
Notarized Federated Identity Management for

Web Services?

Michael T. Goodrich1, Roberto Tamassia2, and Danfeng Yao2

1 Department of Computer Science, University of California
Irvine, CA 92697 USA
goodrich@acm.org

2 Department of Computer Science, Brown University
Providence, RI 02912 USA
{rt, dyao}@cs.brown.edu

Abstract. We address the question of how to establish trust in federated
identity management systems. We propose a notarized federated iden-
tity management model that supports efficient user authentication when
providers are unknown to each other. Our model introduces a notary ser-
vice, owned by a trusted third-party, to dynamically notarize assertions
generated by identity providers. An additional feature of our model is
the avoidance of direct communications between identity providers and
service providers, which provides improved privacy protection for users.
We present an efficient implementation of our notarized federated iden-
tity management model based on the Secure Transaction Management
System (STMS).
We also give a practical solution for mitigating aspects of the identity
theft problem and discuss its use in our notarized federated identity
management model. The unique feature of our cryptographic solution is
that it enables one to proactively prevent the leaking of secret identity
information.

Keywords: Federated identity management, notary and notarization, SAML,
identity theft, identity-based encryption

1 Introduction

Digital identity management is becoming an integral part of our lives, as con-
sumers and businesses rely more and more on online transactions for daily tasks,
such as banking, shopping, and bill payment. These transactions crucially de-
pend on networked computer systems to communicate sensitive identity data
across personal, company, and enterprise boundaries.

Unfortunately, the overuse of personal information in online transactions
opens the door to identity theft, which poses a serious threat to personal finances

? This work was principally supported by IAM Technology, Inc. Additional partial
support was provided by NSF grants CCF–0311510, CNS–0303577 and IIS–0324846.

and credit ratings of users and creates liabilities for corporations. Moreover, the
increasing dangers of identity theft are negatively affecting people’s collective
confidence on the digital world for online financial transactions [12]. Thus, effec-
tive solutions for managing digital identity on both the individual and enterprise
levels are urgently needed.

Additionally, end users are challenged with increasing numbers of websites
that require access control and authentication. Studies show that users resort to
using weak passwords or writing them down to alleviate the burden of memo-
rizing multiple passwords. One well-known identity management solution that
deals with this issue is the single sign-on (SSO) technique, which requires the
user to authenticate only once to a website, and then automatically authenti-
cates the user to other websites from then on, within a session. There are two
primary approaches to single sign-on. One approach is based on browser cookies
and redirects, and the other is based on cryptographic-enabled assertions.

The cookies-based approach is simple to implement, yet has several limi-
tations. This approach is implemented by using browser cookies to maintain
the state of the browser, so that re-authentication at a secure web site is not
required. Because browser cookies are not transferred between different admin-
istrative domains, however, cookies obtained from one site are not sent (in any
HTTP messages) to other sites where authentications are required. Thus, the
cookies-based approach is only useful inside a single administrative domain. In
fact, this problem also exists in single organizations that maintain separate di-
visional domains.

The approach based on cryptographic-enabled assertions is embodied by the
Security Assertion Markup Language (SAML) [9]. Version 2.0 of SAML is gen-
erally believed to support general cross-domain authentication and SAML is
quickly becoming the de-facto means for exchanging user credentials between
trusted environments. The identity federation architecture of Liberty Alliance is
compliant with the SAML 2.0 standard [16]. Indeed, SAML is specifically de-
signed to support cross domain single sign-on, which is illustrated in the following
example.

Suppose a user has a secure logon session to a website, (e.g., Airline.com),
and is accessing resources on that site. Airline.com serves as the identity provider
site in this example. At some point in the session, the user is directed to another
web site in a different DNS domain for a related service, and this outside domain
is called the service provider site (e.g., CarRental.com). The identity provider
(Airline.com) asserts to the service provider (CarRental.com) that the user is
known to the identity provider and gives to the service provide the user’s name
and session attributes (e.g., Gold member). Since the service provider trusts
the assertions generated by the identity provider, it creates a session for the
user based on the information received. Therefore, the user is not required to
authenticate again when directed to the service provider site. Hence, single sign-
on is achieved.

The identity provider (IdP) in SAML [9] is defined as the system, or admin-
istrative domain, that asserts information about a subject. An identity provider

asserts that a user has been authenticated and has certain attributes. The ser-
vice provider (SP) is defined as the system, or administrative domain, that relies
on the information supplied to it by the identity provider.

1.1 Motivation for Notarized ID Federation

In existing federated identity management systems that support SAML, such
as the Liberty Identity Federation Framework (ID-FF) [10] and WS-Federation
[26], it is up to the service provider to decide whether it trusts the assertions
provided to it. Service providers in SAML are also known as relying parties due
to the fact that they rely on the information provided by an identity provider.
This reliance implies that websites of different administrative domains need to
trust each other’s access control verdicts on end users. In fact, SAML single
sign-on relies on the concept of identity federation in order for it to work at all.
An identity federation is said to exist between an identity provider and a service
provider, when the service provider accepts assertions regarding a user from the
identity provider [9].

Methods for efficiently maintaining a federated identity infrastructure are
vital, therefore, especially when member domains in the federation dynamically
join or leave. Methods for effectively disseminating the member domains in the
current federation serve an important role because service providers rely on this
information for making access control decisions. These access control decisions
directly protect the security of the resources of the service provider and have to
be made with high assurance. Because the role of service providers and identity
providers are sometimes inter-changeable in web services, all participating do-
mains in federated identity management systems must face the trust decisions
implied by all possible cross-domain interactions.

Nevertheless, these issues have not drawn much attention in the federated
identity management literature [22]. In fact, most existing SSO solutions assume
preexisting trust relationship among providers and do not provide concrete mech-
anisms for the trust establishment between providers. The WS-Federation spec-
ification [26] discusses several trust relationships between identity providers and
service providers, including directed trust, indirected brokered trust, and chained
trust. However, details on how the trust relationships and identity brokers can
be instantiated are not given. This limitation hinders the wide deployment of
SSO in web-service environments, because providers may be unknown to each
other. Therefore, flexible, reliable, and secure trust establishment mechanisms
need to be provided for federated identity management.

1.2 Our Contributions

In this paper, we present a notarized federated identity management protocol
that supports flexible and efficient authentication of assertions, and enables a ser-
vice provider to proactively obtain the trustworthiness information of unknown
identity providers.

