return
Credentials

9

10

15 16

17

18

Run-Time
Chart

Fig. 2. SafeWS architecture and run-time information flow

– End-users submit an HTML form on their browser in Step 1, using either HTTP
GET or HTTP POST.

– In Step 2, the hosted web-server executes the script that handles the data. The web-
server then passes the information from the end-user to the script, through either
environment variables or as the script’s standard input. After initial processing, the
script needs to set the database connection parameters, in order to process the end-
user’s request.

– The script calls RTM using safe exec in Step 3. Please refer to Listing 2 for an
example of such a call.

– Once SafeWS’s RTM module is started, it computes the SHA-1 hash of its caller’s
executable file (e.g. apache) in Step 4 and 5. It computes its own SHA-1 hash,
which is then signed with RTM’s private key to produce the password for SafeDB.

Detection and Prevention of Insider Threats in Database Driven Web Services 127

– In Step 6 and 7, RTM attempts to access SafeDB with the credentials it was com-
piled with, as well as the password that it computed. RTM computes the SHA-1
hash of the caller PHP script, as well as a digest of the script’s location and tag.
The digest is used as a key to find the row in SafeDB that corresponds to the calling
script. Upon selecting the relevant information from SafeDB, RTM attempts to ver-
ify the signed SHA-1 hash of the script. Namely, RTM (1) verifies the web-server
executable and modules, (2) connects to SafeDB, (3) locates the correct record for
the script, and (4) verifies the signature on its hash.

– Any failure in the above verification procedures results in RTM notifying the web-
site owner of the security concern, as well as not returning the requested informa-
tion to the calling script. This failure in turn would cause the script’s subsequent
connection to the database to fail, as shown in Step 9 through 11.

– In Step 12, upon a successful verification of the location and authenticity of the
calling script, RTM decrypts the remainder of SafeDB’s record using its private key
and obtains the address of the website’s database server, as well as the database
name, username and password required to access it. This information is then re-
turned to the calling script in Step 13 and 14. The script then parses the data and
connects to the website’s database in Step 15 and 16, and can then complete its
task.

In Figure 2, for the sake of description simplicity, we show SafeDB and the protected
website’s database all on the same local host as the web server. In practice, as we men-
tioned in Section 2, the database systems should preferably reside and be maintained
at a different location from the local hosted web server, in order to reduce the security
risk. Our protocol description and implementation can be directly used to accommodate
such a distributed deployment of SafeWS.

3.6 Protecting against Advanced Hackers

As we stated in Section 2, advanced hackers may reverse engineer any program. This
means that RTM would be vulnerable to attacks. If attackers reverse engineer RTM
they could find the keys stored in it as well as the connection information to SafeDB.
However, due to the hurdles we built into SafeWS, this process might take a considerable
amount of time. First, RTM would have to be decompiled, the code (which may or
may not resemble the original code) must be analyzed. The database credentials are
made by using the SHA-1 hash of the RTM executable file signed by the private key
stored in RTM. The attacker would need to build a program to use the extracted keys
and obtain and sign the SHA-1 hash of RTM. In addition, the attackers must refrain
from running or misusing RTM as the owners would be notified. Since we assume that
RTM may be hacked, we can add another layer of security. By having a periodical
job (such as a cron job) that would generate new keys, recompile both RTM and Signer,
change the database credentials and distribute the new RTM to the server, we can reduce
the probability of a successful attack. This periodical script would run on the trusted
owner’s machine, and would perform its duties every X − 1 seconds where X is the
minimum number of seconds that an advanced hacker would take to obtain the SafeDB
credentials.

128 T. Chumash and D. Yao

3.7 RTM Design Aspects

RTM is executed each time a script with database access is run by the web server. Al-
though this is sub-optimal performance wise, the security aspects were more important.
By letting RTM be resident in memory, we could implement caching of database creden-
tials, as well as avoid re-examining the web server executable and its modules (provided
we can guarantee that the process is the same). This would improve the performance
of SafeWS considerably, however, there are a couple of caveats to this approach which
made us choose the other design. First, the system is designed for shared hosting en-
vironments, which normally do not allow their customers (website owners) to have
resident services running on the machine. Second, the lack of a direct execution rela-
tionship between a script and RTM would reduce the knowledge the system gives RTM
about the caller, as well as complicate calling RTM inside the scripts.

