
User-Centric Dependence Analysis For Identifying
Malicious Mobile Apps

Karim O. Elish, Danfeng (Daphne) Yao, and Barbara G. Ryder
Department of Computer Science

Virginia Tech
Blacksburg, VA, USA

Email: {kelish, danfeng, ryder}@cs.vt.edu

Abstract—This paper describes an efficient approach for iden-
tifying malicious Android mobile applications through specialized
static program analysis. Our solution performs offline analy-
sis and enforces the normal properties of legitimate dataflow
patterns to identify programs that violate these properties.
To demonstrate the feasibility of our user-centric dependence
analysis, we implement a tool to generate a data dependence
graph and perform preliminary evaluation to characterize both
legitimate and malicious Android apps. Our preliminary results
confirm our hypothesis on the differences in user-centric data
dependence behaviors between legitimate and malicious apps.

I. INTRODUCTION

The proliferation of mobile handheld devices has led to
the development of a large number of mobile applications
provided by many application markets. Unfortunately, the user
may download and install some applications which contain
Trojans and malware, and consequently these malicious apps
can affect the security of her/his mobile device. Therefore,
there is a need to find an approach to detect the malicious
apps before the user installs them.

In this work, we address the important problem of malware
classification, that is, given an unknown program, how to
determine whether or not it is malicious software (malware).
The novelty of our work is that we take the approach of
anomaly detection (i.e., identifying deviations from normal
patterns), as opposed to the conventional methods of identify-
ing malware characteristics. We aim at strategically enforcing
the normal properties of legitimate dataflow patterns and iden-
tifying programs that violate these properties. We extract these
properties by tracking the dependence between the definition
and use of user-generated data in programs. Our approach is
complementary to the existing classification approaches based
on identifying known malicious code or behavior signatures,
such as [1], [2], [3].

Our approach focuses on analyzing the relations between
user inputs/actions and entry points to methods providing
critical system functions. Hence, what distinguishes our work
is that we uniquely integrate user data dependence in our anal-
ysis. Our technical contributions are summarized as follows.

1) We demonstrate the use of dependence analysis for
identifying malicious Android mobile applications. In

This work has been supported in part by Security and Software Engi-
neering Research Center (S2ERC), a NSF sponsored multi-university Indus-
try/University Cooperative Research Center (I/UCRC).

particular, we implement our analysis tool to statically
construct data dependence graphs with inter-procedural
call connectivity information [4] that capture the data
consumption relations in programs through identifying
the directed paths between user inputs (e.g., data and
actions) and entry points to methods providing critical
system services.

2) We use our tool to conduct an initial set of experiments
to characterize the data consumption behaviors of legit-
imate and malicious Android apps, specifically on how
they respond to user inputs and events.

II. OVERVIEW OF OUR APPROACH AND THREAT MODEL

Our goal is to correlate critical system function calls with
user-initiated input events through programs in order to iden-
tify software execution characteristics of these relations. The
technical challenge associated with our anomaly detection
approach is that the (normal) behaviors of legitimate programs
are diverse and difficult to define. We address the challenge
through analyzing user-centric data dependence by construct-
ing the data dependence graph for the whole program.

Definitions. In the program analysis literature, a data de-
pendence graph (DDG) is a directed graph representing data
dependence between program points, where a node represents
a program point (e.g. assignment statement), and an edge
represents a data dependence between two nodes. The data
dependence edges are identified by data-flow analysis. A direct
edge from node n1 to node n2, which is denoted by n1 → n2,
means that n2 uses the value of variable x which is defined
by n1.

We define our terminology used on the DDG as follows:
• User inputs/actions (source): refers to the user’s inputs

or actions to the program through the input devices (e.g.
keyboard).

• Sensitive function calls (sink): refers to entry points
to methods providing critical system functions such as
network I/O, file I/O, telephony services.

• Data dependence path: refers to a directed path that
captures the dependence relations between a source and
a sink.

The motivation behind proposing our approach is based on
our following key observations: i) legitimate critical system
events are typically initiated by user inputs/actions, and ii)

Android mobile applications require a lot of user interactions.
Therefore, we hypothesize that the legitimate function calls
are triggered by inputs/actions from authorized users.

In our user-centric data dependence graph, the sensitive
function call is considered legitimate if there is a directed
path that represents a dependence relation between this func-
tion call and user inputs/actions. Otherwise, the call to the
sensitive function is considered suspicious. We use this basic
dependency rule for malware classification. The procedure we
used to identify the data-dependence path in a given program
is described as follows.

1) Identify sensitive functions that perform any critical
operations such as network I/O operations, and file I/O
operations (e.g., write, delete).

2) Identify any inputs/actions provided by the user to the
program.

3) Construct the data dependence graph for the whole
program.