We also address important aspects of the problem of large-scale identity theft.
In June 2005, CardSystems Solutions, a large credit card payment processor in
Tucson, Arizona announced that forty million credit card numbers may have
been stolen by computer hackers. The theft was a direct result of the company’s
illegal practice of retaining transaction records. It is insufficient to simply trust
financial institutions’ abilities and intentions for secure data management. Thus,
rather than putting faith in the data management of financial institutions, we
give a proactive solution for protecting the disclosure of user’s sensitive personal
data with a cryptographic approach.

Our contributions are summarized as follows.

– We address the important question of how to establish trust between
providers in a decentralized environment. We propose a notarized federated
identity management model that supports automatic user authentications
when the providers are unknown to each other. Our model introduces a no-
tary server, which is owned by a trusted third-party to dynamically notarize
assertions generated by identity providers. Assertions are generated by iden-
tity providers and registered with a trusted notary server. When a service
provider needs to verify an assertion, it queries the notary server to get a
notarized assertion. The notary information shows that the identity provider
is trusted by the notary server, and proves the trustworthiness of the identity
provider that generates the assertion. As an extra feature provided by the
notary server, our federated identity management model also reduces pos-
sible collusions between identity providers and service providers, and gives
improved privacy protections for users.

– We describe an efficient implementation of the federated identity manage-
ment protocol with the existing Secure Transaction Management System
(STMS) [1, 15]. The notary server caches the assertions at a collection of re-
sponders deployed in the network. Even when the responders are located in
insecure, untrusted locations, a service provider can easily identify a forged
or tampered assertion so that the integrity of an assertions is maintained.

Our protocol can be thought of as a concrete solution for a trust broker
model proposed by existing federated identity management systems [26].
Besides brokering trust, our solution offers additional features. Accountability
is supported by archiving signatures on requests and assertions. User privacy
is achieved by encrypting assertions stored by the notary server. Verification
efficiency is achieved by using the authenticated-dictionary technique (see,
e.g., [1, 15, 20, 24] implemented in STMS.

– We also give a practical solution for mitigating aspects of the identity theft
problem, and discuss how it is used in our federated identity management
protocol. Our cryptographic solution is based on the Identity-Based Encryp-
tion (IBE) scheme [5]. The main feature of our cryptographic solution is
that it enables one to proactively prevent the leaking of secret identity in-
formation.

1.3 Organization of the paper

Our model for notarized federated identity management is described in Section
2. The STMS implementation of the notarized federated identity management
protocol is presented in Section 3. In Section 4, we present a cryptographic
protocol that helps protect users against identity theft. The security of the fed-
erated identity management protocol and the IBE-based authentication protocol
is analyzed in Section 5. Related work is given in Section 6.

2 Notarized Federated Identity Management

Our notarized federated identity management model introduces a notary server,
a trusted third-party that dynamically maintains assertions generated by iden-
tity providers. Assertions are generated by identity providers and stored by the
notary server. When a service provider needs to verify an assertion, it queries
the notary server for a notarized assertion that shows the trustworthiness of the
identity provider generating the assertion.

2.1 Notary server

In a notarized ID federation, a notary server is trusted by both identity providers
and service providers. Identity providers that have good internet behavior and
reputation are allowed to register with the notary server, and thus are trusted.
The notary server stores the assertions generated by registered identity providers.
A notary server supports two operations, Submit and Query.

– Submit(id, Sid, sig): a registered identity provider IdP authenticates itself to
the notary server, and submits via a secure channel the tuple (id, assertion,
signature), denoted by (id, Sid, sig), to the notary server. The assertion Sid
states the attributes of an identity id, and the signature sig is signed by IdP
on the assertion Sid. The notary server stores the tuple.

– Query(id): a service provider SP queries in a public (insecure) channel the
notary server for assertions associated with identity id, and the notary server
returns the notarized assertion(s).

A notarized assertion has a proof showing that the assertion is indeed stored
by the notary server, which implies that the identity provider that generates the
assertion is trustworthy. The reason for not using a secure channel in Query is
for higher efficiency and scalability in a distributed environment. The challenge,
thus, becomes how to efficiently generate and verify the notarized assertion,
even when it is transmitted in a insecure channel. Our solution is based on
the authenticated dictionary technique (see, e.g., [1, 15, 20, 24]), which is more
scalable than using a signature scheme.

The main purpose of the notary server is to provide the assurance of the
trustworthiness of assertions when identity providers are unknown to the service
providers. The notary server is a bridge of trust between providers in web-service

transactions. Another advantage of storing assertions on the notary server is the
prevention of direct contact between identity providers and service providers.
A notarized assertion does not contain the name of the identity provider. This
further increases the difficulty of collusions among providers to discover private
user information.

In our model, we assume that the notary server is trustworthy, and is trusted
by all entities (users, identity providers, service providers). The security prop-
erties of our notarized federated identity management protocol are summarized
below and are analyzed in detail in Section 5.

– Security is defined as that no polynomial-time adversary can forge a nota-
rized assertion that can be accepted by a service provider.

– Secrecy is defined intuitively as that the protocol does not leak any infor-
mation about a notarized assertion to a (polynomial-time) adversary. This
property provides privacy protection to the users.

– Accountability is defined as that identity providers should be held account-
able for the assertions generated, and for any unauthorized information dis-
closure about the users.

Note that the notary server only certifies that the source of an assertion is
trustworthy; it is not required to examine and certify the content of an assertion.
In fact, our protocol, which is described next, deliberately avoids disclosing as-
sertion contents to the notary server by encrypting the assertions. This feature
is for the purpose of user privacy, and prevents the notary server from gaining
knowledge of private user information.

2.2 Protocol

In this section, we present the protocol for our notarized federated identity man-
agement model. The following entities participate in the protocol: a user, an
identity provider, a service provider, and a notary server. The protocol gives an
instantiation of operations Submit and Query. Note that the roles of identity
provider and service provider are interchangeable. For example, a bank can be
the identity provider in one scenario and the service provider in another scenario.

We assumes that the notary server knows the public keys of registered iden-
tity providers. In addition, the public key of the notary server is known by all
of the providers. A schematic drawing of the protocol is shown in Figure 1.