4 Discussion

In this section, we analyze the security properties and discuss practical considerations
associated with deploying SafeWS. SafeWS satisfies the security requirements that are
defined in Section 2 including the secrecy of database credentials, provenance authen-
tication for database access, and integrity of outsourced environments, which are ex-
plained in detail next.

SafeWS guarantees that only authorized webpages from the web server can access
a database that stores end user or product information. This property is achieved by
storing the properties and environments of authorized webpages in SafeDB, which can
only be accessed by RTM with the proper privately generated password. These oper-
ations correspond to Step 6 and 7 in Figure 2. In addition, our basic script run-time
module safe exec() ensures that only authentic information about script environments
is passed to RTM for the verification purpose, and spoofing attacks (e.g., lying about an
IP address or location) can be identified.

SafeWS effectively hides database access credentials from web server administrators
who are allowed to read any file on the system. As stated earlier in Section 3, while using
SafeWS, the website owner should separate the customer data from the running environ-
ment, i.e., scripts and data should reside on different servers. Sensitive data should be
kept encrypted in a database, and the decrypting web server should be different than the
encrypting one. With this separation of duties, even if attackers obtained the database
credentials where the sensitive data is stored, they will not have a way to decrypt the
encrypted customer data.

SafeWS ensures the integrity of outsourced websites by detecting and monitoring
suspicious environments and activities and provides website owners with notifications
of suspicious activities. The verification is realized mainly by our Run-Time Module
in SafeWS. RTM leverages safe exec()’s ability to pass web-session information as well
as run-time environment information into the process that it executes. In the SafeWS
run-time protocol, RTM checks the integrity of the web-server executable and verifies
the signature on the hash of the invoked script against the correct record in SafeDB that
can only be accessed by RTM.

Detection and Prevention of Insider Threats in Database Driven Web Services 129

Typically when server-side scripts are first developed, they are changed often due
to programming errors or inappropriate specifications. But most of such scripts reach
stable states and are rarely changed afterwards. Therefore, updates in SafeWS caused by
script changes do not cause much communication and computation overheads. We give
a more thorough evaluation and discussion on the performance of SafeWS in Section 5.

Note that in-memory code mutation or memory scanning are types of attacks that
may find the private key or clear-text passwords [12]. Our current SafeWS design can
withstand advanced reverse engineering attacks against RTM with the help of a period-
ically running script, as described in Seciont 3.6. However, we believe that these types
of attacks would take significant efforts. Due to the fact that the Signer module is safely
located on the website owner’s private machine, even if the RTM’s private key is recov-
ered, the attacker will not be able to sign altered or new script files without the owner’s
key, and thus will be unable to hijack the website without being detected.

5 Evaluation

Our goals were to see whether SafeWS was a viable solution for small and medium
third-party hosted web-sites. We decided to check the impact on both end-users and
web server machines. As end-users today expect fast response times, we wanted to
achive sub-second end-to-end times and low server impact.

5.1 Experiment Setup

We used two servers for testing SafeWS. Our web server machine is an Intel dual core
(2*1.6Ghz) with 1MB cache and 2GB RAM. This machine runs Linux kernel version
2.6.23.17-88 SMP, Apache 2.2.8 and MySQL 5.0.45. Our client emulator and remote
database machine is an Intel dual core (2*2.8Ghz), with 1MB cache and 2GB RAM run-
ning Linux version 2.6.27.9 SMP and MySQL 5.0.67. We picked two common website
procedures that may allow access to sensitive information. We wrote PHP scripts that
store and update a database with this information. We measured the end-to-end per-
formance of those functions, then converted the PHP scripts to work with SafeWS and
re-measured. Each of the following experiments were conducted using both local (on
the web server machine) as well as remote (on the client emulator machine) databases.

Addition of Users. We created a PHP script that processes an ’HTTP GET’ form
which creates a new web-site user. There were seven pieces of information stored for
each user: First name, Last name, Address, City, Zip code, e-mail address and password.
We then ran a program that produced random values for these fields and ran a multi-
threaded program that generated varying amounts of concurrent sessions. We measured
each session from start to finish.

Changing Website Passwords. We created another PHP script that handles changes
to a website-user’s password. The fields provided were the users e-mail address, the old
password, and the new password. Using the stored generated data from the previous
procedure, we generated new passwords and ran our session generator with varying
amounts of concurrent sessions and measured their end-to-end performance.