4) Identify the data-dependence paths between user inputs
and sensitive functions according to the dependency rule
by using the generated data dependence graph to track
the dependences between the definition and use of user-
generated inputs.

The procedure described above can be used to enforce other
more complex dependency rules as well. The use of static
program analysis for approximating the data dependence of
sensitive library operations on user data, to identify dataflow
associated with user inputs has not been explored previously
as a general approach for malware identification.

Threat model. We consider stealthy malware that can be
installed with the installation of malicious Android apps on
the mobile device. Malware that runs as a user-level appli-
cation can perform botnet command & control, attacks, data
exfiltration, or abuse system resources. Data exfiltration refers
to secretly exporting sensitive information such as personal
data without the permission of the user. There are two cases
of Android malware, namely i) malware that is packaged or
added as add-on component to an existing legitimate app such
as GoldDream and GGTracker.A, and ii) malware that is a
stand-alone user-level app such as Fake Netflix, Walk & Text,
and Dog Wars.

III. CONSTRUCTION OF DATA DEPENDENCE GRAPH

A. Implementation Details
In order to obtain user-centric data dependences, we need to

track the dependences between the definition and use of user-
generated data in programs. Hence, we developed automatic
tool based on Soot (a static analysis toolkit for Java) [5] for
obtaining data-dependence analysis. We utilized the def-use
structures provided by Soot. Unfortunately, it does not provide
inter-procedural call information. Thus, we implemented our
own program to augment the def-use relations across the
boundaries of methods. We use GraphVis package with our
implementation to generate the graphical representation of
program data dependences. Our tool can analyze Java byte-
code or source code and statically construct data dependence

graphs with inter-procedural call connectivity information that
captures the data consumption relations in Java programs
through identifying the directed paths between user inputs
(e.g., data and actions) and entry points to methods providing
critical system services. In addition, our tool provides context-
sensitive data-flow dependence analysis. The context-sensitive
analysis considers the context of the caller function when ana-
lyzing a callee function. In particular, it differentiates multiple
function calls of the same function with respect to provided
arguments. On the other hand, a context-insensitive analysis
does not differentiate multiple calls of the same function with
different arguments. Thus, a context-insensitive analysis does
not provide as accurate an analysis and may increase the false
positive rates. Currently, our implementation can handle intra-
application activity-related Intents for Android apps. However,
we plan to enhance our tool to handle inter-application Intents
to provide more robust analysis.

	

void onStart()

entry void onStart()

entry void sendsms(String, String, String)

void sendsms(“1066156686”, “8”, “msg”)

r0 = @param0: String r2 = @param2: Stringr1 = @param1: String

android.telephony.gsm.SmsManager.sendTextMessage(r0, r1, r2)

class MessageService

void sendsms(String, String, String)

Fig. 1. Partial data dependence graph for HippoSMS malware. The sensitive
function sendTextMessage() is called without any user inputs/actions,
and hence there is no direct path showing the data dependence between user
inputs and this sensitive function.

B. An Example

In this section, we provide an example of our analysis using
real Android malware called HippoSMS which is found in
Chinese App Markets. This malware infects Android smart-
phones by registering to premium SMS service. It sends SMS
messages to a hard-coded premium-rated number without the
user’s permission. As a result, it will cost the user some
additional phone charges. Furthermore, it automatically re-
moves SMS from legitimate mobile service providers to hide
the additional charges from the users. Figure 1 depicts an
example of partial data dependence graph generated using
our tool for HippoSMS. In this example, we can observe
that onStart() method calls sendSMS(p1, p2, p3)
method with a hard-coded premium-rated number as a p1 pa-
rameter once the app launches. The sendSMS method, in turn,
calls a sensitive function sendTextMessage(phoneNum,
scAddress, msg) with the value of its p1 (i.e., hard-
coded premium-rated number) as a phoneNum parameter. The
user does not provide any input or action in order to call this
sendTextMessage method to send an SMS. This means
that the malware calls sendTextMessage method to send a
predefined message to this hard-coded premium-rated number

without the user’s permission. In this case, we can not identify
any directed paths between user inputs (e.g., data and actions)
and sendTextMessage method, and hence we can infer
that this app performs malicious activity.

IV. PRELIMINARY RESULTS AND EVALUATION PLAN

We have performed preliminary studies using our tool on
several real legitimate and malicious Android apps found
in official or alternative Android markets such as the Chi-
nese Android market, and obtained promising results that
are shown in Table I. We compared user-related data de-
pendences in those apps, namely the number of user in-
puts/actions taken, the number of sensitive function calls,
and the percentage of sensitive function calls that are not
dependent on any user inputs (i.e., there does not exist a
data-dependence path between the user input and the sen-
sitive function invocation). We identified sensitive function
calls after examining the apps to be those that utilize sys-
tem resources such as network I/O, file I/O, GSM-specific
telephony services. For example, sendTextMessage()
provided by android.telephony.gsm.SmsManager library for
sending SMS, and openFileOutput() provided by an-
droid.content.Context library for opening and writing to a file.