Upon receiving a service request, a service provider opens a secure chan-
nel with the user. The service provider and the user jointly generate a random
session ID for the user’s request. The identity provider is given the session ID
by the user in a secure channel, after successful authentication. The identity
provider computes the hashed session ID using a collision-resistant one-way hash
function. The assertion associated with the user is generated by the identity
provider with the hashed session ID. To prevent information leaking, the as-
sertion is blinded by the identity provider before it is signed and submitted to
the notary server. A notary server only knows the blinded assertion and hashed

User

Identity

Provider

Service

Provider Notary
Server

3. Authenticates

4. Submits signed

Session_ID, required
attr. names

1. Requests for service

5. Submits signed

blinded assertion

ofHashed_ID

6. Queries for

Hashed_ID

7. Returns notarized

blinded assertion

9. Unblinds
and verifies

2. Session_ID,
required attr. names

8.Notarized blinded assertion

Fig. 1. Overview of the notarized federated identity management protocol. Red lines
represent secure communication channels. Blue lines indicate that secure channels are
not required.

session ID and cannot take advantage of the information for any service. This is
important for the security of the protocol, when we distribute the notary service
to untrusted notary responders in STMS in the next section. When submitting
assertions, an identity provider has to first authenticate to the notary server,
which ensures the provider is authorized.

In our protocol, the user only needs to authenticate once to an identity
provider. Subsequent requests for service from multiple service providers do not
require the user for authentication. Nevertheless, for protecting personal privacy,
the user is given the ability to examine the contents of assertions to be given
to the service providers in our protocol. If the assertions are generated by the
identity provider according to the user’s request, then they are passed on to
the service providers. We argue that having the user involved in the identity
management protocol for privacy purpose is a feasible solution. This concept
was also proposed by other federated identity management solution [3]. The
process can be automated to minimize the user’s manual participation.

Public parameters include a collision-resistant one-way hash function, Hash,
that takes a binary string of arbitrary length and hashes to a binary string of
fixed length k: Hash : {0, 1}∗ → {0, 1}k. For the blinding purpose, the public
parameters also include two public strings P1 and P2. In addition, providers
also agree on a symmetric-key encryption scheme for blinding and unblinding
assertions. The encryption and decryption of a message x with a secret key K

using this scheme are denoted as EK(x) and DK(x), respectively.

1. The user requests services from a service provider SP. SP requires attribute
information of the user needed to complete the service.

2. SP opens a secure communication channel with the user. The user and SP
each generate a random integer of the same length. They first exchange
the cryptographic hashes of these integers as commitments using the secure

channel, and then they exchange the integers using the secure channel. The
session ID N is finally computed as the XOR of the two integers. SP also
informs the user of the attribute names that are needed for the service (e.g.,
billing address and age).

3. The user contacts and authenticates to her identity provider IdP. If the
authentication is successful, the user opens a secure channel with IdP, and
transmits a signed request that contains the session ID and the required
attributes.

4. IdP verifies and stores the signed request by the user. The signature is for
the accountability purpose in case of dispute (see Section 5).

5. IdP then computes the index of the assertion as the hash of session ID con-
catenated with the public parameter P1: h = Hash(N, P1). It then generates
an assertion Sh about the user using index h. For example, Sh states that h

is a university student.
6. To prevent information leaking, IdP blinds the assertion as follows.

(a) IdP computes the blinding factor K as the hash of the session ID con-
catenated with the public parameter P2: K = Hash(N, P2).

(b) IdP encrypts Sh with the symmetric encryption scheme, using K as the
secret key. This gives the blinded assertion S′

h
= EK(Sh).

The blinded assertion S′

h
is signed by IdP with its private key, which gives

a signature sigh.
7. IdP runs Submit(h, S′

h
, sig

h
) with the notary server to submit tuple

(h, S′

h
, sigh) through a secure channel as follows.

(a) IdP first authenticates to the notary server to establish a secure commu-
nication channel.

(b) IdP transmits tuple (h, S′

h
, sigh) to the notary server via the secure chan-

nel.
(c) The notary server verifies signature sigh, and stores (S′

h
, sigh) indexed

by h. The signature is stored for accountability purposes.
8. The user computes the index h = Hash(N, P1) from N and P1, and runs

Query(h) to obtain the assertion for h. The notary server processes the
query as follows.
(a) The blinded assertion S′

h
associated with h is retrieved.

(b) The notary server notarizes the assertion S′

h
, and returns the notarized

assertion. We describe two approaches for the realization of notarized as-
sertion in the following sections. Note that the Query operation between
the user and the notary server does not require a secure channel.

9. Once the user obtains the returned notarized blinded assertion, she unblinds
it with the blinding factor K = Hash(N, P2). This is done by decrypting S′

h

with K, which gives Sh = DK(S′

h
). The user verifies that the assertion does

not release any unauthorized personal information about her.
10. The notarized blinded assertion is then relayed from the user to the service

provider, who verifies that it is notarized by the notary server. This implies
that the identity provider IdP is trusted by the notary server. If the verifi-
cation succeeds, the assertion S′

h
is unblinded in the same way as in Step 9.

The attribute information is obtained from the assertion, and h is compared

with the hash Hash(N, P1) of session ID N and P1. The user is then granted
the service if the verification passes. The service provider also stores the
notarized assertion for accountability purposes.

The use of public parameters P1 and P2 decouples the blinding factor
Hash(N, P2) and the index Hash(N, P1) of an assertion. This is done to pre-
vent dictionary attacks that use the public index Hash(N, P1) of an assertion
to evaluate the blinding factor Hash(N, P2) and thus infer the assertion. The
security is analyzed in Section 5.

In our protocol, the randomness of the session ID N is important because
it is used to blind the assertions of users. Therefore, the user participates in
generating the random session ID in Step 2, where the user and the service
provider each contribute a share of the session ID.

A straightforward realization of notarized assertions with signatures is de-
scribed next in Section 2.3. A more sophisticated solution based on the Secure
Management Transaction System(STMS) is presented in Section 3.

2.3 Realization of notarized assertions with signatures

Notarized assertions can be realized using simple time-stamped signatures. The
notary server individually signs every assertion and the current time-stamp with
its private key. The notarized assertion consists of this signature along with the
assertion and time-stamp. To verify a notarized assertion, the service provider
verifies the signature against the public key of the notary server, which can
be obtained through usual means such as a public key certificate. Because the
notary server is trusted, the correct verification of the signature establishes the
authenticity of the assertion about the index identifier Hash(N, P1). Namely, the
security of the signature-based realization of notarized assertions follows directly
from the security of the underlying signature scheme adopted.

Even though the service provider cannot tell which identity provider gener-
ated the assertion, trusting the notary server is sufficient for authenticating the
user in most applications such as on-line shopping. In addition, not knowing the
source of assertions prevents, to some degree, the service providers from collud-
ing with identity providers to discover information about the user. Because of
the use of session ID, the notary server and the service providers do not know
the actual identities associated with assertions.