130 T. Chumash and D. Yao

(a) Addition of Users (b) Changing Website Passwords

Fig. 3. Concurrency vs. Response Times with and without SafeWS. Normal refers to non-SafeWS
measurements, numbers refer to concurrent sessions.

5.2 Experiment Results

We were able to achieve a sustainable peak performance of over 72,000 user addition
and password changing requests per hour. Although the web server running the RTM
had a load average of 12, the average end-user experience was under 0.5 seconds (from
browser connection to the web server until the response was fully available). Using
slightly less concurrency (5 simultaneous requests at all times) we achieved a sustain-
able average of 0.3 seconds end-user response time and a server load average of 1.4.
This translates to 57,600 requests per hour or as much as 1.38 million requests per day
(for uniform distribution of visits). Our measurements showed no significant perfor-
mance difference between local vs. remote database use. We believe this is due to us
using a machine on the same LAN, as well as a reduction in resource consumption. Al-
though the performance overhead of SafeWS is significantly over the average running
time of the scripts that do not use SafeWS (refer to Figure 3), the end-to-end perfor-
mance is still sub-second, and can be improved further by optimizing the web server
and database server software.

6 Related Work

With the increasing development of IT outsourcing, a substantial amount of research
work has been done on how to verify outsourced data and computation [2, 3, 9–11,
15–17]. Merkle hash trees have been used extensively for authentication of data ele-
ments [14]. Aggregate signatures are another approach for data authentication, where
each data tuple is signed by the data owner [17]. Most recently, the privacy issue in
verifying queries was first addressed by in [18] which gave an elegant solution using
hashing for proving the completeness of selection queries without revealing neighbor-
ing entries.

Database-as-a-service (DAS) model [10, 11, 16, 16] is an instantiation of the com-
puting model involving trusted clients, who store their data at an untrusted server that
is administrated by a service provider. The challenge in DAS is to make it impossible

Detection and Prevention of Insider Threats in Database Driven Web Services 131

for the service provider to correctly interpret the data. The data is owned by clients. The
clients only have limited computational power and storage, and they rely on the server
for the mass computational power and storage. Hacigümüs, Iyer, and Mehrotra [11]
addressed the execution of aggregate queries over encrypted data using homomorphic
encryption scheme. Mykletun and Tsudik [16] proposed an alternative approach where
the data owner pre-computes and encrypts the aggregate results and stores them at the
service provider. This approach avoids the use of homomorphic encryption, which was
found to have a security flaw when used for DAS [16]. Our model is different from
DAS, and is suitable for a more general security setting, as the data does not have to
originate from the client.

Efforts to discern the trustworthiness of a server (and in some cases alert web users
to untrusted servers) utilizing hardware such as the Trusted Platform Module (TPM) [8]
and using commitments and attestations [1, 13] and their combinations [20] have been
made. However, these solutions do not protect against obtaining database credentials
from a text file, and also require specialized hardware and kernel modification on the
web-server side, as well as software on the client side, and trusted authorities to provide
verification. In comparison, SafeWS is easy to adopt and more efficient.

7 Conclusions and Future Work

Outsourced information is as safe as the security provided by the server storing it. In or-
der to improve the security of outsourced websites, we presented SafeWS in this paper.
SafeWS is a protocol encompassing a distributed architecture that provides a robust layer
of security between web server-side scripts and databases, while notifying site owners
of anomalous run-time behavior. We gave the security models and definitions associated
with SafeWS in the outsourced web service scenario. We implemented SafeWS system
in C/C++ and performed extensive experimental evaluation on the performance and ro-
bustness of the system. Our results showed that the security overhead introduced by
SafeWS is low at the web server side even when the number of users is large.

For future work, we plan to leverage the infrastructure provided by SafeWS to extend
the protection to cross-site scripting (XSS). One promising approach is to add the iden-
tifiers of allowed referer pages into the SafeWS database, the same way as we retrieve,
store, and verify this information from the web server. We also plan to further improve
the performance and robustness of the SafeWS implementation.

Dedication

The authors would like to dedicate this paper in memory of Denitsa Tilkidjieva. A dear
friend and a bright third-year Ph.D. student at the Computer Science department in
Rutgers. She passed away January 22nd, 2009 and will always be missed.