Discussion. Table I summarizes the results of our pre-
liminary evaluation. We found that in all legitimate apps,
all function calls depended on user inputs (i.e., the user
needs to enter certain information before the request to the
call is made). In most of the malicious Android apps, this
property of data dependence is not observed; the apps abuse
the system resources without user’s authorization confirming
our hypothesis on the differences between user-centric data-
dependence behaviors of legitimate and malicious programs.

As shown in Table I, the Fakeneflic malware is a phishing
app that tricks the user to enter their Netflix login, which be-
haves similarly to a legitimate app in terms of user-related data
dependence. This type of malware behavior can circumvent
our approach and lead to false negatives because of the existing
dependency path between user inputs and sensitive function
calls. Detecting it requires site authentication (i.e., certification
verification) and user education. Some malware may attempt
to forge user input events in order to trick our approach.
Nevertheless, the input-forgery attack can be prevented by
existing solutions such as [6].

Limitations. Some malware may attempt to circumvent
our data dependence checking. One possible attack scenario
is where the malware may require superfluous user inputs
and actions (before making sensitive function calls to conduct
unauthorized activities) attempting to satisfy the dependency,
but the user inputs are not consumed by the calls. This type of
data-flow can be detected by our current method by tracking
the dependency between the user inputs entered and the
sensitive function calls, thus the malware can be identified. The
more challenging scenario is where the malware misuses the
user inputs while performing malicious activities. For example,
in the malware the user inputs are appended to malware’s own
arguments and are consumed by the sensitive function call,

which still satisfies our current data dependence policy. We
plan to address this problem by performing in-depth semantic-
level data dependence analysis in the future.

Some legitimate sensitive function calls can be triggered
without direct user inputs/actions. For example, the user may
accept the prompt for OS updates, which can increase false
positives. This can be considered as a limitation of our current
implementation and it needs more investigation to find the
dependency relationship.

Currently, our tool performs static analysis. However, some
malicious apps can use obfuscation or Java reflection tech-
niques to evade the detection which may lead to false negatives
as well as false positives. In order to overcome this problem,
we need to use dynamic taint analysis [3], [7] to provide
insights about the program’s runtime execution. Hence, we
plan to investigate a combined static and dynamic tool in future
research to mitigate this problem.

We plan to perform more evaluation on our user-centric data
dependence solution with different types of apps behaviors and
different categories of malware apps to identify user-centric
policies to be used in our malware classification.

V. RELATED WORK

User-centric based security has not been explored in the
literature as a general approach for malware detection. In gen-
eral, all existing malware detection solutions aim at detecting
characteristic malware behaviors [1], [2], [3] or signatures
in binary code such as commercial anti-virus scan tools.
For example, Christodorescu et al. [2] extracted malware
specifications by comparing the behavior of malware against
the behavior of benign programs, and used the extracted
knowledge to detect the variants. In Panorama [3], whole-
system taint analysis is performed to characterize malicious
activity to detect malware. However, malware patterns are
constantly evolving which results in an endless race, as the
existing solutions need to be updated rapidly to accommodate
the evolving of malware patterns. Our work uses an anomaly
detection approach and focuses on enforcing correct data-
flow patterns in legitimate programs and identifying programs
that violate these properties, as opposed to chasing evolving
malware patterns.

A number of static analysis techniques have been used for
malware detection by analyzing the source code [8], [9] or the
binary [10], [11], [12] to provide insights on the intended
control flow, system call context, and call dependences of a
program. For example, Bhatkar et al. [9] proposed an approach
for anomaly detection based on analyzing the data flows in-
volving system call arguments through the program. However,
these works do not consider user-centric data dependences
in their analysis to capture the casual relations between user
inputs/actions and system function calls compared to our work.

In the mobile OS security literature, a lot of researchers
have studied Android OS platform security [13], [14], [15],
[16], [17], [18]. However, all these works aim to protect and
improve Android OS in general, and do not provide a solution
for detecting malicious Android apps compared to our work.