In this simple signature-based approach, notarizing assertions can be a per-
formance bottleneck because the notary server needs to sign every individual
assertion. To improve the efficiency of the notary server, we give an improved
realization of notarized assertions using authenticated dictionary techniques in
the next section.

3 STMS-Based Implementation

In this section, we describe an approach for realizing notarized assertions us-
ing the secure transaction management system (STMS). The main advantage

of STMS in comparison to the simple time-stamped signature approach is its
high efficiency of computation. The notary server only needs to generate one
signature as opposed to a signature for each assertion. In addition, STMS also
provides a distributed architecture for fast real-time dissemination of assertion
updates. Next, we first introduce the components and algorithms of STMS, then
we describe how to use STMS to scale up the notary service.

3.1 Secure Transaction Management System (STMS)

The computational abstraction underlying STMS is a data structure called an
authenticated dictionary (see, e.g., [1, 15, 20, 24]), which is a system for publish-
ing data and supporting authenticated responses to queries about the data. In an
authenticated dictionary, the data originates at a secure central site, called STMS
source and is distributed to servers scattered across the network, called STMS
responders. The responders answer queries on behalf of the source about the
data made by clients. It is desirable to delegate query answering to the respon-
ders for two reasons: (1) The source is subject to risks such as denial-of-service
attacks if it provides services directly on the network, and (2) The large volume
and diverse geographic origination of the queries require distributed servers to
provide responses efficiently.

Basis

Signature

Update

Answer

Proof Source

Query

Responder User
Basis

Signature

Add

PQ765F3
Contains?

AX234H3

Contained

AX234H3

Proof

… …

DS DS

Fig. 2. Overview of STMS. The source pushes updates containing a signed basis to the
responder. The responder then answers user queries with a proof of the answer, and a
copy of the signed basis from the source.

The main feature of STMS is that it maintains trust even when responders
are located in insecure, untrusted locations. That is, when a client submits a
query to an STMS responder, it gets back not only an answer but also a proof
of the answer. The client can easily validate the answer and determine that the
responder has not been tampered with, while relying solely on trusted statements
signed by the source. The design of STMS allows untrusted responders, which
do not store private keys, to provide verifiable authentication services on behalf

of a trusted source. This nonintuitive yet mathematically provable fact is the
key to achieve cost effectiveness.

Figure 2 shows a high-level description of the STMS parties and protocol.
The source sends real-time updates to the responders together with a special
signed time-stamped fingerprint of the database called the basis. A user’s query
to the responder asks whether an element is contained in the authenticated
dictionary maintained by STMS source. A responder replies to the query with
an authenticated response. This consists of the answer to the query, the proof of
the answer, the basis and its signature signed by the STMS source. Informally
speaking, the proof is a partial fingerprint of the database that, combined with
the subject of the query, should yield the fingerprint of the entire database. A
proof consists of a very small amount of data (less than 300 bytes for most
applications) and can be validated quickly. The client finally evaluates the risk
associated with trusting the answer using the freshness of the time-stamp.

The signature of the basis is verified using the source public-key and the
current time quantum. If the signature is not valid, then the basis is not valid.
This may indicate that the basis or the source public-key is tampered by the
STMS responder from which the values are obtained. The user verifies the answer
for element x by simply hashing the values of the returned sequence Q(x) of hash
values in the given order, and comparing the result with the signed value f(s),
where s is the basis value. If the two values agree, then the user is assured of the
validity of the answer at the time given by the time-stamp. The authenticated
dictionary data structure can be implemented using Merkle hash tree [19]. The
data structure [15] used in STMS system is based on skip list, which is more
efficient than a Merkle hash tree. We refer readers to the authenticated dictionary
literature [1, 15] for more information.

3.2 Implementing notarized assertions with STMS

Using STMS, a notary server consists of a notary source and several notary
responders. The notary source needs to be a trusted server that stores assertion
inputs from identity providers. Notary responders can be strategically placed
in geographically dispersed locations to accommodate fast queries. They obtain
real-time updates from the notary source, and answer queries from users. Notary
responders do not need to be trusted servers. The notarized assertions returned
by them can be authenticated by verifying against the public key of the notary
source by anyone.

With STMS, a notarized assertion returned by Query operation consists
of two parts: assertion itself and a STMS proof. As described in the previous
section, the proof is a sequence of hash values of elements in the notary server
for proving the existence of the assertion. The size of the proof is quite compact,
even for large number of items in the notary server. Therefore, transmitting the
proof can be quite fast. The service provider then obtains the signed STMS basis
of the current time quantum from the notary responder, if it does not yet have
it. The proof of the assertion is verified against the basis, and the signature of
the basis is verified against the public key of the notary source. If the verification

is successful, the request is granted. The signed basis remains the same for the
duration of a time quantum, therefore it only needs to be obtained once for each
time quantum. The rest of the notarized federated identity management protocol
with STMS follows the protocol in Section 2.2, and is not repeated here.

Because notary responders are not required to be trusted servers, storing
session ID in the clear is not secure – a notary responder may attempt to im-
personate a user with the session ID for service. Note that opening a secure
communication between the service provider and the notary responder does not
solve this problem. Our notarized federated identity management protocol in
Section 2 is resilient to this problem, because assertions use hashed session ID
rather than the plain session ID. In addition, the service provider transmits the
plain session ID to the user in a secure channel. A schematic drawing of the
STMS implemented notarized federated identity management protocol is shown
in Figure 3. The time quantum can be set to as short as orders of milliseconds
to allow fast dissemination of assertions. Due to space limit, the protocol and
security of STMS implemented notarized federated identity management are
not presented. The security is based on the security of STMS, which has been
previously proved [1].

User

Identity

Provider

Service

Provider

Notary

Server

3. Authenticates

4. Submits signed

Session_ID, required

attr. names

1. Requests for service

5. Submits signed

blinded assertion

ofHashed_ID

6. Queries for

Hashed_ID

7. Returns proof and signed

basis

9. Verifies proof
against signed

basis

2. Session_ID,

required attr. names

8.Proof and signed basis

Notary

Responder

Signed basis and
STMS Update

per time quantum

Fig. 3. A schematic drawing of the STMS implemented notarized federated identity
management protocol. At each time quantum, the notary source sends the signed ba-
sis and updates of the authenticated dictionary to the notary responder. The notary
responder answers a query for assertion by returning the signed basis and the proof
corresponding to the queried element.

Next, we present an authentication protocol that effectively reduces the iden-
tity theft problem. We also describe how to integrate the authentication protocol
with our notarized federated identity management protocol.