References

1. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap architecture. In:
Proceedings of the 1997 IEEE Symposium on Security and Privacy, pp. 65–71. IEEE Com-
puter Society, Los Alamitos (1997)

132 T. Chumash and D. Yao

2. Bertino, E., Ooi, B.C., Yang, Y., Deng, R.H.: Privacy and ownership preserving of outsourced
medical data. In: Proceedings of the 21st International Conference on Data Engineering
(ICDE), pp. 521–532 (2005)

3. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.: Authentic third-party data publication.
Journal of Computer Security 11(3) (2003)

4. Dickinson, P.: Top 7 PHP Security Blunders (December 2005),
http://www.sitepoint.com/article/php-security-blunders/

5. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard) (August 2008), http://www.ietf.org/rfc/rfc5246.txt

6. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: Grid services for distributed system inte-
gration. Computer 35(6), 37–46 (2002)

7. GoDaddy.com. Why You Need An SSL Certificate, https://www.godaddy.com/
gdshop/pdf/SSLMarketingGuideGodaddy.pdf

8. Trusted Computing Group. TCG 1.2 specifications,
https://www.trustedcomputinggroup.org/

9. Hacigümüs, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data in the
database-service provider model. In: Proceedings of ACM SIGMOD Conference on Man-
agement of Data, pp. 216–227. ACM Press, New York (2002)

10. Hacigümüs, H.B., Iyer, H.B., Mehrotra, S.: Providing database as a service. In: Proceedings
of International Conference on Data Engineering (ICDE) (March 2002)

11. Hacigümüs, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries over en-
crypted relational databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004.
LNCS, vol. 2973, pp. 125–136. Springer, Heidelberg (2004)

12. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feld-
man, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot attacks on encryption
keys. In: van Oorschot, P.C. (ed.) USENIX Security Symposium, pp. 45–60. USENIX Asso-
ciation (2008)

13. Lampson, B., Burrows, M., Wobber, E.: Authentication in distributed systems: Theory and
practice. ACM Transactions on Computer Systems 10, 265–310 (1992)

14. Merkle, R.: Protocols for public key cryptosystems. In: Proceedings of the 1980 Symposium
on Security and Privacy, pp. 122–133. IEEE Computer Society Press, Los Alamitos (1980)

15. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in outsourced
databases. In: Proceedings of Symposium on Network and Distributed Systems Security
(NDSS) (February 2004)

16. Mykletun, E., Tsudik, G.: Aggregation queries in the database-as-a-service model. In: Dami-
ani, E., Liu, P. (eds.) Data and Applications Security 2006. LNCS, vol. 4127, pp. 89–103.
Springer, Heidelberg (2006)

17. Narasimha, M., Tsudik, G.: Authentication of outsourced databases using signature aggrega-
tion and chaining. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS,
vol. 3882, pp. 420–436. Springer, Heidelberg (2006)

18. Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.: Verifying completeness of relational query
results in data publishing. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pp. 407–418 (2005)

19. Shiflett, C.: Security corner: Shared hosting. php—architect 3(3) (March 2004), http://
shiflett.org/articles/shared-hosting

20. Xu, G., Borcea, C., Iftode, L.: Satem: Trusted service code execution across transactions. In:
IEEE Symposium on Reliable Distributed Systems, pp. 321–336 (2006)

http://www.sitepoint.com/article/php-security-blunders/
http://www.ietf.org/rfc/rfc5246.txt
https://www.godaddy.com/gdshop/pdf/SSLMarketingGuideGodaddy.pdf
https://www.godaddy.com/gdshop/pdf/SSLMarketingGuideGodaddy.pdf
https://www.trustedcomputinggroup.org/
http://shiflett.org/articles/shared-hosting
http://shiflett.org/articles/shared-hosting

	Detection and Prevention of Insider Threats in Database Driven Web Services
	Introduction
	Definitions and Trust Models
	Architecture
	Security of Database Credentials
	Key Generation and Solution Setup
	Run-Time Module and Signer Module
	PHP Limitation and safe_exec()
	SafeWS Run-Time Protocol
	Protecting against Advanced Hackers
	RTM Design Aspects

	Discussion
	Evaluation
	Experiment Setup
	Experiment Results

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