App/Malware Name # of User Inputs/
Actions (Source)

of Sensitive Function
Calls (Sink)*

% of Sensitive Func. Calls
without User Inputs

L
eg

iti
m

at
e

SendSMS 3 1 0%
BMI Calculator 2 1 0%
BluetoothChat 2 1 0%
SendMail 4 1 0%
Tip Calculator 4 1 0%

M
al

w
ar

e

GGTracker.A: sends SMS log to C&C server 0 1 100%
HippoSMS: sends SMS to premium-rated number 0 3 100%
Fakeneflic: steals Netflix user’s account info 3 1 0%
GoldDream: steals user’s data 0 2 100%
Walk & Text: sends SMS to all contact list 0 3 100%
RogueSPPush: subscribes to premium SMS services 0 3 100%
Dog Wars: sends SMS to all contact list 0 2 100%

*Sensitive function names are not shown in the table
TABLE I

PRELIMINARY CHARACTERIZATION RESULTS FOR STUDIED LEGITIMATE AND MALICIOUS ANDROID APPS

In the malware apps detection literature, Dixon et al. [19]
proposed an approach to correlate power consumption patterns
with the user’s location in order to detect malicious code. Liu
et al. [20] detected malicious behaviors on mobile devices by
monitoring abnormal power consumption caused by malware.
The work in [19] and [20] detect malware apps on mobile
devices, while our work performs offline analysis to detect
malware apps available in the markets.

VI. CONCLUSION AND FUTURE WORK

We proposed and implemented an efficient approach for
malware identification based on user-centric data dependence
analysis to capture the data dependences between user in-
puts and critical function calls. Our user-centric dependence
analysis allows the detection of suspicious Android mobile
apps and Java programs that violate the data dependences.
For future work, we plan to experimentally evaluate and char-
acterize more data-consumption behaviors of both legitimate
and malicious Android apps and Java programs, and extract
policies for classifying them. Additionally, we plan to utilize
more accurate program analysis techniques such as blended
program analysis [21].

REFERENCES

[1] M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns,” in Proc. of the 12th conference on USENIX Security
Symposium, 2003, pp. 169–186.

[2] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of
malicious behavior,” in Proc. of the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
the foundations of software engineering, 2007, pp. 5–14.

[3] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: captur-
ing system-wide information flow for malware detection and analysis,”
in ACM Conference on Computer and Communications Security, 2007,
pp. 116–127.

[4] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems, vol. 12, pp. 26–60, 1990.

[5] “Soot: a Java optimization framework,” http://www.sable.mcgill.ca/soot/.
[6] K. Xu, H. Xiong, C. Wu, D. Stefan, and D. Yao, “Data-provenance

verification for secure hosts,” IEEE Transactions on Dependable and
Secure Computing, vol. 9, pp. 173–183, 2012.

[7] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software,” in Proc. of the Network and Distributed System Security
Symposium, 2005.

[8] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in
Proc. of IEEE Symposium on Security and Privacy, 2001, pp. 156–68.

[9] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detection,”
in Proc. of IEEE Symposium on Security and Privacy, 2006, pp. 48–62.

[10] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti, “Control-flow
integrity: principles, implementations, and applications,” in Proc. of the
12th ACM conference on computer and communications security, 2005,
pp. 340–353.

[11] J. Giffin, S. Jha, and B. Miller, “Efficient context-sensitive intrusion
detection,” in Proc. of the Network and Distributed System Security
Symposium, 2004.

[12] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller, “Formalizing
sensitivity in static analysis for intrusion detection,” in Proc. of IEEE
Symposium on Security and Privacy, 2004.

[13] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. Sheth, “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in USENIX Symposium
on Operating Systems Design and Implementation, 2010, pp. 393–407.

[14] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proc. of the 9th Int’l Confer-
ence on Mobile Systems, Applications, and Services, 2011, pp. 239–252.

[15] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. of the 18th ACM Conference on
Computer and Communications Security, 2011, pp. 627–638.

[16] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
android application security,” in Proc. of the 20th USENIX conference
on Security, 2011.

[17] W. Enck, M. Ongtang, and P. D. McDaniel, “On lightweight mobile
phone application certification,” in Proc. of the ACM Conference on
Computer and Communications Security, 2009, pp. 235–245.

[18] M. Ongtang, K. R. B. Butler, and P. D. McDaniel, “Porscha: policy
oriented secure content handling in android,” in 26 Annual Computer
Security Applications Conference, 2010, pp. 221–230.

[19] B. Dixon, Y. Jiang, A. Jaiantilal, and S. Mishra, “Location based power
analysis to detect malicious code in smartphones,” in Proc. of the 1st
ACM workshop on Security and privacy in smartphones and mobile
devices, 2011, pp. 27–32.

[20] L. Liu, G. Yan, X. Zhang, and S. Chen, “VirusMeter: Preventing your
cellphone from spies,” in Proc. of the 12th International Symposium on
Recent Advances in Intrusion Detection, 2009, pp. 244–264.

[21] B. Dufour, B. G. Ryder, and G. Sevitsky, “A scalable technique for
characterizing the usage of temporaries in framework-intensive java
applications,” in Proc. of the 16th ACM SIGSOFT Int’l Symposium on
Foundations of software engineering, 2008, pp. 59–70.