4 Reducing the Risks of Identity Theft

Identity theft is a major problem for identity management systems. Recently,
several practical solutions against on-line identity theft have been proposed [3,
18]. Single sign-on systems have been criticized to provide weak protection
against identity theft, because once an attacker successfully logs onto one site,
she will have no problem requesting services from other sites. Although intu-
itively this is true, single sign-on does not necessarily make identity thieves’ life
any easier. Madsen, Koga, and Takahashi argued in [18] that in single sign-on
systems, users only need to use one password and therefore are more likely to
choose and memorize strong passwords. Strong passwords are shown to be an
effective way to prevent break-ins.

In this section, we first analyze the causes of a successful identity theft. Then,
we give a practical solution that, if used by identify mangagers, could mitigating
major aspects of the identiy-theft problem. We also describe how to use our
scheme in our notarized federated identity management protocol.

4.1 Identity theft and its causes

Identity theft is a type of crime in which an imposter obtains key pieces of
personal information, such as Social Security or driver’s license numbers, in
order to impersonate someone else. Although an identity thief might crack into
a database to obtain personal information, it is believed that a thief is more
likely to obtain information using Trojans or even old-fashion methods such as
dumpster diving and shoulder surfing.

We observe that the current authentication protocols, both physical and dig-
ital ones, are fundamentally susceptible to identity theft, even if an individual
is careful in protecting her sensitive information. Physical authentication proto-
cols include the procedures for obtaining a driver’s license at a government office,
opening a bank account, and applying for mortgage. Digital authentication pro-
tocols include the corresponding on-line transactions. In current solutions, key
pieces of personal information are usually communicated in the clear or stored
in the clear. This makes stealing of information easier for identity thieves. Al-
though the SSL protocol encrypts communications between a user and a server,
this does not prevent Trojan keyloggers, or shoulder surfing, because the user
still needs to disclose and type over and over sensitive information such as her
social security number.

We argue that this fundamental characteristic of the existing authentication
protocols is one of the main causes of identity theft, namely using sensitive
information in clear form for authentication. We propose a simple and practical
cryptographic protocol for authentication. Our solution ties personal information
to random secrets, which are used to prove interactively the ownership of the
personal information but are never disclosed.

4.2 Motivation for using IBE

In public key encryption schemes, the private key information is never disclosed.
Yet, a challenge-response process can be used by a user to prove the possession
of the private key to an identity provider. The private key is usually protected
by encrypting it with a passphrase, and storing it in a portable device, such as a
smart card or a USB flash drive. Observe that the private key is never disclosed in
clear during transactions, hence it never appears in any printed form or display.
Therefore, it is difficult for attackers to retrieve someone’s private key using
standard identity theft techniques. To steal the private key, an attacker would
need to obtain the physical device and know the passphrase.

In order to associate public keys with identity information, we use the
Identity-Based Encryption (IBE) scheme [5, 23]. A public key in IBE will be
the personal information (e.g., the social security number of an individual). For
authentication, an individual not only needs to know her personal information
(e.g., social security number), but also needs to prove the possession of the corre-
sponding private key for authentication. In the rest of this section, we introduce
identity-based encryption and related schemes. In the next section, we describe
our authentication protocol for identity management.

The idea of an identity-based encryption (IBE) scheme is that an arbitrary
string can serve as a public key. The motivation for using IBE as opposed to
conventional public-key encryption schemes is as follows. IBE reduces the need
for public key certificates and certificate authorities, because a public key can be
associated with identity information such as a user’s social security number. On
the contrary, conventional encryption schemes such as RSA does not allow an
arbitrary string to be used as a public key, and hence requires key certification.

Using IBE, a user can disclose her social security number to an identity
provider without worrying about identity theft attacks such as shoulder surfing
and dumpster diving. This is because the number is only used as a public key,
and the user also needs to prove the possession of the corresponding private key.
The identity provider encrypts a challenge nonce using the user’s social security
number as the public key. The user receives the encrypted challenge nonce and
decrypts it with his private key corresponding to the social security number. The
private key is obtained by a third party, called Private Key Generator (PKG)
in IBE literature. To do that, the user authenticates himself to the PKG in the
same way as he would authenticate himself to a passport office and obtains his
private key from PKG. The user returns the decryption result to the identity
provider. Without knowing the private key associated with the social security
number, an attack cannot make use of the number.

4.3 Identity-based encryption scheme

The first scheme for identity-based encryption was based on the bilinear Diffie-
Hellman assumption in the random oracle model by Boneh and Franklin [5].
In IBE schemes, the private key generator (PKG) is responsible for generating

private keys for all users, and therefore is a performance bottleneck for organiza-
tions with large number of users. Hierarchical identity-based encryption (HIBE)
schemes [13] were proposed to alleviate the workload of a root PKG by delegating
private key generation and identity authentication to lower-level PKGs.

Boneh-Franklin IBE contains four operations: Setup, Extract, Encrypt,
and Decrypt [5]. In Setup, the PKG takes a security parameter k, and returns
params (system parameters) and the root secret key SK. The root private key
is used to derive private keys for all other users and is only known to the PKG.
In Extract, the PKG uses SK to generate the private key SKid for a user
with an ID. In Encrypt, a sender inputs params, a message M and the ID of
the intended message recipient, and computes a ciphertext C. In Decrypt, a
user with an ID inputs params, C, and its private key SKid, and returns the
message M . These operations are used in our authentication protocol.

4.4 A cryptographic authentication protocol

We propose to use ID-based encryption scheme for implementing an authenti-
cation protocol for sensitive personal information. Our protocol minimizes the
exposure of secret personal information and thus is more robust against identity
theft than existing authentication methods.

Entities in our protocol include a user, an ID authority, an identity provider,
and a revocation server controlled by the ID authority. Our authentication pro-
tocol has the following operations: Setup, Register, Authenticate, and Re-

fresh. It requires an on-line revocation server maintained by the ID authority.
The operations are defined as follows.

Setup is run by an ID authority who takes as input a security parameter and
outputs public parameters and master secret.

Register is run by the ID authority to generate secret keys for personal infor-
mation of a user. The ID authority takes as input the identity information of a
user and outputs the corresponding private key. The private key is transmitted
to the user via a secure channel.

Authenticate is for a user to authenticate his identity information to an iden-
tity provider. The identity provider first queries the revocation server to ensure
that the user’s public key is valid. If yes, the user then proves to the identity
provider that he possesses the secret key associated with the identity informa-
tion. If the user successfully proves the possession of secret key, the output is
true, otherwise, the output is false.

Refresh is for the ID authority to re-generate the private key associated with a
user’s identity information. The input is the identity information, and the output
is a new private key. Refresh is run when the previous secret key expires, or the
key is compromised and a new key needs to be generated. The revoked public
key is put on a revocation server.

Refreshing the secret key of identity information can be tricky, because the
identity information typically does not change, e.g. social security number. We
show later how to use multiple pieces of identity information and on-line revo-

UserIdentity

Provider

3. Submits identity-based
public key for
authentication

6. Is the identity-based

public key revoked?

1. Registers ID-based
public key

2. Issues private key

Revocation

Server

Periodic updates of
revoked identity-based

public keys

4. Challenge ciphertext

5. Result of decryption

with private key

ID

Authority

Fig. 4. A diagram of the ID-based authentication protocol. Identity information is used
as the public key in this protocol. This identity information cannot be used by others
for impersonation without knowing the corresponding private key.

cation checking to leverage this. A diagram of the protocol is shown in Figure
4. Here, we describe the realization of the above operations with IBE scheme.

1. Setup: The ID authority runs the PKG Setup operation of IBE.
2. Register: A user requests an identity private key from an ID authority.

The user needs to be physically present in the ID office, for example the
passport office, with paper identifications such as passport, birth certificate.
The ID authority authenticates the user’s identity.
If the user’s identity is verified, the ID authority runs the Extract operation
of IBE with the user’s identity information concatenated with a unique serial
number l. For example, l can be the driver’s license number. l is used for
revocation purpose. Because the identity information such as social security
number cannot be revoked, we need an addition replaceable field l. Note that
l cannot be any random number, because using a random value as public key
requires public-key certification, which defies the purpose of identity-based
encryption. In what follows, we use the driver’s license number as l. The
user’s driver’s license can be equipped with a smart card chip and store the
private key.

3. Authenticate: The user and the identity provider engage in a challenge-
response protocol as follows.
(a) The user gives his public key to the identity provider, which is the iden-

tity information concatenated with the driver’s license number l to the
identity provider.

(b) The identity provider picks a random nonce m. It runs Encrypt of IBE
to encrypt m using the user’s identity information concatenated with l

as the public key.
(c) The ciphertext is given to the user, who runs Decrypt of IBE with his

private key. If the user is unable to correctly decrypt the ciphertext, the
authentication fails and returns false.

(d) The identity provider queries the revocation server maintained by the
ID authority for the number l in the public key of the user. If l has been
revoked, then the authentication fails. Otherwise, the authentication is
successful and returns true.

4. Refresh: The ID authority refreshes the private key of the user as follows.

(a) The user authenticates his identity information and current driver’s li-
cense number l to the ID authority.

(b) The ID authority puts the the driver’s license number l on the revocation
server to indicate that l has been revoked.

(c) The ID authority generates a new driver’s license number l′ for the user.
The new public key of the user associated with his identity information is
that identity information concatenated with l′. For example, the public
key is 999-99-9999 ◦ 1234567890, where 999-99-9999 is the social security
number and 1234567890 is the new driver’s license number l′.

(d) The ID authority runs Extract of IBE to compute a new private key,
which is transmitted to the user via a secure channel. The user stores
the private key in his smart card.

The main advantage of our authentication protocol is that the secret personal
information is not released during the transaction, which minimizes identity
theft attacks such as dumpster diving and shoulder surfing. Our protocol can
be used in any user authentication applications. In particular, it can be used
in any federated identity management system when a user authenticates his
personal information with an identity provider. For example, a user is required
to run Authenticate with the identity provider when an assertion of his social
security number is to be generated. Without the corresponding private key, it is
impossible for an identity thief is to accomplish this.

The above protocol is suitable for authenticating extremely sensitive, or
unique and permanent identity information such as social security number or
credit card number. It is also suitable for less sensitive information such as age,
phone number, address. Multiple attributes can be aggregated to form one key,
in order to reduce the number of private keys required. Revocation in our pro-
tocol uses on-line revocation servers. Some sensitive information such as social
security number cannot be changed for a user. Therefore, we make the public
key contain not only the social security number, but also a replaceable number
such as driver’s license number. Efficient and scalable revocation service has been
implemented [14, 20] and is not repeated here.

Remark: Our solution is not aimed to solve identity thefts that involve stealing
paper credentials (such as birth certificate, passport) to impersonate others. In
our scheme, an attacker may be able to gather enough paper credentials of a
victim and register in person with the ID authority a new identity-based public
key as the victim. (This may be possible because the attacker is a close friend
or relative of the victim.)

5 Security Analysis

In this section, we first analyze the security of the notarized federated identity
management protocol, and then analyze the ID-based authentication protocol.

5.1 Notarized federated identity management

The security of our notarized federated identity management protocol is analyzed
from the perspectives of the user, the identity provider, the service provider, and
the notary server, as each of them has different requirements on the security
provided by the system. In what follows, we assume the existence of a signature
scheme that is secure against existential forgery by polynomial-time adversaries
in the security parameter of the signature scheme. Existential forgery means that
an adversary forges a signature that the notary server has not signed in the past.
An adversary in our protocol can monitor traffics in unsecured channels, request
for services, request the identity provider to blind assertions of her choice, and
request the notary server to notarize assertions of her choice.

We assume that the notary server is trustworthy, and is trusted by all entities
(users, identity providers, service providers). All entities are assumed to follow
the federated identity management protocol presented in Section 2. The most
important security requirement in our notarized federated identity management
model is the security of notarized assertions, which is defined in Section 2 as
the nonforgeability of a notarized assertion. Our implementations satisfy this
property, which is stated in the following theorem.

Theorem 1. In the notarized federated identity management protocol, no
polynomial-time adversary can successfully forge a valid notarized assertion that
is not generated by the notary server.

Proof sketch: We give two implementations of the notarized assertion. One
is based on a simple signature scheme, the other is based on STMS. In both
implementations, forging a notarized assertion is equivalent to forging the sig-
nature of the notary server at a time quantum. This is infeasible, assuming the
existence of a signature scheme that is secure against existential-forgery attacks.
Therefore, the theorem holds. 2

For the privacy protection of a user, an important privacy requirement is
the secrecy of assertions. This is defined as that the protocol does not leak any
information of the assertion to the adversary. Our notarized federated identity
management protocol satisfies the secrecy requirement, which is summarized in
the following theorem.

Theorem 2. Assume the existence of a collision-resistant one-way hash func-
tion, and a secure symmetric key encryption scheme. In the notarized federated
identity management protocol, a polynomial-time adversary and untrusted notary
responders cannot obtain any information from a blinded assertion.

Proof sketch: We will prove that (1) the key is difficult to guess and (2) the
blinded assertion is pseudorandom. An assertion is encrypted by the identity
provider using a symmetric key encryption scheme that is secure in the sense of

an adversary’s inability to distinguish the output from a random string [2]. The
secret key for the encryption/decryption is computed as H(N, P2), where H is
a collision-resistant one-way hash function, N is the session ID, P2 is a public
parameter, and “,” denotes concatenation. Given the public index H(N, P1) of
an assertion, where P1 is another public parameter, the secret key is still difficult
to guess. This is because of the collision-resistant and one-way properties of the
hash function H . In addition, the blinded assertion is indistinguishable from
a random string, because of the security of the encryption scheme. Therefore,
adversaries and untrusted notary responders cannot obtain any information from
the blinded assertions. 2

For decentralized authorization systems such as the federated identity man-
agement, an important security requirement is accountability. To prevent pos-
sible disputes, identity providers should be held accountable for the assertions
that they have generated. In addition, to prevent unauthorized information ex-
change among providers, users should be able to dispute any fraudulent assertion
requests. These properties are achieved in our protocol.

Theorem 3. In the notarized federated identity management protocol, the iden-
tity provider is held accountable for the assertions that it generates.

Proof: The notary server stores the signed (blinded) assertion submitted by
an identity provider in Step 7c of our notarized federated identity management
protocol. In case of a dispute between a service provider and an identity provider
on the validity of an assertion, the notary server reveals the signature, which
is used to hold the identity provider accountable for generating the assertion.
Therefore, Theorem 3 holds. 2

Theorem 4. In the notarized federated identity management protocol, providers
are held accountable for any unauthorized information exchange among them.

Proof: In our protocol, an identity provider should only generates assertions
based on a signed request from a user. The identity provider is required to keep
the signed requests for its own record in Step 4 of our notarized federated identity
management protocol. Once unauthorized information sharing among providers
is detected, the identity provider is not able to show any signed request by the
user. Hence, it is responsible for the information leak. 2

Theorem 5. The notarized federated identity management protocol is secure
against replay attacks.

It is easy to see that Theorem 5 holds, because the session ID is randomly
generated for each service request and the notarized assertions are generated by
the notary server with the time-stamp information.

5.2 ID-based authentication

The security of the ID-based authentication protocol is defined as the adversary’s
inability of impersonating a user. Formally, an ID-based authentication protocol
is secure if no polynomial-time adversary can distinguish with non-negligible
probability the challenge ciphertexts of two nonces of her choice.

This security property is equivalent to the semantic security in the identity-
based encryption scheme [5], which intuitively means that the adversary does not
learn anything about the messages from observing the ciphertexts. The adversary
in this protocol is allowed to monitor traffic in unsecured channels, request for
the private keys of identities of her choice, request the identity authority to
decrypt the challenge ciphertexts of her choice, and choose two challenge nonces
whose ciphertexts are to be distinguished.

Theorem 6. Given an identity-based encryption scheme that is semantic-secure
against an adaptive polynomial-time adversary, the ID-based authentication pro-
tocol is secure.

It is easy to see that theorem holds because of the assumption of a secure IBE
scheme. This theorem shows that it is infeasible for an adversary to impersonate
a user if the user’s private key is not compromised. This leads to the following
conclusion that states the property of our authentication protocol in preventing
identity theft. In the ID-based authentication protocol, an adversary cannot suc-
cessfully impersonate a user without stealing the user’s tamper-resistant device
that stores the identity private key.

6 Related Work

Our approach of using privacy protection as a means to avoid identity theft
is related to anonymous credential systems [11, 17]. Anonymous credential sys-
tems (also called pseudonym systems) allow anonymous yet authenticated and
accountable transactions between users and service providers. One of the main
design goal of these systems is to achieve unlinkability of multiple showing of
credentials. The Identity mix (idemix) project [7] is an anonymous credential sys-
tem using the cryptographic protocols presented in [8]. Such a system consists
of users and organizations. Organizations know the users only by pseudonyms.
Different pseudonyms of the same user cannot be linked. An organization can
issue a credential to a pseudonym, and the corresponding user can prove the
possession of this credential to another organization (who knows her by a differ-
ent pseudonym), without revealing anything more than the fact that she owns
such a credential.

Existing anonymous credential systems are different from our single sign-on
system, in that they do not consider a federated identity infrastructure behind
the providers. In comparison, our system focuses on how to manage user au-
thentication in the more realistic setting of a federation of providers. Our sys-
tem achieves simple pseudonym solutions and efficient single sign-on by taking
advantages of the federated structure. In particular, we do not need a creden-
tial system, because the assertions can be short-lived and generated on-line by
identity providers.

In the past decade, the European Union and its member states have imple-
mented a legal framework to provide guidance on processing of personal data
with the specific aim to restore citizens’ control over their data. To complement
the legal framework, Camenisch et al. presented the architecture of PRIME

(Privacy and Identity Management for Europe), which implements a technical
framework for processing personal data [6]. PRIME focuses on enabling users to
actively manage and control the release of their private information. Thus, the
PRIME system places a significant burden on users.

The federated identity management solution proposed by Bhargav-Spantzel,
Squicciarini, and Bertino [3] emphasizes the need for proving the knowledge of
personal information without actually revealing it, in order to help prevent iden-
tity theft. In their solution, personal data such as a social security number is
never transmitted in the clear. Commitment schemes and zero-knowledge proofs
are used by a user to commit data and prove the knowledge of the data. Our
identity-based solution has a similar goal to this approach, but there is one im-
portant difference. We allow personal data such as social security numbers and
credit card numbers to be transmitted in the clear. Yet, every time this infor-
mation is used, the user needs to prove the possession of corresponding private
keys. This requires minimal changes to the existing financial and administrative
infrastructure, as personal information in our scheme is stored the same way
as it is currently. Identity-based encryption [5] conveniently makes this possi-
ble, and, interestingly, this approach is also more efficient than zero-knowledge
proof-of-knowledge protocols.

BBAE is the federated identity-management protocol proposed by Pfitzmann
and Waidner [21]. They give a concrete browser-based single sign-on protocol
that aims at the security of communications and the privacy of user’s attributes.
Their protocol is based on a standard browser, and therefore does not require the
user to install any program. The security is based on extensive uses of SSL/TLS.
The main difference with this and our approach is that we provide a notary mech-
anism for authenticating assertions when IdP and SP are not previous known to
each other.

In the access control area, the closest work to ours is the framework for regu-
lating service access and release of private information in web-services by Bonatti
and Samarati [4]. They study the information disclosure using a language and
policy approach. We designed cryptographic solutions to control and manage in-
formation exchange. Their framework mainly focuses on the client-server model,
whereas our architecture include two different types of providers.

A counter measure for identity theft through location cross-checking and in-
formation filtering was recently proposed [25]. This paper addresses the identity
cloning problem, and proposes to use personal location devices such as GPS and
central monitoring systems to ensure the uniqueness of identities. However, the
central monitoring system in their solution is likely to be a performance bottle-
neck. Moreover, because identity thieves are geographically dispersed, distribut-
ing the monitoring task into several locations is not feasible. In comparison, our
solution is simple and efficient to adopt. Because we tie the secret identification
information to a tamper-resistant smart card (e.g., driver’s license), card theft
can be easily noticed and reported by the card owner.

We compare our solutions with existing federated identity management pro-
posals in Table 1.

Systems Notarized FIM BBAE [21] ZK-based FIM [3] idemix [7] SAML [9]

Unknown providers Yes No No No No
Brokering trust Yes No No No No

IdP/SP separation Yes No Yes Yes No
ID-theft mitigation Yes No Yes Yes No

Browser-based No Yes No No Yes
Table 1. Comparisons of federated identity management systems. The term unknown
providers indicates support for identity providers and service providers who do not
have pre-established trust. Brokering trust refers to whether the protocol supports
unknown providers to establish trust via trusted third-party, which is the notary server
in our protocol. The term IdP/SP separation refers to the lack of direct communica-
tion between an identity provider and a service provider about the user’s information.
This separation benefits the user in terms of privacy protection.

7 Acknowledgements

We are grateful to David Croston, of IAM Technology, Inc., for suggesting the
research topic of this paper and for useful comments.

References

1. A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent authenticated
dictionaries and their applications. In Proc. Information Security Conference (ISC
2001), volume 2200 of LNCS, pages 379–393. Springer-Verlag, 2001.

2. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chain-
ing message authentication code. Journal of Computer and System Sciences,
61(3):362–399, December 2000.

3. A. Bhargav-Spantzel, A. C. Squicciarini, and E. Bertino. Establishing and pro-
tecting digital identity in federation systems. In Proceedings of the 2005 ACM
Workshop on Digital Identity Management, pages 11–19, November 2005.

4. P. A. Bonatti and P. Samarati. A uniform framework for regulating service access
and information release on the web. Journal of Computer Security, 10(3):241–272,
2002.

5. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.
In Advances in Cryptology — Crypto ’01, volume 2139 of LNCS, pages 213–229.
Springer-Verlag, 2001.

6. J. Camenisch, abhi shelat, D. Sommer, S. Fischer-Hübner, M. Hansen, H. Krase-
mann, G. Lacoste, R. Leenes, and J. Tseng. Privacy and identity management for
everyone. In Proceedings of the 2005 ACM Workshop on Digital Identity Manage-
ment, pages 20–27, November 2005.

7. J. Camenisch and E. V. Herreweghen. Design and implementation of the idemix
anonymous credential system. In Proceedings of the 9th ACM conference on Com-
puter and communications security, pages 21–30, 2002.

8. J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In B. Pfitzmann,
editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of Lecture
Notes in Computer Science, pages 93–118. Springer Verlag, 2001.

9. S. Cantor, F. Hirsch, J. Kemp, R. Philpott, E. Maler, J. Hughes, J. Hodges,
P. Mishra, and J. Moreh. Security Assertion Markup Language (SAML) V2.0.
Version 2.0. OASIS Standards.

10. S. Cantor and J. Kemp. Liberty ID-FF Protocols amd Schema Specification. Ver-
sion 1.2. Liberty Alliance Project. http://www.projectliberty.org/specs/.

11. D. Chaum. Security without identification: transaction systems to make big brother
obsolete. Communications of the ACM, 28(10):1030–1044, October 1985.

12. Cyber Security Industry Alliance. Internet security national survey, No.
2, December 2005. https://www.csialliance.org/StateofCyberSecurity2006/ Na-
tional Survey 121305.PDF.

13. C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Advances
in Cryptology — Asiacrypt ’02, volume 2501 of LNCS, pages 548–566. Springer-
Verlag, 2002.

14. M. T. Goodrich, M. Shin, R. Tamassia, and W. H. Winsborough. Authenticated
dictionaries for fresh attribute credentials. In Proc. Trust Management Conference,
volume 2692 of LNCS, pages 332–347. Springer, 2003.

15. M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenti-
cated dictionary with skip lists and commutative hashing. In Proc. 2001 DARPA
Information Survivability Conference and Exposition, volume 2, pages 68–82, 2001.

16. Liberty Alliance Project. http://www.projectliberty.org.
17. A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys

and C. Adams, editors, Selected Areas in Cryptography, volume 1758 of Lecture
Notes in Computer Science. Springer Verlag, 1999.

18. P. Madsen, Y. Koga, and K. Takahashi. Federated identity management for pro-
tecting users from ID theft. In Proceedings of the 2005 ACM Workshop on Digital
Identity Management, pages 77–83, November 2005.

19. R. C. Merkle. Protocols for public key cryptosystems. In Proc. Symp. on Security
and Privacy, pages 122–134. IEEE Computer Society Press, 1980.

20. M. Naor and K. Nissim. Certificate revocation and certificate update. In Proceed-
ings of the 7th USENIX Security Symposium, pages 217–228, 1998.

21. B. Pfitzmann and M. Waidner. Federated identity-management protocols. In
Security Protocols Workshop, pages 153–174, 2003.

22. B. Shafiq, E. Bertino, and A. Ghafoor. Access control management in a distributed
environment supporting dynamic collaboration. In Proceedings of the 2005 ACM
Workshop on Digital Identity Management, pages 104–112, November 2005.

23. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances
in Cryptology — Crypto ’84, volume 196 of LNCS, pages 47–53. Springer-Verlag,
1984.

24. R. Tamassia. Authenticated data structures. In Proc. European Symp. on Algo-
rithms, volume 2832 of Lecture Notes in Computer Science, pages 2–5. Springer-
Verlag, 2003.

25. P. van Oorschot and S. Stubblebine. Countering identity theft through digital
uniqueness, location cross-checking, and funneling. In Proceedings of Financial
Cryptography and Data Security (FC ’05), pages 31–43, 2005.

26. Web Services Federation Language (WS-Federation), 2003. ftp://www6.

software.ibm.com/software/developer/library/ws-fed.pdf.

